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Abstract

Dirichlet Process mixture models (DPMM) in combination with Gaussian kernels
have been an important modeling tool for numerous data domains arising from
biological, physical, and social sciences. However, this versatility in applications does
not extend to strong theoretical guarantees for the underlying parameter estimates,
for which only a logarithmic rate is achieved. In this work, we (re)introduce and
investigate a metric, named Orlicz-Wasserstein distance, in the study of the Bayesian
contraction behavior for the parameters. We show that despite the overall slow
convergence guarantees for all the parameters, posterior contraction for parameters
happens at almost polynomial rates in outlier regions of the parameter space. Our
theoretical results provide new insight in understanding the convergence behavior
of parameters arising from various settings of hierarchical Bayesian nonparametric
models. In addition, we provide an algorithm to compute the metric by leveraging
Sinkhorn divergences and validate our findings through a simulation study.

1 Introduction

From their origin in the work of Pearson Pearson (1894), mixture models have been widely
used by statisticians McLachlan & Basford (1988); Lindsay (1995); Mengersen et al. (2011)
in variety of modern interdisciplinary domains such as medical science Schlattmann (2009),
bioinformatics Ji et al. (2005), survival analysis Tsodikov et al. (2003), psychometry Gu et al.
(2018) and image classification Permuter et al. (2006), to name just a few. The heterogeneity
in data populations and associated quantities of interest has inspired the use of a variety of
kernels, each with its own advantages and characteristics. Gaussian kernels are particularly
popular in various inferential problems, especially those related to density estimation and
clustering analysis Kotz et al. (2001); Bailey et al. (1994.); Roeder & Wasserman (1997); Robert
(1996); Banfield & Raftery (1993). In addition to the choice of kernels, the Bayesian mixture
modelers are also guided by the selection of prior distributions for the quantities of interest. In
particular, Bayesian nonparametric priors (BNP) for mixture models are increasingly embraced,
thanks to computational ease and the modeling flexibility that these rich priors entail Escobar
& West (1995); MacEachern (1999).

On the theoretical front, convergence rates for (Gaussian) mixture models received extensive
treatments in the Bayesian paradigm Ghosal et al. (2000); Barron et al. (1999); Ghosal &
van der Vaart (2007). There have been enormous recent progress on both density estimation
and parameter estimation problems. The density estimation problem under Gaussian mixture
models with BNP priors was extensively studied by Ghosal & van der Vaart (2001) who
obtained attractive polynomial rates of contraction relative to the Hellinger distance metric.
In the parameter estimation problem, the metric of choice is Wasserstein distance, which
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proved to be a natural tool to analyze the convergence of mixture parameters Nguyen (2013).
Moreover, Nguyen (2013) showed that the fast rates for density estimation with BNP Gaussian
mixtures do not extend themselves to parameter estimation scenarios. Meanwhile, practitioners
have employed successfully BNP mixture models, which yield useful estimates for model
parameters that provide meaningful information about the data population’s heterogeneity.
This state of affairs leaves a gap in the theoretical understanding and the practical usage
of Bayesian mixture models. In this paper, we aim to bridge this gap by capturing more
accurately the heterogenenous behavior in the rates of parameter estimation. We proceed to
describe this in further detail.

1.1 Gaussian Mixture Models

Consider discrete mixing (probability) measure G =
∑k

i=1 piδθi . Here, p = (p1, . . . , pk) is a
vector of mixing weights, while atoms {θi}ki=1 are elements in a given space Θ ⊂ Rd. Here
k is used to denote the number of components, which can potentially be infinite. Mixing
measure G is combined with a Gaussian kernel with known covariance matrix Σ, denoted by
f(·|θ) ∼ N (θ,Σ) (to avoid notational cluttering, we remove Σ from notation in the remainder
of the paper), with respect to the Lebesgue measure µ to yield a mixture density:

pG(.) :=

∫
f(·|θ)dG(θ) =

k∑
i=1

pif(·|θi). (1)

The atoms θi’s are representatives of the underlying subpopulations. Let X1, . . . , Xn be i.i.d.
samples from a mixture density pG0(x) =

∫
f(x|θ)dG0(θ), where G0 =

∑k0
i=1 p

0
i δθ0i

is a true but

unknown discrete mixing measure with unknown number of support points k0 ∈ N∪ {∞}. We
assume in this work that all the masses {p0

i }
k0
i=1 are strictly positive and the atoms {θ0

i : i ≤ k0}
are distinct.

A Bayesian mixture modeler places a prior distribution Πn on a suitable space (specifically,
G(Θ) of discrete measures on Θ). The posterior distribution corresponding to Πn, both of
which may vary with sample size, can be computed as:

Πn(G ∈ B
∣∣X1:n) =

∫
B

∏n
i=1 pG(Xi)dΠn(G)∫

G(Θ)

∏n
i=1 pG(Xi)dΠn(G)

. (2)

Dirichlet process Gaussian mixture models: In the absense of the knowledge of the
number of mixture components k0, the learning of mixture models is carried out by the use of
Bayesian non-parametric (BNP) priors, leading to the infinite mixture setting. One of the
most popular such priors is the Dirichlet process prior Antoniak (1974), which uses sample
draws from a base measure H to define the random components and weights of the mixture
model, leading to the popular Dirichlet Process Gaussian Mixture Models (DPGMM) Lo
(1984); Escobar & West (1995). In essence, the Dirichlet process prior places zero probability
on mixing measures with a finite number of supporting atoms and enables the addition of
more atoms in the supporting set as the number of data points increase. The DPGMM is
formulated as follows:

G ∼ DP(α,H),

θ1, . . . , θn
i.i.d.∼ G,

Xi|θi ∼ f(Xi|θi), ∀i = 1, . . . , n, (3)
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where DP stands for Dirichlet process, the base measure H is a distribution on Θ, and α > 0
is a concentration parameter which controls the rate at which new atoms may be considered,
by varying the tail-behavior of mixture weights. A parametric counterpart of DPGMM is the
mixture of finite Gaussian mixtures prior (MFM) Miller & Harrison (2018), which places all
its mass on mixing measures with finite number of supporting atoms. BNP priors other than
DPGMM may have the effects of pushing the atoms away from each other Xie & Xu (2017) or
encouraging the weights of mixture to have a polynomial tail behavior De Blasi et al. (2015).

The popularity of BNP priors may partially have been promoted due to a misconception
that it ”automatically” determines the number of components in the posterior inference process.
This issue was highlighted by Miller & Harrison (2014), who demonstrated that Dirichlet
Process priors overestimate the true number of components, k0, almost surely. Subsequent
work Guha et al. (2021) has provided post-processing techniques to determine k0 consistently
with Dirichlet Process priors. Their method depends on the knowledge of the parameter
contraction rate, with respect to the Euclidean Wasserstein metric, i.e., Wasserstein metric
with underlying distance metric `2, a rate that is extremely slow for the Gaussian kernels
Nguyen (2013).

The inconsistency of estimating k0 arises primarily because Dirichlet priors typically tend
to create a large number of extraneous components. While some of these components may
be in the neighborhood of the true supports, others may be outliers and in practice, can be
easily eliminated from consideration by careful truncation techniques. However, the Euclidean
Wasserstein distance treats both the scenarios similarly and in turn yields slow convergence
rates for both sets of extraneous atoms. This calls for alternative metrics for investigating
parameter estimation rates. In a recent work, Manole & Ho (2022) argued that Wasserstein
metrics capture only the worst-case uniform rates of parameter estimation and therefore can
yield extremely slow rates in comparison to the local rates observed in practice, which may
vary drastically based on the likelihood curvature in the parameter neighborhood. Employing
alternate distance metrics via the use of Voronoi tessallations, they showed that in the finite
Gaussian mixture setting with overfitted components (where ∞ > k > k0), even though the
uniform convergence rates may be slow as k increases, there may still be some atoms which
enjoy much faster rates of convergence.

The infinite Gaussian mixture setting is generally more challenging to address, (a) since the
”true” atoms are not guaranteed to be well-separated, (b) each true atom may be surrounded
by potentially infinitely many atoms a posteriori and (c) a posteriori samples can potentially
have a significant portion of atomic masses attributed to outlier regions of the parameter space.
We argue in this work that in the infinite Gaussian mixture setting, the rates captured by
Wasserstein distances for outlier masses are inadequately slow and will demonstrate that with
the help of a new suitably defined choice of metric this difficulty can be alleviated.

1.2 Contribution

As a primary contribution of this work we study a generalized class of metrics called Orlicz-
Wasserstein metrics, in the context of parameter estimation arising in infinite mixture models.
We show that an in-depth analysis using this metric helps alleviate a number of the concerns
attributable to the use of Wasserstein distances for quantifying the rates of parameter con-
vergence arising in infinite Gaussian mixtures. This class of distance metrics generalizes the
Wasserstein metric relative to the Orlicz norm using a variety of choices of convex functions.
They encompass a very wide range of distances on the space of probability measures, including
the Euclidean Wasserstein metrics as a special case. By making appropriate choices of convex

3



functions we can obtain a fast, almost polynomial contraction rates for atomic masses in
outlier regions of the parameter space. This is very different from the slow local contraction
behavior around the true atoms under the standard Wasserstein metric. This helps us establish
informative and useful finer details about the convergence behavior of parameter estimates
underlying the usage of Gaussian mixture models in clustering. We believe the usage of
Orlicz-Wasserstein metrics for parameter estimation in Dirichlet process Gaussian mixture
models opens a new range of directions for future research that aim for developing statistically
sound and computationally efficient strategies for posterior sampling with mixture models.

Organization. The remainder of the paper is organized as follows. Section 2 provides
necessary backgrounds about posterior contraction of parameters in Gaussian mixture models
under Wasserstein distances. Section 3.1 introduces Orlicz-Wasserstein distances and some of
its key properties. Section 3.4 provides computational approximations to calculating Orlicz-
Wasserstein metrics for two mixing measures. Section 3.2 presents exact lower bounds for the
Hellinger metric with respect to Orlicz-Wasserstein distances for Gaussian kernels. Section 3.3
uses the results in Section 3.2 to provide the key results in the paper with regards to contraction
behavior using Orlicz-Wasserstein metrics. Proofs of results are deferred to the Appendices.

