Proceedings of the 2022 Winter Simulation Conference
B. Feng, G. Pedrielli, Y. Peng, S. Shashaani, E. Song, C.G. Corlu, L.H. Lee, E.P. Chew, T. Roeder, and
P. Lendermann, eds.

OBJECT-ORIENTED IMPLEMENTATION AND PARALLELIZATION OF THE RAPID
GAUSSIAN MARKOV IMPROVEMENT ALGORITHM

Mark Semelhago Barry L. Nelson
Amazon.com Department of IEMS
New York, NY 10018, USA Northwestern University

Evanston, IL 60208, USA

Eunhye Song Andreas Wichter
School of ISyE Department of IEMS
Georgia Institute of Technology Northwestern University
Atlanta, GA 30332, USA Evanston, IL 60208, USA

ABSTRACT

The Rapid Gaussian Markov Improvement Algorithm (rGMIA) solves discrete optimization via simulation
problems by using a Gaussian Markov random field and complete expected improvement as the sampling and
stopping criterion. rGMIA has been created as a sequential sampling procedure run on a single processor.
In this paper, we extend rGMIA to a parallel computing environment when g+ 1 solutions can be simulated
in parallel. To this end, we introduce the g-point complete expected improvement criterion to determine a
batch of g+ 1 solutions to simulate. This new criterion is implemented in a new object-oriented rtGMIA
package.

1 INTRODUCTION

Discrete optimization via simulation (DOvS) is the practice of minimizing the expected value of a stochastic
simulation model output with respect to discrete, controllable decision variables. Many algorithms that
solve DOvS problems come with asymptotic convergence guarantees, but there are only a few instances
of accessible and efficient software implementations of these rigorously justified algorithms. One such
instance is Industrial Strength COMPASS (ISC) in Xu et al. (2010), which is an implementation of the
COMPASS framework in Hong and Nelson (2006). Another example is R-SPLINE in Wang et al. (2013),
which is able to asymptotically identify a local minimum, the same guarantee offered by ISC.

This paper introduces an efficient and user-friendly implementation of a powerful class of DOvS
algorithms that come with proven global convergence guarantees and finite-time inference. The Gaussian
Markov Improvement Algorithm (GMIA), first introduced by Salemi et al. (2014) and Salemi et al.
(2019), solves DOvS problems by modelling the objective function as a Gaussian Markov random field
(GMREF), a type of Gaussian process (GP) defined on a graph. GMIA uses a modified version of the
expected improvement (EI) criterion from Jones et al. (1998), which is a popular sampling criterion
in the Bayesian optimization literature when function evaluations are deterministic. Complete expected
improvement (CEI) is an adaption of EI for use in stochastic problems. Efforts have been made to improve
the computational performance of GMIA as feasible regions grow large. Salemi et al. (2019) extend
GMIA to a multiresolution framework in which feasible solutions are partitioned into regions and each
region is represented by a solution-level GMRF allowing for global and local search guidance, while

978-1-6654-7661-4/22/$31.00 ©2022 IEEE 3158

Semelhago, Nelson, Song, and Wiichter

reducing the computational overhead necessary to perform such a search. Semelhago et al. (2017) propose
an efficient way to leverage sparsity in the variance-covariance matrices that characterize the GMRF to
improve computational performance of GMIA. More recently, Semelhago et al. (2020) introduce a new
algorithm, the rapid Gaussian Markov Improvement Algorithm (rGMIA), based on GMIA. For DOvS
problems with large feasible regions, rtGMIA repeatedly partitions the feasible region into so-called search
and fixed sets. Between infrequent updates to the global posterior distribution of the GMRF (global search),
rGMIA restricts simulation to the search set (rapid search). Due to the small cardinality of the search set,
updating the posterior distribution for solutions in the search set is computationally fast, resulting in greatly
improved runtime performance.

GMIA and its derivatives have assumed that simulation replications are obtained sequentially on a
single processor. With the proliferation of parallel computation, there has been an effort to extend sequential
algorithms to the parallel paradigm, where ¢ > 1 solutions or replications can be simulated simultaneously.
The popular knowledge gradient (KG) acquisition function introduced in Frazier et al. (2009) was extended
to the parallel KG (¢g-KG) by Wu and Frazier (2017), in which the Bayes-optimal batch of g feasible
solutions is selected for simulating. Similarly, a multi-point extension of EI, known as g-EI, was proposed
by Ginsbourger, Le Riche, and Carraro (2010). However, this quantity was typically estimated via Monte
Carlo simulation. Recent work by Chevalier and Ginsbourger (2013) yields a method to compute exact
g-EI numerically, significantly reducing the computational load involved in evaluating the criterion. In a
similar fashion, we extend CEI to the parallel setting, with g-CEI.

The contributions of this paper are two-fold. First, we extend GMIA and CEI to the parallel setting
through ¢-CEI. To do this, we prove a closed-form expression to efficiently compute the g-CEI of a given
set of solutions and introduce a heuristic to find the subset of ¢ solutions that maximizes g-CEI. The second
contribution is a reorganization of GMIA and rGMIA, recasting these algorithms into an object-oriented
programming (OOP) framework with benefits discussed in more detail in Section 4.

The remainder of this paper is structured as follows. Section 2 provides the necessary background on
GMRFs, the CEI criterion, GMIA and rGMIA. In Section 3, we introduce ¢-CEI, stating its closed-form
expression for a fixed set of ¢ solutions as well as a greedy heuristic to select the g solutions with the
largest g-CEI. Section 4 provides details about implementation of the algorithms in MATLAB and Section 5
summarizes empirical results. Finally, Section 6 contains concluding remarks.

2 GMIA AND rGMIA

GMIA and rGMIA solve DOVS problems of the form: minge 2 y(x) = minge 2- E[Y (x)], where the feasible
region 2 is a finite subset of the d-dimensional integer lattice Z%; let n = |.2"| be the number of feasible
solutions. In particular, it is assumed that 2" is a d-dimensional hyperrectangle. The objective function y(x)
at each feasible solution x is the unknown mean of the simulation output Y (x), which can be estimated from
simulation output Y;(x) = y(x) + €;(x) obtained from replication j = 1,2,..., where {€;(x)} are assumed
i.i.d. normal with mean 0 and finite (unknown) variance ¢(x) that may depend on x.

