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Abstract

When an agent trains for one target task, its ex-
perience is expected to be useful for training on
another target task. This paper formulates the
meta curriculum learning problem that builds a
sequence of intermediate training tasks, called a
curriculum, which will assist the learner to train
toward any given target task in general. We pro-
pose a model-based meta automatic curriculum
learning algorithm (MM-ACL) that learns to pre-
dict the performance improvement on one task
when the policy is trained on another, given con-
textual information such as the history of training
tasks, loss functions, rollout state-action trajecto-
ries from the policy, etc. This predictor facilitates
the generation of curricula that optimizes the per-
formance of the learner on different target tasks.
Our empirical results demonstrate that MM-ACL
outperforms a random curriculum, a manually
created curriculum, and a commonly used non-
stationary bandit algorithm in a GRIDWORLD
domain.

1. Introduction

Curriculum Learning (CL) is the problem of generating a
sequence of source tasks for a reinforcement learning agent
(learner) to train on, in order to improve some objective
related to the learner’s performance on a target task. To
address this problem, automatic curriculum learning (ACL)
has demonstrated its success by improving sample efficiency
(Schaul et al., 2015), dealing with sparse reward (Zheng
et al., 2018; Durugkar et al., 2021), facilitating generaliza-
tion (Akkaya et al., 2019), and finding solutions to hard-
exploration challenges (Ecoffet et al., 2019) . The curricu-
lum is realized as a sequence of intermediate tasks such as
the next environment (Narvekar et al., 2017) or distribution
of environments (Portelas et al., 2020a) to train on, or a
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sequence of learning contexts such as the discount factor,
bootstrapping parameter (Xu et al., 2018), and intrinsic re-
wards (Zheng et al., 2018). In an attempt to find a good
curriculum, most existing work optimizes surrogate objec-
tives such as learning progress, diversity, or intermediate
difficulty (Portelas et al., 2020b). However, this approach
may lead to sub-optimal solutions or failures when the surro-
gate objective does not align well with the intrinsic learning
objective. Rather than solving for surrogate objectives, there
is a line of ACL work that directly optimizes the learning
time (Narvekar et al., 2017; Narvekar & Stone, 2018). Also,
a similar work on the meta curriculum learning reuses the
curriculum from a replay buffer of history training of similar
students (Portelas et al., 2020c). However, their approach
does not encode a specific target task, and the evaluation is
limited to one specific domain.

In this paper, we optimize a similar objective directly on a
given target task, i.e., the performance on the target task,
using the novel MM—-ACL algorithm. First, this algorithm
learns from training different target tasks. Specifically, it
learns to predict the performance on one task while training
on another, based on the offline data collected from multiple
lifetimes, where at each lifetime the learner trains toward a
different target task. Based on this model, MM—-ACL chooses
the next intermediate task to train, such that the expected
performance on the chosen target task is maximized. This
process enables directly optimizing the performance on the
target task, instead of focusing on the surrogate goals.

2. Problem description

Meta curriculum learning problem Consider a domain
that includes a collection of possible source tasks W UV,
where each task is characterized by controllable parameters
w € W, representing its task control or learning contexts,
and uncontrolled parameters v € V that remain fixed when
training a target task, but may differ between different target
tasks. Since v is fixed in a curriculum, we refer to the task
instantiated by the parameter set w as “task w”. The policy
is parameterized by 6. To find the best policy for a target
task Wyq,.ge¢, a straightforward approach is to use gradient-
based optimization by training exclusively on the target task.
However, in this approach the agent might not be able to
learn a good policy due to reward sparsity or high variance of
returns. Instead, we train the learner on a sequence of tasks
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defined as a curriculum W = (wq, w1, ..., wy ) generated
by a teacher policy 7. In particular, at each step ¢, given a
policy 8¢, we rollout this policy on a task w; ~ m¢ multiple

times, and use the data collected for a gradient update:
0t+1 : Gt — Ongt,C(@.t, Wy, V) (1)
where L£(0;, wy, V) is the loss of policy 6; on task wy.