Notation. For any function g : X → R, we denote g̃(ω) as the Fourier transformation of
function g. Given two densities p, q (with respect to the Lebesgue measure µ), the squared

Hellinger distance is given by h2(p, q) = (1/2)

∫
(
√
p(x)−

√
q(x))2dµ(x). For any metric d

on Θ, we define the open ball of d-radius ε around θ0 ∈ Θ as Bd(ε, θ0). Additionally, the
expression an & bn will be used to denote the inequality up to a constant multiple where
the value of the constant is independent of n. We also denote an � bn if both an & bn and
an . bn hold. Furthermore, we denote Ac as the complement of set A for any set A while
B(x, r) denotes the ball, with respect to the l2 norm, of radius r > 0 centered at x ∈ Rd.
The expression D(ε,P, d) used in the paper denotes the ε-packing number of the space P
relative to the metric d. d is replaced by h to denote the hellinger norm. Finally, we use
Diam(Θ) = sup{‖θ1 − θ2‖ : θ1, θ2 ∈ Θ} to denote the diameter of a given parameter space Θ
relative to the l2 norm, ‖ · ‖, for elements in Rd. Regarding the space of mixing measures,
let Ek := Ek(Θ) and Ok := Ok(Θ) respectively denote the space of all mixing measures with
exactly and at most k support points, all in Θ. Additionally, denote G := G(Θ) = ∪

k∈N+

Ek the

set of all discrete measures with finite supports on Θ. G(Θ) denotes the space of all discrete
measures (including those with countably infinite supports) on Θ. Finally, M(Θ) stands for
the space of all probability measures on Θ.

2 Posterior contraction under Wasserstein distance

Following the work of Nguyen (2013), Wasserstein distances have been used to explore
parameter estimation rates of mixture models, embodied through their mixing measures.
In this section, we outline the basic concepts as follows. Let Θ ⊂ Rd. Moreover, define
M(Θ) = {P : P is a probability measure on Θ}.

Definition 2.1. Given µ, ν ∈ M(Θ) and the l2 metric ‖ · ‖ on Rd, the Wasserstein dis-
tance Villani (2009) of order r seeks a joint measure π ∈ Π minimizing

Wr(µ, ν) :=

(
inf
π∈Π

∫
Θ×Θ

‖θ1 − θ2‖rdπ(θ1, θ2)

)1/r

. (4)
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Here, Π is the set of couplings of µ and ν denoted by Π = {π : γ1
#π = µ, γ2

#π = ν}, where γ1,

γ2 are functions that project onto the first and second coordinates of Θ×Θ respectively.

In particular, as shown by Nguyen (2013), given two discrete measures G =
∑k

i=1 piδθi and

G′ =
∑k′

i=1 p
′
iδθ′i , a coupling between p and p′ is a joint distribution q on [1 . . . , k]× [1, . . . , k′],

which is expressed as a matrix q = (qij)1≤i≤k,1 ≤j≤k′ ∈ [0, 1]k×k
′

with marginal probabilities∑k
i=1 qij = p′j and

∑
j = 1k

′
qij = pi for any i = 1, 2, . . . , k and j = 1, 2, . . . , k′. We use

Q(p,p′) to denote the space of all such couplings of p and p′. For any r ≥ 1, the r-th order
Wasserstein distance between G and G′ is given by

Wr(G,G
′) = inf

q∈Q(p,p′)

(∑
i,j

qij‖θi − θ′j‖r
)1/r

. (5)

Heinrich & Kahn (2018) show that with Gaussian kernels, the minimax rate for estimation
is dependent on the number of extra components and goes down as the number of potential
components increases, meaning it gets harder to accurately cluster the observations as we
have more and more extra components. The Gaussian kernel being smooth fits in as many
components as possible without changing the mixture density and therefore achieves a very
slow parameter contraction rate. With potentially infinitely many extra components (while
using Dirichlet Process priors), rates are even slower. In fact, Nguyen (2013) shows that for
DPGMM with posterior distribution Πn(·|X1:n), the following holds true.

Πn

(
G ∈ G(Θ) : W2(G,G0) . (log n)−1/2

∣∣∣∣X1:n

)
→ 1 (6)

in pG0-probability. On the other hand, it has been shown that ordinary-smooth kernels need
only a power of − log(ε) components to approximate an infinite component mixing density upto
ε- approximation in Lq distance Nguyen (2013); Gao & van der Vaart (2016). Correspondingly,
Laplace kernels need a polynomial power of (1/ε) many components for the same degree
of approximation. This combined with (6) suggests that BNP priors use a lot more extra
components to fit the true mixture distribution than is necessary, especially with Gaussian
kernel. The extra components can potentially arise from two different sources, (i) multiple
supporting atoms in the posterior trying to approximate each true atom, (ii) or excessively
many outlier atoms in the posterior sample. If condition (ii) is true, this may potentially have
negative consequences for using Gaussian kernels for clustering purposes. From Eq. (6), we
are only able to conclude that

Πn

(
G =

∑
piδθi :

∑
j

pj1{‖θj−θ0i ‖>η ∀i}
& log(n)/η2

∣∣∣∣X1:n

)
→ 1 (7)

which states that masses attributed to outlier atoms (those > η distance from any ”true” atom)
vanish at only a slow logarithmic rate. Clearly, while standard Wasserstein distances are the
popular choices of metrics, they do not help differentiate between the sources of extra atoms,
and thereby are not useful while discarding outlier atoms. To facilitate this distinction of
the source of excess atoms, in this paper we consider a generalisation of standard (Euclidean)
Wasserstein metrics called Orlicz-Wasserstein distances which allow placement of higher weight
penalties on outliers and thereby help to identify outlier atoms better. We proceed in the
following sections to describe this in further detail.
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3 A generalized metric for contraction of mixing measures

In existing literature thus far, the rates of parameter estimation have been extensively studied
with respect to Euclidean Wasserstein distances, in the works of Nguyen (2013); Ho & Nguyen
(2016b,a); Gao & van der Vaart (2016); Guha et al. (2021). As part of this work, we extend
such results to the regime of Orlicz-Wassertein metrics which take a more careful consideration
of the geometry of the parameter space. In that regard, for the sake of completeness, we first
introduce the reader to the notion of Orlicz norms and spaces as follows.

3.1 Orlicz-Wasserstein distance

The Orlicz norm is defined as follows Wellner (2017).

Definition 3.1. Let µ be a σ−finite measure on a space X with metric ‖ · ‖. Assume that
Φ : [0,∞)→ [0,∞) be a convex function satisfying:

(i)
Φ(x)

x
→∞, as x→∞,

(ii)
Φ(x)

x
→ 0, as x→ 0.

Then, the Orlicz space is defined as follows:

LΦ :=
{
f : X → R| ∃ λ ∈ R+ s.t.

∫
X

Φ(‖f(x)‖/λ) dµ(x) ≤ 1
}
. (8)

Moreover, the Orlicz norm corresponding to f ∈ LΦ is given by:

‖f‖Φ := inf{λ ∈ R+ :

∫
X

Φ(‖f(x)‖/λ) dµ(x) ≤ 1}. (9)

Without loss of generalisation, we will assume X = Rd, with ‖ · ‖ denoting the standard
Euclidean metric. Notice that when Φ(x) = xp with p ≥ 1, the Orlicz norm, ‖f‖Φ is the
same as the Lp-norm. In this sense, the Orlicz norm generalizes the concept of Lp-norm for
p ≥ 1. Recall that, a coupling between two probability measures ν1 and ν2 on Rd is a joint
distribution on Rd × Rd with corresponding marginal distributions ν1 and ν2. Corresponding
to the Orlicz norms, we define the Orlicz-Wasserstein metric which generalizes the Wr-metric
as follows.

Definition 3.2. Let ν1, ν2 be probability measures on (Rd, ‖ · ‖). Assume that Φ : [0,∞) →
[0,∞) is a convex function satisfying conditions (i) and (ii) in Definition 3.1. We define the
Orlicz-Wasserstein distance between ν1 and ν2 as follows:

WΦ(ν1, ν2) := inf
ν∈Q(ν1,ν2)

inf{λ ∈ R+ :

∫
Rd×Rd

Φ(‖x− y‖/λ) dν(x, y) ≤ 1}, (10)

where Q(ν1, ν2) is the set of all possible couplings of ν1 and ν2.

Orlicz Wasserstein distances have been briefly introduced in the works of Kell (2017);
Sturm (2011), however, the utility of the metrics for contraction properties of parameter
estimation has remained hitherto unexplored. Also, following Lemma 3.1 of Sturm (2011),
we see under some minor regularity conditions, for every Φ, ν1, ν2, there exists λmin and νopt
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such that λmin = WΦ(ν1, ν2) and
∫
Rd×Rd Φ(‖x− y‖/λmin) dνopt(x, y) = 1. This combined with

Fubini’s theorem establishes the equivalence of the definitions in this work and those of Sturm
(2011); Kell (2017).
Note that when Φ(x) = xr for r ≥ 1, then WΦ(ν1, ν2) = Wr(ν1, ν2), the usual Wasserstein
distance of order r between ν1 and ν2. The following lemma demonstrates that Orlicz-
Wasserstein defines a proper metric on (Rd, ‖ · ‖).

Lemma 3.3. The Orlicz-Wasserstein WΦ is a distance metric on the set of probability
measures on (Rd, ‖ ·‖), namely, it is symmetric and satisfies the identity and triangle inequality
properties.

The proof of Lemma 3.3 is in Appendix B.1. The notion of Orlicz-Wasserstein distance may
encompass a stronger notion of metrics than that of the usual Wasserstein distance to compare
probability measures as evidenced by the following lemma.

