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Abstract

Goal-conditioned reinforcement learning (GCRL) has a wide
range of potential real-world applications, including manip-
ulation and navigation problems in robotics. Especially in
such robotics tasks, sample efficiency is of the utmost im-
portance for GCRL since, by default, the agent is only re-
warded when it reaches its goal. While several methods have
been proposed to improve the sample efficiency of GCRL,
one relatively under-studied approach is the design of neural
architectures to support sample efficiency. In this work, we
introduce a novel neural architecture for GCRL that achieves
significantly better sample efficiency than the commonly-
used monolithic network architecture. The key insight is that
the optimal action-value function Q∗(s, a, g) must satisfy
the triangle inequality in a specific sense. Furthermore, we
introduce the metric residual network (MRN) that deliber-
ately decomposes the action-value function Q(s, a, g) into
the negated summation of a metric plus a residual asymmetric
component. MRN provably approximates any optimal action-
value function Q∗(s, a, g), thus making it a fitting neural
architecture for GCRL. We conduct comprehensive experi-
ments across 12 standard benchmark environments in GCRL.
The empirical results demonstrate that MRN uniformly out-
performs other state-of-the-art GCRL neural architectures in
terms of sample efficiency. The code is publicly available at
https://github.com/Cranial-XIX/metric-residual-network.

1 Introduction
Goal-conditioned reinforcement learning (GCRL) refers to
the problem in which an agent learns to solve a set of tasks
indicated by different “goals” via trial and error. In contrast
to the standard reinforcement learning (RL) setting, in which
the per-step reward the agent receives can be an arbitrary
fixed scalar function, the reward function in GCRL is usu-
ally an indicator function identifying whether the agent has
achieved the goal but with a varying goal. As a result, GCRL
enables the learning of a whole family of tasks with rela-
tively little human effort toward reward design and thus has
many potential real-world applications. For instance, robot
manipulation tasks like picking and placing an object in a
target location can be viewed as a GCRL problem where the
underlying task family is parameterized by the target goal lo-
cation. Similarly, robot navigation can be viewed as a GCRL
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problem where the goal can be any navigation destination.
Although GCRL has a straightforward reward formula-

tion, it inherits the challenges associated with sparse reward
learning: unlike in the dense reward setting, the reward sig-
nal is only informative when the agent reaches the goal.
Therefore, sample efficiency is a major challenge in GCRL,
meaning that the agent typically needs a large number of in-
teractions with the environment to make meaningful learn-
ing progress. To address this problem, an active line of re-
search focuses on designing novel learning algorithms that
efficiently use the data. One popular approach is hindsight
experience replay (HER) (Andrychowicz et al. 2017), which
relabels the agent’s trajectories as if they were aiming to
reach the state that they in fact reached, thus rendering every
trajectory an example of a successful goal achievement.

One relatively under-explored direction is the design of
better neural architectures for GCRL. For actor-critic-like
methods, prior work has proposed decomposing the critic
function (a.k.a the action-value function Q(s, a, g), see
Sec. 2.1) into a bilinear network, e.g., either Q(s, a, g) =
f(s, a)>φ(g) (Schaul et al. 2015) or Q(s, a, g) =
f(s, a)>φ(s, g) (Hong, Yang, and Agrawal 2022), where
f and g are separate neural modules. The principle behind
these designs is to inject useful inductive bias into the ar-
chitecture. Although empirically found to be effective, it re-
mains unclear why such a decomposition works and whether
it can be improved upon.

In this work, we argue that one fundamental inductive bias
is that under the sparse reward setting, the negated optimal
action-value (e.g.,−Q∗(s, a, g)) must satisfy the triangle in-
equality in a specific sense. While there exists prior work on
neural architectures that respect the triangle inequality (Pitis
et al. 2020), we make the following novel contributions:

• We are the first to show that the discountedQ∗(s, a, g) in
the standard GCRL setting (See Sec. 2.1), when the goal
is a deterministic onto mapping from the state, satisfies
the triangle inequality.

• Motivated by the first point, we introduce the metric
residual network (MRN) that deliberately decomposes
the negative action-value function (e.g., −Q) into the
sum of a metric and an asymmetric residual component,
which provably approximates any quasipseudometric.1

1(d,X ) defines a quasipseudometric on X if 1) ∀x ∈
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• With a comprehensive experiment on 12 standard GCRL
benchmark environments, MRN consistently performs
better than a range of common prior designs. We hypoth-
esize that MRN’s metric component speeds up learning,
and the asymmetric residual component makes the ap-
proximation accurate.

2 Preliminaries
In this section, we first introduce the formal definition of
the GCRL problem. Then we review the off-policy actor-
critic algorithm DDPG and the hindsight experience replay
(HER) method with goal relabeling for GCRL. DDPG+HER
serves as the substrate algorithm within which we compare
different neural architecture designs.

