In Proceedings of the 37th Conference on Artificial Intelligence (ARAATI 2023),

Washington D.C., USA, February 2023

The Perils of Trial-and-Error Reward Design:
Misdesign through Overfitting and Invalid Task Specifications

Serena Booth!>3, W. Bradley Knox'?°, Julie Shah?,
Scott Niekum?*, Peter Stone>°, Alessandro Allievi'?
"Bosch, >The University of Texas at Austin, >MIT CSAIL,
4The University of Massachusetts Amherst, >Google Research, *Sony Al

{serenabooth, julie_a_shah} @csail.mit.edu, {bradknox,pstone } @cs.utexas.edu,
sniekum @cs.umass.edu, alessandro.allievi @us.bosch.com

Abstract

In reinforcement learning (RL), a reward function that aligns
exactly with a task’s true performance metric is often sparse.
For example, a true task metric might encode a reward of 1
upon success and 0 otherwise. These sparse task metrics can
be hard to learn from, so in practice they are often replaced
with alternative dense reward functions. These dense reward
functions are typically designed by experts through an ad hoc
process of trial and error. In this process, experts manually
search for a reward function that improves performance with
respect to the task metric while also enabling an RL algorithm
to learn faster. One question this process raises is whether the
same reward function is optimal for all algorithms, or, put dif-
ferently, whether the reward function can be overfit to a par-
ticular algorithm. In this paper, we study the consequences
of this wide yet unexamined practice of trial-and-error re-
ward design. We first conduct computational experiments that
confirm that reward functions can be overfit to learning algo-
rithms and their hyperparameters. To broadly examine ad hoc
reward design, we also conduct a controlled observation study
which emulates expert practitioners’ typical reward design
experiences. Here, we similarly find evidence of reward func-
tion overfitting. We also find that experts’ typical approach
to reward design—of adopting a myopic strategy and weigh-
ing the relative goodness of each state-action pair—Ileads to
misdesign through invalid task specifications, since RL algo-
rithms use cumulative reward rather than rewards for individ-
ual state-action pairs as an optimization target.

Code, data: github.com/serenabooth/reward-design-perils.

1 Introduction

In their authoritative introductory text on reinforcement
learning, Sutton and Barto (2018) assert: “The reward signal
is your way of communicating to the agent what you want
achieved, not how you want it achieved.” This statement im-
plies that a reward function should exclusively encode the
true task performance metric. Such metrics are often sparse:
did the agent succeed at the task or not? Sparse reward func-
tions are rarely used in practice, since it can be hard to
learn from sparse signals (for examples, see Yu et al. (2020);
Andrychowicz et al. (2020); Knox et al. (2021)). As such,

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the practice of reward design seldom adheres to this adage.!
Instead, reward functions are typically designed through an
ad hoc process of trial and error. In a survey of 24 expert
RL practitioners, we found that 92% reported using trial and
error to design their most recent reward function (Apdx. A).
This finding echos the literature: Knox et al. (2021) found
that, in a survey of RL for autonomous driving, all of the
surveyed publications reported designing reward functions
by trial and error. Despite the prevalence of trial-and-error
reward design, the consequences of this process remain al-
most completely unexamined by the RL community. It is ur-
gent and crucial for our community to understand the effects
of this widespread practice, and ultimately to craft specific
guidance for practical reward design.

When designing reward functions through trial and er-
ror, experts often optimize the reward function by manu-
ally searching for a reward function that meets both goals of
maximizing the task performance metric and enabling an RL
algorithm to learn quickly. This practice raises the question
of whether a reward function that is effective with one algo-
rithm can be ineffective with others. In other words, can a
reward function be overfit to an algorithm? This question of
overfitting in turn raises troubling questions about evaluation
in RL. Overfitting a reward function to one RL algorithm un-
dermines comparisons to another algorithm using the same
reward function. Consider an ablation study which assesses
whether an algorithmic component improves learning. If the
reward function is overfit to the algorithm when the compo-
nent is unablated, observing that learning performance de-
creases in the absence of the component may merely re-
flect that the reward function is overfit, giving no clear sig-
nal about whether the component is an improvement. Con-
cerns about fair evaluation are already pervasive in RL, and
are thought to limit RL’s applicability outside of the labora-
tory (Ibarz et al. 2021). Most such concerns focus on hyper-
parameters, network architectures, and observed high vari-
ance, coupled with the high costs of experimentation (Hen-
derson et al. 2018). This paper adds an additional perspec-
tive: that the oft-overlooked design process behind the re-
ward function must also be considered for fair comparisons.

!Sutton and Barto disregard their own advice when designing a
Dyna-Q+ agent. To encourage exploration, they replace the reward
function r with 7 + k+/7, where & is a hyperparameter and 7 is the
number of timesteps (Sutton and Barto 2018, p. 168).

https://github.com/serenabooth/reward-design-perils

To assess reward function overfitting, we first conduct
computational experiments to test whether certain reward
functions enable different RL algorithms and hyperparam-
eters to perform better with respect to the true task perfor-
mance metric. From these experiments, we find evidence
that reward functions can indeed be overfit to a partic-
ular discount factor, learning rate, or algorithm: in such
cases, changing the discount factor, learning rate, or algo-
rithm significantly diminishes the task metric performance.
Across numerous experiments, we find that when we rank
reward functions by the learned policies’ resultant task met-
ric scores, these rankings are largely uncorrelated across
experiment variations. Though the idea of reward function
overfitting may be unsurprising to seasoned RL experts, the
extent of this overfitting problem is nonetheless remarkable.

To learn about the implications of trial-and-error reward
design, we also conducted a user study. One goal of this user
study was to confirm that our computational experiments’
findings correspond to practical effects in realistic RL set-
tings. Specifically, we challenged 30 expert RL practition-
ers to choose an RL algorithm, hyperparameters, and a re-
ward function to train the best agent they could, as measured
by the cumulative task performance metric. The majority of
experts overfit their reward functions to their choice of al-
gorithms or hyperparameters (68%). More alarmingly, the
majority of experts also constructed reward functions which
failed to encode the task (53%)—meaning these reward
functions encoded optimal policies which significantly de-
viate from the experts’ intent, despite these tests being con-
ducted in a simple gridworld environment. We then applied
thematic analysis to qualitatively analyze experts’ reward-
design process, and we discovered that some types of re-
ward misdesign stem from mismatched perspectives of what
the reward function communicates. For the RL algorithm,
reward is an additive component that is used to calculate
discounted return—the evaluation metric. We find that ex-
perts instead typically view reward as a direct evaluation of
the relative goodness of each state-action pair. This disparity
contributes to reward function misdesign as a consequence
of ad hoc trial-and-error reward design.

2 Related Work

Reward Shaping One of the known, common conse-
quences of ad hoc reward design is reward shaping. In re-
ward shaping, the reward function is overloaded to both
communicate the underlying performance metric and guide
an agent’s learning toward a desired policy. Reward shaping
can be designed in such a way that the optimal policy is un-
changed (Ng, Harada, and Russell 1999). However, ad hoc
reward shaping is known to be typically unsafe—meaning
that a shaped reward function is likely to change the opti-
mal solution to a given reinforcement learning task (Amodei
et al. 2016; Knox et al. 2021). Our work affirms that ad hoc
reward design amplifies this type of misdesign: the resulting
optimal policies are often unrecognizable from the expert’s
known intent. Our work also contributes a new perspective
on how trial-and-error reward design results in reward func-
tion overfitting, in which reward functions are unintention-
ally over-engineered for use with a specific algorithm.

Designing Rewards for Fast Learning Singh, Lewis,
and Barto (2009) asked the philosophical question: where
do rewards come from? They established a computational
framework for quantifying the performance of reward func-
tions, in which they assess whether ‘intrinsic’ motivation is
helpful—i.e., whether reward functions benefit from reward-
ing subgoals. We build off of this work, especially the com-
putational framework for assessing reward functions.

Similarly, Sowerby, Zhou, and Littman (2022) observe
that certain reward functions result in faster learning, and
they put forth principles of reward design in accordance with
this observation. To find fast-learning reward functions, they
use linear programming to construct reward functions which
meet a correctness criteria of encoding the optimal policy.
To test the fastness of learning from these reward functions,
they assess how many training steps are needed for a Q-
learning agent to converge to the optimal policy. The authors
note this work is preliminary and has mostly been tested
with a single Q-learning algorithm with fixed hyperparame-
ters. Our work contributes a related perspective: fast learning
may not be an intrinsic property of a good reward function,
but also a consequence of the paired choice of algorithm and
hyperparameters that were used to test that reward function.

AutoRL is another approach, which is gaining increasing
traction (Niekum, Barto, and Spector 2010; Faust, Francis,
and Mehta 2019; Chiang et al. 2019; Zheng et al. 2020; Wu
et al. 2021; Parker-Holder et al. 2022). AutoRL frames RL
as a meta-learning problem, in which the reward function
should be learned, perhaps using an evolutionary method.
Our work has interesting implications for AutoRL. Cur-
rently, these methods usually first optimize a reward func-
tion and then fix this function to optimize other RL design
choices, such as the neural network architecture. Our work
suggests this method—of first fixing the reward function and
then optimizing other design choices—may be suboptimal
relative to employing a joint optimization strategy.

Inferring Reward Functions Since specifying reward
functions is both known to be hard and requires expertise,
many research threads explore how to learn reward func-
tions from intuitive signals like demonstrations (Ng, Rus-
sell et al. 2000; Ziebart et al. 2008), preferences (Christiano
etal. 2017; Knox et al. 2022), and feedback (Knox and Stone
2009; MacGlashan et al. 2017). Inverse reward design is an
approach that requires experts to specify reward functions
but recognizes that these designed reward functions are only
observations about the true goal. As such, inverse reward de-
sign works try to infer a true reward function based on these
observations (Hadfield-Menell et al. 2017; Ratner, Hadfield-
Menell, and Dragan 2018). Our work provides empirical
support for this approach, as we find evidence that this
assumed human behavior—of designing reward functions
as observations and not as true problem specifications—is
common in practice. He and Dragan (2021) similarly view
reward design is an iterative process. Their work contributes
a mechanism for surfacing environments where the reward
incentivizes the wrong behavior to the human expert to sup-
port them in revising their reward function. Our work rein-
forces the importance of these types of debugging tools.

3 Preliminaries

Reinforcement Learning In RL, an agent learns a behav-
ioral policy based on experience interacting with its environ-
ment. An RL task can be modeled by a Markov decision pro-
cess (MDP), which is defined by a tuple (S, A, T,~, Do, 7).
S and A are the sets of states and actions, respectively. 7" is
a transition function, T : S x A x S — [0, 1]. v is the dis-
count factor and Dy is the distribution of start states. Lastly,
r is areward function, 7 : S x A x S — R. An MDP\ (v, 1)
is an MDP with neither a discount factor nor a reward func-
tion; we use this formulation for studying humans’ reward
design processes, wherein we ask humans to select the dis-
count factor and reward function. Actions in an MDP can
be prescribed by a policy 7 : S x A — [0,1], and 7, =
(so, ao, s1,...) is a trajectory of states s; € S and actions
a; € A experienced over time by executing 7. Discounted
return is the discounted sum of reward over a trajectory,
G(1) = Y 1o ¥'7(s¢, at, se11). In this work, we learn 7 by
applying one of four algorithms: Q-learning (Watkins and
Dayan 1992), PPO (Schulman et al. 2017), DDQN (Mnih
et al. 2015), or A2C (Mnih et al. 2016). Unless otherwise
noted, we use the hyperparameters in Apdx. D. The short-
hand 7, p denotes the policy learned with reward function r
and some solver D (i.e., an algorithm and hyperparameters).

Reward Function Overfitting Let M : 7 — R be the true
task performance metric. For example, this metric might en-
code whether the agent reached a goal state or not. Let a
learning context be a tuple of an RL algorithm, hyperpa-
rameter values, and an MDP\r; given a reward function, a
learning context can be used to train a policy. We claim a
reward function r; is overfit with respect to one or more
learning contexts, D ~ D, if there exists an alternative re-
ward function 7o such that the task performance metric is
optimized over D; but not over the larger distribution, D:

LE_MMI> E (M)

E [M()]< E [M(r)

TNy, D TNy, D

ey

where D is a set of one or more learning contexts, D, =
{dy,da,...,d,}. This definition is adapted from supervised
learning overfitting: the hypothesis space corresponds to the
space of possible reward functions and the training and test
sets correspond to potential RL algorithms, hyperparame-
ters, and environments (Mitchell and Mitchell 1997).

Optimal Reward Functions Optimal reward functions
are related to overfitting: these reward functions are the best
performing in a given a learning context. A reward function
r7 is optimal under some distribution D of learning con-
texts if it maximizes the expected value of learned policies,
ie.,rp = argmax, Bror, ,[M(7)].