Lemma 3.4. Let ν1, ν2 be probability measures on (Rd, ‖ · ‖). Also assume Φ,Ψ are convex
functions satisfying conditions (i) and (ii) in Definition 3.1. Suppose that for all x > 0,
Φ(x) ≤ Ψ(x). Then, we have

WΦ(ν1, ν2) ≤WΨ(ν1, ν2).

The proof of Lemma 3.4 is in Appendix B.2. Note that the supremum of convex functions
is also a convex function. Therefore, as a corollary to the above lemma we obtain the following
inequality.

Corollary 3.1. Let Φ1(·) be a polynomial convex function and Φ2(·) an exponential convex
function. Ψ is the supremum of Φ1(·) and Φ2(·). Then the following holds, for any G,G′,
1 > α > 0.

WΨ(G,G′) ≥ WαΦ1+(1−α)Φ2
(G,G′) (11)

≥ αWΦ1(G,G′) + (1− α)WΦ2(G,G′)

An important property of the Wasserstein distances is that if one mixing measure is close
to another in Wasserstein distance, it provides a way to control the corresponding contraction
rates of the atoms and the masses associated with them. The following lemma provides a
similar result for Orlicz-Wasserstein norms.

Lemma 3.5. Let G0 =
∑k0

i=1 p
0
i δθ0i

, G =
∑k

i=1 piδθi be mixing measures such that θj , θ
0
i ∈ Rd

for all i, j. Assume that Φ : [0,∞)→ [0,∞) is a convex function satisfying conditions (i) and
(ii) in Definition 3.1. Then∑

j

pj1{‖θj−θ0i ‖>η for all i} ≤
(

Φ

(
η

WΦ(G,G0)

))−1

. (12)

Here, k0, k can also take the value ∞.

The proof of Lemma 3.5 is in Appendix B.5. Lemma 3.5 allows us to identify the amount of
mass transferred over large distances, when the mass transfer occurs between two measures G
and G0. Note that the constraint on Φ is very minimal, thereby lending flexibility to the result.
Since operations like supremums of convex functions or compositions of a convex function
with a non-decreasing convex function (this is the outer function), also yield convex functions,
Lemma 3.5 is a standalone result of interest as a generalisation of Bernstein/Hoeffding type
inequalities for mixing measures.
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3.2 Lower bound of Hellinger distance based on Orlicz-Wasserstein metric

In the previous section, we state results to control the cost of mass transfer attributable
to large transportation distances using Orlicz-Wasserstein distances. This is an important
result in understanding the contraction behaviors of support points in the outlier regions of
parameter space. Traditionally, contraction behavior has been extensively studied Ghosal &
van der Vaart (2001) in the regime of mixture densities pG. The following results help us
connect our understanding of posterior contraction on space of mixture densities to that of
mixing measure, relative to that of Orlicz-Wasserstein distances. This is stated as follows in
the next theorem.

Theorem 3.2. Let Φ be a convex function satisfying conditions (i) and (ii) in Definition 3.1
such that Φ(x) ≤ exp(xβ)− 1 for some 16/15 > β > 1. Then, as Θ = [−θ̄, θ̄]d, for any mixing
measures G,G′, we have

WΦ(G,G′) . C

(
θ̄5/4

(log(1/h(pG, pG′)))1/8
+

(
1

log(1/h(pG, pG′))

)11/8

(13)

+

(
1

log(c/h(pG, pG′)(log(1/h(pG, pG′)))d/4)

)1/2)
(14)

for some constant C dependent on the dimension and known covariance matrix.

The proof of Theorem 3.2 is in Appendix A.1. The key technical novelty of the proof lies in
the idea of convolving the mixing measures with a mollifier which is exponentially integrable
while its Fourier transform is smoother than the Gaussian location kernel. This helps to
smoothly transition the problem of bounding distances on mixing measures to the Fourier
transform domain of corresponding mixture densities. We make a few comments about the
above theorem.

(i) The upper bound on the RHS of equation (13) depends on a power of log-Hellinger
distance between the corresponding mixture densities. This strengthens the result in Theorem
2 of Nguyen (2013), who obtained a (log(1/h))−1/2 upper bound for W2(G,G′). The result in
Theorem 3.2 is obtained in terms of Orlicz-Wasserstein distances relative to an exponential
convex function, thus lending it more flexibility.

(ii) The key object to obtaining this result is to find a suitable mollifier Zδ, which we

choose as c
1

δ
(
∫

exp(−itx/δ) exp(−t4)dt)2 with c being the constant of proportionality for the

proof of Theorem 3.2. However, we believe a more refined choice of mollifier can yield sharper
estimates on the RHS of equation (13).

(iii) The result is obtained with exact computation of the involvement of θ̄. Therefore, it
can also be used for posterior contraction rates with sieve priors, although for this work we
study only compactly supported priors.

Outline of proof of Theorem 3.2: Here, we provide a proof strategy for Theorem 3.2,
which relies on the following triangle inequality with Orlicz-Wasserstein distance between G
and G′:

WΦ(G,G′) ≤WΦ(G,G ∗ Zδ,d) +WΦ(G′, G′ ∗ Zδ,d) +WΦ(G ∗ Zδ,d, G′ ∗ Zδ,d), (15)

where Zδ,d(x1, . . . , xd) :=
∏d
i=1 ζδ(xi) and ζδ(x) := c

1

δ
(
∫

exp(−itx/δ) exp(−t4)dt)2, with c

being the constant of proportionality. To control both WΦ(G,G ∗ Zδ,d) and WΦ(G′, G′ ∗ Zδ,d),
we use the following lemma:
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Lemma 3.6. Assume that ν2 = ν1 ∗Zδ,d where ν1 is a given probability measure on (Rd, ‖ · ‖).
Furthermore, suppose that Φ(x) ≤ exp(xα) − 1 for some 1 < α < 4/3. Then, there exists
universal constant Cα depending only on α such that

WΦ(ν1, ν2) ≤ Cαδ.

The proof of Lemma 3.6 is in Appendix B.3. For the final term WΦ(G ∗Zδ,d, G′ ∗Zδ,d), we can
upper bound it using the following result:

Lemma 3.7. Let ν1, ν2 be probability measures on (Rd, ‖ · ‖) and let Φ be a convex function
satisfying conditions (i) and (ii) in Definition 3.1. Then, we obtain that

WΦ(ν1, ν2) ≤ 2 inf{λ ∈ R+ : (16)∫
Rd Φ(‖x‖/λ) d|ν1(x)− ν2(x)| ≤ 1}.

The proof of Lemma 3.7 is in Appendix B.4. Using triangle inequality and Lemmas 3.6 and 3.7,
we obtain

WΦ(G,G′) - δ + inf{λ ∈ R+ :

∫
Rd

Φ(‖x‖/λ) · |(G−G′) ∗ Zδ,d(x)|dx ≤ 1}.

We then decompose the integral with respect to Rd into two integrals: one with respect to
‖x‖ ≤M and one with respect to ‖x‖ > M , and after some algebraic manipulations, we have

inf

{
λ ∈ R+ :

∫
Rd

Φ(‖x‖/λ) · |(G−G′) ∗ Zδ,d(x)|dx ≤ 1

}
-

M

log(C/(h(pG, pG0) exp(α2dδ−4)Md/2))
+

(dθ̄)5/4

log(3/2)M1/4
+

δ5/4

M1/4
,

for any M > 0 where C is some universal constant. Collecting these results leads to

WΦ(G,G′) - inf
δ,M

{
δ +

M

log(C/(h(pG, pG0) exp(α2dδ−4)Md/2))
+

(dθ̄)5/4

log(3/2)M1/4
+

δ5/4

M1/4

}
.

Solving the minimization problem, we obtain the conclusion of Theorem 3.2.

In the next section, we use Theorem 3.2 to establish posterior contraction bounds of
parameter estimating in Dirichet Process Gaussian mixtures.

3.3 Posterior contraction with Orlicz Wasserstein distances

On the parametric estimation front, Nguyen (2013); Guha et al. (2021); Ohn & Lin (2020)
establish logarithmic rates for estimating mixing measures in Dirichlet Process Gaussian
mixtures. While Nguyen (2013) establishes an approximately log(n)−1/2 rate of contraction
relative to the W2 metric, more recently, Ohn & Lin (2020) establish minimax type ≈ log(n)
rates relative to the W1 metric. Putting the results in context with Lemma 3.5, both those
results imply,

∑
j pj1‖θj−θ0i ‖>η for all i ≈ log(n), meaning the mass of posterior sample atoms

in the region of parameter space not populated by atoms of the true (data-generating) mixing
measure decays logarithmically. This puts the use of DPGMMs for clustering in a negative
light.

9



In this section, we show that a much stronger almost polynomial rate can be established
for this objective, facilitated by the use of Orlicz-Wasserstein metrics. To facilitate our
presentation, we consider the following notation.

EX η(Θ, r) :=

{
G =

∑
piδθi ∈ G(Θn1) :

∑
j

pj1{‖θj−θ0i ‖>η for all i} ≥ r
}
. (17)

EX η(Θ, r) here denotes the set of mixing measures which devote at least r probability mass
to atoms which are away from the atoms of G0 by distance η. To study the contraction of
mixing measure of DPGMMs, we impose the following assumption on the base distribution H .

(P.1) The base distribution H is supported on Θ = [−θ̄, θ̄]d, and absolutely continuous
with respect to the Lebesgue measure µ on Θ and admits a density function g(·). Also, H is

approximately uniform, i.e., minθ∈Θ g(θ) >
c0

µ(Θ)
> 0.

Let f1(n, d) := (log(n)/(d+ 2)− log(log n))−1/8.

Theorem 3.3. Given the Dirichlet Process Gaussian mixture models (3), if Φ satisfies the
assumptions in Theorem 3.2, then for any η > 0 the following holds:

Πn

(
G ∈ G(Θ) : WΦ(G,G0) ≥ f1(n, d)

∣∣∣∣ X1:n

)
PnG0→ 0.

The proof of Theorem 3.3 is in Appendix A.2. The following result is a simple corollary of
Theorem 3.3.