As mentioned in Section 1, GMIA and rGMIA model the objective function as a realization of a GMREF,
which is a special class of GP. Specifically, a GMREF is a non-degenerate Gaussian random vector, which
we represent as Y, that is associated with an undirected and labeled graph & = (¥',&), where ¥ and &
denote the node and edge sets, respectively; see Rue and Held (2005) for further information. In our DOvVS
context, a node is a feasible solution, x € 2", and construction of & assumes a neighborhood structure,
N (x)={x € Z :|x—x'||, =1}, shown by Salemi et al. (2019) to be an effective choice for DOVS.
There is a one-to-one correspondence between nodes in 7" and elements of Y as well as a one-to-one
correspondence between solutions in 2~ and elements in Y.

GMREFs are fully characterized by a mean vector, i, and a precision matrix, Q. In GMIA and rGMIA,
maximum likelihood estimates (MLEs) of these quantities are computed before attempting to optimize.
The structure of ¢ determines the sparsity pattern of @ and vice versa in that Q;; # 0 if and only if
{i,j} € &. In general, the diagonal entries Q;; of a precision matrix are such that Q;; = 1/Var(Y;|Yy ;).

3159

Semelhago, Nelson, Song, and Wiichter

Off-diagonal elements are proportional to the conditional correlations; specifically Corr(Y;,Y j‘Yry/\{L M=

—Qij/+/QiiQjj. We define the entries of Q by a vector of parameters 6 = [90,91,...,9d]T. For the
neighborhood .47 (x), we let Q;; = 6y, if x; = x; and Q;; = —606;, if |x; —x;| = e;, where x;,x; € 27, e; is
the jth standard basis vector and |- | is the component-wise absolute value. For all other elements, Q;; = 0.
Using this neighborhood, Q is very sparse.

As solutions are simulated, the GMRF is updated. Exploiting the inference on y(-) obtained from the
GMREF allows us to simulate only a small fraction of the feasible region, while searching for the global
optimum. Let ¥ be an n x 1 vector such that each element is either the sample mean of the associated
feasible solution, if it has been simulated, or u, otherwise, where u is the prior mean. The vector Y is
modeled as a realization of the composite GMRF Y€ =Y + &, where the entries of € are jointly normally
distributed, if the corresponding solutions have been simulated, and 0, otherwise. The composite prior
distribution of Y€ is N (u, (0+ Qg)_l), where Q. is the intrinsic precision matrix of &, which can be
estimated directly from the sample variances of simulation output at simulated feasible solutions. We
choose to simulate solutions independently (no common random numbers), which means Q, is a diagonal
matrix. Given these modeling decisions, Salemi et al. (2019) prove that the GMRF metamodel has the
following conditional distribution, given Y& =¥:

V[V =F ~N(p+0 'Q(F-p).0"). (M

where Q@ = Q+ Q. is the conditional precision matrix. For further information about the use of GMRFs
in modeling DOVS problems, refer to Salemi et al. (2019), Semelhago et al. (2017) or Semelhago et al.
(2020).
Let X refer to the simulated solution with the lowest sample mean. Then the CEI of a candidate solution
x relative to X is: .
CEI(x;%) =E [(Y(®) — Y(x))"|Y* =¥],)

where (-)* is the maximum of its argument and 0. Note that the expectation in (2) is conditional on
Y€ =Y, the simulation output that has been collected. CEI accounts for stochasticity in ¥ (%), which was
previously not fully accounted for by any other EI measure.

Let M(x), V(x) and C(X, x) denote the conditional mean and variance of Y (x) and conditional covariance
between Y(x), Y (%), respectively, as specified in (1). Therefore, the conditional variance of Y(%) — Y(x)
is V(%,x) =V (%) +V(x) —2C(%,x). Salemi et al. (2019) then show that the CEI of candidate solution x
can be expressed as

CEI(x:%) = (M(%) — M(x))® (’”(")_’”(")> IV ERDS (M(x)—M(x)> 7

V(%,x) V(%,x)

where ¢ and @ are the density and cumulative distribution functions, respectively, of a standard normal
random variable.

Since GMIA adopts CEI for simulation and stopping criteria, we must compute the CEI values of all
solutions, which, in turn, requires updating the conditional distribution (1) at each iteration. This involves
updating the GMREF posterior at all feasible solutions; we use x 2 to denote the set of all solutions. Once
CEI values have been calculated, the solutions with the largest CEI value and lowest sample mean are
simulated, which we denote as xcgr and X, respectively. We select X from already simulated solutions; the
number of simulations at a solution x € 2" is represented as r(x). To compute CEI values for all solutions,
we need to compute M(xy), V(x4) and C(X,x5), where these quantities characterize the conditional
distribution in (1). However, this becomes computationally expensive for large 2.

This computational expense motivated the development of rGMIA in Semelhago et al. (2020), which
introduced the idea of rapid search. Rather than computing CEI values and updating the necessary statistics
at every iteration for all solutions in 2", as done in GMIA, rGMIA partitions 2" into a search set, ., and