2.1 Goal-conditioned Reinforcement Learning
The goal-conditioned reinforcement learning problem can
be formulated as a goal-conditioned Markov Decision Pro-
cess, which is an 8-tuple Mgc = (S,A,G, T, R, γ, ρ0, ρG).
Here, S , A, and G are the state, action, and goal spaces
of the agent. T : S × A → S is the transition dynamics.
R : S × A × G → R is the reward function. γ is the dis-
count factor. ρ0 and ρG are the initial state and target goal
distributions. Concretely, at the start of each episode, an ini-
tial state s0 ∼ ρ0 and a goal g ∼ ρG are sampled. The
agent starts at s0, and at each time step t ≥ 0, it chooses
action from a policy π, e.g., at ∼ π(· | st). It then receives
a reward rt,g = R(st, at, g) and transitions to the next state
st+1 ∼ T (· | st, at). The overall objective of the infinite-
horizon GCRL problems is to maximize the following:

max
π

J(π) = E s0∼ρ0, g∼ρG ,
(st,at,rt,g)∼π,T,R

[ ∞∑
t=0

γtrt,g
∣∣ s0, g], (1)

where the reward rt,g is often defined as2

rt,g = R(st, at, g) =

{
0 M(st, at) = g

−1 otherwise
. (2)

Here M : S × A → G is an onto mapping from the product
space of the state and action to the goal space. Note that
Mgc does not terminate when the goal is reached; the agent
receives a reward every time it returns to the goal (or remains
there). In practice, usually G ⊂ S . For example, if the goal
is for an autonomous car to reach any given velocity, then
G would naturally comprise the velocity component of the
agent’s full state space S . For technical reasons in Sec. 3.1,
we also include at in deciding whether the goal is reached.3

2.2 Off-Policy Actor-Critic
Actor-critic methods like Deep Deterministic Policy Gradi-
ent (DDPG) (Lillicrap et al. 2015), Twin Delayed DDPG

X , d(x, x) = 0 and 2) ∀x, y, z ∈ X , d(x, y)+d(y, z) ≥ d(x, z).
2There are two conventional setups: either the agent receives a

reward of 1 when reaching the goal and 0 otherwise, or it receives
−1 reward until it reaches the goal. In this work, without further
specification, we assume the latter setting.

3When rt,g is determined by checking whether M(st, at) = g,
as opposed to whether M(st+1 = g), it is a deterministic function
involving no randomness from the transition dynamics T .

(TD3) (Fujimoto, Hoof, and Meger 2018) and Soft Actor-
Critic (SAC) (Haarnoja et al. 2018) are popular methods
for solving GCRL. In this work, we consider DDPG as the
underlying RL algorithm, as it is the most commonly used
method in prior GCRL research. In DDPG and under the
GCRL setting, the critic Q(s, a, g) evaluates the expected
discounted return to reach goal g at state s by choosing a. In
particular, Q(s, a, g) is called the universal value function
approximator (UVFA) as it extends the normal Q(s, a) to a
subset of goals indicated by g. Formally, we have

Qπ(s, a, g) = E(st,at,rt,g)
∼π,T,R

[ ∞∑
t=0

γtrt,g
∣∣ s0 = s, a0 = a, g

]
. (3)

The critic Q is then updated by minimizing the temporal-
difference (TD) error:

L(Q) = E
[(
rt,g + γQ(st+1, π(st+1), g)−Q(st, at, g)

)2]
, (4)

where the expectation is taken over (st, at, st+1, g) ∼ D,
and D is the replay buffer that stores the agent’s previ-
ous experience. The actor (a.k.a the policy π) is then up-
dated through the critic. In particular, the policy’s gradient
in DDPG is

∇πJ(π) = E
[
∇atQ(st, at, g)

∣∣
at=π(st)

]
. (5)

2.3 Hindsight Experience Replay

A popular technique for mitigating the sparse reward prob-
lem is hindsight experience replay (HER) (Andrychow-
icz et al. 2017). Assume the agent collects a trajectory
τ = (s0, a0, . . . , sT , aT ) using policy π and correspond-
ing initial state s0 and goal g. If ∀t,M(st, at) 6= g,
then the agent receives −1 reward every step and there-
fore learns nothing from this rollout trajectory. HER rela-
bels the trajectory as if the agent were pursuing the goal
g ∈ {M(s1, a1), . . . ,M(sT , aT )}. In this case, the trajec-
tory can be viewed as a successful example of reaching a dif-
ferent goal. By representing Q as a UVFA (e.g., Q(s, a, g)),
one hopes that learning on these relabeled trajectories can
help to generalize Q to all different goals in the goal space,
including those from the original goal distribution ρG . In
practice, HER is often combined with an off-policy actor-
critic algorithm. Following the original work of HER and
prior work in GCRL, we use DDPG+HER as the base GCRL
algorithm for policy learning and compare the performance
across different neural architectures within the critic.

3 Metric Residual Network
One way to design a good neural architecture for UVFA is
to base it on theoretically sound inductive biases so that the
designed networks naturally inherit these inductive biases.
Metric residual network (MRN) is designed based on the
observation that the optimal universal action-value function
Q∗(s, a, g) in GCRL must satisfy the triangle inequality in
a specific way. We formally prove this observation is correct
in Sec. 3.1 and introduce a novel network architecture that
enforces the triangle inequality in Sec. 3.2.



Bilinear Value (BVN) Deep Norm (DN) Wide Norm (WN) Metric Residual (MRN)Poisson Quasi-metric (PQE)

Figure 1: Comparison of different neural architecture designs for decomposing the action value function Q(s, a, g) in GCRL.
For the metric residual network (MRN), dsym(x, y) = ||φ(x) − φ(y)||2 and dasym(x, y) = maxi

(
h(x) − h(y)

)
+
[i]. Note that

x and y are passed through the same networks φ and h. In experiments, all networks are created with approximately the same
number of parameters. In particular, the size of φ + e1 (or h + e2) in MRN is the same as that of f (or φ) in BVN.