Corollary 3.4. Given all the assumptions in Theorem 3.3,

Πn

(
G ∈ EX η

(
Θ, 2 exp

(
−η log(n)1/8

(d+ 2)

)) ∣∣∣∣ X1:n

)
PG0→ 0. (18)

The proof of Corollary 3.4 is in Appendix A.3.

Remarks: (i) Corollary 3.4 suggests that if η can be chosen sufficiently small so that each
η-neighborhood contains at most one true atom, Gaussian mixture models can be useful choices
in clustering as well since outlier atoms vanish at almost polynomial rates.

(ii) We believe the rate of contraction can be optimized further with a more refined choice
of Φ(·), however, we make no such attempts in this work. Corollary 3.4 reveals the power of
Orlicz-Wasserstein distances for Gaussian mixture models. On the other hand, this exponential
choice of Φ does not improve on the bound for heavy tailed kernels such as Laplace location
mixtures.

We show in this section that Orlicz-Wasserstein metrics provide strong theoretical guaran-
tees for mixing measures. This raises the natural question as to how such a metric can be
computed for arbitrary choices of Φ. We provide some guidance in that regard in the following
section.

3.4 Computation of the Orlicz-Wasserstein

In practice, the Euclidean Wasserstein distance is computed for samples of the respective
distributions. The exact computation turns out to be a linear programming problem which
scales to the order of O(n3 log(n)), where n is the combined sample size of the two sampling
distributions for which the distance is being calculated. Cuturi (2013) shows that using entropic
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(a) Standard Wasserstein W1 (b) Orlicz-Wasserstein with exponential Φ

Figure 1. Transportation plans. (a) Entropic OT produces more global plans and is unable
to capture local structure of mass transfers. (b) Entropic Orlicz-Wasserstein penalizes mass
transfers over large distances

regularization this can be drastically improved to O(n2) Altschuler et al. (2017); Lin et al.
(2019, 2022). Further speed-ups and easiness of computation via the use of dual formulation
of the entropic regularization has been explored by the works of Seguy et al. (2017); Genevay
et al. (2016); Genevay (2019). Here we consider the entropic regularized version of the
Orlicz-Wasserstein metrics.

Computational procedure: In that respect, we consider solving the following problem as a
surrogate to equation (10).

W λ
Φ(ν1, ν2) := infν∈Q(ν1,ν2)AΦ(ν1, ν2), (19)

P λΦ(ν1, ν2) := arg infν∈Q(ν1,ν2)AΦ(ν1, ν2), (20)

where AΦ(ν1, ν2) := inf{η ∈ R+ :
∫
Rd×Rd Φ(‖x− y‖/η) dν(x, y)− (1/λ)(H(ν)) ≤ 1} with H(µ)

used to denote the Shannon entropy of distribution µ. To obtain solutions for equation (19),
we resort to using outputs from Sinkhorn divergence computations.

Consider two discrete probability measures, r (with m atoms, {xi}mi=1) and c (with n
atoms, {yi}mi=1). Let Mn×m be a distance matrix such that Mij = c(xi, yj) for some cost
function c(·, ·). Let S(M,λ, r, c) be used to denote the Sinkhorn divergence optimized objective
function for cost matrix M , regularization parameter λ and d(M,λ, r, c) = 〈S(M,λ, r, c),M〉
be used to denote the transport cost. Algorithm 1 defines a procedure to obtain a regularised
Orlicz-Wasserstein distance between ν1 =

∑
i riδxi and ν2 =

∑
i ciδyi in such a scenario by

iteratively updating the value of Orlicz-Wasserstein distance until convergence. The crucial
intuition behind Algorithm 1 is that infν∈Q(ν1,ν2)

∫
Rd×Rd Φ(‖x−y‖/η) dν(x, y)−(1/λ)(H(ν)) is

a monotonically non-increasing function of η. Therefore the solution to the Orlicz Wasserstein
distance can be obtained by a binary search once upper and lower limits are known. This is
rigorously explained in Proposition C.1 in Appendix C.

Simulations settings: We provide a demonstration of the utility of using Orlicz-Wassestein
distances in Figure 1. We consider two mixing densities, ν1 on the y-axis is a 3-mixture of
univariate normal distributions with means at [3, 4, 5], common σ = 0.3 and mixture weights
[0.37, 0.3, 0.33]. On the other hand ν2 represented in the x-axis is a 4-mixture of univariate
Laplace kernels with means at [7, 8, 9, 6], scale parameters [0.3, 0.3, 0.3, 0.1]] and mixture
weights [0.30, 0.32, 0.32, 0.06]. The left plot of Figure 1 shows the transportation plan for
output of Sinkhorn mechanism with regularisation parameter 0.01, while the right plot shows
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Algorithm 1: Computing Orlicz Wasserstein distances between two discrete proba-
bility measures

1: Input M, λ, r, c, ε.
2: Output W λ

Φ(ν1, ν2).
3: I = (r > 0); r = r(I); M = M(I, :);
4: xupp = max(M)/Φ−1(1),

xlow = [S(M,λ, r, c) +
1

2λ
(H(r) +H(c))]/Φ−1(1 +

1

λ
(H(r) +H(c))

5: fxupp = S(Φ(M/xupp), λ, r, c),fxlow = S(Φ(M/xlow), λ, r, c).
6: while |xlow − xupp| < ε not converged do
7: xnew = (xlow ∗ fxupp − xupp ∗ fxlow)/(fxupp − fxlow)).
8: if xnew < xupp and xnew > xlow do
9: fxnew = S(Φ(M/xupp), λ, r, c)

10: if fxnew < 1, xupp = xnew, fxupp = fxnew.
11: else: xlow = xnew, fxlow = fxnew

12: end if
13: else xnew = (xlow + xupp)/2. repeat Step 9-12.
14: end if
15: end while
16: return W λ

Φ(ν1, ν2) := xupp.

the same for transportation plan obtained via Algorithm 1 with λ = 0.01 (Φ(·) = exp(·/β)− 1,
β = 1.1). We have the following remarks.

Remark: The entropic Orlicz-Wasserstein procedure produces sharper transport plans. This
indicates that it performs a shrinkage procedure on the space of transportation plans. This can
have potential benefits towards obtaining robust plans and provide a promising direction of
future research. Additionally, while entropic Euclidean Wasserstein transport plans distribute
the mass of the outlier atom of ν2 (mean=6, weight= 0.06), its Orlicz-Wasserstein counterpart
manages to avoid it entirely. By penalizing mass transfers over large distances, Orlicz-
Wasserstein distances are able to restrict attention to localised transportation plans. This in
turn helps capture the small outlier mass associated with aposteriori DPGMM samples, as
seen in Section 3.3.

4 Conclusion

In this work, we discuss the shortcomings of traditional Wasserstein metrics to perform
clustering with Gaussian mixture models. We re-introduce a novel metric, called Orlicz-
Wasserstein distances, in the context of estimating parameter convergence rates of hierarchical
and mixture models and provide sound theoretical justifications of its ability to address the
concerns associated with traditional Wasserstein distances. We also provide a theoretically
sound approximate algorithm to compute the distance metric, and also show that convergence
rates of Orlicz-Wasserstein distances carry over to the approximate distance. Lastly, we
provide a preliminary simulation study to initiate a discussion on future research with Orlicz-
Wasserstein distances. Since they allow low/high penalty on mass transfers over large distances,
depending on the choice of function Φ, this lends flexibility to extending mass transfers over
local/global regions and consequentially may be used as a device for smoothing/sharpening
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standard OT plans. Combined with dimension reduction techniques this can lend usage to a
number of application domains such as anomaly detection and robust optimal transport.
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Supplement to “On Excess Mass Behavior in Gaussian
Mixture Models with Orlicz-Wasserstein Distances”

In this supplementary material, we present proofs of key results in Appendix A and proofs of
lemmas in Appendix B. We then provide theoretical guarantee for the algorithm to compute
the entropic regularized Orlicz-Wasserstein in Appendix C.

A Proofs of key results

Notation revisited For any function g : X → R, we denote g̃(ω) as the Fourier transfor-
mation of function g. Given two densities p, q (with respect to the Lebesgue measure µ), the

squared Hellinger distance is given by h2(p, q) = (1/2)

∫
(
√
p(x)−

√
q(x))2dµ(x). For any

metric d on Θ, we define the open ball of d-radius ε around θ0 ∈ Θ as Bd(ε, θ0). Additionally,
the expression an & bn will be used to denote the inequality up to a constant multiple where
the value of the constant is independent of n. We also denote an � bn if both an & bn and
an . bn hold. Furthermore, we denote Ac as the complement of set A for any set A while
B(x, r) denotes the ball, with respect to the l2 norm, of radius r > 0 centered at x ∈ Rd.
The expression D(ε,P, d) used in the paper denotes the ε-packing number of the space P
relative to the metric d. d is replaced by h to denote the hellinger norm. Finally, we use
Diam(Θ) = sup{‖θ1 − θ2‖ : θ1, θ2 ∈ Θ} to denote the diameter of a given parameter space Θ
relative to the l2 norm, ‖ · ‖, for elements in Rd. Regarding the space of mixing measures,
let Ek := Ek(Θ) and Ok := Ok(Θ) respectively denote the space of all mixing measures with
exactly and at most k support points, all in Θ. Additionally, denote G := G(Θ) = ∪

k∈N+

Ek the

set of all discrete measures with finite supports on Θ. Moreover, G(Θ) denotes the space of
all discrete measures (including those with countably infinite supports) on Θ. Finally, M(Θ)
stands for the space of all probability measures on Θ.

A.1 Proof of Theorem 3.2

We present the proof of Theorem 3.2 for the lower bound of Hellinger distance between mixing
density functions based on Orlicz-Wasserstein metric between their corresponding mixing
measures.