3160

Semelhago, Nelson, Song, and Wiichter

a fixed set, .#, such that |.7’| < |Z|. Search and simulation is restricted for a number of iterations to ./’
and, thus, it is only necessary to compute CEI values and statistics for solutions in .% during rapid search,
and not for solutions in .#, which is relatively larger, until a rapid-search termination criterion is met (e.g.,
fixed number of iterations). Therefore, only the sample mean vector and intrinsic and conditional precision
matrices corresponding to solutions in . are used in calculations, which results in faster computation.
Note that the intrinsic precision matrix is directly estimated from simulation output by using the sample
variances at simulated solutions. It is then used to construct the conditional precision matrix, from which
one can estimate the conditional variance at a given solution via (1). We use the notation x» and x# to
refer to the vectors constructed from x4, in which elements that correspond to solutions in .# and .% are
selected, respectively. Similar notation is used for matrices where the corresponding rows and columns are
selected corresponding to solutions (e.g., [Q,] ».~ and Q 7 7 refer to the intrinsic and conditional precision
matrices corresponding to solutions in . and .%, respectively). After the rapid-search termination criterion
is met, a global search iteration updates the metamodel for all solutions in Z°, computes CEI values for
all solutions and repartitions 2~ into a new search set, .%, and fixed set, .%, consisting of solutions that
will not be simulated during rapid search. With infrequent global search iterations that require expensive
computation, rtGMIA is able to perform far faster search than GMIA, while maintaining the same convergence
guarantees, since the global termination test is only evaluated with a fully updated metamodel. rGMIA is
especially effective in tackling problems with large feasible regions, which results in large computational
effort to compute summary statistics relative to the cost of simulation; refer to Algorithm 1 for a high-level
description of rtGMIA and Semelhago et al. (2020) for further details.

Algorithm 1: High-level description of rtGMIA

1 Simulate feasible solutions and compute MLEs of GMRF parameters (p,Q) and Q. Construct 0=0+0Q, and ¥;
2 Find X = argmingye 9.1(x)>0} ¥ (%);

3 Compute V(x2°), C(%,x9°) and M(xy) from ¥, @, and Q. Go to Step 16;

4 while global-search termination criterion not reached do

5 while rapid-search termination criterion not reached do

6 Simulate at ¥ and xcg; and update ¥, Q, and Q by incorporating the new simulation output;
7 Find X = argmingyc 7./(x)>0} 7(x);

8 Compute V(x»), C(¥,x) and M(xy), using ¥(x), [Q¢]#.», O~ and intermediate matrices;
9 Calculate CEI(x;%),Vx € .7

10 Find xcpp = argmax,¢ o\ ¢ CEI(x; X);

11 end

12 Simulate at ¥ and xcg; and update ¥, Q, and 0 by incorporating new simulation information;

13 Find X = argminge 9-.1(x)>0 ¥ (x);

14 Compute V(x), C(%,x5) and M(xs), using Y(xs), [Q¢]ls.s> QO and intermediate matrices;
15 Compute V(x), C(%,xz) and M(xz), using ¥, Q., @ and intermediate matrices;

16 Calculate CEI(x;%),Vx € Z;

17 Find xcpr = argmax,e 9z CEI(x; 27);

18 Construct {.#,.7'} partition of 2;

19 Compute intermediate matrices;

20 end

21 Return X = argmin{xey-:,(xbo}f’ (x) as the estimated optimal solution;

3 PARALLELIZATION

In this section, we discuss parallelization of rtGMIA when g+ 1 solutions can be simulated simultaneously.
A naive approach would be to order solutions by their CEI values and simulate X and the solutions with
the g largest CEI values. However, this method neglects inference gained about neighboring solutions to
those simulated in parallel. The Bayesian optimization literature introduced the notion of ¢-EI, a criterion
that accounts for such joint effects (Ginsbourger, David and Le Riche, Rodolphe and Carraro, Laurent
2008). We adapt this idea to a stochastic simulation setting by extending CEI to ¢g-CEI, focusing on the
synchronous parallel setting, where the next batch of solutions can only be simulated once all solutions in

3161

Semelhago, Nelson, Song, and Wiichter

the prior batch have been simulated. This approach makes sense because significant time is consumed to
update the posterior, and the best g-CEI solutions are selected for their impact as a complete set.

We will choose a relatively modest number of solutions to parallelize, g < 6, because we have found
it tends to be more effective to select a small number of good solutions to parallelize rather than a large
number. However, note that this does not restrict the number of parallel processors that can be used as
multiple replications of a single solution can be divided among multiple processors.

3.1 ¢-CEI
In the same spirit as g-EI, we extend the CEI criterion used in a sequential setting to a multi-point g-CEI,

J’_
defined as ¢g-CEI(Q; %) = E <Y(ic) - migY(x)) , for a candidate set of solutions Q relative to a current
xc

optimal solution X. We first discuss computing the g-CEI of a given Q without relying on Monte Carlo
estimation. Constructing a Q that maximizes g-CEI, will be discussed in Section 3.2.

To develop a closed-form expression for g-CEI, we follow steps similar to Chevalier and Ginsbourger
(2013) for g-EI. We also leverage a result from Tallis (1961), which yields an expression for the mean
of a coordinate in a truncated multivariate normal distribution with a general mean vector and covariance
matrix. We restate that result here as Proposition 1.

Proposition 1 Let Y = [Y(x;),Y(x,),...,Y(x,)]" be an nx 1 Gaussian vector with mean M € R" and

covariance matrix £ € R, Let b = [by, ,by,,...,bs] €R". An expectation of any coordinate Y (x;),1 <
k < n under the constraint Y(x;) < bx;,Vj=1,2,...,n, denoted by Y < b, is:

1 1 _
Z insxk ¢Mx,- Zx x; (b-xi)@n—] (Z|x[1/2£‘xi>)

E[Y Y < b| =M,
[Y (i) [Y < b] = M. (I)n<2'._1/2(b—M)) i=1

.

where @, represents the m-dimensional standard normal c.d.f., ¢, 5> represents the normal p.d.f. with
mean p and variance 62, and ¢y, € R(=1)x1
(bx_,' _ij) - (bxj _Mxi)thxj/thxi‘

Here, X, is the covariance matrix of Y(x1),Y(x2),...,Y(xi-1), Y(xi41),...,Y(x,), conditional on
Y(x;), and Xy, x; and Xy, , are the covariance between Y (x;) and Y (x;) and variance of Y (x;), respectively.
Further, for a square matrix A, we use the notation A2 to refer to the Cholesky factor of A! (i.e., the
matrix L such that LLT =A~"). The proof of this proposition can be found in Chevalier and Ginsbourger
(2013) and Tallis (1961). Proposition 1 is used to prove our main result.