3.1 Triangle Inequality in GCRL
In this section, we start by showing that when G ≡ S ×
A, Q∗(s, a, g) satisfies the triangle inequality. Then we ex-
tend the result to the general case when G 6≡ S × A.

When G ≡ S × A Under this setting, M (in Eq. (2))
becomes the identity mapping. For convenience of notation,
let X = S × A, i.e. xt = (st, at). Given a policy π, the
universal value function on X then becomes

Qπ(x, xg) = E (xt,rt)
∼π,T,R

[ ∞∑
t=0

γtrt,g
∣∣ x0 = x, g = xg

]
. (6)

The optimal universal value function is therefore:
Q∗(x, xg) = max

π
Qπ(x, xg). (7)

To build intuition regarding why Q∗ satisfies the triangle in-
equality, consider any x1, x2 and x3 in X (Fig. 2).

Figure 2: Intuition for triangle inequality in GCRL.

Think of Q∗(x1, x2) as consisting of the “cost” of (dis-
counted reward for) reaching x2 (→) plus the “cost” of stay-
ing at x2 (99K). DecomposeQ∗(x2, x3) andQ∗(x1, x3) sim-
ilarly. Then, by definition of Q∗(x1, x3), a proof sketch is

Q∗(x1, x3) = (→) + (99K) ≥ (→) + (→) + (99K)

≥ Q∗(x1, x2) +Q∗(x2, x3).
(8)

This statement is formally presented in Thm. 1, and the
proof is provided in Appendix A.1.

Theorem 1. Consider the following Goal-conditioned MDP
Mgc = (S,A,G, T, R, γ, ρ0, ρg) as described in Sec. 2.1

except that G ≡ S × A . Then the optimal universal value
function Q∗ defined in Eq. (7) satisfies the triangle inequal-
ity: ∀ x1, x2, x3 ∈ X ,

Q∗(x1, x2) +Q∗(x2, x3) ≤ Q∗(x1, x3). (9)

Concurrently, Wang and Isola (2022) present a claim sim-
ilar to Thm. 1, where they show the optimal goal-reaching
plan costs in MDPs form a quasipseudometric. The optimal
goal-reaching plan costC(x1, x2) can be viewed as the min-
imum expected first hitting time from x1 to x2. We empha-
size the two differences between Thm. 1 and their statement:
1) the formulation in Sec. 2.1 does not assume the agent ter-
minates once reaching the goal. Thus the optimal behavior
will be staying at the goal as long as possible, if necessary,
leaving the goal state and returning as quickly as possible.
By contrast, the optimal behavior for the first hitting time
problem is hitting the goal as soon as possible, even if the
agent passes the goal, never to return. In practice, sometimes
it is possible to change one type of problem to the other by
modifying the underlying MDP, but we submit that the prob-
lem formulation we consider in Sec. 2.1 is more relevant and
general, as it is the setting used in almost all common GCRL
benchmarks and it can always subsume the first hitting time
problem by enlarging the state space.4 2) on the other hand,
Wang and Isola (2022) state that the optimal goal-reaching
plan costs form a quasipseudometric, while we only claim
that Q∗ satisfies the triangle inequality. The subtle differ-
ence is that within the formulation in Sec. 2.1, it is possible
thatQ∗(x, x) 6= 0 for some x ∈ X .5 Hence, our formulation
is less restrictive.

However, as we will show next, one can still approximate
Q∗ well using a quasipseudometric in a larger space. For
instance, assume we have a copy of x denoted x̂ for every
x ∈ X . Call the space Y = X ∪ X̂ , where X̂ = {x̂}. Then

4One can introduce an extra sink state where the agent stays
once it reaches the goal to subsume the first hitting time problem
into our formulation.

5For instance, there are no actions that ensure the agent can stay
at x forever, i.e., it needs to come out and return to x repeatedly.



consider the following function Q̂ : Y × Y → R≤0:

Q̂∗(a, b) =


0 a = b

Q∗(a, a) b = â, a ∈ X
Q∗(a, b) a 6= b, a, b ∈ X
−∞ otherwise.

(10)

It is easy to check that 1) −Q̂∗ is a quasipseudometric on Y ,
2) ∀x, y ∈ X , Q̂∗(x, e(y)) = Q∗(x, y), where e(y) = y if
x 6= y and e(y) = ŷ if x = y. Therefore, though Q∗ only
needs to satisfy triangle inequality on X , by mapping y to
e(y), Q̂∗, a negated quasipseudometric, represents Q∗.
When G 6≡ S×A Under this setting,M (in Eq. (2)) is an
onto mapping, meaning that there might exist multiple (s, a)
pairs mapping to the same goal. If the underlying transition
dynamics T is deterministic, one observes that

Q∗(x, g) = sup
x′:M(x′)=g

Q∗(x, x′). (11)

Therefore, when the sup is attainable, denote xg =
argmaxx′:M(x′)=g Q

∗(x, x′) then Q∗(x, g) = Q∗(x, xg).
The proof and more discussion are in Appendix A.3. As a
result, we can view Q∗(s, a, g) as a specific “distance”6 be-
tween x = (s, a) and xg , which leads to our design of the
neural architecture in the following section.