In this proof, we denote a . b to imply that a ≤ C · b for a universal constant C dependent
on α, d, and θ̄. Also, f ∗ g will denote the outcome of convolution operation on functions f
and g. Now, we consider the following density function in R:

K(x) := c

(∫ ∞
−∞

exp(−itx) exp(−t4)dt

)2

, (21)

where c is a proportionality constant so that
∫∞
−∞K(x)dx = 1. Lemma B.1 shows that K(·) is

integrable.
Moreover, Lemma B.2 shows that the characteristic function K̂(·), corresponding to K(·)

satisfies,

|K̂(x)| . exp(−(x/2)4).

The strategy to obtain upper bounds for WΦ(G,G′) is to convolve G with mollifiers, Zδ,d(·),

of the form Zδ,d(x) =
∏d
i=1

1

δ
K(xi/δ) for δ > 0, where x = (x1, . . . , xd). In particular, by
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triangle inequality and following Lemma 3.3 we can write:

WΦ(G,G′) ≤W1(G,G ∗ Zδ,d) +WΦ(G′, G′ ∗ Zδ,d) +WΦ(G ∗ Zδ,d, G′ ∗ Zδ,d).

For Φ(x) = exp((7/32)x) − 1, following Lemma 3.6 we find that

WΦ(G,G ∗ Zδ,d) ≤ Cαδ.

Therefore, we can write

WΦ(G,G′) ≤ 2Cαδ +WΦ(G ∗ Zδ,d, G′ ∗ Zδ,d).

For every M > 0, we have

WΦ(G ∗ Zδ,d, G′ ∗ Zδ,d) ≤ 2 inf{λ ∈ R+ :

∫
Rd

Φ(‖x‖/λ) · |(G−G′) ∗ Zδ,d(x)|dx ≤ 1}

≤ 2 inf{λ ∈ R+ : s1 ≤ 1/2 and s2 ≤ 1/2},
≤ 2 max{inf{λ ∈ R+ : s1 ≤ 1/2}, inf{λ ∈ R+ : s2 ≤ 1/2}}, (22)

with the first inequality following from Lemma 3.7 and the third inequality comes from the
monotonicity of function Φ. Here, we denote

s1 =

∫
‖x‖2≤M

Φ(‖x‖/λ) · |(G−G′) ∗ Zδ,d(x)|dx,

s2 =

∫
‖x‖2>M

Φ(‖x‖/λ) · |(G−G′) ∗ Zδ,d(x)|dx.

We now proceed to bound T1 = inf{λ ∈ R+ : s1 ≤ 1/2} and T2 = inf{λ ∈ R+ : s2 ≤ 1/2}.

Bounding for T1: Using Holder’s inequality, we obtain

inf{λ ∈ R+ :

∫
‖x‖2≤M

Φ(‖x‖/λ) · |(G−G′) ∗ Zδ,d(x)|dx ≤ 1/2}

≤ inf{λ > 0 :

∫
‖x‖≤M

exp((‖x‖/λ)β) · |(G−G′) ∗ Zδ,d(x)|dx ≤ 3/2}

≤ inf

{
λ > 0 :

( ∫
‖x‖≤M

exp((M/λ)β)dx

)1/2( ∫
‖x‖≤M

|(G−G′) ∗ Zδ,d(x)|2dx

)1/2

≤ 3/2

}

≤ inf

{
λ > 0 :

πd/4√
(d2 + 1)Γ(d/2)

Md/2 exp((M/λ)β)‖(G−G′) ∗ Zδ,d(x)‖2 ≤ 3/2

}

=
M

(log(cd/(‖(G−G′) ∗ ζδ,d‖2Md/2)))1/β
. (23)
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Since f is Gaussian distribution, we have f̃(ω) ≥ cf exp(−α
∑d

i=1 ω
2
i ) for some cf , α > 0.

Given that inequality, we find that

‖(G−G′) ∗ Zδ,d‖22 =

∫
|G̃− G̃′|2(ω)|K̃δ,d(ω)|2dω =

∫
|f̃(G̃− G̃′)|2(ω)

|K̃δ,d(ω)|2

|f̃(ω)|2
dω

≤ ‖pG − pG′‖22 sup
ω∈Rd

|K̃δ,d(ω)|2

|f̃(ω)|2

≤ 4‖f‖∞h2(pG, pG0) sup
ω∈Rd

{
1

c2
f

·
d∏
i=1

exp(−δ4|ωi|4) exp(2α|ωi|2)

}
.

By taking derivatives, we obtain the maximum as

sup
ωi∈R

{
exp(−δ4|ωi|4) exp(2α|ωi|2)

}
= exp(α2/δ4).

Plugging these results into equation (23) leads to

inf{λ ∈ R+ :

∫
‖x‖2≤M

Φ(‖x‖/λ) · |(G−G′) ∗ Zδ,d(x)|dx ≤ 1/2}

≤ M

(log(c/(h(pG, pG0) exp(α2dδ−4)Md/2)))1/β
(24)

for some universal constant c.

Bounding for T2: For any M > 0, we denote

k′ = inf{λ ∈ R+ : EX∼(G−G′)(Φ(‖X‖5/4/λM1/4) ≤ 1/2},

k′′ = inf{λ ∈ R+ : EY∼Zδ,d(Φ(‖Y ‖5/4/λM1/4) ≤ 1/2}. (25)

Then, by the convexity of Φ we have

inf{λ ∈ R+ : EX∼G−G′,Y∼Zδ,d(Φ(‖X + Y ‖5/4/λM (1/4)) ≤ 1/2} ≤ 21/4(k′ + k”).

The above inequality is because of the following inequalities:

EX∼G−G′,Y∼Zδ,d(Φ(‖X + Y ‖5/4/21/4(k′ + k”)M (1/4))

≤ EX∼G−G′,Y∼Zδ,d(Φ(21/4(‖X‖5/4 + ‖Y ‖5/4)/21/4(k′ + k”)M (1/4)))

= EX∼G−G′,Y∼Zδ,d
(

Φ
((
k′‖X‖5/4 + ‖Y ‖5/4

)
/(k′ + k”)M (1/4)

))
≤ EX∼G−G′,Y∼Zδ,d

(
Φ

(
k′

k′ + k”

(
‖X‖5/4

k′M (1/4)

)
+

k”

k′ + k”

(
‖Y ‖5/4

k”M (1/4)

)))

≤ EX∼G−G′,Y∼Zδ,d
k′

k′ + k”
Φ

(
‖X‖5/4

k′M (1/4)

)
+

k”

k′ + k”
Φ

(
‖Y ‖5/4

k”M (1/4)

)
≤ 1

2
. (26)

The first inequality follows from ‖a + b‖P ≤ 2p−1(‖a‖p + ‖b‖p). The second last inequality
follows from convexity of Φ and the final inequality follows from equation (25). Therefore, we
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obtain that

inf{λ ∈ R+ :

∫
‖x‖2>M

Φ(‖x‖/λ) · |(G−G′) ∗ Zδ,d(x)|dx ≤ 1/2}

≤ inf{λ ∈ R+ :

∫
‖x‖2>M

Φ(‖x‖5/4/λM (1/4)) · |(G−G′) ∗ Zδ,d(x)|dx ≤ 1/2}

≤ inf{λ ∈ R+ : EX∼G−G′,Y∼Zδ,d(Φ(‖X + Y ‖5/4/λM (1/4)) ≤ 1/2}

. inf{λ > 0 :

∫
Rd

exp((‖x‖5/4/λM1/4)β) · |(G−G′)(x)|dx ≤ 3/2}

+ inf{λ > 0 :

∫
Rd

exp((‖x‖5/4/λM1/4)β) · |Zδ,d(x)|dx ≤ 3/2}

.
(dθ̄)5/4

M1/4
+ Cδ5/4/M1/4, (27)

where C = inf{λ > 0 :
∫
Rd

exp((‖x‖5/4/λ)β) · |K1,d(x)|dx < ∞ as K1,d(x) ∼ O(exp(−|x|4/3))

for large |x|, by Lemma B.1. Hence, using these results we get

WΦ(G,G′) . δ + max

{
(dθ̄)5/4

M1/4
+ Cδ5/4/M1/4,

M

(log(c/(h(pG, pG0) exp(α2dδ−4)Md/2)))1/β

}
≤ δ +

(dθ̄)5/4

M1/4
+ Cδ5/4/M1/4 +

M

(log(c/(h(pG, pG0) exp(α2dδ−4)Md/2)))1/β
. (28)

Choosing M = (log(1/h(pG, pG0)))1/2 and δ =
2α2

log(1/h(pG, pG0))
in equation (28) we obtain,

WΦ(G,G′) . (log(1/h(pG, pG0)))−1 +
(dθ̄)5/4

(log(1/h(pG, pG0)))1/8
+

(
1

log(1/h(pG, pG0))

)11/8

+

(
1

log(c/h(pG, pG0)(log(1/h(pG, pG0)))d/4)

)(1/β)−(1/2)

(29)

As a consequence, we obtain the conclusion of the theorem.

A.2 Proof of Theorem 3.3

The proof of this result follows by an application of Lemma B.3, B.4 and B.5 in combination
with Theorem 2.1 in Ghosal et al. (2000). To facilitate the presentation, we break the proof
into several steps.

Step 1: First we compute the contraction rate relative to the Hellinger metric, i.e., assume
that

θ̄d

εd+2
n

log

(
θ̄

εn

)
= o(n) and nε2n →∞.