Given the policy 0y after N gradient updates following
curriculum W, the learning progress can be characterized
by the difference between the return of the initial policy
6o and the return of policy 0 on the target task Wiqrge:.
Defining the return of a policy # on task w as G(0, w, V), a
curriculum learning problem is to find the best curriculum
that maximize the learning progress:

arg HTlriX Ethﬂ’c [g(aN, Wtargeta V) - g(907 Wtargeta V)]

A meta curriculum learning problem, instead, seeks to find a
curriculum learning policy m¢ that maximizes the learning
progress over multiple lifetimes. We define a lifetime as
a two-tuple (Wygger, v) that differs from other lifetimes
by its target task and uncontrolled parameters. Taking life-
times into consideration, the objective of a meta curriculum
learning problem becomes finding a curriculum policy 7¢
that maximizes the expectation of learning progress over a
distribution of lifetimes D:
argn;ifx ]E(erget,v)"’D»WtNch

[g(eN, Wtarget» V) - g(607 Wtarget7 V)]

Optimizing local learning progress Due to the in-
tractability of directly finding a sequence of N source tasks,
we select the best task locally at each time step. To avoid
insufficient training in each source task and coming back
to the same source task frequently, we compute &k gradient
updates for each source task at each time step, V5 = 1, ..., k:
Orvj = Orrj—1 — Ve, LT (041, W)
And the local objective is to choose the immediate task w,
to train next, in order to maximize the learning progress
Pt’f (Wt, Weargets v) of this policy after k gradient updates,
which is described as follows:
'Pf (Wta Wiarget, V) =
gval (9t+k7 Wta'r‘get7 V) - gval (9t7 Wtargeta V)

Here, we use superscript val to denote the gain/losses for
validating the learning progress only, and train to denote
the gain/losses used for training and updating the weights.

3. MM-ACL

One common method to decide the task control parameters
for the next iteration is to update the parameters by a meta
gradient, or Wy, = Wy — BV, PF (Wi, Wiarget, V) (Xu
et al., 2018). However, in curriculum learning, the task
control parameters are usually start-goal locations or deeply
embedded in the transition dynamics. Therefore, the loss
functions are usually non-differentiable with respect to these
parameters unless the dynamics model of the environment

is given. An alternative approach is to approximate the lo-
cal learning progress PF (wy, Wiarget, V) With a black box
function, and then choose the best task w; based on the
approximated learning progress. Instead of approximating
the local learning progress on the target task, we learn a
general function that captures the learning progress from w
to any other task w’. Formally, we define a learning dynam-
ics model that models local learning progress as function
f*¥(c,w,w’,v), where c is the context, w is the task the
agent is trained on, w’ is the task the agent is evaluated
on, and v is the set of uncontrolled parameters. There are
several ways to represent the context, such as the following.

1) No context: if no context is provided, the learning
dynamics model is simply represented as f*(w, w’,v),
which is equivalent to modeling the curriculum learn-
ing as a non-stationary bandit problem (Sutton & Barto,
2018). Under this representation, a function R(w) :=
F(w, Wiarget, V) can be thought of as the reward func-
tion for choosing a bandit arm w for only one lifetime
with fixed (W¢arget, v) (Matiisen et al., 2019). Such a
modeling enables learning f* adaptively in a single life-
time,

2) Training tasks and losses: the context is represented

as ¢; = (wo, L5 wy, Lir9 wy_q, L1797 a se-
quence of all the history of training tasks and associated
losses. Such a context is lightweight and does not add
additional computation overhead (e.g., more rollouts or
gradient updates).

3) Validation trajectories: the context is represented as
ce = {1 }j;‘], a sequence of state-action pairs generated
from evaluating the current policy 6; on the task Wigyget.
Trajectories carry more information, but require much
more training data to learn to efficiently encode the state-
action pairs (Fang et al., 2020).

For the rest of this paper, we focus on the context of train-
ing tasks and losses, with which the learning dynamics
model can be trained with a relatively small amount of
data, while still be applied for different lifetimes. In addi-
tion, in practice, uncontrolled parameters are usually dif-
ficult to be encoded and are usually hidden to the teacher.
Therefore, we consider only the learning dynamics model
of form f(;f(c,w,w’ ) that does not take v as an input.
Once a learning dynamics model is learned, the curricu-
lum learning policy can be created by greedily selecting
the task that maximizes the local learning progress, or
To = arg max,, [f;; (¢, W, Wtarget)]-

A learning dynamics model f f; (¢, w,w') parameterized by
¢ is a regression model that takes an input of three-tuple
(¢, w, w’) and returns a prediction of learning progress on
task w’ after k iterations of reinforcement learning update.
The architecture of the learning dynamics model is shown
in Fig. 1. The history training task-loss pairs are embedded
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Figure 1. Diagram of learning dynamics model.