3.2 Network Design
In this section, we first present a novel construction for
quasipseudometrics and prove that it universally approxi-
mates any quasipseudometric. Then we present a novel neu-
ral architecture for GCRL based on this construction and
show in a toy example why such design improves general-
ization and therefore sample efficiency. Lastly, we provide a
unified view of existing architecture designs for GCRL.
A Novel Construction for Quasipseudometrics From
the observations in Eq. (10)-(11), we know Q∗(s, a, g) =
Q∗(x, xg), where the latter can be represented by a negated
quasipseudometric Q̂∗. Therefore, we first present a novel
construction for quasipseudometrics in Prop. 1.
Proposition 1. Assume x, y ∈ X , define

d(x, y) = dsym(x, y) + max
i∈[K]

(
hi(x)− hi(y)

)
+︸ ︷︷ ︸

dasym(x,y)

, (12)

where (·)+ = max(·, 0) is the Rectified Linear Unit (ReLU)
function, hi : X → R, and (X , dsym) is a metric. Then d
ensures the three axioms of quasipseudometrics:
• Non-negativity: ∀ x, y ∈ X , d(x, y) ≥ 0.
• Identity: ∀ x ∈ X , d(x, x) = 0.
• Triangle inequality:

∀ x, y, z ∈ X , d(x, z) ≤ d(x, y) + d(y, z).

In practice, we choose dsym(x, y) = ||φ(x)−φ(y)||2 where φ
is an arbitrary neural network. Clearly, ∀x, y, dsym(x, y) =
dsym(y, x), and with the ReLU function, dasym is asymmetric,
i.e. ∃x, y, dasym(x, y) 6= dasym(y, x).

6Quotation marks are used to indicate that Q∗ might not be a
true distance function as it is not guaranteed to be symmetric.

The proof is provided in Appendix A.2. Prop. 1 en-
sures that any construction of d in the form of Eq. (12)
is a quasipseudometric, but does not guarantee that any
quasipseudometric onX can be represented in the form of d.
The following theorem confirms that this is indeed the case.

Theorem 2 (Universal approximation of d). Given any con-
tinuous function ν : X × X → R, where (X , ν) is a
quasipseudometric and X is compact. Then ∀ε > 0, with
a sufficiently large K, there exists a quasipseudometric d in
the form of Eq. (12) such that

∀x, y ∈ X , |d(x, y)− ν(x, y)| ≤ ε.

The proof is provided in Appendix A.4.

A Novel Architecture for GCRL Based on the novel con-
struction of a quasipseudometric in Eq. (12), we introduce
the metric residual network (MRN) for GCRL problems,
which consists of two parts:

• Projection: with two encoders e1 : S × A → Z and
e2 : S×G → Z , we project (s, a, g) to two latent vectors:

hsa = e1(s, a), hsg = e2(s, g).

• Enforcing triangle inequality: with dsym and dasym de-
fined in Eq. (12), represent:

Q(s, a, g) = −
(
dsym(hsa, hsg) + daysm(hsa, hsg)

)
.

In the projection step, one can view e1(s, a) and e2(s, g) as
summarizing the sufficient statistics of x and xg and project-
ing them to the same latent space Z . In theory, xg should be
a function of s, a, g. The reason why we omit a from the in-
puts to e2 is that otherwise e2 has all the information needed
to predict Q∗ directly, which makes the decomposition to x
and xg meaningless and thus slows down training (See the
ablation study in Sec. 5.2 for empirical evidence). After the
projection step, dsym and dasym act as the inductive bias that
constrains the learning on the latent spaceZ . The core intu-
ition behind decomposing d into dsym and dasym is that dsym,
due to its symmetry, improves sample efficiency, while dasym
ensures the approximation is accurate.

Toy Example We provide a toy example in Fig. 3 (top-
left) to validate 1) dsym helps improve generalization, and
2) dasym helps improve the modeling accuracy. The environ-
ment is a square of size 1. The agent navigates freely in the
white region (w/ width η), and is constrained to move in di-
rections that do not decrease its height in the indigo region.
Clearly, the shortest path length d∗(x0, xg) is a quasipseu-
dometric. We then approximate d∗ by dθ. To test θ’s gen-
eralization ability, we consider supervised learning on 20
data points {(x0, xg), d∗(x0, xg)}, where x0, xg ∈ [0, 1]2

are sampled uniformly at random.7 In the rest of Fig. 3, we
plot the generalization error over training iteration for differ-
ent thresholds η, when θ is either MRN or MRN with only
dsym.8 For reference, we also plot the best generalization er-
ror of the bilinear value network (BVN) (Hong, Yang, and

7For simplicity, dθ directly regresses to d∗ without doing RL,
hence no actions are involved.

8MRN with only dsym is expanded to match the size of MRN.
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Figure 3: A toy example for illustrating the importance of
both the symmetric and asymmetric parts in MRN.