Then we show that

Πn(G ∈ G(Θ) : h(pG, pG0) ≥ Lεn|X1, . . . , Xn)
PG0→ 0. (30)
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We apply Theorem 7.1 in Ghosal et al. (2000), with ε = Lεn andD(ε) = exp

(
c1

(
θ̄√

λminεn

)d
log

(
e+

32eθ̄2

λminε2n

))
,

where L ≥ 2 is a large constant to be chosen later and c1 is the constant in equation (49).
Lemma B.4 shows the validity of this choice of D(ε). Then there exists a test function φn that
satisfies

PnG0
φn ≤ exp

(
c1

(
θ̄√

λminεn

)d
log

(
e+

32eθ̄2

λminε2n

))
× exp(−KnL2ε2n)

1

1− exp(−KnL2ε2n)
,

sup
G∈G(Θ):h(pG,pG0

)≥Lεn
PnG(1− φn) ≤ exp(−KnL2ε2n). (31)

Now, we have

EPG0
Πn(G ∈ G(Θ) : h(pG, pG0) ≥ Lεn|X1, . . . , Xn)φn

≤ PnG0
φn ≤ 2 exp

(
c1

(
θ̄√

λminεn

)d
log

(
e+

32eθ̄2

λminε2n

)
−KnL2ε2n

)
.(32)

Based on computation with the posterior,

Πn(G : h(pG, pG0 ≥ εn)|X1, . . . , Xn)(1− φn)

=

∫
G∈G(Θ):h(pG,pG0

)≥εn

∏n
i=1

pG(Xi)

pG0(Xi)
dΠn(G)(1− φn)∫

G∈G(Θ)

∏n
i=1

pG(Xi)

pG0(Xi)
dΠn(G)

≤

∫
G∈G(Θ):h(pG,pG0

)≥εn

∏n
i=1

pG(Xi)

pG0(Xi)
dΠn(G)(1− φn)∫

G∈G(Θ):K(pG0
,pG).ε2n,K2(pG0

,pG).ε2n(log(M/εn))2

∏n
i=1

pG(Xi)

pG0(Xi)
dΠn(G)

,

where M = exp(dλ−1
min(5θ̄2

0 + 4θ̄2)), with λmin being the minimum eigenvalue of Σ.

Step 1.1: In this step we show that∫
G∈G(Θ):K(pG0

,pG).ε2n,K2(pG0
,pG).ε2n(log(M/εn))2

n∏
i=1

pG(Xi)

pG0(Xi)
dΠn(G)

& exp(−(1 + C)nλminε
2
n)

Γ(γ)(c0γπ
d/2)D

(2Γ(d/2 + 1))D(2D)D−1

(√
λminεn

2θ̄

)2(D−1)+dD

(33)

with pnG0
probability→ 1,

for all C > 0 and εn > 0 is sufficiently small, where D = D(
√
λminεn,Θ, ‖.‖) ≈

(
θ̄

εn

)d
stands

for the maximal
√
λminεn-packing number for Θ under ‖.‖ norm, and Γ(·) is the gamma

function. First we show that

{G ∈ G(Θ) : W2(G,G0) .
√
λminεn}

⊂ {G ∈ G(Θ) : K(pG0 , pG) . ε2n,K2(pG0 , pG) . ε2n(log(M/εn))2}, (34)

21



for εn sufficiently small.

Since

∫
(pG0(x))2

pG(x)
µ(dx) ≤M by Lemma B.5, it follows by an application of Theorem 5

in Wong & Shen (1995) that for εn < 1/2(1− e−1)2,

h(pG, pG0) . ε2n =⇒ K2(pG0 , pG) . ε2n(log(M/εn))2.

Following Example 1 in Nguyen (2013), h2(pG, pG0) ≤ W 2
2 (G,G0)

8λmin
for Gaussian location

mixtures.

Similarly, from Nguyen (2013) it also follows that K(pG, pG0) ≤ W 2
2 (G,G0)

2λmin
. Combining

the above displays, equation (34) follows.
Following Lemma 8.1 in Ghosal et al. (2000), for every C, ε,M > 0 and any measure Π on

the set {G ∈ G(Θ) : K(pG0 , pG) . ε2n,K2(pG0 , pG) . ε2n(log(M/εn))2}, we have,

PnG0

(∫ n∏
i=1

pG(Xi)

pG0(Xi)
dΠn(G) ≤ exp(−(1 + C)nε2)

)
≤ 1

C2nε2(log(M/ε))2
. (35)

The result in equation (33) now follows by an application of Lemma B.3 in combination with
equations (34) and (35) using the fact that nε2n →∞.

Step 1.2: Let the event in (33) be denoted as Tn. Then

EPG0
[Πn(G : h(pG, pG0) ≥ Lεn)|X1, . . . , Xn)(1− φn)] ≤ PG0(TCn )

+ PG0(Tn)
exp((1 + C)nλminε

2
n)

Γ(γ)(c0γπd/2)D

(2Γ(d/2+1))D(2D)D−1

(√
λminεn

2θ̄

)2(D−1)+dD
sup

G∈G(Θ):h(pG,pG0
)≥Lεn

PnG(1− φn)

.
exp((1 + C)nλminε

2
n)

Γ(γ)(c0γπd/2)D

(2Γ(d/2+1))D(2D)D−1

(√
λminεn

2θ̄

)2(D−1)+dD
exp(−KnL2ε2n) + o(1). (36)

The final step follows from simple computation similar to that of the Proof of Theorem 2.1

in Ghosal et al. (2000) and using the fact that
θ̄d

εd+2
n

log

(
θ̄

εn

)
= o(n). Combining equations (32)

and (36) and using the condition
θ̄d

εd+2
n

log

(
θ̄

εn

)
= o(n), it follows that for L large enough

Πn(G ∈ G(Θ) : h(pG, pG0) ≥ Lεn|X1, . . . , Xn)
PG0→ 0. (37)

Step 2: For some sufficiently large L with εn = L(log n)n−1/(d+2) satisfies
θ̄d

εd+2
n

log

(
θ̄

εn

)
=

o(n). Therefore we get, from the result in Step 1of this proof

Πn

(
G ∈ G(Θ) : h(pG, pG0) ≥ L(log n)

n1/(d+2)

∣∣∣∣ X1:n

)
PnG0→ 0.

Now, from Theorem 3.2, we have

Πn

(
G ∈ G(Θ) : WΦ(G,G0) ≥ f1(n, d)

∣∣∣∣ X1:n

)
PnG0→ 0,

where f1(n, d) := (log(n)/(d+ 2)− log(log n))−1/8.
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A.3 Proof of Corollary 3.4

Let G0 =
∑k0

i=1 p
0
i δθ0i

, G =
∑k

j=1 piδθi . Suppose q = (qij)1≤i≤k0,1 ≤j≤k ∈ [0, 1]k0×k is a coupling

between p0 = (p0
1, . . . , p

0
k0

) and p = (p1, . . . , pk), with Q(p,p′) represents the space of all such
couplings of p0 and p. Using the proof technique similar to Lemma 3.5, we get∑

qij exp((‖θ0
i − θj‖/k)β)

≥
∑

qij1{‖θ0i−θj‖≥η}
exp((η/k)β)

≥
∑

pj1{‖θ0i−θj‖≥η for all i} exp((η/k)β),

for all 1 < β < 16/15.
We denote K = inf{λ ≥ 0 :

∑
pj1{‖θ0i−θj‖≥η for all i} exp((η/λ)β) ≤ 2}. Then, we find that

K ≥ η

(
log

(
1∑

pj1{‖θ0i−θj‖≥η for all i}

))−1/β

, and

∑
j

pj1{‖θj−θ0i ‖>η for all i} ≤ 2 exp

(
−η

WΦ(G,G0)

)
.

Putting these results together with Theorem 3.3 leads to

Πn

(
G ∈ EX η

Θ, 2 exp

−(η log(n)1/8

(d+ 2)

)β ∣∣∣∣ X1:n

)
PG0→ 0

in PnG0
probability. Since this result holds for all 1 < β < 16/15, we obtain the conclusion.

B Proofs for Lemmas

We now present the proofs for all lemmas in Section 3.

B.1 Proof of Lemma 3.3

We need to show the following properties of Orlicz-Wasserstein:

(i) WΦ(ν1, ν2) = WΦ(ν2, ν1) for any probability measures ν1, ν2 on (Rd, ‖ · ‖).

(ii) WΦ(µ, µ) = 0 for any probability measure µ on (Rd, ‖ · ‖).

(iii) WΦ(ν1, ν2) ≤WΦ(ν1, ν3)+WΦ(ν3, ν2) for any probability measures ν1, ν2, ν3 on (Rd, ‖·‖).
(i) follows easily from the fact ‖x− y‖ = is symmetric with respect to x, y ∈ Rd .

For (ii) consider the coupling, ν(x, y) = µ(x)1x=y, then it is clear to see that for any k > 0,∫
Rd×Rd Φ(‖x− y‖/k) dν(x, y) = 1 and therefore WΦ(µ, µ) = 0.

For part (iii), assume that WΦ(ν1, ν3) = k1,WΦ(ν3, ν2) = k2. Then, it is enough to show
that there exists a coupling ν of ν1 and ν2 such that

∫
Rd×Rd Φ(‖x− y‖/(k1 + k2)) dν(x, y) ≤ 1.

By results from Villani (2003, 2009), there exists a coupling µ1 of ν1 and ν3 and a coupling
µ2 of ν2 and ν3 such that, ∫

Rd×Rd
Φ(‖x− z‖/k1) dµ1(x, z) ≤ 1∫

Rd×Rd
Φ(‖z − y‖/k2) dµ2(y, z) ≤ 1. (38)
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Then, by a result in probability theory there exists a probability measure µ on Rd × Rd × Rd
such that ∫

x∈Rd
µ(dx, y, z) = µ2(y, z)∫

x∈Rd
µ(x, dy, z) = µ1(x, z) (39)

Define ν(x, y) :=
∫
z∈Rd µ(x, y, dz). Then, we obtain that∫
Rd×Rd

Φ(‖x− y‖/(k1 + k2)) dν(x, y)

=

∫
Rd×Rd×Rd

Φ(‖x− y‖/(k1 + k2)) dµ(x, y, z)

≤
∫
Rd×Rd×Rd

Φ((‖x− z‖+ ‖y − z‖)/(k1 + k2)) dµ(x, y, z)

≤
∫
Rd×Rd×Rd

Φ

(
k1

k1 + k2

‖x− z‖
k1

+
k2

k1 + k2

‖y − z‖
k2

)
dµ(x, y, z)

≤ k1

k1 + k2

∫
Rd×Rd

Φ

(
‖x− z‖
k1

)
dµ1(x, z)

+
k2

k1 + k2

∫
Rd×Rd

Φ

(
‖y − z‖
k2

)
dµ2(y, z) ≤ 1.