is a vector where the element corresponding to solution x; is

Theorem 1 Given a set of solutions Q = {xk}Z:p and another solution, ¥, define Q = ¥UQ. Further,
let [Y(%),Y(x1),Y(x2),...,Y(x,)]" bea (g4 1) x I Gaussian vector with mean M € R¢*! and covariance
matrix £ € R(@+1)*@+1) Then, an expression for g-CEI(Q; %) is

- -1/2 ~1/2
g-CEI(Q:%) = Y | —ME, (—zk / Mk) + Y Th b (0D, (—zfx / cﬁ;) B
k=1 xefl\xk
-
where M¥ = D'M = [Y(xk)]qul - \y(xﬂ\xk)} , TX = D*'ED* = Var [Y(xk)]qul - Y(xg\xk)] :
k _ k My sk k _ yk 1 yk k ko

cx = _MQ\{Xk,X} + EZQ\{xkvx},x and Z‘x = zﬂ\{xk,x},ﬁ\{xk,x} — Kzﬂ\{xk,x},xzx,ﬁ\{xk,x}‘ Here, D" is a
g % (g+ 1) matrix that yields all pairwise differences of each element with the kth element.

Proof. We proceed by modifying the ramp function with an indicator function, which is activated when
the inner expression is non-negative. This expression is only non-negative when at least one of Y(xq) is

3162

Semelhago, Nelson, Song, and Wiichter

no greater than Y(%). We can decompose the indicator function into a sum of ¢ indicator functions where
the kth indicator is activated only when Y(xy) has the lowest response among the set of responses Y (xg):

(Y(Fc) — min Y(xk)>+1

¥(E) -, min Vx| kzl 1{¥(5) < ¥(3), You) < Y(x7), V) £ K}

E

N

[(Y(

|
M=
=

»
l
\}_1/1
|
=
2
=
-
z
A
=
=
=
=
)
AN
=
=
T
<
~.
e
=
~
=
=
)
AN
=
=
=
2
IA
=
o=
\\4./
<
.
AN
=

I
g
ks

E[(Y (%) — Y ()| ¥ () — Y(®) <0, Y (x) — Y(x;) <0,V # K] x @)

~
Il
-

P(Y(x) = Y(X) <0,Y () - Y(x;) <0,Yj #K).

To simplify (4), we introduce some additional notation: WX =Y (x;) — Y(x),k=1,2,...,gandx € {x}j’-:1 U
%. Also, let Wk — [Wg, WE L WEWE ,Wﬁq} . Note that Wk ~ N (DkM,DkZDkT) . Therefore,

k=17 " X1 "
. - k [yyk k - k k=1/2 gk
g-CEI(Q;X) = — ¥, E [W4|W* < 0] P(W* <0). We then recognize that P(W* < 0) = @, (—2‘. M)
k=1

and that we can apply Proposition 1 to E [Wﬁ]Wk < 0] to achieve the closed-form expression stated in
Theorem 1. O

3.2 Building the ¢g-CEI Candidate Set Q

Constructing a set that maximizes the g-CEI is a challenging combinatorial optimization problem with
an expensive objective function evaluation and little structural information to exploit. A greedy stepwise
maximization heuristic was proposed in Chevalier and Ginsbourger (2013) to maximize ¢-El. In this
heuristic, the set Q begins as a singleton set composed of the solution with the largest marginal EI. Then,
the solution that maximizes the 2-EI, keeping the first solution in Q, is added to . Solutions are sequentially
added in this manner until € consists of ¢ solutions. To approximately optimize ¢g-CEI, we use this strategy
of sequentially maximizing i-CEIl, 1 <i < g with a slight modification.

We conjecture that individual solutions in a set Q that have a large q-CEI will, themselves, tend to
have large marginal CEI values. For example, consider having to find the set Q that maximizes 5-CEI
out of a set of 1000 solutions. It is likely that the solutions in Q will also appear among the solutions
with the, say, 100 largest marginal CEI values. If not optimal, the candidate € that one can construct from
the 100 solutions with large marginal CEI values may act as a reasonable stand-in. With this assumption,
we proceed by using the marginal CEI values, which can be computed relatively efficiently due to work
in Semelhago et al. (2017), to “screen” candidate solutions that may be included in Q. We refer to this
subset as the screening set, and denote it by .#. Our strategy is to limit the search for a ¢-CEI optimized
set to .7, and construct Q in a greedy, stepwise fashion.

To compute ¢g-CEI(Q;X) according to Theorem 1, we require the conditional mean vector Mg and
the conditional covariance matrix g associated with solutions in Q = QUX. We can easily derive these
quantities by selecting appropriate rows and columns from the conditional mean vector and covariance
matrix for the screening set, M > and X ; 7, respectively. Algorithm 2 presents pseudocode for the greedy
heuristic assuming .# is provided with the relevant statistics (conditional mean vector, conditional covariance
matrix) for solutions in this set. For the ith solution added to Q, we search over all candidate solutions
in .7 that have not already been included, and construct a candidate Q;. We then compute the i-CEI for
this candidate €; according to (3). Note that the inner loop has been denoted as (par)for to signify the
potential to parallelize this search and construction of candidate €2;s using the processors that would be
available to simulate solutions in parallel, but would otherwise be idle. We note that rtGMIA computes the

3163

Semelhago, Nelson, Song, and Wiichter

entire posterior distribution of the search set, including the mean vector and covariance matrix. From this,
we can compute and update the posterior distribution for the screening solutions (subset of the search set)
and use this to compute g-CEL

Algorithm 2: Greedy heuristic to optimize ¢g-CEI for solutions in .# in rtGMIA

Data: i,jZ,My,ij,xj
1 Let Q= {xcg} and Q=QUX;
2 for i=2,...,q do

3 (par)for x € .7\ Q do

4 ‘ Calculate and store i-CEI(QUx;X);

5 end

6 Let x' =arg max_i-CE[(QUx;%);
xe./\Q

7 Let Q@+ QUX and Q=QU3;

8 end

4 IMPLEMENTATION DETAILS

MATLAB remains a popular choice of software for OvS algorithms. Here, we describe the options available
to practitioners and practical considerations in using the MATLAB implementation of GMIA and rGMIA
(in Section 4.1) and describe our new OOP implementation and its advantages (in Section 4.2).