Hungry Thirsty Domain We use a modified Hungry
Thirsty domain (Singh, Lewis, and Barto 2009) as a testbed.
This gridworld domain has a fixed time horizon of 200 steps.
Food is located in one randomly-selected corner; water in
another. Some transitions are blocked by walls (Fig. 1). At
each timestep, the agent can choose one of six actions: move

Figure 1: Hungry Thirsty

w (4 x 4 grid). Food and water
are each located in a corner.
60 Red walls are impassable.

The current reward-relevant
state is abbreviated as H A
—T, which corresponds to
the agent being hungry and
& not thirsty. The 6 x 6 grid
variant is depicted in Singh,
Lewis, and Barto (2009).

"I am hungry and not thirsty."

in a cardinal direction, eat, or drink. The agent’s goal is
to have sated hunger for as many timesteps as possible.
The agent is hungry if and only if it did not eat in the last
timestep. However, the agent can only successfully eat if it
is co-located with the food and has quenched thirst. On each
timestep, the agent stochastically becomes thirsty with 0.1
probability, and only becomes not thirsty if it drinks while
co-located with the water. The agent’s state is described by
its location, as well as two boolean predicates: H and T, cor-
responding to hunger and thirst. Time remaining is omitted.

For this task, the performance metric is simply the num-

ber of timesteps the agent has sated hunger: M(r) =

3201 1(—H € s;). This specific metric can be formulated as

a sparse Markovian reward function, r(s,a,s’) = 1(—H €
5).? Under the optimal policy for this reward function, the
agent alternates between navigating to the water or drink-
ing when thirsty, and navigating to the food or eating when
not thirsty. While it is often possible for RL algorithms to
learn with this sparse reward function, shaped reward func-
tions that reward the not thirsty (—T) subgoal or punish time
spent hungry (H) let many RL algorithms solve this domain
faster and more easily. These properties make this domain
an interesting testbed for studying reward design.
For our experiments, all reward functions take the form:

r(HAT)=a
r(-HAT)=c

r(HA-T)=b
r(CtHA-T) =d

where a,b,c,d € R. Since there are no reward compo-
nents for location, opportunities for shaping—and, thereby,
overfitting—are limited but still possible. For shorthand, we
write reward functions as [a, b, ¢, d]. We say reward func-
tions encode the task when the optimal policy matches
the optimal policy derived from the sparse reward func-
tion. Singh, Lewis, and Barto (2009) found the highest-
performing reward function to be [—0.05, —0.01,1.0,0.5]
for a continuing version of this domain; this reward function
is dense and notably rewards drinking water as a subgoal.
When conducting large experiments, we as-
sign each of a,b,c, and d to a value from the set:
{£1,40.5,£0.1,40.05,0}. We chose these values based
on the reward function from Singh, Lewis, and Barto
(2009). Reward functions that meet the following criteria

2Such reformulation as a Markovian reward function is not uni-
versally possible across all task performance metrics.

trivially do not encode the task and are thus excluded:
r(HA=T) > r(-HAT)and 7(H A —T) > r(=H A —T).
Such reward functions encode an incorrect optimal policy
of navigating to the water and consistently drinking. This
filtering leaves 5,196 reward functions.

4 Computational Experiments

We first assess overfitting in reward functions by conduct-
ing large-scale performance comparisons, in which we mea-
sure a learning context’s ability to optimize the task perfor-
mance metric given a reward function. As an intuitive exam-
ple, we speculate that when using an RL algorithm with a
high learning rate, a high magnitude reward function might
be less likely to lead to convergence within a fixed training
duration than a lower magnitude reward function.

To study this relationship between reward function de-
sign and hyperparameters empirically, we assess the mean
task performance metric accumulated over all 200-timestep
episodes of training achieved by learning with different re-
ward functions across varied Q-learning hyperparameters: ~y
(the environment discount factor) and « (the learning rate).
While ~ is formally defined as a parameter of the envi-
ronment, and not the learning algorithm, it is typically se-
lected to construct a viable horizon for applying an RL al-
gorithm (Jiang et al. 2015) and can thus be equally consid-
ered a hyperparameter of the learning algorithm. We addi-
tionally study whether the reward functions are overfit to
the learning algorithm itself by comparing performance met-
rics with several deep RL methods: A2C (Mnih et al. 2016),
DDQN (Mnih et al. 2015), and PPO (Schulman et al. 2017)
in the 6 x 6 Hungry Thirsty domain. Unless otherwise spec-
ified, we train 10 agents per experimental setting.

4.1 Hypotheses

Below we list hypotheses concerning the manifestation of
reward function overfitting. We substantiate how we test
these hypotheses in practice in Sections 4.2 and 4.3.

H1: Reward functions that are effective in one learn-
ing context can be ineffective in another. There exist two
different learning contexts (D; and Ds) and a reward func-
tion r; such that r; achieves high cumulative performance
(as measured by the true performance metric) when tested
with D but low cumulative performance with Ds. In for-
mal terms, there exists a reward function r; such that

E [M(r)]>piand E [M(7)] < B,
T~Try Dy T~Try, Dy
where (1 is some high threshold (e.g., performing among the
top 25% of reward functions when tested with D7) and (35
is some low threshold (e.g., performing among the bottom
25% of reward functions when tested with D).

H1 tests whether some reward functions enable success-
ful learning in one learning context but not in another. In
other words, this hypothesis assesses whether reward func-
tion overfitting can occur. Although the learning context Do
could be chosen adversarially— i.e., to include an RL algo-
rithm incapable of learning—we assume the algorithm (with
its hyperparameters) in D» aims to maximize expected re-
turn and is generally capable of doing so.

Relative Reward Function Performance
for y=0.99 and y=0.8

120000
s ————————
80000 ==~ —
60000

40000

Cumulative True Reward

20000 {:

y=0.99 y=0.8

B HAT -1.00;HA-T: -050; -HAT: 1.00,-HA-T: 0.00
HAT -1.00;HA-T: -1.00; "HAT: -1.00, -H A =T: 0.10

Figure 2: A parallel coordinate plot showing the paired rankings of
reward functions. Each line corresponds to a reward function, with
cumulative performance averaged over 10 independently-trained
agents. The many intersections portray the uncorrelated nature of
these rankings. The two reward functions with the largest cumula-
tive difference in performance are highlighted. These reward func-
tions result in low cumulative performance when v = 0.99, but
high performance when v = 0.8. See Apdx. C for more examples.

H2: Reward functions that are optimal in one learn-
ing context can be suboptimal in another. Given a reward
function 77, that is optimal under a learning context Dy, a
different reward function r},, may be optimal with respect
to another learning context, Ds. In formal terms, there exist
two learning contexts Dy and Dy such that 1y, # 77, .

H2 tests tests whether the reward functions which
are found to be best-performing are consistently best-
performing across multiple learning contexts and whether
the best-performing reward functions can be overfit. As in
H1, we assume that the considered algorithms aim to maxi-
mize expected return and are generally capable of doing so.

H3: The performances of different reward functions
are uncorrelated across learning contexts. If reward func-
tions are ranked by their average cumulative performance
metric scores (e.g., 7o > 15 > 1. > ... for a learn-
ing context D), the ranked reward functions from D,
will be uncorrelated with the ranked reward functions from
Ds. In formal terms, for some set of reward functions
71,725+« s Tns Ereor,. p, [M(7)] will be uncorrelated with
Ernmr, b, [M(7)] for1 <i<mn.

H3 examines the commonality of reward function overfit-
ting. If this phenomenon is rare, correlation across learning
contexts should be high. If it is common, correlation should
be low. Of these hypotheses, confirmation of H3 is most con-
cerning as it indicates extensive reward function overfitting.

Table 1: A comparison of reward function performance assessed
over 1000 trials (Q-learning) or 30 trials (deep RL methods). Per-
formance is assessed with the Hoeffding Bound, which is akin to
a confidence interval, and a Mann Whitney U-test. This data con-
firms that the same reward function can lead to very different per-
formance with different hyperparameters or algorithms.

Reward Function Experiment Hoeffding Bound p-value

v =0.99 [4,965; 20,234]
[-1.0,-1.0,-1.0, 0.1] =08 [86.653: 101,922] < 0.01

DDQN [94,790; 182,944]
[-0.1,0.2,0.5, 1.0] A2C [29.040: 59.114] < 0.01

Table 2: Kendall’s 73 correlation over the 5196 tested reward func-
tions for hyperparameter experiments and 107 tested reward func-
tions for algorithm experiments. 7, € [—1,1]. || < 0.1 indicates
the variables are uncorrelated; |7,| < 0.2 indicates a weak cor-
relation. In our experiments, H3 is supported with low 7, values,
even with high p-values. Almost all comparisons are either uncor-
related or weakly correlated; H3 is supported for all experiments
except PPO vs. A2C. This data confirms that the choice of reward
function is highly sensitive for RL algorithm performance.

of Reward Fns D, Do Th p-value
=099 ~=08 0.07 <0.01
=099 ~=05 0.04 0.07
5196 _ _
v=08 ~=0.5 0.12 < 0.01
a=025 «a=005 0.11 < 0.01
PPO A2C 0.25 0.01
PPO DDQN —0.04 0.62
107 PPO QLearn 0.13 0.08

A2C QLearn —0.08 0.29
A2C DDQN —0.01 0.87
DDQN QLearn —0.06 0.41

4.2 Overfitting to Hyperparameters

We first assess whether reward functions can be overfit to ei-
ther the discount factor, v, or the learning rate, . For this
experiment, we use a Q-learning agent trained over 2000
episodes. For evaluating overfitting to the discount factor,
we vary y for each learning context: v = 0.99, v = 0.8, and
v = 0.5. For evaluating overfitting to the learning rate, we
consider o = 0.05 and o = 0.25. The standard hyperparam-
eters are described in Apdx. D. We average performance, as
measured by the cumulative true reward, over 10 trials to
account for stochasticity stemming from the environment or
from the learning process (i.e., randomized weights).

H1: Reward functions that are effective in one learning
context can be ineffective in another. For all experiments,
we find some reward functions which result in policies
which achieve high task performance scores when trained
with one learning context but low task performance scores
when trained with a different learning context. Some such
reward functions are highlighted in Fig. 2 and Apdx. Fig. 3.
To assess whether these differences are not just a conse-
quence of stochastic policy learning, we re-ran these exper-
iments with the reward functions which resulted in maxi-
mally different true performance for 1000 additional trials.
We then computed the 90% Hoeffding Bound (Hoeffding
1994), which bounds the average cumulative task perfor-
mance metric across trials with 90% probability, and we
separately performed a Mann Whitney U-test (Nachar et al.

2008) to assess whether the mean cumulative true task per-
formance values were drawn from the same underlying dis-
tribution. We find, in all cases, we can reject the null hy-
pothesis that these underlying distributions are the same as
the observed differences are all statistically significant (p <
0.05). We conclude that, across varied hyperparameters, re-
ward functions that are effective in one learning context can
be ineffective in another. See Tab. 1 and Apdx. Tab. 3.

H2: Reward functions that are optimal in one learning
context can be suboptimal in another. Across each pair
of tested learning contexts, we find that the best-performing
reward function differs (Apdx, Fig. 4). To test if this dif-
ference is just a consequence of stochastic policy learning,
we conduct follow-up experiments. Specifically, we fix an
experimental learning context and assess whether the best-
performing reward function for that learning context out-
performs the top-3 reward functions from a different ex-
perimental learning context, testing the cumulative task per-
formance metric for each reward function over 1000 trials.
For example, the best-performing reward function function
for v = 0.99 was [—0.05,—0.05,0.5,0.5], which outper-
formed the best-performing reward function for v = 0.5,
[-1.0,—1.0,0.0,1.0]. We then compute the 90% Hoeffding
Bound for the mean cumulative task performance metric,
and we separately conduct a Mann Whitney U-test to as-
sess whether the distribution of the best-performing reward
function’s performance is greater than that of the alterna-
tive tested reward function (which is best-performing for a
different experimental condition). We find that we can re-
ject the null hypothesis that these reward functions result
in equal performance distributions in 16 of 18 experiments
(p < 0.05). In general, the best-performing reward function
for one learning context outperforms the top-3 reward func-
tions for another learning context. See Apdx. Tab. 4.

H3: The performances of different reward functions
are uncorrelated across learning contexts. We compute
Kendall’s tau rank correlation to assess H3; Kendall’s tau
measures the strength and direction of the monotonic as-
sociation between rankings, without taking the difference
in magnitude of the performance metric into consideration,
since some learning contexts may be consistently ‘better’ or
‘worse’ in terms of raw performance. We used a nonpara-
metric test, since the cumulative scores were not found to
be normally distributed over many trials. In this setting, the
null hypothesis is that two random variables are independent
(i.e., 7, = 0). H3 is supported with low 7, values, even with
high p values. Generally, the closer 7 is to 0, the more sam-
ples are needed to show significance. We find that reward
function performance is uncorrelated (|7,| < 0.1, see Ta-
ble 2) or weakly correlated (|7,] < 0.2, see Table 2) in all
discount factor and learning rate experiments. We conclude
that performance across varying hyperparameters is sensi-
tive to reward function choice.