The first inequality follows from the triangle inequality property of ‖·‖, while the last inequality
follows from the convexity of Φ.

B.2 Proof of Lemma 3.4

Fix a coupling ν of ν1 and ν2. Consider λ satisfying∫
Rd×Rd

Φ(‖x− y‖/λ) dν(x, y) <∞,∫
Rd×Rd

Ψ(‖x− y‖/λ) dν(x, y) <∞,∫
Rd×Rd

Φ(‖x− y‖/λ) dν(x, y) ≤
∫
Rd×Rd

Ψ(‖x− y‖/λ) dν(x, y),

and thus, we find that{
λ :

∫
Rd×Rd Ψ(‖x− y‖/λ) dν(x, y) ≤ 1

}
(40)

⊂
{
λ :
∫
Rd×Rd Φ(‖x− y‖/λ) dν(x, y) ≤ 1

}
.

As a consequence, we obtain the conclusion of Lemma 3.4 since infimum of a set is smaller
than the infimum of its subset.
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B.3 Proof of Lemma 3.6

Consider X ∼ ν1 and Y ∼ Zδ,d. Let K be such that∫
R

exp((7/32)|yi/K|α − (7/16)|yi/δ|4/3)dyi <∞.

Then, we find that

inf
µ

{∫
Rd×Rd

Φ(‖x− y‖/λ) dµ(x, y) : µ ∈ Q(ν1, ν2)

}
≤

(
1

δ

)d ∫
Rd

exp((7/32)‖y‖α/λα)

d∏
i=1

K1(yi/δ)

d∏
i=1

dyi − 1

≤
d∏
i=1

(
1

δ

)∫
R

exp((7/32)|yi|α/λα)K1(yi/δ)dyi − 1

=
d∏
i=1

(
1

δ

)∫
R
φ(yi)

2 exp((7/32)|yi/λ|α − (7/16)|yi/δ|4/3)dyi − 1,

where φ(·) is the function in Lemma B.1. The second inequality follows from the fact that
‖x‖p ≤ ‖x‖q when p ≥ q, where ‖ · ‖p is the Lp norm. The final equality follows from
Lemma B.1. Now, as |φ(x)| ≤ Cφ for some constant Cφ <∞, we have following the result in
Lemma 3.4,

WΦ(ν1, ν2) ≤ Cαδ

where

Cα = inf

{
k > 0 :

∫
R

exp(|y/k|α − |y|4/3)dy − 1 ≤ 1

C2
φ

}
.

Note that, Cα as defined above exists because α ≤ 4/3. As a consequence, we obtain the
conclusion of the lemma.

B.4 Proof of Lemma 3.7

Consider a coupling, ν between ν1 and ν2 that keeps fixed all the mass shared between ν1 and
ν2, and redistributes the remaining mass independently, i.e.,

ν(x, y) = (ν1(x)
∧
ν2(y))1x=y +

1

(ν1 − ν2)+(Rd)
(ν1(x)− ν2(x))+(ν2(y)− ν1(y))+ (41)

Let k0 be defined as

k0 := inf{k ∈ R+ :

∫
Rd

Φ(‖x‖/k) d|ν1(x)− ν2(x)| ≤ 1}. (42)

Then, using ν as defined in the above display we get∫
Rd×Rd

Φ(‖x− y‖/2k0) dν(x, y) (43)

=

∫
Rd×Rd

Φ(‖x− y‖/2k0) · 1

(ν1 − ν2)+(Rd)
(ν1(x)− ν2(x))+(ν2(y)− ν1(y))+

≤
∫
Rd×Rd

Φ(‖x‖/k0)(ν1(x)− ν2(x))+ ≤ 1
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Therefore,

WΦ(ν1, ν2) ≤ 2 inf{k ∈ R+ :
∫
Rd Φ(‖x‖/k) d|ν1(x)− ν2(x)| ≤ 1}.

As a consequence, we reach the conclusion of the lemma.

Lemma B.1. Let f(x) = exp(−x4), and f̃(t) = (1/2π)
∫∞
−∞ exp(−itx)f(x)dx. Then,

|f̃(t)| ≤ φ(t) exp(−7/32|t|4/3), (44)

where φ(t) is an absolutely bounded real-valued function.

Proof. Consider a rectangle on the complex plane, with vertices at R,−R,R + iζ,−R + iζ
respectively. Following Goursat’s Theorem Stein & Shakarchi (2010) for integration along
rectangular contours on the complex plane, the contour integral along a closed rectangle is 0.

Therefore,

∫ R

−R
exp(−itx)f(x)dx+

∫ R+iζ

R
exp(−itx)f(x)dx+

∫ −R
−R+iζ

exp(−itx)f(x)dx

+

∫ −R+iζ

R+iζ
exp(−itx)f(x)dx = 0.

Now,

|
∫ R+iζ

R
exp(−itx)f(x)dx| = |

∫ ζ

0
exp(itR − tx)f(R+ ix)idx| ≤ C exp(−R4)→ 0,

as R→∞. Similarly,

|
∫ −R
−R+iζ

exp(−itx)f(x)dx| → 0,

as R→∞.
Therefore,

lim
R→∞

∫ R+iζ

−R+iζ
exp(−itx)f(x)dx = lim

R→∞

∫ R

−R
exp(−itx)f(x)dx = 2πf̃(t).

Now,

lim
R→∞

∫ R

−R
exp(−itx)f(x)dx = 2πf̃(t) = lim

R→∞

∫ R+iζ

−R+iζ
exp(−itx)f(x)dx

= lim
R→∞

∫ R

−R
exp(it(x+ iζ))f(x+ iζ)dx.

= lim
R→∞

∫ R

−R
exp(−itx− tζ)) exp(−(x+ iζ)4)dx.

Expanding the above expression,

f̃(t) = (1/2π) limR→∞
∫ R
−R exp(−itx− 4ix3ζ + 4ixζ3 − tζ − (x2 − 3ζ2)2 + 8ζ4)dx.
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Substituting ζ =
1

4
sign(t)|t|1/3 in the above equationa,

|f̃(t)| ≤ (1/2π) exp(−(7/32)|t|4/3) ·
∫ ∞
−∞

exp(−(x2 − (1/3)|t|1/2)2)dx. (45)

The proof is complete when we note that φ(t) := (1/2π)
∫∞
−∞ exp(−(x2 − (1/3)|t|1/2)2)dx is an

absolutely bounded function.

Lemma B.2. Let k(t) = cf̃(t)2, where f̃(t) = (1/2π)
∫∞
−∞ exp(−itx) exp(−x4)dx and c is a

constant of proportionality so that
∫∞
−∞ k(t)dt = 1. Then,

|
∫ ∞
−∞

exp(itx)k(t)dt| . exp(−(x/2)4) (46)

Proof. Define f(x) = exp(−x4). Then, by a version of the Fourier inversion theorem,∫ ∞
−∞

exp(itx)k(t)dt = f ∗ f(x),

where ∗ is the convolution operator. Since convolution of even functions is even, it is enough
to show the result for x > 0. Then,

f ∗ f(x) =
∫∞
−∞ exp(−y4) exp(−(y − x)4)dy

=
∫∞
x/2 exp(−y4) exp(−(y − x)4)dy +

∫ x/2
−∞ exp(−y4) exp(−(y − x)4)dy

≤ exp(−(x/2)4)
∫∞
x/2 exp(−(y − x)4)dy + exp(−(x/2)4)

∫ x/2
−∞ exp(−y4)dy

≤ 2 exp(−(x/2)4)
∫∞
−∞ exp(−y4)dy. (47)

The result holds with C = 2
∫∞
−∞ exp(−y4)dy since

∫∞
−∞ exp(−y4)dy <∞.

B.5 Proof of Lemma 3.5

Suppose q = (qij)1≤i≤k0,1 ≤j≤k ∈ [0, 1]k0×k is a coupling between p0 = (p0
1, . . . , p

0
k0

) and
p = (p1, . . . , pk), with Q(p,p′) representing the space of all such couplings of p and p′. Then,
for fixed k we have∑

qijΦ(‖θ0
i − θj‖/k) ≥

∑
qij1{‖θ0i−θj‖≥η}

Φ(η/k)

≥
∑

pj1{‖θ0i−θj‖≥η for all i}Φ(η/k).

Let K = inf{k ≥ 0 :
∑
pj1{‖θ0i−θj‖≥η for all i}Φ(η/k) ≤ 1}. Then,

K ≥ η

(
Φ−1

(
1∑

pj1{‖θ0i−θj‖≥η for all i}

))−1

, (48)

where Φ−1 is the inverse function of the function Φ. Note that, this function exists and is
concave as Φ is monotonic increasing and convex. Moreover, by Lemma 3.4(i), we would have
that WΦ(G,G0) ≥ K, where,

WΦ(G,G0) := infq∈Q(p,p′){inf{k ≥ 0 :
∑
qijΦ(‖θ0

i − θj‖/k) ≤ 1}}

Combining the results from equations (48) and (49) we obtain the conclusion of the lemma.
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B.6 Prior mass on Wasserstein ball

Lemma B.3. Let G ∼ DP (γ,Hn). Fix r ≥ 1. Assume G0 ∈ M(Θ), where Θ = [−θ̄, θ̄]d. If
Hn admits condition (P.1), then the following holds

Π (W r
r (G,G0) ≤ (2r + 1)εr) ≥ Γ(γ)(c0γπ

d/2)D

(2Γ(d/2 + 1))D(2D)D−1

( ε
2θ̄

)r(D−1)+dD

for all ε sufficiently small so that D(ε,Θ, ‖.‖) > γ.

Here, D = D(ε,Θ, ‖.‖) stands for the maximal ε-packing number for Θ under ‖.‖ norm,
and Γ(·) is the gamma function.