4.1 User Input and Interaction

The goal of OvS is to optimize system performance where the system is described by a simulation. For
GMIA and rGMIA, the simulation takes the form of a MATLAB function, which takes as input a d-
dimensional integer vector solution and the number of simulation replications to perform. The simulator
itself can be implemented in MATLAB, or in another language with a MATLAB wrapper. In either case, it
is then stored as an anonymous function, where other parameters describing the system (e.g., arrival rates
in a queueing system) have been defined by the user. The user also specifies the hyperbox feasible region
by its lower and upper bounds in a d X 2 matrix.

In addition to the simulator, all user-defined parameters are stored in a MATLAB structure array, which
fully specifies the DOvS problem to be solved. In this structure array, the user declares whether to use
GMIA or rtGMIA. This choice is dependent on the nature of the DOvVS problem, including such factors as
the size of the feasible region and the simulation runtime. These factors dictate how much time in a given
iteration of GMIA is spent in computing CEI values versus simulating solutions. Unless the number of
feasible solutions and dimension of the problem is small, we recommend using rGMIA.

If using rGMIA, additional parameters, such as search set size and the number of rapid search iterations
between global search iterations must also be specified. If more than a single processor is available to
simulate solutions in parallel, the number of processors available and the number of screening solutions to
use should be declared. If the user has available the PARDISO package for computational linear algebra
then GMIA and rGMIA can take advantage of it (Schenk and Girtner 2004). Therefore, users can also
specify by a flag whether to use PARDISO instead of MATLAB’s built-in linear algebra libraries. Our
implementation also makes use of the Statistics and Machine Learning Toolbox, as we use normpdf and
normcdf to evaluate CEI and ¢-CEI of solutions, and the Parallel Computing Toolbox if one plans to
simulate multiple solutions simultaneously.

Finally, to terminate in finite time (and not simulate every solution infinitely often), users must also
specify whether they want to terminate with a fixed-precision or a fixed-budget guarantee. The former will
only terminate when the optimality gap (estimated by CEI) of the best solution is below a user-defined
threshold and is useful when time is not a constraint. The latter will terminate after a user-defined amount
of time or number of iterations, when such a constraint is present.

3164

Semelhago, Nelson, Song, and Wiichter

The software can be accessed via a GitHub repository at Semelhago et al. (2021). The only dependency
outside of MATLAB and its toolboxes is the PARDISO package (Schenk and Girtner 2004) for fast
computational linear algebra, but use of this is optional.

4.2 OOP Implementation

There are four classes defined in our OOP implementation. The ExperimentalDesign object contains
the design points for the initial GMRF MLE parameters, associated simulation information and resulting
MLEs themselves; G1lobalMetamodel contains all simulation information and conditional statistics about
the response at all solutions in the feasible region of the problem; RapidMetamodel contains simulation
information and conditional statistics only for solutions in a constructed search set; and Metamodel is
an abstract superclass from which GlobalMetamodel and RapidMetamodel inherit common traits.

An OOP implementation has many advantages. First, rather than releasing two distinct software
packages, this implementation recognizes that GMIA and rGMIA are instances of the same high-level
framework that uses GMRFs and the CEI criterion to solve DOVS problems. The metamodel of all feasible
solutions (used in GMIA and rGMIA’s global search) and the metamodel of solutions in a search set (used
in rGMIA’s rapid search) are both conceptually GMRF metamodels that can share many properties and
methods when described in code. In an OOP framework, we can use inheritance to define an abstract
Metamodel superclass from which GlobalMetamodel and RapidMetamodel subclasses inherit
common properties (e.g., response sample means and variances) and methods (e.g., compute CEI values
for solutions in metamodel object). In addition to improving readability and eliminating unnecessary
duplication of code, a Met amodel superclass makes clear the connection between GMIA and rGMIA as
part of the same framework.

MATLAB categorizes classes as one of two types: value and handle. The former results in an object
that contains all the data specified by the class, while the latter simply references the object. We choose to
implement the Met amode class and its subclasses as handle classes. This is done so that any practitioner
created functions that take as input a Met amodel object are not in danger of creating unnecessary copies
of the data, which could be expensive in both memory and computation.

In addition, by using class files to implement all numeric computations, the resulting code that implements
GMIA and rGMIA becomes more easily interpretable. By using descriptive method names, any practitioner
can easily follow the code by referring to the pseudocode presented in Algorithm 1.

Furthermore, this implementation improves the modularity of the code. We made many design choices,
but practitioners may wish to substitute alternative methods. For example, rather than using a Latin hypercube
sampling experimental design to estimate GMRF parameters, one might wish to use the generalized
method of moments from Song and Dong (2018). By introducing an ExperimentalDesign class that
contains GMRF parameter information and the simulation replication information used in generating those
parameters, both GMIA and rGMIA can take as input a single standardized object that can be created and
stored independently from running GMIA and rGMIA. This improves reproducibility of results, since the
initial conditions of experiments can be shared via an ExperimentalDesign object.

To give practitioners the freedom and flexibility to modify the code to suit their needs, we use
encapsulation offered in MATLAB’s OOP framework to make intended alterations easier to implement.
This takes the form of only providing protected write access to properties. Thus, properties can only be
modified within the class or subclasses, which reduces the chance of confusing cross references and protects
object information from unwanted access.

To ease the debugging process, we also leverage a recently introduced feature (R2017a) in MATLAB’s
OOP framework to help with error handling: property validation functions. This feature allows us to impose
restrictions on properties in class definitions by accepting a potential property value as an argument before
throwing an error if the value does not meet the restriction. For example, we know that CEI, by definition,
must be non-negative and real. However, when matrices become ill-conditioned, there is potential for an

3165

Semelhago, Nelson, Song, and Wiichter

imaginary component to be introduced to calculations, resulting in erroneous complex CEI values. Property
validation functions will throw an error allowing the user to debug such issues more easily.