From these experiments, we find consistent evidence that re-
ward functions can be overfit to RL hyperparameters.

4.3 Overfitting to RL Algorithms

For the Section 4.2 Q-learning experiments with varied hy-
perparameters, we trained 5196 agents, 10 times each. The
protocol for generating these reward functions is described
in Section 3. In the deep RL setting, this scale of training
is infeasible because training each agent takes between 3
and 11 minutes (Apdx. F). To test overfitting in this set-
ting, we instead consider a restricted set of reward functions
to reduce the computational burden. We source these re-
ward functions from the user study; specifically, we consider
the set of unique reward functions that experts handcrafted
at any point during their sessions and that also encode the
desired optimal policy in easy environment configurations
(Section 5). In total, we analyze 107 reward functions in this
deep RL setting. For each reward function, we train A2C,
DDQN, PPO, and Q-learning agents. We train each agent
over 5000 episodes, and average performance over 10 trials.

H1: Reward functions that are effective in one learn-
ing context can be ineffective in another. We again find
that every experiment variation uncovers reward functions
which enable successful learning in one experimental learn-
ing context, but not the other. For example, the reward func-
tion [—0.1, 0.2, 0.5, 1] achieved a high mean cumulative per-
formance metric score of 232055 for DDQN, but a low
mean cumulative score of 107—indicative of never learn-
ing the optimal policy—for A2C. We then ran this specific
test an additional 30 times, and found evidence that we can
again reject the null hypothesis that these true task perfor-
mances were drawn from the same underlying distribution
(p < 0.05). See Table 1 and Appendix Fig. 5, in which
the reward functions that achieve maximally different per-
formance metric measures are highlighted.

H2: Reward functions that are optimal in one learning
context can be suboptimal in another. In 5 of 6 experi-
ments varying the RL algorithm, the optimal reward func-
tions differ. The only case in which this is not true is in
the PPO and A2C comparisons. In this case, the true per-
formance metric function itself ([0,0,1,1]) is the optimal
reward function for both algorithms. See Appendix Fig. 5.

H3: The performances of different reward functions
are uncorrelated across learning contexts. Again using
Kendall’s 7, for assessment, we mostly find evidence that re-
ward functions’ cumulative true performance metric scores
are uncorrelated when varying the RL algorithm (73| <
0.1, see Table 2). Specifically, we find the PPO vs. DDQN,
A2C vs. Q-learning, A2C vs. DDQN, and DDQN vs. Q-
learning agents to be mutually uncorrelated. We find ev-
idence of weak correlation between PPO and Q-learning
(I7s] < 0.2). Lastly, we find evidence of some correlation
(m, = 0.25) for the PPO vs. A2C comparison. Statistical
significance—which allows us to reject the null hypothesis
that the two random variables are independent—is generally
not established due to the reduced sample size.

From these experiments, we find consistent evidence that re-
ward functions can be overfit to RL algorithms.

5 Expert Human Subject Experiments

To assess how experts design reward functions and whether
this problem of reward function overfitting caries over to re-
alistic settings, we conduct a controlled observation study.

Study Population We conducted 2 pilot studies, followed
by 30 studies with expert participants drawn from four US
research universities (R1). To qualify as an expert, partic-
ipants were required to meet one or more of the follow-
ing criteria: (1) have experience conducting research on RL
methods; (2) have used RL methods in research; or (3)
have passed a class which covered reinforcement learning in
depth. Of the 30 participants, 1 was a post-doctoral scholar,
17 were PhD students, 5 were research-based master’s stu-
dents, and 7 were advanced undergraduates. Participants are
each assigned a study ID, ranging from P0 to P29.

Study Protocol The study session took one hour and was
primarily conducted in-person (19 of 30 sessions). Partici-
pants were compensated $40 USD. The study used a Jupyter
notebook, in which participants were required to select a re-
ward function, algorithm, and hyperparameters to train an
agent to solve the Hungry Thirsty task (Apdx. B). Partic-
ipants were asked to speak aloud as they worked, and the
experimenter took detailed notes. The experimenter occa-
sionally asked open-ended questions (such as “what are you
trying to do now?”) to prompt the participant to continue
speaking. Five minutes before the end of the session, par-
ticipants were asked to submit their best configuration con-
sisting of some reward function r; and some algorithm and
hyperparameter selection, D;. Afterwards, participants were
asked to answer five structured questions (Apdx. B.3).

The participants were informed that the research team
would independently train an agent using their submitted re-
ward function, algorithm, and hyperparameters, and that if
this trained agent performed in the top ten across all par-
ticipants’ agents in terms of cumulative performance, they
would receive a $10 USD bonus. Participants were required
to train at least three different agents—though the experi-
menter explicitly noted that they could simply re-train the
same agent three times to meet this requirement.

The first 12 participants used a 6 x 6 grid for the Hungry
Thirsty domain. After observing participants struggling to
solve this task, we reduced the size of the grid to 4 x 4 for
the remaining 18 participants. The study was IRB approved.

Experts Often Design Invalid Reward Functions The
Hungry Thirsty domain has harder and easier environment
configurations. In total, there are 12 different configurations,
which correspond to different placements of the food and
water. In a 6 x 6 grid, the food and water can either be lo-
cated 5 steps apart in the best case or 16 steps apart in the
worst case. In a 4 x 4 grid, these distances are 3 and 9 steps
in the best and worst cases, respectively. As in the original
version of Hungry Thirsty (Singh, Lewis, and Barto 2009),
the locations of the food and water are randomly resampled
each time the user trains a new agent, but remain consistent
throughout the lifetime of the agent. In this study, the user is
tasked with designing a reward function which is invariant
to any choice of environment configuration.

To determine whether a reward function is valid for a
given task configuration (i.e., for fixed food and water posi-
tions), we empirically assess whether a policy—Ilearned with
value iteration—is the same as the optimal policy under the
sparse reward function. Specifically, we use value iteration
(with & = 0.01 as the end criteria) to solve for an approxi-
mately optimal policy using the sparse reward function and
v = 0.99. We then use value iteration to solve for a policy
using the user’s submitted reward function and choice of ~.
We run 100 test episodes for each agent with a fixed random
seed, and use the average cumulative undiscounted task per-
formance metric for comparison. If the policy learned with
the user’s reward function has the same cumulative undis-
counted task performance as the policy learned with the
sparse reward function, we consider it valid. If the user’s
reward function is valid for all environment configurations,
we say it encodes the task.

The majority of participants (83%) successfully selected
reward functions which were valid with the easier place-
ments of the food and water on adjacent corners (10 of 12
in the 6 x 6 setting; 15 of 18 in the 4 x 4 setting). However,
only 47% of participants selected reward functions which
were valid when the food and water are maximally distant,
at opposite corners (4 of 12 in the 6 x 6 setting; 10 of 18
in the 4 x 4 setting). For example, P23’s reward function
[—0.05,0.5,0.5,1.0] is valid in the easier adjacent case but
not the opposite-corners case, because when the food and
water are maximally distant the optimal policy causes the
agent to remain in the state HA —T. Finding this form of mis-
design, where reward functions are only valid in some envi-
ronment configurations, adds support to the research pursuit
of inverse reward design methods (Hadfield-Menell et al.
2017), which is built upon the perspective that reward func-
tions should be considered an observation about the expert’s
intended reward function and not as a perfect specification.

Experts Overfit Reward Functions to Algorithms Even
when experts wrote reward functions which encode the task,
they typically continued to edit their reward functions. Each
expert tried a sequence of reward functions r1,79,...,7,
and finally settled on some reward function r; where i €
[1,n]. The user evaluated each of these reward functions
alongside potentially-changing algorithms and hyperparam-
eters, D1, D5, ..., D, and settled on some choice D;. Be-
cause every aspect of the user’s solution may be changing
simultaneously, this setting is messier and harder to evaluate
than the purely-computational setting. To evaluate overfit-
ting, we test all of the user’s reward functions with standard
implementations for DDQN, PPO, and A2C and fixed hy-
perparameters (Apdx. D). We discard the user’s algorithms
(i.e., D;) and exclusively test the user’s reward functions.
In this setting, we define overfitting to have occurred if
one or more of the user’s tested reward functions (r;, where
j € [1,n] and r; # r;) significantly outperforms their final
selection with respect to one or more of the three tested RL
algorithms. We define this performance difference threshold
to be 20000, accumulated over 5000 training episodes and
averaged over 10 trials. This overfitting assessment is differ-
ent from the computational setting, which requires compar-

ing the rankings and not absolute performance between dif-
ferent reward functions. Since each user tried only a small
handful of reward functions (on average, 4.1 unique reward
functions), these rankings are less meaningful.

Of the users who tried multiple reward functions and
submitted a best-case-valid reward function, 68% (15 of
22) overfit their reward functions. For example, participant
P20 tried the reward function [—0.1,0.1,—0.1, 1], which
achieved a mean cumulative performance of 138,092 using
DDQN. In their final selection, this user instead chose the
reward function [—5, 15, 5, 100], which achieved a mean cu-
mulative performance of 1,031 using DDQN. We include an
alternative metric for overfitting in the user study in Apdx. E.

Assessing the Design Process with Thematic Analysis
To analyze not just experts’ reward design outcomes, but
also their design process, we applied qualitative analysis in
the form of thematic analysis (Braun and Clarke 2006; Hop-
kins and Booth 2021). Thematic analysis is a system for ex-
tracting patterns from qualitative data by systematically cod-
ing and analyzing transcripts. To perform thematic analysis,
every statement of each transcript is first assigned a sum-
mary (also known as a code). Each of these summaries is
then further distilled into a detailed, low-level theme. These
low-level themes are finally distilled into high-level themes.
Thematic analysis is generally considered successful if the
resulting themes are consistent and coherent, and describe
the data they incorporate well. In such cases, the extracted
themes provide insight into the unstructured data. In our ap-
plication of thematic analysis, the first summary step of this
process generated 990 codes. The second step generated 212
low-level themes. And, finally, the third step resulted in the
extraction of 10 high-level themes. We include the full anal-
ysis in the supplementary material. Here, we discuss these
themes and their implications for reward design.

Experts’ Approaches to RL and Reward Design The-
matic analysis showed that experts use one or more of the
following strategies when tasked with crafting and solving
an RL task: folklore-based, intuition-based, trial-and-error-
based, hypothesis-based, random-based, or reason-based.
For example, P25 declared, “I’ve heard that reward scaling
is pretty important”, and this quote is an example of using
a folklore-based process. Concerning this same parameter
choice, P27 declared, “The reward scaling factor must be
very large, I think, since you might only see little food,” and
this quote is an example of using a reason-based process.
Experts often switched between two or more strategies.

Trial-and-Error Reward Design is Typical This user
study was designed to be naturalistic; participants could
choose to focus primarily on any combination of the three
axes of choice, between specifying the reward function, al-
gorithm, and hyperparameters. Conventional reward design
wisdom suggests that experts should try to align a reward
function as closely as possible with the task completion cri-
teria, and should only adjust the reward function if it is found
to not encode correct measurements of task outcomes.

93% of experts tried at least two reward functions (only
P2 and P4 stuck to a single reward function). Experts tried

4.1 unique reward functions on average. In this study setting,
shaping was unnecessary: any of the available algorithms
could learn from the sparse reward function. Despite this,
and almost all users (97%) shaped their reward functions.
This finding is compelling: even in the absence of a need to
shape, experts gravitate towards doing so.

Analyzing study transcripts, we find that half of experts
(P5-13, P15-17, P20, P23, P27-28) explicitly noted a per-
ceived error at least once before modifying their reward
function (thus employing a reason-based process). For ex-
ample, P5 stated: “I realized I'm penalizing the H A T state
too much, because the agent knows it will be penalized on
the way back [to the water].” In contrast, some experts indi-
cated they were relying on trial and error: P28 stated, “The
worst possible state to be in is H A T, so I’'m going to assign
-1. The best possible state to be in is “H A =T, so I'm as-
signing that to 1. H A —T is not particularly as bad as HA T...
Setting that to -0.25. Reward for —H A T: not too close to -1;
I’1l just assign some arbitrary small value.”

A Common Misdesign Cause: Weighing State Goodness
Weighing state goodness to design a reward function was a
recurring low-level theme. Most experts (83%) stated some-
thing to the effect of: “It’s best to be =H A =T, so I'll set that
to the max, 1. Being —T is better than being —H. Worst is at
HAT; setting that to -1 (P25; this statement corresponded to
their invalid reward function [-1.0, 0.3, -0.35, 1.0], for which
the optimal policy is to remain drinking water indefinitely).
This reward design practice—of using the reward function
to rank the goodness of immediate states and/or actions, ap-
plying a myopic design strategy without assessing how the
reward function will be used as an optimization target for
computing expected discounted return—often led to reward
misdesign, as it did for P25.