Agrawal 2022) and monolithic network, as other designs in-
cluding the deep/wide norms (Pitis et al. 2020) fail to work
in this toy example. The generalization error is evaluated
on 10000 randomly sampled (x0, xg) pairs different from
the training data. Each curve is plotted to the iteration that
reaches the lowest generalization error. From the figures, we
observe that 1) as threshold η increases, the generalization
error of MRN decreases because d∗ becomes more symmet-
ric; and 2) the symmetric part alone (green) does not approx-
imate d∗ well as d∗ is asymmetric.

To summarize, the design of MRN not only incorporates
the inductive bias that Q∗ must satisfy the triangle inequal-
ity but also ensures it can universally approximate any Q∗
with good generalization ability by having both the dsym and
dasym parts. For the convenience of understanding and imple-
mentation of MRN, we provide the forward pass of MRN in
PyTorch-like pseudocode in Alg. 1 in the Appendix.

A Unified View of Existing GCRL Architectures Re-
cent work proposed Deep Norm (DN) and Wide Norm
(WN) (Pitis et al. 2020), which also satisfy the triangle in-
equality by design. However, both DN and WN are norm-
based networks, i.e., they are restricted to only approximate
norm-induced quasi-metrics. On the other hand, the conven-
tional monolithic multi-layer perceptron (MLP) modeling
Q(s, a, g), and the recently proposed bilinear value network
(BVN) (Hong, Yang, and Agrawal 2022) both inherit the
universal approximation guarantee from general neural net-
works, but they do not enforce the triangle inequality, thus
making them less computationally efficient to learn. The
Poisson Quasi-metric Embedding (PQE) (Wang and Isola
2022) enjoys the same theoretical guarantee as MRN. How-
ever, MRN is simpler in structure and empirically performs
better than PQE (See Sec. 5.1). As such, all existing designs
discussed so far can be summarized in Fig. 4.

provably 
satisfy 
triangle 

inequality

universallyDN BVN
MLP

PQE
MRNWN

approximates

Figure 4: A Venn diagram for existing networks for GCRL.

4 Related Work

A brief summary of previous attempts to approximate the
action-value function is presented in the following.

Early work considered linear functions as parametric
models for value function approximation (Sutton and Barto
2018; Littman and Sutton 2001; Singh et al. 2003). Suc-
cessor featured (Dayan 1993; Kulkarni et al. 2016; Borsa
et al. 2018) is another line of work that assumes the re-
ward is a linear function of the state-action features (e.g.
R(s, a) = w>φ(s, a)). Therefore, Q(s, a) = w>ψ(s, a)
where ψ(s, a) is the discounted expected state-action feature
occupancy. While linear functions are well-studied and rel-
atively supportive of proving convergence properties, they
can be too restrictive to approximate the value function in
practical problems. Laplacian reinforcement learning (Ma-
hadevan and Maggioni 2005) instead represents the value
function based on a set of Fourier series. All of the above
work discussed so far learns the action-value function in
a single-task setting, without considering the more general
goal-conditioned setting.

More recently, researchers have considered how to
decompose the universal value function approximator
Q(s, a, c) where c can be any context variable (e.g. a goal
g or a specific task k). In particular, for GCRL, Schaul
et al. (2015) consider the low-rank bilinear decomposition,
i.e. Q(s, a, g) = f(s, a)>φ(g). The motivation behind bi-
linear value networks is that decomposing Q(s, a, g) =
f(s, a)>φ(s, g) may result in better learning efficiency com-
pared to the low-rank bilinear decomposition (Hong, Yang,
and Agrawal 2022). Besides the above approaches designed
specifically for GCRL, Pitis et al. (2020) proposed the Deep
Norm (DN) and Wide Norm (WN) families of neural net-
works that respect the triangle inequality. Note that norms
always respect the triangle inequality, and DN is a network
that essentially computes some norm between two points x
and y. However, to relax one additional assumption of norms
called homogeneity, i.e. D(c · (x − y)) = cD(x − y), DN
adds a concave function on top of the convex neural net-
work. But even with this relaxation, DN still cannot repre-
sent all functions that respect the triangle inequality as the
input to DN is restricted to be x − y. WN is essentially any
linear or maxout combination of DN networks. While DN
and WN can approximate a rich family of functions, they
are still restricted to norm-induced functions. Concurrently,
Possion Quasi-metric Embedding (PQE) has been proposed,
which approximates any quasipseudometric from a distribu-
tion perspective (Wang and Isola 2022). PQE improves upon
DN/WN as it can universally approximate any quasipseudo-
metric function. However, as explained in detail in Sec. 3.1,
when applied to RL problems, PQE considers the more re-
strictive first hitting-time problem, while we consider the
general GCRL setting. By explicitly decomposing the net-
work into a metric part plus an asymmetric residual part,
MRN can learn more efficiently. In addition, the design of
DN, WN, and PQE are relatively complicated and may re-
quire careful hyperparameter tuning in practice. By contrast,
MRN is much simpler and involves no hyperparameters.



5 Experimental Results
Experiments are designed to validate two hypotheses: 1)
MRN achieves better sample efficiency compared to the
baseline methods (Sec. 5.1), and 2) dsym and dasym are both
important in the design of MRN (Sec. 5.2). We start by in-
troducing the benchmarks and baseline methods and provide
the experiment details. Then we provide the results and anal-
ysis indicating that they confirm our hypotheses.
Benchmarks We use the standard GCRL bench-
marks (Plappert et al. 2018) including all manipulation
tasks on the Fetch robot and Shadow-hand (See Fig. 5).