To compute CEI values at each iteration, we require up-to-date simulation statistics such as the response
sample means and sample variances of simulated solutions. However, it is well-known that updating these
statistics, especially sample variances, in an online fashion can result in numerical instability. To combat
this, Welford (1962) proposes updating the sum of squares of differences from the current sample mean
response and then normalizing by the number of replications to obtain the sample variance. Hence, the
Metamodel class stores the response sum and response sum of squares for each solution across simulation
replications, rather than response sample mean and variance, which are designated as dependent properties,
meaning that they are not stored in memory but are rather computed “on-the-fly” when called by any class
method. Since a major premise of the GMIA/rGMIA is that few solutions will be simulated relative to the
size of the feasible region, this on-the-fly computation is cheap.

5 EMPIRICAL RESULTS

There are two aspects important in evaluating the performance of ¢g-CEI as a criterion compared to simply
choosing the top g solutions with the largest marginal CEI values: improvement in search quality and
computational expense incurred by determining the set € that maximizes g-CEI through the heuristic
outlined in Algorithm 2. These aspects are evaluated in Sections 5.1 and 5.2, respectively.

To evaluate the performance of g-CEI, we use a Griewank surface, modified to make the function range
larger and ensure a global minimum distinguishable from other local minima; see Bingham and Surjanovic
(2017) for a description of the original surface. The global minimum occurs at (0, 0) with a response value
of 0. The domain of the surface is [—5,5] x [—5,5]. To use this surface in a DOvS problem, we project it
onto a square lattice of 401 x 401 solutions and add independent N(0, 10~*) simulation noise. This surface
was used in Semelhago et al. (2020) to illustrate the power of tGMIA.

5.1 ¢-CEI vs Top g Marginal CEI

During rapid search, we compute the conditional mean vector and covariance matrix for all solutions in the
search set which allows us to compute g-CEI for any given subset of solutions in the search set. Thus, we
may choose the search set to be the screening set for Algorithm 2. We use a search set of 200 solutions
and cycles of 9 rapid search iterations followed by a global search iteration. Results are aggregated across
50 macro-replications, setting different random number streams for each run. In simulating a solution,
10 replications are obtained if the solution has not been simulated before, and 2 additional replications
are obtained on subsequent visits. MLEs of the GMRF parameters are estimated using a Latin hypercube
sample of 20 feasible solutions, following the well-known rule of thumb of using 104 solutions, where d
is the dimension of the feasible region. Experiments are run using a high-performance computing cluster
(HPCC) consisting of seven compute nodes, three with 20 cores each and four with 40 cores, and a head node
with 20 cores; each node has 256GB of RAM and each core can process two threads. Experimental results
were obtained using shared-memory parallelization and allocating a single thread for use by PARDISO.

We compare the performance of g-CEI to marginal CEI for ¢ =2, 3, 4 and 5, using the greedy heuristic
described in Algorithm 2 to construct the g-CEI optimized set using screening sets that are 5 and 10 times
the size of g. In doing so, we illustrate the value g-CEI has in inducing more exploration in the optimization
search. For problems with multiple local minima, such as our modified Griewank problem, this helps
reduce the risk of “getting caught” in these local minima. We also show elsewhere that this exploration
does not reduce performance in more “well-behaved” problems, where there is a single local (and global)
minimum. We measure the mean optimality gap to evaluate performance.

Figures la—1d depict the mean optimality gap versus number of iterations for 50 macro-replications
of the modified Griewank problem. The green bands represent the standard error, across the 50 macro-
replications, of the mean optimality gap where the top marginal CEI solutions are selected. These results

3166

Semelhago, Nelson, Song, and Wiichter

indicate that ¢g-CEI helps, but only conclusively when ¢ =5 and || = 50 due to the variability across
macro-replications, illustrated by the large standard error. Note that the number of solutions simulated
differs between the figures since at each iteration ¢+ 1 solutions are simulated. When this is accounted
for, one can see the value in being able to simulate more solutions per iteration in exploring the feasible
region. We see in Figure la that 6000 solutions is insufficient to find the optimal solution. Instead the
plateau indicates many macro-replications getting caught in a local minimum. When ¢ =3 and ¢ =4 in
Figures 1b and 1c, respectively, —tGMIA gets caught in a plateau but eventually breaks out after about 6000
and 3750 solutions simulated, respectively. It is interesting to note that not only did more solutions being
simulated per iteration result in faster per-iteration progress, but that additional solutions being simulated
also resulted in higher quality choice of solutions being selected in subsequent iterations; hence “breaking
out” of the plateau after fewer solutions simulated.

0.40 0.40
o 035 — |5|=10 o 035 — |5]=15
© - © -
® 030 |S] =20 O 030 |S] =30
E’ 0.25 —— Marginal CEI E’ 0.25 —— Marginal CEl
© © \
2 2
£ 0.20 £ 0.20
2 015 2 015
© .10 © .10
s . <
3 0.05 —, S o0.0s
= .00 = .00
-0.05— P — ———— -0.05'— —— I a—— —
0 250 500 750 10001250 150017502000 0 250 500 750 10001250 150017502000
Number of Iterations Number of Iterations
(@) g=2 b)g=3
0.40 0.40
o 0.351 — |85]=20 o 0351 — |8]|=25
© - © -
O 0.304 |S| =40 O 0309 | [S| =50
2 025 —— Marginal CEIl | 2 o025 | —— Marginal CEl
© | © |
£ 0.20 £ 0.20
o 015 B 0154
O 0.10] © o10{ §
c c
S 0.051 ' ’ S 0.051 il
= 0.00] = 5001 —r
-0.05 -0.05
0 250 500 750 10001250 150017502000 0 250 500 750 10001250 150017502000
Number of Iterations Number of Iterations
(©g=4 (d)g=>5

Figure 1: Mean optimality gap vs. number of iterations across 50 macro-replications for the modified
Griewank problem with ¢ =2,3,4,5. The light green band represents the standard error of the estimated
mean optimality gap by using marginal CEI guided search.