Though less often, some experts did recognize the im-
portance of reward accumulation and state visitation fre-
quency (another recurring low-level theme). For example,
P23 stated “A positive reward for H A =T is not the way
to go. A combination with a negative reward for H A T
makes it worse, since it would rather accumulate positive
rewards at the water instead of searching for food.” This de-
sign process—of considering summed reward, which aligns
with the RL optimization objective—was relatively rare (i.e.,
30% of experts noted something to this effect). From this
qualitative analysis, we found this lack of emphasis on re-
ward accumulation and expected discounted return to be the
main cause of explicit reward misdesign, wherein reward
functions were invalid and did not correctly encode the task.

This observation—that humans assume a myopic inter-
pretation of reward functions, in which reward accumulation
is largely ignored—has previously been observed in another
setting. Knox and Stone (2015) discovered that when learn-
ing a reward function from non-expert human feedback, hu-
mans adopt a similarly myopic teaching strategy. Finding
that this myopic interpretation is echoed across both non-
expert and expert users can inform future efforts to support
humans in designing reward functions, and can help rein-
terpret how humans’ reward functions should be used for
optimization.

6 Limitations

While we studied the Hungry Thirsty domain in depth in this
work, we only evaluated reward design practice in this one
domain. Hungry Thirsty is a rich testbed for assessing re-
ward design practice, but understanding this practice across
multiple domains with diverse properties equally deserves
attention. This domain in particular allows us to assume the
existence and specification of a true task performance met-
ric, but in many circumstances, specifying such a metric is
itself a challenging problem. In such cases, the methodology
we use to study reward design would not readily reapply.

Another limitation of this work concerns the definition of
reward function overfitting. Our definition omits a tempo-
ral aspect to the distribution (D, consisting of algorithms,
hyperparameters, and tasks) that makes samples from D de-
pendent (i.e., not i.i.d.). For example, if an expert has tested
a reward function r with one RL algorithm and a set of
hyperparameter values, we suspect such an expert is more
likely to next test the reward function r with the same algo-
rithm and different hyperparameter values than with a differ-
ent RL algorithm. This temporal component is omitted from
our overfitting definition—as it similarly tends to be in the
supervised learning setting—and future work could explore
the consequences of this omission.

7 Discussion

Despite the prevalence of trial-and-error reward design, the
implications of this widespread practice remain underex-
plored. In this first analysis of the consequences of this
practice, we identify two problems: reward function over-
fitting and the frequent design of invalid task specifications.
In overfitting, reward functions are designed with respect to
a fixed algorithm or hyperparameter set, and the resulting
reward functions bias toward better learning given these de-
sign choices. This finding contributes to concerns around re-
producibility in RL: we find the performance of the reward
function is often dependent on the choice of algorithm. For
RL practitioners, one takeaway from this work is that the re-
ward function—Ilike the discount factor (Jiang et al. 2015)—
should be defined twice: once to specify the true problem as
part of the MDP, and once as a form of hyperparameter for
the RL algorithm to facilitate learning. This separation ac-
commodates the need to design a reward function for suc-
cessful learning while also supporting fair evaluations.

In addition to overfitting, we find that ad hoc trial-and-
error reward design leads to misdesign in the form of invalid
task specifications, wherein experts design reward functions
which fail to encode the desired task, even in a simple grid-
world domain. One candidate cause for this misdesign is
that experts typically adopt a myopic interpretation of re-
ward, and this interpretation is at odds with the RL objec-
tive of optimizing cumulative, if discounted, rewards. Given
this finding, one future direction would assess the systemic
errors humans make when designing reward functions, and
try to construct better mechanisms for inferring the humans’
true intent given these systemic errors. Such a mechanism
could build off of inverse reward design (Hadfield-Menell
et al. 2017).

While there is great optimism around the flexibility of re-
ward as the optimization target for learning (Silver et al.
2021), this paper contributes to mounting evidence that
most people are ineffective reward designers in current
practice (Amodei et al. 2016; Krakovna et al. 2020; Knox
et al. 2021). As future work, we assert that the commu-
nity should also explore mechanisms to support humans—
including experts!—in this reward design endeavor. Specifi-
cally, one could develop guidance for the human reward de-
signer’s process such that it more directly reflects the RL
optimization target of expected discounted return. Addition-
ally, it is worth exploring whether incorporating explanation
mechanisms can improve reward design outcomes (for ex-
ample, by assisting experts in assessing the contributions of
decomposed reward components (Juozapaitis et al. 2019)).

Alternative models of reward should also be considered
and evaluated both for their propensity for overfitting and
for their propensity for other forms of misdesign. Reward
machines (Icarte et al. 2018) and hybrid reward architec-
tures (Van Seijen et al. 2017) are two such candidates. In
reward machines, reward functions are described as a type of
finite state machine instead of directly as a function. While
reward machines may elicit feature engineering and are thus
taboo in RL, humans may be better able to design reward
functions which correctly encode a task if they use sufficient
structure for guiding the design process. In hybrid reward
architectures, the reward function is decomposed into n dif-
ferent reward functions, each of which is then used to op-
timize a policy. These policies are subsequently aggregated
into a single policy. These methods both induce supporting
structures for designing reward functions, and this support
may help humans write better reward functions with low-
ered propensity for overfitting or other misdesign.

8 Acknowledgments

We thank Dylan Hadfield-Menell and many RLDM
conference-goers for their input on this work. In addition,
the authors would like to thank the user study participants
and anonymous reviewers at both AAAI and RLDM.

References

Amodei, D.; Olah, C.; Steinhardt, J.; Christiano, P.; Schul-
man, J.; and Mané, D. 2016. Concrete problems in Al safety.
arXiv preprint arXiv:1606.06565.

Andrychowicz, O. M.; Baker, B.; Chociej, M.; Jozefowicz,
R.; McGrew, B.; Pachocki, J.; Petron, A.; Plappert, M.; Pow-
ell, G.; Ray, A.; et al. 2020. Learning dexterous in-hand ma-
nipulation. The International Journal of Robotics Research,
39(1): 3-20.

Braun, V.; and Clarke, V. 2006. Using thematic analysis in
psychology. Qualitative research in psychology, 3(2): 77—
101.

Chiang, H.-T. L.; Faust, A.; Fiser, M.; and Francis, A. 2019.
Learning navigation behaviors end-to-end with autorl. /[EEE
Robotics and Automation Letters, 4(2): 2007-2014.

Christiano, P. F.; Leike, J.; Brown, T.; Martic, M.; Legg, S.;
and Amodei, D. 2017. Deep reinforcement learning from

human preferences. Advances in neural information pro-
cessing systems, 30.

Engstrom, L.; Ilyas, A.; Santurkar, S.; Tsipras, D.; Janoos,
F.; Rudolph, L.; and Madry, A. 2019. Implementation mat-
ters in deep rl: A case study on ppo and trpo. In International
conference on learning representations.

Faust, A.; Francis, A.; and Mehta, D. 2019. Evolving re-
wards to automate reinforcement learning. arXiv preprint
arXiv:1905.07628.

Hadfield-Menell, D.; Milli, S.; Abbeel, P.; Russell, S. J.; and
Dragan, A. 2017. Inverse reward design. Advances in neural
information processing systems, 30.

He, J. Z.-Y.; and Dragan, A. D. 2021. Assisted robust reward
design. arXiv preprint arXiv:2111.09884.

Henderson, P.; Islam, R.; Bachman, P.; Pineau, J.; Precup,
D.; and Meger, D. 2018. Deep reinforcement learning that
matters. In Proceedings of the AAAI conference on artificial
intelligence, volume 32.

Hoeffding, W. 1994. Probability inequalities for sums of
bounded random variables. In The collected works of Wass-
ily Hoeffding, 409-426. Springer.

Hopkins, A.; and Booth, S. 2021. Machine learning prac-
tices outside big tech: How resource constraints challenge
responsible development. In Proceedings of the 2021
AAAI/ACM Conference on Al, Ethics, and Society, 134—145.
Ibarz, J.; Tan, J.; Finn, C.; Kalakrishnan, M.; Pastor, P.; and
Levine, S. 2021. How to train your robot with deep rein-
forcement learning: lessons we have learned. The Interna-
tional Journal of Robotics Research, 40(4-5): 698-721.

Icarte, R. T.; Klassen, T.; Valenzano, R.; and Mcllraith, S.
2018. Using reward machines for high-level task specifi-
cation and decomposition in reinforcement learning. In In-
ternational Conference on Machine Learning, 2107-2116.
PMLR.

Jiang, N.; Kulesza, A.; Singh, S.; and Lewis, R. 2015. The
dependence of effective planning horizon on model accu-
racy. In Proceedings of the 2015 International Conference
on Autonomous Agents and Multiagent Systems, 1181-1189.
Citeseer.

Juozapaitis, Z.; Koul, A.; Fern, A.; Erwig, M.; and Doshi-
Velez, F. 2019. Explainable reinforcement learning via re-
ward decomposition. In IJCAI/ECAI Workshop on explain-
able artificial intelligence.

Knox, W. B.; Allievi, A.; Banzhaf, H.; Schmitt, F.; and
Stone, P. 2021. Reward (mis) design for autonomous driv-
ing. arXiv preprint arXiv:2104.13906.

Knox, W. B.; Hatgis-Kessell, S.; Booth, S.; Niekum, S.;
Stone, P.; and Allievi, A. 2022. Models of human pref-
erence for learning reward functions. arXiv preprint
arXiv:2206.02231.

Knox, W. B.; and Stone, P. 2009. Interactively shap-
ing agents via human reinforcement: The TAMER frame-
work. In Proceedings of the fifth international conference
on Knowledge capture, 9—-16.

Knox, W. B.; and Stone, P. 2015. Framing reinforcement
learning from human reward: Reward positivity, temporal

discounting, episodicity, and performance. Artificial Intel-
ligence, 225: 24-50.

Krakovna, V.; Uesato, J.; Mikulik, V.; Rahtz, M.; Everitt, T.;
Kumar, R.; Kenton, Z.; Leike, J.; and Legg, S. 2020. Spec-
ification gaming: the flip side of Al ingenuity. DeepMind
Blog.

MacGlashan, J.; Ho, M. K.; Loftin, R.; Peng, B.; Wang, G.;
Roberts, D. L.; Taylor, M. E.; and Littman, M. L. 2017. In-
teractive learning from policy-dependent human feedback.

In International Conference on Machine Learning, 2285—
2294. PMLR.

Mitchell, T. M.; and Mitchell, T. M. 1997. Machine learn-
ing, volume 1. McGraw-hill New York.

Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T.;
Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016. Asyn-
chronous methods for deep reinforcement learning. In In-

ternational conference on machine learning, 1928-1937.
PMLR.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidje-
land, A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. nature, 518(7540):
529-533.

Nachar, N.; et al. 2008. The Mann-Whitney U: A test for
assessing whether two independent samples come from the
same distribution. Tutorials in quantitative Methods for Psy-
chology, 4(1): 13-20.

Ng, A. Y.; Harada, D.; and Russell, S. 1999. Policy invari-
ance under reward transformations: Theory and application
to reward shaping. In Icml, volume 99, 278-287.

Ng, A. Y.; Russell, S.; et al. 2000. Algorithms for inverse
reinforcement learning. In Icml, volume 1, 2.

Niekum, S.; Barto, A. G.; and Spector, L. 2010. Genetic pro-
gramming for reward function search. IEEE Transactions on
Autonomous Mental Development, 2(2): 83-90.

Parker-Holder, J.; Rajan, R.; Song, X.; Biedenkapp, A.;
Miao, Y.; Eimer, T.; Zhang, B.; Nguyen, V.; Calandra, R.;
Faust, A.; et al. 2022. Automated reinforcement learning
(autorl): A survey and open problems. Journal of Artificial
Intelligence Research, 74: 517-568.

Ratner, E.; Hadfield-Menell, D.; and Dragan, A. D. 2018.
Simplifying reward design through divide-and-conquer.
arXiv preprint arXiv:1806.02501.

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and

Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.

Silver, D.; Singh, S.; Precup, D.; and Sutton, R. S. 2021.
Reward is enough. Artificial Intelligence, 299: 103535.

Singh, S.; Lewis, R. L.; and Barto, A. G. 2009. Where do
rewards come from. In Proceedings of the annual confer-
ence of the cognitive science society, 2601-2606. Cognitive
Science Society.

Sowerby, H.; Zhou, Z.; and Littman, M. L. 2022. De-

signing Rewards for Fast Learning. arXiv preprint
arXiv:2205.15400.

Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.

Van Seijen, H.; Fatemi, M.; Romoft, J.; Laroche, R.; Barnes,
T.; and Tsang, J. 2017. Hybrid reward architecture for rein-
forcement learning. Advances in Neural Information Pro-
cessing Systems, 30.

Watkins, C. J.; and Dayan, P. 1992. Q-learning. Machine
learning, 8(3): 279-292.

Wau, Z.; Lian, W.; Unhelkar, V.; Tomizuka, M.; and Schaal,
S. 2021. Learning dense rewards for contact-rich manip-
ulation tasks. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), 6214-6221. IEEE.

Yu, T.; Quillen, D.; He, Z.; Julian, R.; Hausman, K.; Finn,
C.; and Levine, S. 2020. Meta-world: A benchmark and
evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, 1094—1100. PMLR.
Zheng, Z.; Oh, J.; Hessel, M.; Xu, Z.; Kroiss, M.; Van Has-
selt, H.; Silver, D.; and Singh, S. 2020. What can learned
intrinsic rewards capture? In International Conference on
Machine Learning, 11436-11446. PMLR.

Ziebart, B. D.; Maas, A. L.; Bagnell, J. A.; Dey, A. K.; et al.
2008. Maximum entropy inverse reinforcement learning. In
Aaai, volume 8, 1433-1438. Chicago, IL, USA.

A RL Practitioner Survey

We invited RL practitioners from 2 Fortune 500 company’s Al research divisions and from 2 US Research Universities (R1)
to participate in this survey. Practitioners were entered into a raffle for a $15 USD gift card in exchange for participating.
Practitioners were screened based on whether or not they had designed a reward function in the past year. Only those who
affirmed this were able to proceed with the survey. Multiple options may be selected for any given question. 24 practitioners
completed the survey. The survey questions are as follows, and the number of respondents for each option are indicated:

* What domain have you designed a reward function for *most recently*? (Mark all that apply, but only for your most recent
domain)
— A gridworld task: 8 respondents

A classic RL task — like CartPole or Mountain Car: 2 respondents

A robotics task: 12 respondents

A multi-agent task (e.g., Hanabi): 5 respondents

An Atari game or other game: 5 respondents

Other: please specify: 3 respondents: A continuous control task, a racing game, and a command and control task

* How did you write an initial reward function? (Mark all that apply.)

By applying intuition and considering how the agent would learn: 15 respondents

By embedding domain knowledge of how the agent should behave: 13 respondents

Using a reward function someone else had written (e.g., from a publication or shared implementation): 15 respondents
By specifying a performance objective for the task: 10 respondents

By inverse reinforcement learning, or some other demonstration-based approach: 6 respondents

Other: please specify: 1 respondent: By defining a goal region

* Did you shape your reward function?

Yes: 15 respondents

No: 6 respondents

I don’t know: 1 respondent

Other: please specify: 2 respondents: Tried, but didn’t have much success; Using human feedback to shape

* Did you use trial-and-error to refine your reward function?

— Yes: 22 respondents
— No: 2 respondents
— Other: please specify: 0 respondents

* During trial-and-error reward design, how did you evaluate your reward function(s)?

— By viewing the agent’s behavior after it has finished training (and would not be trained further): 18 respondents
— By viewing the agent’s behavior during a training session (that was continued further): 12 respondents

By plotting some performance metric against time or learning iterations: 15 respondents

By plotting return from the changing reward function against time or learning iterations: 6 respondents

By scoring example trajectories: 2 respondents

Other: please specify: 0 respondents

* Did you observe suboptimal behavior after training your agent?
— Yes - I observed the agent taking advantage of a loophole in the reward function, so I changed the function to remove the
loophole: 7 respondents

Yes - I observed the agent’s behavior plateauing at unsatisfactory performance, so I changed the reward function to help
it learn beyond the plateau: 13 respondents

Yes - I observed the agent’s behavior plateauing at unsatisfactory performance, so I changed the learning algorithm or
hyperparameter. : 11 respondents

No: 4 respondents
Other: please specify: 0 respondents

B User Study Details
B.1 Expert Participant Recruitment

To recruit study participants, we sent recruitment emails to relevant listservs of computer science researchers and to faculty at
four US research universities (R1). These faculty members passed the recruitment email along to their research groups.

B.2 User Study Protocol
The next five pages contain a screenshot of the Jupyter notebook used for the first 55 minutes of the study.
The expert participants first read a description of the problem, as follows:

* The goal of the hungry-thirsty domain is to teach an agent to eat as much as possible. There’s a catch, though: the agent can
only eat when it’s not thirsty. Thus, the agent cannot just “hang out” at the food location and keep eating because at some
point it will become thirsty and eating will fail.

» The agent always exists for 200 timesteps.
e The grid is 4 x 43. Food is located in one randomly-selected corner, while water is located in a different (random) corner.
* At each timestep, the agent may take one of the following actions: move (up, down, left, right), eat, or drink.
* But actions can fail:
— The drink action fails if the agent is not at the water location.
— The eat action fails if the agent is thirsty, or if the agent is not at the food location.
— The move action fails if the agent tries to move through one of the red barriers (depicted below).
« If the agent eats, it becomes not-hungry for one timestep.
* If the agent drinks, it becomes not-thirsty.
* When the agent is not-thirsty, it becomes thirsty again with 10% probability on each successive timestep.

The experts then run a cell which shows a GIF of a Hungry Thirsty agent.

The experts are then tasked with specifying the reward function, learning algorithm, and hyperparameters, as shown in the
following pages. To avoid biasing participants toward trial-and-error reward design, the order in which they were asked to select
the reward function or the algorithm choice was randomized.

For the reward function, the experts set the rewards for each state H A T,H A =T, -H A T, =H A =T from the range [—1, 1] in
0.05 increments. The hyperparameters vary slightly across algorithms — for example, DDQN uses an e-greedy action selection
strategy, while PPO and A2C instead use an entropy term for exploration. Specifically, PPO and A2C use this entropy term in
their loss functions, and this requires the user to set an entropy coefficient for regularization.

After selecting their choice of reward function, learning algorithm, and hyperparameters, the expert can start training the
agent. As it trains, the Jupyter notebook plots three graphs. The first is the true metric performance for each episode, which
corresponds to the stated goal: “The goal of the hungry-thirsty domain is to teach an agent to eat as much as possible.” The
second graph corresponds to the undiscounted return for each episode, which is based on the expert’s own reward function.
The third and final graph consists of a state visitation distribution heatmap, which shows where the agent is spending its time.
Darker red means more state visits, and lighter red means fewer visits.

After training an agent (or cutting training short), the expert could then review training in three different ways. They could
select_run_and_show_agent (), which allows them to see any trained agent’s performance for a single, randomly-
initialized episode. They could instead view_training.runs (), which allows them to review the training graphs for any
agent. Or they could review_past_run (), which allows them to review their reward function, algorithm choice, and hyper-
parameter selections for any past agent.

Finally, 55 minutes into the study, experts were asked to submit their final, best configuration. They could choose from any
of the configurations they tried during the study.

B.3 Follow Up Questions

After 55 minutes, participants submitted their best attempt at training an agent to solve Hungry Thirsty. In the remaining 5
minutes, we asked participants five structured questions:

Please describe your approach to training RL agents.

How well does this process mimic your past experience of training RL agents?

Is there some missing information from this interface which you wished you had access to?
Does your submitted agent meet your expectations?

Did you shape your reward function?

A e

3For the first 12 participants, the grid was instead 6 x 6

Hungry-Thirsty Domain

The goal of the hungry-thirsty domain is to teach an agent to eat as much as possible.
There's a catch, though: the agent can only eat when it's not thirsty.
Thus, the agent cannot just “hang out” at the food location and keep eating because at some point it will become thirsty and eating will fail.

+ The agent always exists for 200 timesteps.

The grid is 4x4. Food is located in one randomly-selected corner, while water is located in a different (random) corner.

At each timestep, the agent may take one of the following actions: move (up, down, left, right), eat, or drink. But actions can fail:
» The drink action fails if the agent is not at the water location.
= The eat action fails if the agent is thirsty, or if the agent is not at the food location.
= The move action fails if the agent tries to move through one of the red barriers (depicted below).

« |f the agent eats, it becomes not-hungry for one timestep.

+ [f the agent drinks, it becomes not-thirsty.

+ \When the agent is not-thirsty, it becomes thirsty again with 10% probability on each successive timestep.

See an example of the game below.

In [1]: # import notebooks; do not edit
%run setup_reward_and_learning_alg.ipynb
%run training and model eval.ipynb

show agent

from IPython.display import Image
Image("../Assets/h-t-small.gif", width=450)

¢ &6

Qut[1]:

"I am hungry and not thirstu.”

Your Task

We haven't specified the reward function, learning algorithm, or algorithm hyperparameters; you'll need to fill in these details using the code cells below.

Your Study ID

Replace the YOUR_NAME string with your full name to generate a unique study ID.

Mote: do not re-run the cells after entering data using these Jupyter notebook widgets.

In [2]: set study id()

Your name: | AAAI 2023 Submit

Your study ID is: b25b8922b18b048341444d98afbhldbea.

Design your Reward Function and Select Your RL Algorithm

For your reward function, you need to assign a value r(s) to each state. The state is composed of the thirst and hunger status of the agent. You must assign
a value for each state:

+ r(Hungry AND Thirsty) = 777; r(Hungry AND Not Thirsty) = ??7?; r(Not Hungry AND Thirsty) = ??7; r(Not Hungry AND Mot Thirsty) = 277
For your RL algorithm, you will need to choose your algorithm. Your options are:
s A2C, DDQN, PPO

After choosing your RL algorithm, you will need to select the hyperparameters. If you change your learning algorithm, you may need to re-run the
hyperparamater selection (below).

In [3]: # select the learning algorithm and reward function parameters
selectors = reward_and_alg_selector()

selectors
Reward for state: hungry AND thirsty -0.50
Reward for state: hungry AND not thirsty -0.25
Reward for state: not hungry AND thirsty 0.75
Reward for state: not hungry AND not thirsty 1.00
Algorithm Choice | DDQN 4

Hype rparameters
111 If you change your learning algorithm selection, you will need to rerun the following hyperparameter selection cell as well. !!!

s Hyperparameters Required for All Algorithms:

» Gamma: the discount factor for the environment. A small Gamma means the agent prioritizes only immediate rewards (i.e., the agent is myopic),
while a larger Gamma means the agent tends to also consider future rewards.

» Num_Episodes: the number of episodes to train for. A smaller number means the experiments are faster, but contain less experience to learn
from.

» Learning Rates: the learning rate is used for training all networks: the Q-network for DDQN, and the actor and critic networks for A2C and PPO.
Smaller learning rates make smaller updates to the network weights (and hence optimization is slower), while larger learning rates make larger
updates.

= reward_scaling_factor: a mulitplicative factor (o) applied to the reward function defined above: r'(s) = or(s). If set to 1, the reward function is
unchanged.

s For A2C and PPO:
= Entropy_Coeff: Only applicable to A2C and PPO, this is the entropy regularization coefficient which rewards entropy in the loss function. A smaller
value means the loss encourages a less uniform distribution over actions (meaning less exploration, more exploitation).
For DDQN and PPO:
= Update Steps: Only applicable to DDQN and PPQ, this is the frequency with which to perform updates. A smaller number means more frequent
updates, which is slower but more information dense.
e A2C Only:
» n_step_update: How many steps should the agent take before updating the actor-critic network? A smaller number means more frequent
updates, which is slower and higher variance. A larger number means less frequent updates, which is faster and lower variance.
DDQN Only:
= Epsilon_Min: DDQN uses an epsilon-greedy strategy. Epsilon decreases over time to encourage initial exploration (starting at epsilon=1).

epsilon_min corresponds to the floor for the epsilon value. A larger epsilon_min means more exploration, less exploitation. A smaller epsilon min
means less exploration, more exploitation.

» Epsilon_Decay: Over time, epsilon decreases from 1 to epsilon_min. Every time step, epsilon decreases by 1/epsilon_decay.

» Batch_Size: The number of samples to take from the experience replay buffer from which to calculate the loss and update the deep Q Network. A
smaller number is faster to run but contains less experience.

« PPO Only:

= Eps_Clip: In PPO, the estimated advantage function is clipped to handle variance. If the probability ratio between the new policy and the old
policy falls outside the range (1 — €) and (1 + €), the advantage function is clipped. A smaller eps_clip value is more permissive; a larger eps_clip
value is more restrictive and allows for less substantial policy changes.