Algorithm 1 MM-ACL

1: Input: Horizon k, task loss £(0,w), target task Wiarget,
lifetime distribution D.

2: Output: ¢
3: Initialize D = {}, ¢
4: for l = 1to NumLifetime do
5:  Initialize 6y, co = 0, (w,v) ~ D.
6:  whilet < Numlteration do
7: wi" ¢ selectTask(ct, Wearget, @)
8: for j = 0to k do _
9: LG 4 L(Opg5, W™ V)
10: Orrjr1 = Oirj — aVo, ;LG
11: Ceja1 4= Cepy U (W LER0T)
12: end for
13: for j = 1 to NumValidationTask do
14: w' « GetRandomTask()
15: LY — LW 0k, V)
16: L% — L(w, 6, v)
17: D <+ DU (¢, wireim wyel ool — £yeh
18: end for
19: if £ + 1 mod Updatelnterval == 0 then
20: ¢ < UpdateModel(D, ¢)
21: end if
22: t—t+k
23:  end while
24: end for

by one fully-connected layer and are fed into a LSTM (Gers
et al., 2000) as a sequence of task-loss embedding. Then,
the output embedding of the LSTM is concatenated with the
embedding of w and w’ followed by a MLP to compute the
validation return prediction G;'¢} .

Algorithm 1 shows the whole pipeline of training f (’; The
training data is stored in a replay buffer D collected from
learners trained from scratch in multiple i.i.d lifetimes. At
an iteration ¢ of a lifetime, a training task wirein is selected
based on a SelectTask function (Algorithm 2) that has
a exploration probability p to select the task based on the
current learning dynamics model and a probability 1 — p
to select a exploratory task. For limited discrete task space,
the exploratory tasks are uniformly sampled from parameter
space V. For more complex continuous task space, the
exploratory tasks are selected by ALP-GMM (Portelas et al.,
2020a), an ACL algorithm that has been reported to effi-
ciently solve more tasks compared to randomly selected cur-
riculum in a continuous task space during the training of one
single lifetime (Portelas et al., 2020a). After a training task

Algorithm 2 SelectTask

1: Input: Context c, target task Wiqarget, learning dynamics
model ¢

: Output: Selected task w

: Initialize: p <— Uniform(0,1)

: if p < ExplorationProbability then
w < ALP-GMM(c)

else
W ¢— arg maxy, [f;f (cty, W, Wearget)]

: end if

wir@" i selected, the parameters of the agent are updated
for k iterations. During the updates, the history of tasks and
losses are appended to the context variable (see line 12 in
Algorithm 1). Then, the losses £ and L]}, are evaluated
on the same randomly sampled validation task w¥% before
and after the updating respectively. The learning progress,
context, training and validation tasks form a new instance
of training data (c;, w'" ", wvel, Eﬁlk — L) which is
added into a replay buffer D. At every fixed interval of iter-
ations, the learning dynamics model parameter ¢ is updated
based on the training data in the replay buffer D. Once
the learning dynamics model is learned, the model can be
deployed online following the Select Task function with
exploration probability p = 0. During deployment, the
conext variable c¢; is built in the same way as line 12 in
Algorithm 1. Notice that during deployment, lines 15 to 22
in Algorithm 1 are not executed, which guarantees that the
algorithm does not add extra rollouts and gradient updates.

||
Rdin 3

Lifetime 1

Room 2

|
Lifetimel@

Figure 2. Examples of four-room environments from two different
lifetimes. Each lifetime has a unique room configuration.