5.2 Timing of ¢-CEI Heuristic

Finding Q becomes prohibitively expensive as g and the number of candidate solutions being considered
grows, thus the need for the greedy heuristic presented in Algorithm 2, and the use of screening solutions to
reduce the number of candidate solutions. Nevertheless, with few processors to parallelize the (par) for
loop in Algorithm 2, the computational time to find the g-CEI optimized set eclipses the time to find the g
solutions with the largest marginal CEI values, with the mean times being 0.0061s, 0.0062s, 0.0064s and
0.0056s for g = 2,3,4,5, respectively, for a search set of 200 solutions, estimated across 50 trials.

3167

Semelhago, Nelson, Song, and Wiichter

Table 1 illustrates the times to compute g-CEI for ¢ = 2,3,4 and 5 using the ¢+ 1 processors that
would be standing idle while Q is being constructed. We varied .# from 10 to 200 in increments of 10
@i.e., 10,20,30,...,190,200). For each combination of g and ., we ran 50 timed experiments. For each
experiment, we randomly generated a conditional mean vector and covariance matrix of appropriate size
and computed the CEI value for each solution. We then measured the wall clock time it took to construct
each ¢-CEI optimized set using Algorithm 2. Parallelization of the (par) for loop in Algorithm 2 was
implemented using the parfor function available in MATLAB’s Parallel Computing Toolbox. Generally,
for a given g, as |.#| increases, we expect the elapsed wall clock time to increase as well. Such an increase
seems to be minimal for ¢ =2 and 3 based on the results in Table 1. However, as g increases, we see that
an increase in the number of candidate solutions results in a steeper increase in computation time, which
is particularly noticeable when ¢ =4 and 5.

Based on these results and those in Section 5.1, g-CEI offers some improvement over simply choosing
the top ¢ marginal CEI solutions but with a computational cost. Therefore, it is most valuable for very
computationally expensive simulations when the total number of simulated solutions will be small.

Table 1: Mean times to compute g-CEI using Algorithm 2 for different screening set sizes across 50 trials,
using g+ 1 processors. Standard errors of mean values are provided in parentheses.

Screening Screening
Set Size (|7)) | 172 q=3 q=4 =5 | Set Size (7)) | 972 q=3 q=4 a=>3
10 0.04 (0.01) | 0.07 (0.02) | 0.45 (0.02) | 1.52 (0.03) 110 0.09 (0.00) | 0.24 (0.00) | 4.13 (0.10) | 21.24 (0.61)
20 0.03 (0.00) | 0.08 (0.00) | 0.81 (0.02) | 3.55 (0.09) 120 0.10 (0.00) | 0.25 (0.00) | 4.43 (0.12) | 23.13 (0.67)
30 0.04 (0.00) | 0.10 (0.00) | 1.20 (0.03) | 5.63 (0.15) 130 0.10 (0.00) | 0.27 (0.00) | 4.77 (0.12) | 24.95 (0.73)
40 0.05 (0.00) | 0.12 (0.00) | 1.56 (0.04) | 7.39 (0.20) 140 0.10 (0.00) | 0.29 (0.00) | 5.13 (0.13) | 29.10 (0.89)
50 0.05 (0.00) | 0.15 (0.00) | 1.97 (0.05) | 9.39 (0.27) 150 0.11 (0.00) | 0.30 (0.00) | 5.51 (0.14) | 32.33 (0.97)
60 0.06 (0.00) | 0.15 (0.00) | 2.34 (0.06) | 11.18 (0.31) 160 0.12 (0.00) | 0.32 (0.00) | 5.65 (0.15) | 34.61 (1.02)
70 0.06 (0.00) | 0.17 (0.00) | 2.68 (0.07) | 13.25 (0.38) 170 0.12 (0.00) | 0.33 (0.00) | 5.83 (0.15) | 35.60 (1.06)
80 0.07 (0.00) | 0.18 (0.00) | 3.05 (0.07) | 15.64 (0.45) 180 0.12 (0.00) | 0.35 (0.00) | 6.07 (0.16) | 36.38 (1.09)
90 0.08 (0.00) | 0.20 (0.00) | 3.39 (0.08) | 17.57 (0.50) 190 0.13 (0.00) | 0.38 (0.00) | 6.38 (0.16) | 38.05 (1.11)
100 0.08 (0.00) | 0.22 (0.00) | 3.80 (0.09) | 19.41 (0.57) 200 0.14 (0.00) | 0.39 (0.00) | 6.61 (0.17) | 39.32 (1.16)

6 CONCLUSIONS

This paper presents a user-friendly, OOP implementation of GMIA and rGMIA as part of a state-of-the-art
framework for DOvVS problems and introduces g-CEI, a new search criterion suitable for the parallel
simulation on multiple processor setting. There is evidence for g-CEI’s ability to account for joint effects
between solutions to yield better search, but additional time costs make it not always appropriate. However,
simulating solutions with GMIA/rGMIA on multiple processors simultaneously is itself a novel contribution.

ACKNOWLEDGMENTS

This work was completed prior to the affiliation of Mark Semelhago with Amazon.com and is supported
by the National Science Foundation Grant Nos. DMS-1854562 and DMS-1854659.

REFERENCES

Bingham, D. and Surjanovic, S. 2017. “Virtual Library of Simulation Experiments”. https://www.sfu.ca/~ssurjano/.

Chevalier, C., and D. Ginsbourger. 2013. “Fast Computation of the Multi-points Expected Improvement with Applications in
Batch Selection”. In Learning and Intelligent Optimization, edited by G. Nicosia and P. Pardalos, 59-69. Berlin, Heidelberg:
Springer Berlin Heidelberg.

Semelhago et al. 2021. “GMIA and rGMIA”. https://github.com/mark-semelhago/GMIA _rGMIA.

Frazier, P., W. Powell, and S. Dayanik. 2009. “The Knowledge-gradient Policy for Correlated Normal Beliefs”. INFORMS
Journal on Computing 21(4):599-613.

Ginsbourger, David and Le Riche, Rodolphe and Carraro, Laurent 2008. “A Multi-points Criterion for Deterministic Parallel
Global Optimization based on Gaussian Processes”. https://hal.archives-ouvertes.fr/hal-00260579.