In [4]: # select the learning algorithm hyperparameters
11! If you change the algorithm choice, you will need to re-run this !!!
alg = get params(widget ref=selectors)["Algorithm Choice"]
select learning alg params = construct hyperparam selector(alg name = alg)
select_learning_alg_params

gamma | 0.99 W
num_episodes ‘ 5000 v‘
Ir | 0.001 v
update_steps ‘ 1024 V‘
batch_size ‘ 256 V‘
epsilon_min ‘ D.15 V‘
epsilon_decay ‘ 10000 v‘
reward_scaling_factor ‘ 1 v‘

Training Time!
For evaluating our reward functions, algorithm selection, and hyperparameters, we plot training performance according to fitness and undiscounted return.
Each episode consists of a trajectory T = [(sg, ag. 51), (51, ay. 52), ...].
Fitness is computed as the sum of states in which the agent is not hungry:

» Fitness := 2, 4 1(slis_hungry] == False)
Undiscounted return is computed using the reward function you specified:

+ Undiscounted Retumn := X, , o, 07(s) = X, 4) ' (8)
You may wish to go back and change one or mare of your reward function, learning algorithm, or learmning algorithm parameters.
You can cut training off early, but you won't be able to resume training a partially-trained agent.

In [5]: =matplotlib notebook
train_agent(alg_and_reward params=get_params(widget_ ref=selectors),

hyper_params=get_params(widget_ref=select learning_alg_params),
study_id=study id)

Not Hungry Count Per Episode
Z(s,a s)-r1(s[hungry] = False)

604 — raw data
—— weighted average

Mot Hungry Count
w N
o o

)
o
.

104
0_
0 1000 2000 3000 4000 5000
Episode
Undiscounted Return
Summed Reward Per Episode: Z(s 4 s)—7"(5)
—— raw data
——— weighted average
0_
20
£ 40
2
&
,60_
,80_
—100
0 1000 2000 3000 4000 5000
Episode

“
x=2858. y=30.0

In [1: |# view the agent
select run_and show agent()

In []: view training runs()

In []: review past run()

Final Submission

When you are finished training your agent(s) and choosing which agent is best, run this cell and make your selection.

If the agent you submit is a top-10 performer in this user study, we will award you a $10 bonus after the conclusion of our study.

In []: submit agent()

C Computational Experiments

In this section, we include supporting analysis for the computational experiments.

Table 3, Fig. 3, and Fig. 5 correspond to H1: Reward functions are not universally effective.

* Table 3 presents the Hoeffding Bound and Mann Whitney U-test p-values to compare the average cumulative mean perfor-
mances achieved by policies learned with reward functions across varied hyperparameters (e.g., v = 0.99 vs v = 0.8).

* Fig. 3 presents parallel coordinate plots, highlighting the reward functions which resulted in the largest absolute difference
in true cumulative performance across varied hyperparameters (e.g., v = 0.99 vs v = 0.8).

* Fig. 5 presents parallel coordinate plots, highlighting the reward functions which resulted in the largest absolute difference
in true cumulative performance across varied algorithm choices (e.g., PPO vs. DDQN).

Table 4, Fig. 4, and Fig. 6 correspond to H2: Reward functions are not universally optimal.

» Table 4 presents the Hoeffding Bound and Mann Whitney U-test p-values to compare the average cumulative mean per-
formances achieved by the best-performing policies learned with reward functions across varied hyperparameters (e.g.,
v =10.99 vs v = 0.8).

* Fig. 4 presents parallel coordinate plots, highlighting the reward functions which result in the highest true cumulative per-
formance for each hyperparameter (e.g., v = 0.99).

* Fig. 6 presents parallel coordinate plots, highlighting the reward functions which result in the highest true cumulative per-
formance for each algorithm (e.g., DDQN).

Table 3: H1: Reward functions are not universally effective. For each large-scale computational comparison experiment
(e.g., v = 0.99 vs. v = 0.5), we find the 3 reward functions which result in the maximal difference in the cumulative true
performance metric. To confirm that these differences are not simply simply due to sampling bias, we retrain agents using each
of these reward functions 1000 additional times. We then compute the 90% Hoeffding bound as well as a Mann Whitney U-test
over this larger set of data. In all cases, we find that the 90% Hoeffding bounds are non-overlapping, and that the difference
in underlying distributions are statistically significant. In sum, these reward functions all result in high performance for one
experiment variation, and low performance for another variation.

Reward Function Experiment Hoeffding Bound p-value
(10,10,05,05 209 [ZATEIIE Ty
[0.05.-0.1,10.05] 1= 02 3’13"1“;;6;1%%68’54] <0.01
[-0.5, -0.5, -0.1, -0.05] z - 8:29 {22?6;5166;’%32925] <0.01
[-1.0,-0.5, 1.0, 0.0] z - 8:29 Eé:gggi ég:ggg} <0.01
[-1.0,-1.0, -1.0,0.1] 3 - 8:29 %3’69,22;3;2(1)6213,3]22] <0.01
[-0.5,-0.5,0.0, 0.1] 3 - 8:29 %g?13g7d;31()()13(2119] <0.01
[05,:005,05,051 0~ (02 0u eea0y <001
[-1.0,-0.1, -0.1, 1.0] g - 8:(2)2 Egg?é gg:ggg} < 0.01
0105 t00 0Z0E B IIET

Table 4: H2: Reward functions are not universally optimal. Comparisons of reward function optimality. For each experi-
ment configuration (i.e., v = 0.99), we find the 3 best-performing reward functions from the grid search, where each reward
function is tested 10 times. As shown in Figure 4, none of the ‘optimal’ reward functions are shared across experiment vari-
ations. To assess whether these relationships are not simply due to sampling bias, we re-run these experiments with these top
reward functions for 1000 trials each, and report the results here for each top-3 reward function combinations. Specifically,
we fix an experimental test condition (i.e., v = 0.99), and assess whether the top reward function for that experiment (i.e.,
[—0.05, —0.05, 0.5, 0.5]) outperforms the top reward functions for alternative test conditions (i.e., [-1.0, -1.0, 0.0, 1.0], which
is optimal for v = 0.5). To make this assessment, we compute the 90% Hoeffding Bound of the average cumulative reward.
With 90% probability, the true mean lies within this bound. Second, we compute a Mann Whitney U-test to assess whether the
distribution of performance means corresponding to the optimal reward function is greater than that of its comparison, and we

report the p-values from these tests. In this table, all but two comparisons show statistical significance.

Test Reward Function Selection Hoeffding Bound p-value
— [-0.05,-0.05,0.5,05] #lfory = 0.99 [90442, 105710]

Y=09 110.710,00,10] #lfory =05 [52436 67704] < 001
o9 100500505 05] #lfory=099 [00442,105710] _ ot

=099 005.-0.05.00,1.0] #2fory =05 [85587, 100856] :
- [0.05,-0.05,0.5,0.5] #lfory =0.99 [90442, 105710]

Y=09 10.010,01,01] #3fory =05 [9998,25266] < O:01
o5 [10.10.00.10] #lfory =05 [91071 106339] oo

Y=05 " 0.05,-0.05 05,05 #1fory =099 [93017,108286]
- [10,-1.0,00,10] #ifory =0.5 [91071, 106339]

¥=05 " 1005,01,1.0,05] #2forv =099 [2311,17580] <001
o5 [10.-10.00.10] #lfory=05 [9107L 106339 _ o

Y=05 05-01.10.05 #3fory =099 [15209, 30478] :
o9 10.05.00505.05] #lfory =099 [90442 1057101 _ o

=099 1005.00,005,05 #1fory—08 [73526 88795] :
- [0.05,-0.05,0.5,05] #lfory =0.99 [90442, 105710]

7=09 1005.00,0505 #2fory=08 [77842.93111] <001
- [£0.05,-0.05,0.5,0.5] #lfory =0.99 [90442, 105710]

Y=09 0 10.010,01,10] #3fory =08 [53252.68520] < 0:01
s 1005.00.00505] #lfory=08 [80029.95298] |

7=08 005.-0.05 05,05 #fory—099 [99649,114917]
s 10050000505 #lfory=08 [80029.95298] _ .t

Y=08 1005.-0.1,1.0,05] #2fory =099 [73935,89204] :
s 10050000505 #lfory=08 [80029.95298] _

7=08 105.01,10,05 #3fory =099 [56372,71641] :
- [0.1-01.1.0.005] #lfora =025 [69028.84207]

a=025 105 -0.05 05 05 #lfora=005 [46150.61419] <Y1
- [0.1,-0.1.1.0.005] #lfora =025 [69028. 84207]

a=025 1 05-01,1.0.05] #2fora=005 [53966 69235] < VU1
- [0.1.-0.1. 1.0.0.05] #lfora =025 [69028. 84207]

a=025 105 01,1005 #3fora =005 [29049 44318] < V01

o0, 10050050505 #lfora=005 [90442105710] -
=005 1 571.701,1.0.005] #lfora =025 [79718.94987]
- [0.05.-0.05.05.05] # fora = 0.05 [90442. 105710]

a=005" 1 00500,1.001] #2fora=025 [69325 84594] < V01
- [0.05.-0.05.05.05] #fora = 0.05 [90442. 105710]

a=005" 1605 0050500 # fora=025 [64327.79596] < VU1

Relative Reward Function Performance Relative Reward Function Performance

for a=

0.25 and a=0.05 for y=0.99 and y=0.5

120000

100000

120000

100000

? e
£ H
80000
& &
[[
= =
v [
2 2
F=] =4
© ©
=} =
€ £
3 =3
(e} (s}
a=0.05 y=0.99 y=0.5
I HAT -0.05HA-T: -0.05;-HAT: 0.05 -HA-T: 1.00 W HAT -0.05HA-T: -0.10; -HAT: 1.00, -H A -T: 0.50
M HAT -0.10;HA-T: -0.05-HAT: 0.00,-HA-T: 0.50 B HAT -1.00;HA-T: -1.00; -HAT. 0.10,-H A -T: 0.10
BN HAT -050;HA-T: -0.10; ~HAT: 0.05 -HA-T: 1.00 B HAT -0.50;HA-T: -050; -HAT: -0.10, -H A =T: -0.05
B HAT -0.05HA-T: -0.05,-HAT: -0.05 —-HA-T: 1.00 B HAT -050;HA-T: -0.50; -HAT: -1.00, -H A =T: 0.05
B HAT -050;HA-T: 0.00;-HAT 100, -HA-T: 1.00 B HAT -050;HA-T: -0.50; -HAT: -1.00, -H A =T 0.00
B HAT: -0.10;HA-T: -0.50; -HAT: -1.00, =H A =T: 1.00 B HAT -0.05,HA-T: -0.05;,-HAT: -0.10,-H A -=T: 0.00
B HAT -1.00;HA-T: -0.10; -HAT: -0.10,=H A =T: 1.00 B HAT -1.00;HA-T: -1.00; -HAT: 0.50, -H A =T -0.50
00 HAT -050;HA-T: -0.10; -HAT: 0.10, -H A =T: 1.00 P00 HAT -1.00;HA-T: -1.00; -HAT: 0.10, =H A =T: -0.50
HAT -0.50;HA=T: -0.05;-HAT. 0.50,=-HA-T: 0.50 HAT -0.10;HA-T: -0.10; -HAT: 0.05 -HA -T: -0.05
Relative Reward Function Performance Relative Reward Function Performance
for y=0.99 and y=0.8 for y=0.8 and y=0.5

Cumulative True Reward

Cumulative True Reward

y=0.99

|
|
|
|
|
|
|
|

HAT: -1.00;HA-T:
HAT -1.00;HA-T:
HAT: -0.50;HA-T:
HAT -1.00;HA-T:
HAT -0.50;HA-T:
HAT: -1.00;HA-T:
HAT -0.10;HA-T:
HAT: -0.05HA-T:
HAT -1.00;HA-T:

y=0.8 y=0.5
-0.50; ~HAT: 1.00, =H A =T: 0.00 BN HAT -0.05HA-T: -0.10; =HAT: 0.00,=H A =T: 1.00
-1.00; -H AT 0.05, —=H A =T: 0.00 BN HAT -1.00;HA-T: -0.50; ~HAT: 1.00, -H A =T: 0.00
-0.50; “HAT: 0.00, =H A =T: 0.10 BN HAT -0.05HA-T: -0.10; -HAT: 0.10,=H A =T: 0.50
-1.00; “H A T: -1.00, =H A =T: -0.05 B HAT -0.10;HA-T: -0.05,-HAT: -0.10,-HA -T: 0.10
-0.50; ~H A T: -0.50, =H A =T: -0.05 B HAT -0.05HA-T -0.10;-HAT: 0.50, -HA-T: 1.00
-1.00; =H A T: -1.00, =H A =T: 0.10 B HAT -0.05HA-T: -0.10; =H A T: -0.50, =H A =T: 1.00
-0.10; ~HAT: 0.10, =H A =T: -0.05 B HAT: -0.05HA-T -0.10;-HAT: 0.05 -HA-T: 1.00
-0.05; =H A T: -0.05,=H A =T: 0.00 0 HAT: -0.05;HA-T: -0.10; -H AT -0.05, —=H A =T: 1.00
-1.00; “H A T: -1.00, =H A =T: -0.50 HAT: 0.00;HA=T: -0.05=HAT: 0.50,=HA=T: 0.50

Figure 3: Parallel coordinate plots

which correspond to H1: Reward functions are not universally effective. This figure

shows plots for & = 0.25 vs. & = 0.05, v = 0.99 vs. v = 0.5, and v = 0.99 vs. v = 0.8. Each line represents a reward
function’s performance, as measured by the true cumulative performance metric achieved by an average policy trained with
the hyperparameter shown on the z—axis. The reward functions which result in the highest absolute difference in performance
are highlighted. For example, [—0.05, —0.05, 0.05, 1.0] resulted in a cumulative performance of approximately 40,000 when
o = 0.25, but instead resulted in a cumulative performance of approximately 100,000 when oo = 0.05.