Proof. From Lemma 5 in Nguyen (2013),

Π (W r
r (G,G0) ≤ (2r + 1)εr) ≥ Γ(γ)γD

(2D)D−1

(
ε

Diam(Θ)

)r(D−1)

sup
S

D∏
i=1

Hn(Si),

where, S := (S1, ..., SD) denotes the D disjoint ε/2-balls that form a maximal ε-packing of Θ.
The supremum is taken over all such packings.

Now, Hn(A) ≥
(

c0

µ(Θ)

)
µ(A). Moreover,

∏D
i=1 µ(Si) ≥

(
(
√
πε)d

2Γ(d/2 + 1)

)D
. Using this, we

arrive at the result.

B.7 Metric entropy with Hellinger distance

Lemma B.4. Let G0 be a discrete mixing measure with all its atoms in Θ = [−θ̃, θ̃]d ⊂ Rd.
Let PG(Θ) := {pG : G ∈ G(Θ)}. Then, if the kernel f is multivariate Gaussian with covariance
matrix Σ,

logD(ε/2, {pG ∈PG(Θ) : ε < h(pG, pG0) ≤ 2ε}, h) ≤ c1

(
θ̃√
λminε

)d
log

(
e+

32eθ̃2

λminε2

)
(49)

for some universal constant c1.

Proof. Let N(ε,P, d) denote the ε-covering number of the space P relative to the metric d.
It is related to the packing number by the following identity:

N(ε,P, h) ≤ D(ε,P, d) ≤ N(ε/2,P, h). (50)

Using the result in Example 1 of Nguyen (2013), when fΣ(·|θ) ∼ Nd(θ,Σ),

h2(fΣ(·|θi), fΣ(·|θ′j)) = 1− exp

(
−1

8
‖θi − θ′j‖2Σ−1

)
≤
‖θi − θ′j‖2

8λmin
, (51)

where ‖z‖Σ−1 :=
√
z′Σ−1z.

Let G0 =
∑k0

i=1 p
0
i δθ0i

and G =
∑k′

j=1 p
′
jδθ′j be mixing measures in G(Θ), with k0, k

′ ∈ [1,∞].

Let q = (qij)1≤i≤k0,1 ≤j≤k′ ∈ [0, 1]k0×k
′

denote a coupling of p0 and p′.

28



Using Lemma 2 of Nguyen (2013) with φ(x) =
1

2
(
√
x− 1)2, gives us:

h2(pG, pG0) ≤ inf
q∈Q(p0,p′)

∑
i,j

qij
‖θi − θ′j‖2

8λmin
=
W2(G,G0)2

8λmin
, (52)

where Q(p0,p
′) is the set of all couplings of p0 and p′. Therefore, it immediately follows that:

logD(ε/2, {pG ∈PG(Θ) : ε < h(pG, pG0) ≤ 2ε}, h)

≤ logD(
√

2λminε, {G : G ∈ G(Θ)},W2) ≤ N

(√
λmin

8
ε,Θ, ‖ · ‖

)
log

(
e+

32eθ̃2

λminε2

)
.

The last inequality follows by applying Eq. (50) followed by Lemma 4 part (b) of Nguyen
(2013). The result then follows immediately.

B.8 Computation of M corresponding to KL ball

Lemma B.5. Let G be a discrete mixing measure with all its atoms in
[
−θ̃, θ̃

]d
for some

θ̃ > 0. Furthermore, assume the atoms of G0 lie in
[
−θ̄, θ̄

]d
where θ̄ > 0 is given. Then, the

following holds if the kernel f is multivariate Gaussian,∫
(pG0(x))2

pG(x)
µ(dx) ≤ exp(dλ−1

min(5θ̄2 + 4θ̃2)). (53)

Here µ is the Lebesgue measure on Rd.

Proof. For the multivariate Gaussian kernel with covariance matrix Σ, similar to the multi-

variate Laplace case, using lemma 2 of Nguyen (2013) with φ(x) =
1

x
, gives us:∫

(pG0(x))2

pG(x)
µ(dx) ≤ inf

q∈Q(p0,p′)

∑
i,j

qij

∫
(fΣ(x|θ0

i ))
2

fΣ(x|θ′j)
µ(dx), (54)

where Q(p0,p
′) is the set of all couplings of p0 and p′, and fΣ(·|θ) is the multivariate Gaussian

kernel with covariance parameter Σ and mean parameter θ.∫
(fΣ(x|θ0

i ))
2

fΣ(x|θ′j)
µ(dx) =

∫
fΣ(x|θ0

i ) exp

(
−‖x− θ0

i ‖2Σ−1 + ‖x− θ′j‖2Σ−1

2

)
µ(dx) (55)

=

∫
fΣ(x|θ0

i ) exp

(
−‖θ′j − θ0

i ‖2Σ−1

2
+ 〈x− θ′j ,Σ−1θ′j − θ0

i 〉

)
µ(dx),

where the second equality follows by simple calculation using x− θ0
i = (x− θ′j) + (θ′j − θ0

i ).
If MΣ(t|θ) is the moment generating function of the Gaussian distribution with mean θ

and covariance Σ, then

MΣ(t|θ) = exp(〈θ, t〉+
1

2
〈t,Σt〉).
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Using this result , we can rewrite Eq. (55) as∫
(fΣ(x|θ0

i ))
2

fΣ(x|θ′j)
µ(dx) = exp(〈θ′j − θ0

i ,Σ
−1θ0

i + θ′j〉) ≤ exp(2dλ−1
min(θ̃ + θ̄)2 + dλ−1

minθ̄
2),

The bound on
∫

(pG0(x))2/pG(x)µ(dx) then follows immediately.

C Theoretical guarantee of Algorithm 1

We show in this section that the output of Algorithm 1 converges to the Entropy regularised
version of the Orlicz-Wasserstein distance in equation (19).

Proposition C.1. Let Ŵ λ
Φ(ν1, ν2) be the output of Algorithm 1 and W λ

Φ(ν1, ν2) be as in
equation (19). Then

|Ŵ λ
Φ(ν1, ν2)−W λ

Φ(ν1, ν2)| < ε. (56)

Proof. Here M is the cost matrix such that Mij = ‖xi − yj‖.
Note that S(Φ(M/W λ

Φ(ν1, ν2)), λ, r, c) < 1 and if S(Φ(M/η), λ, r, c) < 1, then η <
W λ

Φ(ν1, ν2)).
If x̂upp = max(M)/Φ−1(1), x̂low = d(M,λ, r, c)/Φ−1(1 + d(M,λ, r, c)− S(M,λ, r, c)) it is

enough to show that
fxupp = S(Φ(M/x̂upp), λ, r, c) < 1,fxlow = S(Φ(M/x̂low), λ, r, c) > 1, since it would imply
xupp := Ŵ λ

Φ(ν1, ν2) < W λ
Φ(ν1, ν2) < xlow and therefore if |xupp − xlow| < ε, the result holds

directly.
We need to show

(i) S(Φ(M/x̂upp), λ, r, c) < 1.

(ii) S(Φ(M/x̂low), λ, r, c) > 1.

For (i), observe that

S(Φ(M/x̂upp), λ, r, c) = inf
ν∈Q(ν1,ν2)

∫
Rd×Rd

Φ(‖x− y‖/x̂upp) dν(x, y)− (1/λ)(H(ν)) (57)

= inf
ν∈Q(ν1,ν2)

∫
Rd×Rd

Φ(Φ−1(1)‖x− y‖/max(M)) dν(x, y)− (1/λ)(H(ν)) ≤ 1 (58)

The last inequality holds by monotonicity of Φ combined with ‖x − y‖/max(M) < 1 with
ν-probability 1, and the fact that H(ν) > 0.

For (ii),note that for any ν ∈ Q(ν1, ν2), it holds that∫
Rd×Rd

Φ(‖x− y‖/η) dν(x, y)−H(ν)/λ

≥ Φ

(∫
Rd×Rd

(‖x− y‖/η) dν(x, y)

)
− (H(r) +H(c))/λ (59)

≥ Φ((S(M,λ, r, c) + (H(r) +H(c))/2λ)/η))− (H(r) +H(c))/λ. (60)

Both the inequalities hold by monotonicty and convexity of Φ combined with the fact that
∀ν ∈ Q(ν1, ν2), it holds that H(r) +H(c) ≥ H(ν) ≥ (H(r) +H(c))/2.

Now Φ((S(M,λ, r, c) + (H(r) +H(c))/2λ)/η))− (H(r) +H(c))/λ ≥ 1, for any η ≤ x̂upp,
this completes the proof.
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D Estimation of number of components for mixing measures

In this section, we consider how Orlicz-Wasserstein distances could be used to improved
estimation of the number of components with Gaussian mixture models. Gaussian Mixture
models have been used for the purpose of clustering both historically Goldberger & Roweis
(2004) as well as in modern applications Athey & Vogelstein (2019); Chakravarti et al. (2019);
Jiao et al. (2022). From the Bayesian perspective, often used BNP priors for mixture models
tend to overestimate the number of components drastically by producing multiple extraneous
components around the ”true” components Miller & Harrison (2014). This makes it difficult
to estimate the number of components, where it may of interest MacEachern & Muller (1998);
Green & Richardson (2001).

Several recent works have explored the consistent estimation of the number of compo-
nents with mixture models, both with in-processing Manole & Khalili (2021) and post-
processing Guha et al. (2021) techniques. However, while Manole & Khalili (2021) restricts
attention to the overfit setting only, Guha et al. (2021) requires the knowledge of explicit
contraction rates of respective parameters in Wasserstein distances. As parameter convergence
rates of Dirichlet Process Gaussian Mixture models are extremely slow Nguyen (2013), this
would also affect the estimation of the number of components negatively. The procedures in
both the works Guha et al. (2021); Manole & Khalili (2021) consist of two smaller steps, trun-
cation of extraneous outlier atoms and merging of atoms which are close to the ”true” atoms.
The results in this work specifically, Theorem 3.3 provide a low threshold for truncating outlier
atoms thereby eliminating outlier atoms more efficiently. Combined with an understanding of
convergence behavior around the ”true” atoms would allow efficient estimation of the number
of components with Dirichlet Process Gaussian Mixture models.
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