4. Experimental Results

We test MM-ACL in the FourRoom domain based on the
widely used MiniGrid environment by Chevalier-Boisvert
et al. (2018). As shown in Figure 2, the target task in this
domain requires an agent to navigate through three rooms
(labeled as room 0, 1, and 2 from left to right) and reach a
goal location (green tiles) in the right-most room (room 3)
by executing one of the four discrete actions: move forward,
turn left, turn right and open the door. Three types of skills
are required to pass the rooms: (1) navigate around the
blocks (grey tiles) which the agent cannot overlap with;
(2) avoid tiles covered with lava (orange tiles with wave
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Figure 3. (a). The episodic reward of the agents evaluated on tasks of w = 0, 1, 2, 3 during the training with curriculum from different
methods; (b). Ratios of last 50 selected tasks by MM-ACL (top) and bandit algorithm (bottom) at the training episodes from 0 to 5000.

patterns) that cause immediate failure of an episode once
the agent visit them; (3) open the door that blocks the way
to the goal location. The controllable parameter space in
this domain is a four-category discrete set W = {0, 1, 2, 3}
with w equal to O, 1, 2, 3 denoting the tasks of navigating
from room O to 3, room 1 to 3, room 2 to 3, and room 1 to 2.
The uncontrollable parameter space V' is a set of all possible
room configurations. Each configuration can have different
locations of the openings and doors (see two example room
configurations in Fig. 2). Directly learning Wq,get (W = 0)
is difficult because of the long navigation trajectory from
room 0 to room 3 and the hard exploration due to the lava
tiles that cause immediate failure. We assume that the agent
will experience multiple lifetimes, such that in each lifetime,
the agent will be faced with a room configuration uniformly
sampled from V' with its weight reinitialized.

In the experiment, the agent is trained using PPO (Schul-
man et al., 2017) with its hyper-parameters kept similar to
the example reinforcement learning algorithm implemen-
tation (Chevalier-Boisvert et al., 2018). This set of hyper-
parameters is not guaranteed to be optimal for FOURROOM,
but is good enough to learn the target task if a good curricu-
lum is given. The model is trained for 150 lifetimes. After
the training, the learning dynamics model is deployed for 5
hold-out lifetimes that train learners from scratch with tasks
selected by the learning dynamics model. During the de-
ployment, the agents’ performances are evaluated on all the
four tasks for 8 episodes at every 4 iterations. To investigate
the dependence of performance on the amount of training
data, we deployed the learning dynamics model trained with
only 10 and 50 lifetimes. The results are compared with a
random curriculum, a non-stationary-bandit ACL algorithm
similar to (Matiisen et al., 2019), and a manually designed
curriculum that trains on tasks w = 3, w = 1, and Wgget
for 500, 800, and 4000 episodes respectively. The training

curves are shown in Fig. 3(a), and the ratios of the four
tasks being selected by MM-ACL and bandit algorithm for
every 50 selected tasks are shown in Fig. 3(b).

As shown in Fig. 3(a), given sufficient training data of 150
lifetimes, MM—-ACL (red) can train the agent with the best
sample efficiency that learns the target task with about 1.8k
episodes compared to 2.8k by random curriculum and 4k
by the bandit algorithm. The sample efficiencies on tasks
w = 1 and w = 3 are also marginally improved, which
take about 400 less episodes to converge. The MM—ACLs
trained by 150, 50, and 10 lifetimes are shown by blue, or-
ange and red curves in Fig. 3(a). The sample efficiency
monotonously decreases with the decreasing number of
training lifetimes with MM—ACL trained by 10 lifetimes per-
forming even worse than the random curriculum.

Surprisingly, the curriculum generated by the bandit algo-
rithm does not benefit the training, because the bandit al-
gorithm exploits the easiest task of w = 2, which actually
disrupts the training of harder tasks. By carefully analyzing
the tasks in this domain, we find that the skill of avoiding
lava trained by task w = 3 is the key to learning more
difficult task, since directly training on w = 0 and w = 1
can easily step into the lava and cause immediate failures
that make the training very difficult. Instead, the curriculum
generated by MM-ACL focuses evenly on task w = 3 and
w = 0 that develop the skill of avoiding the lava and try-
ing the target task with the developed skill. The MM-ACL
ignores the task w = 2 completely as it does not contribute
to the learning of target task.

5. Conclusion

This paper first formulates a new meta curriculum learning
problem, in which a teacher is required to generalize its
curriculum policy, learned from multiple lifetimes, so it
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can train the agents toward different target tasks. A new
meta curriculum learning algorithm MM-ACL is proposed
that leverages the idea of cross validations and selects the
tasks that directly optimize the target task performance. Our
empirical results show an improvement of sample efficiency
of the training process, tested in multiple lifetimes.
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