Cumulative True Reward

Cumulative True Reward

Relative Reward Function Performance Relative Reward Function Performance Relative Reward Function Performance
for @=0.25 and a=0.05 for y=0.99 and y=0.5 for y=0.99 and y=0.8

120000

100000

Cumulative True Reward
Cumulative True Reward

y=0.99 y=0.5
B HAT -0.10;HA-T: -0.10;-HAT: 1.00,-HA-T: 0.05 B HAT -005HA-T: -0.05-HAT 0.50,-HA-T: 0.50 B HAT -005HA-T: -0.05-HAT 0.50,-HA-T: 0.50
E HAT -0.05;HA-T. 0.00;-HAT 100, -HA-T: 0.10 B HAT -005HA-T -0.10;-HAT 1.00,-HA-T. 0.50 E HAT -005HA-T -0.10;-HAT 1.00,-HA-T. 0.50
B HAT -0.05HA-T: -0.05-HAT: 0.50,-HA-T: 0.00 B HAT -050;HA-T: -0.10;-HAT: 1.00, -H A -T: 0.50 B HAT -050;HA-T: -0.10;-HAT: 1.00,-H A -T: 0.50
B HAT -0.10;HA-T: -0.10;-HAT: 0.50, -H A =T: -0.05 BN HAT -0.05HA-T -0.05,-HAT 1.00,-HA-T. 0.05 BN HAT -0.05HA-T: -0.05,-HAT 1.00,-HA-T. 0.05
B HAT -0.05HA-T: -010;-HAT: 0.50,-HA-T: 0.10 B HAT -0.10;HA-T: -0.10;-HAT: 1.00, -H A -T: 0.10 B HAT -0.10;HA-T: -0.10;-HAT: 1.00, -H A -T: 0.10
B HAT -0.05;HA-T. -0.05;-HAT: 1.00,-HA-T: 0.05 B HAT -0.05HA-T: -0.05,-HAT 0.05 -HA-T. 100 B HAT -0.05HA-T: -0.05,-HAT 0.05 -HA-T. 100
B HAT: -0.10;HA-T: -0.10; -HAT: 0.50,-HA -T: 0.10 B HAT -050;HA-T: -0.10; ~-HAT: 0.05 —-HA-T: 1.00 B HAT -050;HA-T: -0.10; ~HAT: 0.05 -HA-T: 1.00
00 HAT -0.05;HA-T: -0.10; -HAT. 1.00, -HA-=T: 0.00 80 HAT -0.05HA-T: -0.05,-HAT: -0.05,-HA-T. 1.00 00 HAT -0.05HA-T: -0.05,-HAT: -0.05,-HA-T. 1.00
HAT: -0.05HA-T: -0.10; -HAT: 1.00,-HA=T: 0.05 HAT -0.50;HA=T: -0.50; -HAT: 1.00,=-HA=T: 1.00 HAT -0.50;HA=T: -0.50; -HAT: 1.00,=-HA=T: 1.00
Relative Reward Function Performance Relative Reward Function Performance Relative Reward Function Performance
for @=0.25 and =0.05 for y=0.99 and y=0.5 for y=0.99 and y=0.8

Cumulative True Reward
Cumulative True Reward

a=0.05 y=0.99 y=0.5 y=0.99 y=0.8

B HAT -005HA-T. -005-HAT 0.50,-HA-T: 0.50 B HAT -1.00;HA-T: -1.00; -HAT: 0.00,-HA-T: 1.00 B HAT -0.05HA-T: 0.00;-HAT: 0.05,-HA-T: 0.50
B HAT -0.05HA-T -0.10;-HAT 1.00,-HA-T: 0.50 B HAT -0.05;HA-T. -0.05-HAT 0.00,-HA-T: 1.00 B HAT -0.05HA-T 0.00;-HAT 0.50,-HA-T: 0.50
B HAT -050;HA-T: -0.10;-HAT: 1.00,-HA-T: 0.50 B HAT -1.00;HA-T: -1.00; -HAT: 0.10,-HA-T: 0.10 B HAT -1.00;HA-T: -1.00; -HAT: 0.10,-H A -T: 1.00
B HAT -0.05HA-T: -0.05-HAT 100, -HA-T: 0.05 BN HAT -050;HA-T. -0.50; -HAT: -0.10,-H A -T: -0.05 B HAT -0.10;HA-T: -0.05-HAT -0.05,-HaA-T: 0.50
B HAT -010;HA-T: -0.10;-HAT: 1.00,-HA-T: 0.10 B HAT -0.10;HA-T: -0.10; -HAT: -1.00, -H A -T: 1.00 B HAT -0.05;HA-T: -0.05;,-HAT 0.50,-HA-T: 0.05
B HAT -0.05,HA-T: -0.05-HAT: 0.05 -HaA-T: 1.00 B HAT -1.00;HA-T. -1.00; -HAT: 0.50, -H A =T: -0.50 B HAT -0.10;HA-T: -0.05-HAT -0.10,-HA-T: 1.00
B HAT -050;HA-T: -0.10;-HAT: 0.05,-HA-T: 1.00 B HAT -0.10;HA-T: -0.10; -HAT: 1.00,-HA-T: 0.05 B HAT -0.05;HA-T: -0.10; -HAT: 0.00,-HA-T: 1.00
80 HAT -0.05HA-T. -0.05,-HAT -0.05 -HA-T: 1.00 80 HAT -0.05;HA-T. -0.05,-HAT 1.00,-HA-T: 1.00 P80 HAT -1.00;HA =T -0.50; =HAT: 1.00, =H A =T: 0.00

HAT -0.50;HA-T: -0.50; -HAT: 1.00,-HA-T: 1.00 HAT -0.05;HA-T: -0.05;-HAT 0.00,-HA-T: 0.05 HAT -0.05;HA-T: -0.05;-HAT -1.00, -H A -T: 0.50

Figure 4: Parallel coordinate plots which correspond to H2: Reward functions are not universally optimal. This figure
shows plots for & = 0.25 vs. & = 0.05, v = 0.99 vs. v = 0.5, and v = 0.99 vs. v = 0.8. Each line represents a reward
function’s performance, as measured by the true cumulative performance metric achieved by an average policy trained with the
hyperparameter shown on the z—axis. In the top row, the reward functions which result in the best cumulative performance
for the first condition—i.e., & = 0.25, v = 0.99, and v = 0.99 respectively—are highlighted. In the bottom row, the reward
functions which result in the best cumulative performance for the second condition—i.e., « = 0.05, v = 0.5, and v = 0.8
respectively—are highlighted.

Relative Reward Function Performance
for A2C and QLearn

Relative Reward Function Performance
for DDQN and QLearn

Relative Reward Function Performance
for PPO and QLearn

350000 350000 350000
300000 300000 300000
® 250000 ® 250000 ® 250000
3 3 3
Q Q Q
o o o
© 200000 © 200000 © 200000
= = =
v v v
2 2 >
% 150000 % 1500001 % 150000
=} =} =}
€ € €
=] 3 =]
© 100000 © 100000 © 100000
50000 50000 50000
RZC) QLearn D%QN QLearn BF (0] QLearn
I HAT -050;HA-T: -0.50; -H A T: 10.00, =H A =T: 10.00 B HAT -010;HA-T: 0.20;-HAT 0.50,-HA-T: 1.00 I HAT -1.00;HA-T: -040; -HAT: 0.30,-HA-T: 1.00
B HAT -0.25HA-T: -0.10; -HAT: 0.10, -H A =T: 1.00 B HAT -1.00;HA-T: -0.05 -HAT: -0.25,-H A -T: 1.00 B HAT -2.00;HA-T: -1.50; -H A T: 10.00, -H A =T: 10.00
B HAT -1.00;HA-T: -0.70; -HAT: -0.50, -H A =T: 1.00 B HAT -5.00;HA-T: -5.00; -HAT:. -2.50, -H A =T: 10.00 B HAT -1.00;HA-T: -0.90; -HAT. 0.00,-HA-T: 1.00
I HAT -5.00;HA-T: -5.00; -HAT: -2.50, -H A =T: 10.00 I HAT -10.00; HA =T: -7.50; -H A T: -5.50, =H A =T: 10.00 B HAT -5.00;HA-T: -5.00; -HAT: -2.50, -H A =T: 10.00
B HAT -1.00;HA-T: -0.40; -HAT. 0.30,-HA-T: 1.00 B HAT -10.00; HA-T: -9.00; -HAT: 5.00, -H A =T: 10.00 B HAT -10.00; HA -T: -9.00; -HAT: 5.00, =H A =T: 10.00
BN HAT -1.00;HA-T: -090; -HAT: 0.00, -H A -T: 1.00 BN HAT -8.00;HA-T: -850;-HAT: 8.00,-HA-T: 8.00 BN HAT -8.00;HA-T: -850;-HAT: 8.00,-HA-T: 8.00
B HAT -10.00;HA-T: -6.50; "HAT: 5.50, -H A =T: 10.00 B HAT -10.00;HA =T: -5.50; =H A T: 10.00, =H A =T: 10.00 B HAT -1.00;HA-T: -0.70; "H A T: -0.50, -H A =T: 1.00
HAT -3.00;HA-T: -1.00; ~HAT: -1.00, -H A =T: 5.00 HAT -10.00;HA -T: -6.50; -HAT: 5.50, -H A =T: 10.00 HAT -10.00;HA -T: -6.50; -HAT: 5.50, -H A =T: 10.00
HAT: -10.00;HA =T: -9.00; -HAT: 5.00, =H A =T: 10.00 H A T:-100.00; H A =T: -55.00; =H A T: 50.00, =H A =T: 100.00 HAT -1.00;HA-T: -0.05;-HAT: -0.25,-H A -T: 1.00
Relative Reward Function Performance Relative Reward Function Performance Relative Reward Function Performance
for A2C and DDQN for PPO and DDQN for PPO and A2C
350000 350000 350000
300000 300000 300000
o o
2 250000 2 250000 T 250000
2 2 2
Q Q Q
o o o
2200000 2200000 2200000
= = =
v v [
2 2 2
© 150000 © 150000 © 150000
=} =} =]
€ € €
= = 3
©100000 ©100000 © 100000
50000 50000 50000
2C DDQN SPO DDQN BPO A2C
I HAT 0.00;HA-T: 0.00; -HAT: 1.00,-HA-T: 1.00 B HAT -0.10;HA-T: 0.20;,-HAT: 0.50, -HA-T: 1.00 B HAT: 0.00;HA-T: 0.00; -HAT: 1.00,-HA-=T: 1.00
B HAT -1.00;HA-T: -1.00; -H A T: 10.00, =H A =T: 10.00 B HAT -1.00;HA-T: -0.60; -HAT: -0.80,-HA-T: 1.00 B HAT: 0.00;HA-T: 0.00;-HAT: 5.00,-HA-T: 10.00
B HAT -1.00;HA-T: -0.60; “HAT: -0.80, -H A =T: 1.00 BN HAT -040;HA-T: -0.50; ~HAT: 0.00,-HA-T: 1.00 B HAT. 0.00;HA-T: 0.00;-HAT: 5.50,-HA-T: 10.00
I HAT -040;HA-T: -050; =HAT: 0.00,-H A =T: 1.00 I HAT 0.00;HA-T: 025 -HAT 1.00,-HA-T: 1.00 Il HAT -1.00;HA-T: -1.00; =H A T: 10.00, =H A =T: 10.00
B HAT -1.00;HA-T: -0.70; "HAT: -0.50, -H A =T: 1.00 B HAT -050;HA-T: 0.00;-HAT 050 -HaA-T: 1.00 B HAT -3.00;HA-T: -1.00; -HAT: 2.00, -H A =T: 10.00
B HAT -050;HA-T: -050; =HAT: -0.25,=H A =T: 1.00 B HAT -1.00;HA-T: 0.00; -HAT 1.00,-HA-T: 1.00 B HAT -5.00;HA-T: 15.00; -HAT: 5.00, =H A =T: 100.00
B HAT -010;HA-T: 0.20; -HAT: 0.50, -H A -T: 1.00 B HAT -0.05,HA-T: 0.20; -HAT: 0.00,-HA-T: 1.00 B HAT -1.00;HA -T: -0.40; -HAT: 0.35, -HA-T: 1.00
HAT 0.00;HA-T: 025 -HAT 1.00,-HA-T: 1.00 HAT -1.00;HA-T: -0.70; -HAT: -0.50, -H A =T: 1.00 HAT -3.00;HA-T: -1.00; -HAT: -1.00, -H A =T: 5.00
HAT -050;HA-T: 0.10;-HAT 0.10,-HA-T: 1.00 HAT -050;HA-=T: 0.10;-HAT 0.10,-HA-=T: 1.00 HAT -050;HA-T: 0.00;-HAT 0.00,-HA-=T: 1.00

Figure 5: Parallel coordinate plots which correspond to H1: Reward functions are not universally effective. This figure shows
plots for A2C vs. Q-learning, DDQN vs. Q-learning, PPO vs. Q-learning, A2C vs. DDQN, PPO vs. DDQN, and PPO vs. A2C.
Each line represents a reward function’s performance, as measured by the true cumulative performance metric achieved by an
average policy trained with algorithm shown on the x—axis, using the standard hyperparameters as described in Apdx. Sec-
tion D. The reward functions which result in the highest absolute difference in performance are highlighted. For example,
[—0.50, —0.50, 10.00, 10.00] resulted in a cumulative performance of approximately 60,000 when trained with A2C, but in-
stead resulted in a cumulative performance of approximately 300,000 with Q-learning. Note that these algorithms are each
trained for 5000 episodes (instead of the 2000 used for comparing performance across hyperparameter changes).