FetchPick FetchPush FetchReach FetchSlide

Block
Full

Block
RotateParallel

Block
RotateXYZ

Block
RotateZ

Egg
Full

Egg
Rotate

Pen
Full

Pen
Rotate

Figure 5: The 12 GCRL environments.

Baselines We compare MRN with a comprehensive list of
existing UVFA architectures as illustrated in Fig. 1:
• Monolithic: Q(s, a, g) is an unconstrained neural net-

work that directly maps (s, a, g) to the value.
• Bilinear Value Network (BVN) (Hong, Yang, and

Agrawal 2022): Q(s, a, g) = f(s, a)>φ(s, g).
• Deep/Wide Norms (DN/WN) (Pitis et al. 2020). DN/WN

are networks that represent norm-induced metrics. The
original DN/WN operates on the space where the metric
is defined. To adapt them to the GCRL setting, we apply
DN/WN to hsa and hsg with the same encoders as MRN.

• Poisson Quasi-metric Embedding (PQE) (Wang and
Isola 2022). PQE represents quasi-metrics from a distri-
bution perspective.

Algorithm and architecture We use deep deterministic
policy gradient (DDPG) (Lillicrap et al. 2015) with hind-
sight experience replay (HER) (Andrychowicz et al. 2017)
as the base GCRL algorithm, within which we test all dif-
ferent architectures. Specifically, we only change the critic
architecture Q(s, a, g). We constrain different networks to
have the same number of parameters to equalize learn-
ing capacity. The monolithic network is a three-hidden-
layer multi-layer perception (MLP) with 256 neurons per
layer with ReLU activation (e.g. [linear-relu]×3 +
linear). BVN has two separate networks f and φ, each
of which is a three-layer MLP with 176 neurons per layer.
For all other networks, we first define two encoders e1

and e2 (e.g. [linear-relu]×2). DN, WN, and PQE have
method-specific modules on top of the two encoders, which
follow the corresponding published implementation. For
MRN, both the metric part dsym and the residual asymmetric
part dasym are a single hidden layer neural network with 176
neurons (e.g., linear-relu-linear). The actor network
is the same as the monolithic critic network except that the
output layer projects to the action space.

Unified implementation on GPU To our knowledge,
there has not been a consistent codebase that compares all
existing neural architectures for the GCRL problem. More-
over, past implementations with HER (Andrychowicz et al.
2017) require heavy CPU computation (e.g., 19 threads per
run per environment). To address both issues, we implement
all existing implementations in a unified framework and
train fully on GPUs, which greatly reduces the amount of
training time when extensive CPU computation is not avail-
able. The implementation only requires ∼2000 mebibytes
(MiB) per run per environment. Across all architectures,
we use the same learning rate of 0.001 and the Adam op-
timizer (Kingma and Ba 2014) for updating both the actor
and the critic.

Evaluation For each architecture and each en-
vironment, we evaluate with 5 independent seeds
{100, 200, 300, 400, 500}. The agent is trained on 1000
episodes of data each epoch. After each training epoch, we
evaluate the agent by recording its average performance
(success rate) over 100 independent rollouts with randomly
sampled goals. We plot the average success rate over
learning epochs, averaged over the 5 seeds, along with its
standard deviation (shaded region).

5.1 MRN Achieves Better Sample Efficiency
The GCRL experiment results using different state-of-the-
art neural architectures as the critic is presented in Fig. 6.
Note that within BVN, DN, WN, and PQE, no single method
performs uniformly better than all other methods across all
environments. By contrast, MRN (cyan) performs compara-
bly to or better than all baseline methods in all environments.

5.2 On Importance of Both dsym and dasym
To validate the necessity of decomposing MRN into dsym
and dasym, we conduct an ablation study that experiments
with each part alone. To match the learning capacity, we
enlarge the dsym-only and dasym-only networks to have 300
neurons per layer. The results are depicted in Fig. 7. From
the figure, we can see that the dsym-only network con-
verges faster than the dasym-only network. However, neither
alone achieves the best sample efficiency or final perfor-
mance. This result further confirms the necessity of combin-
ing both parts. To exclude the case that MRN outperforms
the ablated networks due to the learning rate, we double the
learning rate for the ablated methods, and the result is in
Appendix C.1. Recall from Sec. 3.2 (and as illustrated in
Fig. 1), that whereas in theory, xg is a function of s, a, g, in
practice, we only provide s, g as inputs for the sake of effi-
ciency. To validate this design, we check what happens when
hsa = e1(s, a) but hsg = e2(s, a, g). The result is in Fig. 7
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Figure 6: Success rate over training epochs for MRN (ours), the monolithic network, BVN (Hong, Yang, and Agrawal 2022),
DN and WN (Pitis et al. 2020), and PQE (Wang and Isola 2022), on 12 GCRL environments from (Plappert et al. 2018).
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Figure 7: Ablation study on individual symmetric/asymmetric parts of MRN, and on feeding all (s, a, g) to e2.

(w/ SAG for e2). We observe that feeding all s, a, g as input
to e2 confuses the network and prevents it from distinguish-
ing between the roles of e1 and e2.