3168

https://www.sfu.ca/~ssurjano/
https://github.com/mark-semelhago/GMIA_rGMIA
https://hal.archives-ouvertes.fr/hal-00260579

Semelhago, Nelson, Song, and Wiichter

Ginsbourger, D., R. Le Riche, and L. Carraro. 2010. “Kriging is Well-suited to Parallelize Optimization”. In Computational
Intelligence in Expensive Optimization Problems, 131-162. New York, New York: Springer.

Hong, L. J., and B. L. Nelson. 2006. “Discrete Optimization via Simulation Using COMPASS”. Operations Research 54(1):115—
129.

Jones, D. R., M. Schonlau, and W. J. Welch. 1998. “Efficient Global Optimization of Expensive Black-box Functions”. Journal
of Global Optimization 13(4):455-492.

Rue, H., and L. Held. 2005. Gaussian Markov Random Fields: Theory and Applications. Boca Raton, Florida: CRC press.

Salemi, P., B. L. Nelson, and J. Staum. 2014. “Discrete Optimization via Simulation using Gaussian Markov Random Fields”.
In Proceedings of the 2014 Winter Simulation Conference, edited by A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz,
S. Buckley, and J. A. Miller, 3809-3820. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Salemi, P., E. Song, B. L. Nelson, and J. Staum. 2019. “Gaussian Markov Random Fields for Discrete Optimization via
Simulation: Framework and Algorithms”. Operations Research 67(1):250-266.

Schenk, O., and K. Girtner. 2004. “User Guide Version 6.0.0”. Journal of Future Generation Computer Systems 20(3):475-487.

Semelhago, M., B. L. Nelson, E. Song, and A. Wichter. 2020. “Rapid Discrete Optimization via Simulation with Gaussian
Markov Random Fields”. INFORMS Journal of Computing 33(3):915-930.

Semelhago, M., B. L. Nelson, A. Wichter, and E. Song. 2017. “Computational Methods for Optimization via Simulation Using
Gaussian Markov Random Fields”. In Proceedings of the 2017 Winter Simulation Conference, edited by W. K. V. Chan,
A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, 2080-2091. Piscataway, New Jersey: Institute of
Electrical and Electronics Engineers, Inc.

Song, E., and Y. Dong. 2018. “Generalized Method of Moments Approach to Hyperparameter Estimation for Gaussian Markov
Random Fields”. In Proceedings of the 2018 Winter Simulation Conference, edited by M. Rabe, A. A. Juan, N. Mustafee,
A. Skoogh, S. Jain, and B. Johansson, 1790-1801. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers,
Inc.

Tallis, G. M. 1961. “The Moment Generating Function of the Truncated Multi-normal Distribution”. Journal of the Royal
Statistical Society: Series B (Methodological) 23(1):223-229.

Wang, H., R. Pasupathy, and B. W. Schmeiser. 2013. “Integer-Ordered Simulation Optimization Using R-SPLINE: Retrospective
Search with Piecewise-Linear Interpolation and Neighborhood Enumeration”. ACM Transactions on Modeling and Computer
Simulation 23(3):1-24.

Welford, B. P. 1962. “Note on a Method for Calculating Corrected Sums of Squares and Products”. Technometrics 4(3):419-420.

Wu, J., and P. Frazier. 2017. “The Parallel Knowledge Gradient Method for Batch Bayesian Optimization”. In Advances in
Neural Information Processing Systems 29 (NIPS 2016), edited by D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett, 3126-3134. Red Hook, New York: Curran Associates, Inc.

Xu, J., B. L. Nelson, and J. L. Hong. 2010. “Industrial Strength COMPASS: A Comprehensive Algorithm and Software for
Optimization via Simulation”. ACM Transactions on Modeling and Computer Simulation 20(1):1-29.

AUTHOR BIOGRAPHIES

MARK SEMELHAGO is a Research Scientist at Amazon.com. He earned his PhD in the Department of Industrial Engineering
and Management Sciences at Northwestern University. His research interests include simulation optimization, simulation
methodology and computer experiments, with recent interest in inventory management applications. His e-mail address and
website are markseme@amazon.com and https://mark-semelhago.github.io/, respectively.

BARRY L. NELSON is the Walter P. Murphy Professor in the Department of Industrial Engineering and Management
Sciences at Northwestern University. He is a Fellow of INFORMS and IIE. His research centers on the design and analysis
of computer simulation experiments on models of stochastic systems, and he is an author of Foundations and Methods of
Stochastic Simulation: A First Course, 2e from Springer. His e-mail address and website are nelsonb@northwestern.edu and
http://www.iems.northwestern.edu/~nelsonb/, respectively.

EUNHYE SONG is a Coca-Cola Foundation Early Career Assistant Professor in the Department of Industrial and Systems
Engineering at Georgia Institute of Technology. Her research interests include simulation design of experiments, uncertainty
and risk quantification, and simulation optimization. Her e-mail address is eus358 @psu.edu and her website can be found at
http://eunhyesong.info.

ANDREAS WACHTER is a Professor in the Department of Industrial Engineering and Management Sciences at Northwestern
University. His research centers on the design, analysis, implementation, and application of numerical algorithms for nonlinear
optimization. He is a recipient of the J. H. Wilkinson Prize for Numerical Software for the Ipopt open-source optimization
package, and of the INFORMS Computing Society Award. His e-mail address is andreas.waechter @northwestern.edu.

3169

mailto://markseme@amazon.com
https://mark-semelhago.github.io/
mailto://nelsonb@northwestern.edu
http://www.iems.northwestern.edu/~nelsonb/
mailto://eus358@psu.edu
http://eunhyesong.info
mailto://andreas.waechter@northwestern.edu

	INTRODUCTION
	GMIA AND rGMIA
	PARALLELIZATION
	q-CEI
	Building the q-CEI Candidate Set

	IMPLEMENTATION DETAILS
	User Input and Interaction
	OOP Implementation

	EMPIRICAL RESULTS
	q-CEI vs Top q Marginal CEI
	Timing of q-CEI Heuristic

	CONCLUSIONS