Relative Reward Function Performance

for A2C and DDQN

Relative Reward Function Performance
for PPO and A2C

Relative Reward Function Performance

for PPO and DDQN

350000 350000 350000
300000 300000 300000
® 250000 ® 250000 ® 250000
3 3 3
Q Q Q
o o o
2200000 2200000 2200000
= = =
v v v
2 2 2
150000 150000 150000 {
E] El E]
2 2 2 /
3 =3 =1 =
O 100000 © 100000 / © 100000
e
—
50000 50000 / 50000
> —— —— ’x =
RZC DDQN BFO A2C BFO DDQN
I HAT 0.00;HA-T: 0.00;-HAT: 1.00,-HA-T: 1.00 I HAT 0.00;HA-T: 0.00;-HAT: 1.00,-HA-T: 1.00 I HAT. 0.00;HA-T: 0.00;-HAT: 1.00,-HA-T: 1.00
B HAT 0.00;HA-T: 0.00; -HAT: 5.50, -H A -T: 10.00 B HAT 0.00;HA-T: 0.00; -HAT: 5.50, -H A -T: 10.00 B HAT 0.00;HA-T: 0.00; -HAT: 5.00,-HA-T: 10.00
B HAT. 0.00;HA-T: 0.00;-HAT: 5.00, -HA-T: 10.00 B HAT. 0.00;HA-T: 0.00;-HAT: 5.00,-HA-T: 10.00 B HAT. 0.00;HA-T: 0.00;-HAT: 5.50, -HA-T: 10.00
B HAT -0.10;HA-T: -0.10; -HAT: -0.10, =H A =T: 1.00 B HAT -0.10;HA-T: -0.10; -HAT: -0.10, =H A =T: 1.00 BN HAT -0.50;HA-T: -050; -HAT: 10.00, -H A =T: 10.00
B HAT -010;HA-T: 0.00;-HAT 0.00,-HA-T: 1.00 B HAT -0.10;HA-T: 0.00;-HAT 0.00,-HA-T: 1.00 B HAT -010;HA-T: 0.10;-HAT 1.00,-HA-T: 1.00
B HAT -0.05;HA-T: 0.15;-HAT 0.90,-HA-T: 1.00 B HAT -0.05;HA-T: 0.15;-HAT 0.90,-HA-T: 1.00 B HAT -1.00;HA-T: -1.00; -H A T: 10.00, =H A =T: 10.00
B HAT -010;HA-T: 0.10; -HAT: 1.00, -H A -T: 1.00 B HAT -010;HA-T: 0.10;-HAT: 1.00,-HA-T: 1.00 B HAT -0.10;HA-T: -0.10; -HAT: -0.10, -H A =T: 1.00
HAT -0.50;HA-T: -0.50; -H AT: 10.00, =H A =T: 10.00 HAT -0.50;HA-T: -0.50; -H A T: 10.00, =H A =T: 10.00 HAT -0.10;HA-T: 0.00;-HAT 0.00,-HA-T: 1.00
HAT 0.00;HA-T: 050;-HAT 0.25 -HA-T: 5.00 HAT 0.00;HA-T: 050;-HAT 0.25 -HA-T: 5.00 HAT -3.00;HA-T: -1.00; "HAT: 2.00, -H A =T: 10.00
Relative Reward Function Performance Relative Reward Function Performance Relative Reward Function Performance
for A2C and DDQN for PPO and A2C for PPO and DDQN
350000 350000 350000
300000 300000 300000
el
© 250000 © 250000 © 250000
2 2 2
Q Q Q
o o o
2200000 2200000 2200000
= = =
v v v
2 2 2
w© 150000 w© 150000 © 150000
E] E] E]
€ € €
=] = 3
O 100000 Y 100000 >/ © 100000
50000 50000 50000
RZC DDQN SPO A2C SPO DDQN
I HAT -0.10;HA-T: 0.20;-HAT: 0.50,-HA-T: 1.00 I HAT 0.00;HA-T: 0.00; -HAT: 1.00,-HA-T: 1.00 I HAT -0.10;HA-T: 0.20;-HAT 0.50,-H A -T: 1.00
B HAT -040;HA-T: -0.50; -HAT: 0.00,-HA-T: 1.00 B HAT 0.00;HA-T: 0.00;-HAT: 5.00,-HA-T: 10.00 B HAT -040;HA-T: -050; -HAT: 0.00, -HA-T: 1.00
B HAT -1.00;HA-T: -1.00; ~H A T: 10.00, =H A =T: 10.00 B HAT 0.00;HA-T: 0.00;-HAT 550 -HAaA=T. 10.00 B HAT -1.00;HA-T: -1.00; -HAT: 10.00, -H A =T: 10.00
Il HAT -1.00;HA-T: -0.60; -HAT: -0.80, -H A =T: 1.00 B HAT -050;HA-T: -050; -HAT: 10.00, -H A =T: 10.00 Il HAT -1.00;HA-T: -0.60; -HAT: -0.80, -H A —-T: 1.00
B HAT -050;HA-T: -0.50; -H A T: 10.00, -H A =T: 10.00 B HAT -010;HA-T: 0.10;-HAT 1.00,-HA-T: 1.00 B HAT -050;HA-T: -0.50; -HAT: 10.00, -H A =T: 10.00
B HAT 0.00;HA-T: 0.00; -HAT: 5.50,-HA-T: 10.00 B HAT -1.00;HA-T: -1.00; -HAT: 10.00, -H A =T: 10.00 B HAT 0.00;HA-T: 0.00; -HAT: 5.50,-HA-T: 10.00
B HAT -1.00;HA-T: -0.70; "HAT: -0.50, -H A =T: 1.00 B HAT -0.10;HA-T: -0.10; -HAT: -0.10, -H A =T: 1.00 B HAT -1.00;HA-T: -0.70; "HAT: -0.50, -H A =T: 1.00
HAT -0.10;HA-T: -0.10; -HAT: -0.10, -H A =T: 1.00 HAT -0.10;HA-=T: 0.00; -HAT: 0.00,-HA-T: 1.00 HAT -0.10;HA-T: -0.10; -HAT: -0.10, =H A =T: 1.00
HAT -050;HA-T: 0.10;-HAT 0.10,-HA-T: 1.00 HAT -3.00;HA-T: -1.00; -HAT: 2.00, -H A —=T: 10.00 HAT -050;HA-T: 0.10;-HAT 0.10,-HA-T: 1.00

Figure 6: Parallel coordinate plots which correspond to H2: Reward functions are not universally optimal. This figure shows
plots for A2C vs. DDQN, PPO vs. A2C, and PPO vs. DDQN. Each line represents a reward function’s performance, as measured
by the true cumulative performance metric achieved by an average policy trained with the algorithm shown on the z—axis. In
the top row, the reward functions which result in the best cumulative performance for the first condition—i.e., A2C, PPO, and
PPO respectively—are highlighted. In the bottom row, the reward functions which result in the best cumulative performance
for the second condition—i.e., DDQN, A2C, and DDQN respectively—are highlighted. The best-performing reward functions
are different for A2C vs. DDQN and PPO vs. DDQN, but not for PPO vs. A2C. In this last case, the optimal reward function
corresponds to the sparse reward function [0, 0, 1, 1].

D Deep RL Implementation Details & Hyperparameters

Alongside this paper, we release all of the code for our experiments—including the implementations of the RL algorithms
we use: Q-Learning, A2C, DDQN, and PPO. It is known that these algorithms are not only sensitive to hyperparameters, but
also potentially to details of the implementation (Engstrom et al. 2019). Unless specified elsewhere in the text, we use the
hyperparameters presented in Table 5.

Table 5: Summary of the standard hyperparameters and related implementation details used with each RL algorithm.

Standard Hyperparameter Value Q-Learning A2C DDOQN PPO
~, discount factor 0.99 0.99 0.99 0.99
a, learning rate 0.05 0.001 0.001 0.005
number of training episodes 2000 5000 5000 5000
neural net hidden layer size — 144 144 144
neural net structure — Actor/Critic Q-Network/Q-Network Actor/Critic
neural net activation function — ReLU ReLU ReLU
entropy coefficient — 0.01 — 0.01
e-greedy coefficient 0.15 — 0.15 —
e-decay rate — — 10000 —
n-step network updates — 20 — —
experience replay buffer size — — 5000 —
update steps — — 128 800
batch size — — 128 80

e clipping coefficient (trust region) — — — 0.2

E User Study Overfitting

Say a user selects reward function r;, but tested several other reward functions, r1,73,...,7,. In the main text, we assess
whether users overfit their reward functions to their selected algorithms and hyperparameters by assessing whether any of the
user’s tested reward functions r;, where j € [1,n] and r; # r;, outperformed the user’s final reward function significantly using
any of the studied algorithms (DDQN, PPO, and A2C with fixed hyperparameters). Here we propose an alternative metric for
overfitting in this context. If the average performance of the user’s selected reward function over all three tested algorithms is
significantly worse than the average performance of one of the user’s alternative reward functions, we claim it is overfit. As
in the former evaluation, we again define the performance difference threshold to be 20000, accumulated over 5000 training
episodes and averaged over 10 trials.

Using this alternative metric, we find 11 of 24 users (46%) overtfit their reward functions. Note that 6 users are excluded
from this evaluation, as their final reward functions were invalid even in the best-case environment configuration. For example,
user P28 submitted the reward function [—1.0, —0.05, —0.25, 1.0], which achieved an average cumulative performance of 8793
across the implementations of DDQN, PPO, and A2C. This same user tested but did not select the alternative reward function
[-1.0,—0.1,0.0, 1.0], which achieved an average cumulative performance of 35367 across the three tested algorithms. Since
the performance difference is more than the selected threshold of 20000, we say this user overfit their reward function.

F Compute
We ran these experiments on a combination of local compute and cloud services. Our local compute consists of a machine
with 64GB DDR4, a 12-core AMD Ryzen 9 5900 CPU, and a single NVIDIA GeForce RTX 3080 Ti GPU. We used a cloud
service which has 480 nodes with Intel Xeon Platinum 8260 CPUs and 4 GB of RAM per core, with no GPUs available. All
computers use Ubuntu as the OS. The description of all packages and the specific versions needed to run the code (e.g., NumPy)
is included in the released codebase.

F.1 Deep RL Agents: Time to Train

Without any parallelization, training a DDQN agent for 5000 episodes on local compute with the standard hyperparameters
took on average 186 seconds; training a PPO agent took 415 seconds; and, finally, training an A2C agent took 511 seconds.

	Introduction
	Related Work
	Preliminaries
	Computational Experiments
	Hypotheses
	Overfitting to Hyperparameters
	Overfitting to RL Algorithms

	Expert Human Subject Experiments
	Limitations
	Discussion
	Acknowledgments
	RL Practitioner Survey
	User Study Details
	Expert Participant Recruitment
	User Study Protocol
	Follow Up Questions

	Computational Experiments
	Deep RL Implementation Details & Hyperparameters
	User Study Overfitting
	Compute
	Deep RL Agents: Time to Train