6 Conclusion
This paper introduces the metric residual network for
GCRL problems that has clear theoretical motivations and
is straightforward to implement in practice. Comprehensive
studies on standard GCRL benchmarks demonstrate that

MRN outperforms all existing designs of neural architec-
tures in terms of sample efficiency. As large models pre-
trained on a large set of environments become increasingly
popular, we expect that investigating useful inductive biases
for saving computation will become increasingly interest-
ing and important. An interesting future research direction is
to explore effective architectures for more general RL prob-
lems where the reward function can take an arbitrary form.
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A Theory
A.1 Proof of Thm. 2
Theorem 1. Consider the following goal-conditioned MDP Mgc = (S,A,G, T, R, γ, ρ0, ρg) as described in Sec. 2.1 except
that G ≡ S×A . Then the optimal universal value functionQ∗ defined in Eq. (7) satisfies the triangle inequality: ∀ x1, x2, x3 ∈
X ,

Q∗(x1, x2) +Q∗(x2, x3) ≤ Q∗(x1, x3). (13)

Proof. Assume the statement does not hold. As we fix the goals to be x2 or x3, the GCRL problem is transformed into two
standard MDPs with fixed goals. Therefore, there exists an optimal Markov policy for each problem. Specifically, denote optimal
Markov policies corresponding toQ∗(x1, x2), Q∗(x2, x3) andQ∗(x1, x3) as π1, π2 and π3. Then consider the following policy
π1→2 for t > 0:

π1→2(a | st) =
{
π1(a | st) x2 /∈ x<t,
π2(a | st) otherwise.

(14)

Here, x<t = {x0, x1, . . . , xt−1} denotes all past state and action pairs before time t. Let τ be the random variable that indicates
the first time π1→2 reaches x2. Then we define

q11→2 = E (xt,rt)
∼π1→2,T,R,τ

[ τ∑
t=0

γtrt,g
∣∣ x0 = x1, g = x2

]
,

and

q22→3 = E (xt,rt)
∼π1→2,T,R,τ

[ ∞∑
t=τ

γtrt,g
∣∣ xτ = x2, g = x3

]
.

Then, clearly

Qπ1→2(x1, x3) = q11→2 + q21→2

≥ Q∗(x1, x2) +Q∗(x2, x3) > Q∗(x1, x3).
(15)

The first equality follows the definition of Qπ1→2 . To see why the first inequality holds, note that
Q∗(x1, x2)− q11→2

=E (xt,rt)
∼π1→2,T,R,τ

[ ∞∑
t=τ

γtrt,g
∣∣ xτ = x2, g = x3

]
≤0 (since rt,g ≤ 0).

Similarly, we have
Q∗(x2, x3)− q21→2 ≤ Eτ

[
γτQ∗(x2, x3)

]
− q21→2 ≤ 0.

Combining above we can tell that the first inequality holds. The last inequality in Eq. (15) holds because of our assumption.
Therefore, we have a policy π1→2 (though possibly non-Markov) that achieves a higher expected discounted return with respect
to reaching x3 than π3, which contradicts the assumption that π3 is optimal.

A.2 Proof of Prop. 1
Proposition 1. Assume x, y ∈ X , define

d(x, y) = dsym(x, y) + max
i∈[K]

(
hi(x)− hi(y)

)
+︸ ︷︷ ︸

dasym(x,y)

, (16)

where (·)+ = max(·, 0) is the Rectified Linear Unit (ReLU) function, hi : X → R and (X , dsym) is a metric. Then d ensures
the three axioms of quasipseudometrics:

• Non-negativity:
∀ x, y ∈ X , d′(x, y) ≥ 0.

• Identity:
∀ x ∈ X , d′(x, x) = 0.

• Triangle inequality:
∀ x, y, z ∈ X , d′(x, z) ≤ d′(x, y) + d′(y, z).



Proof. The non-negativity is obvious because d is a metric and we use the ReLU function. The identity property can be easily
checked. For the triangle inequality,

d′(x, y) + d′(y, z) = d(x, y) + d(y, z)

+ max
i

(
hi(x)− hi(y)

)
+
+max

i

(
hi(y)− hi(z)

)
+

≥ d(x, z) + max
i

(
hi(x)− hi(y) + hi(y)− hi(z)

)
+

= d′(x, z).

A.3 Proof of Q∗(x, g) = supx′:M(x′)=g Q
∗(x, x′) in Eq. (11)

Assume the sup is attainable. Fixing a goal g, the GCRL problem becomes the standard MDP and there exists a deterministic
optimal policy π∗ for reaching g from x. Since we assume the dynamics is also deterministic, then it means the optimal
trajectory to reach g from x is also deterministic. Denote this trajectory as ξ = (s0, a0, . . . ) where (s0, a0) = x. Also denote

xg = argmax
x′:M(x′)=g

Q∗(x, x′) (17)

Then we argue that Q∗(x, g) = Q∗(x, xg). Assume otherwise, then either Q∗(x, xg) > Q∗(x, g) or Q∗(x, xg) < Q∗(x, g).

• Q∗(x, xg) > Q∗(x, g):
this is impossible because otherwise we can replace π∗ with the policy corresponding to Q∗(x, xg) to reach a higher return,
contradicting the definition of π∗.

• Q∗(x, xg) < Q∗(x, g):
Denote

τ = min
t
(M(xt) = g), xt ∈ ξ.

In other words, xτ is the first (s, a) pair along ξ that reaches the goal. Then there are two cases:

– After π∗ reaches xτ , it will come back to xτ again (hence repeatedly). In this case, clearly
Q∗(x, xg) ≥ Q∗(x, xτ ) ≥ Q∗(x, g),

contradicting our assumption that Q∗(x, g) > Q∗(x, xg). The first inequality follows the definition of xg . The second
inequality follows the definition of Q∗(x, xτ ).

– After π∗ reaches xτ , it will never come back to xτ again. In this case, one can find the next τ ′ = mint>τ (M(xt) =
g), xt ∈ ξ. Then similarly there are two cases, if π∗ repeatedly visits xτ ′ , then we follow the argument in the above case.
Otherwise we can recursively find the next τ ′′, so on and so forth. Eventually, either we end up with the last state xζ such
that no t > ζ satisfies M(xt) = g, from which then we can see that

Q∗(x, xg) ≥ Q∗(x, xζ) ≥ Q∗(x, g).
The last inequality follows that ever since we visit xζ , all future rewards will be −1. Or the other case is that there exists
an infinite length sequence of such {xτ}. Then following this sequence, the original statement is still true though the
sup is no longer attainable. But in this case, one can find a xτ in the sequence such that Q∗(x, xτ ) is arbitrarily close to
Q∗(x, g).

A.4 Proof of Thm. 2
Theorem 1 (Universal approximation of d). Given any continuous function ν : X × X → R, where (X , ν) is a quasipseudo-
metric and X is compact. Then ∀ε > 0, with a sufficiently large K, there exists a quasipseudometric d in the form of Eq. (12)
such that

∀x, y ∈ X , |d(x, y)− ν(x, y)| ≤ ε.

Proof. First of all, from Prop. 1, any d in the form of Eq. (12) is a quasipseudometric. Next we show that any quasipseudometric
ν can be approximated by a d in the form of Eq. (12). Since ν is a quasipseudometric, we have

∀ x, y, z ∈ X , ν(x, y) ≥ ν(x, z)− ν(y, z) =⇒ ν(x, y) = sup
z′∈X

(
ν(x, z′)− ν(y, z′)

)
+

. (18)

As ν(x1, x2) is continuous in both x1 and x2, for a fixed pair of (x, y), define

f(z) =

(
ν(x, z)− ν(y, z)

)
+

. (19)



Then f is clearly continuous in z (continuous functions are closed under subtraction and max operation). By definition of
continuity,

∀ ε > 0, ∃ δ > 0, d′(z1, z2) ≤ δ =⇒ |f(z1)− f(z2)| ≤ ε, (20)
where d′ is a metric on X . Since X is compact, for a sufficient large K, we can cover the domain X with K δ-radius balls
centered at {ξi}Ki=1, i.e.

X ⊆
K⋃
i=1

Bi, where Bi = {x ∈ X | d′(ξi, x) ≤ δ}.

Now, consider the function d, where for any x, y ∈ X ,

d(x, y) = max
i

(
ν(x, ξi)− ν(y, ξi)

)
+

. (21)

Denote z∗(x, y) = argmaxz′(v(x, z
′)− v(y, z′))+, then we have ∀x, y ∈ X ,

|d(x, y)− ν(x, y)| =
∣∣∣∣max

i

(
ν(x, ξi)− ν(y, ξi)

)
+

−
(
ν(x, z∗(x, y))− ν(y, z∗(x, y))

)
+

∣∣∣∣
=

∣∣∣∣max
i

(
f(ξi)− f(z∗(x, y))

)∣∣∣∣
≤ max

i

∣∣∣∣f(ξi)− f(z∗(x, y))∣∣∣∣
≤ ε // ∃ ξi, d′(ξi, z∗(x, y)) ≤ δ, then apply Eq. (20)

(22)

Clearly the d defined above is in the form of Eq. (12) (we can set dsym(x, y) = 0, ∀x, y ∈ X ).

B Algorithm
The forward pass of MRN in PyTorch-like pseudocode is provided in Alg. 1. Here, e1, e2, dsym and daym are standard multi-layer
perceptrons (MLPs).

Algorithm 1: Computation of Q(s, a, g) with MRN
# The forward pass in PyTorch code
def forward(self, state, action, goal):

# state (batch, dim state)
# action (batch, dim action)
# goal (batch, dim goal)

# 1. Projection
sa = torch.cat([state, action], -1)
sg = torch.cat([state, goal], -1)
x = self.e 1(sa)
y = self.e 2(sg)

# 2. Enforcing triangle inequality
d sym = self.sym(x) - self.sym(y)
d sym = d sym.pow(2).mean(-1).sqrt()
d asym = self.asym(x) - self.asym(y)
d asym = F.relu(d asym).max(-1)[0]
Q sag = -(d sym + d asym).view(-1,1)
return Q sag

C Experiment
C.1 Ablation study with doubled learning rate
We conduct the same ablation as in Sec. 5.1 except that we double the learning rate to 0.002. Results are shown in Fig. 8. From
the figure, we can see that the claim in the main experiment section holds true.
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Figure 8: Ablation study on individual symmetric/asymmetric parts of MRN with the doubled learning rate (0.002).


