
Optimal test methods for determining material parameters 

Méthodes d'essai optimales pour déterminer les paramètres du matériau 
 
Anastasia Nally & James Hambleton 
Department of Civil & Environ. Engineering, Northwestern University, USA, jphambleton@northwestern.edu 
 
Simge Küçükyavuz 
Department of Industrial Engineering and Management Sciences, Northwestern University, USA 
 
 
ABSTRACT: Measuring the parameters that control the deformability and strength of soils through either laboratory 
experiments or in situ testing is critical for numerous applications in geotechnical engineering. While image- and wave-based 
techniques are increasingly prevalent, there is a perpetual need for techniques capable of sensing local, nonlinear properties, 
for which mechanical testing is the only viable option. Existing methods for inferring mechanical properties have evolved 
largely by trial and error, and there is no general, systematic approach for evaluating one possible approach against another. 
As a first step toward addressing these challenges, this paper describes a quantitative metric that can discriminate between 
different types of mechanical tests with respect to how well they are able to recover the true mechanical properties of the 
material. The metric is devised by (1) creating a min-max optimization of parameter sensitivities, considering the local and 
global topological properties of the forward model, and (2) evaluating the metric for fundamental material tests.  

RÉSUMÉ: La mesure des paramètres qui contrôlent la déformabilité et la résistance des sols, par des expériences en laboratoire 
ou des testes in situ, est essentielle pour de nombreuses applications en génie géotechnique. Alors que les techniques basées sur 
l'image et les ondes sont de plus en plus répandues, il existe un besoin perpétuel de techniques capables de détecter des propriétés 
locales non linéaires, pour lesquelles les testes mécaniques sont la seule option viable. Les méthodes existantes pour déduire les 
propriétés mécaniques ont évolué en grande partie par essai et erreur et il n'y a pas d'approche générale et systématique pour 
évaluer une approche possible par rapport à une autre. Comme première étape pour relever ces défis, cet article décrit une métrique 
quantitative qui peut discriminer entre différents types de testes mécaniques en ce qui concerne leur capacité à récupérer les 
véritables propriétés mécaniques du matériau. La métrique est conçue en (1) créant une optimisation min-max des sensibilités des 
paramètres en tenant compte des propriétés topologiques locales et globales du modèle direct et (2) en évaluant la métrique pour 
les testes de matériaux fondamentaux.  
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1 INTRODUCTION 

Currently, there is no quantitative, unbiased technique to 
compare different testing methods for measuring the 
mechanical properties of materials. This holds for the 
plethora of tests devised for laboratory and field testing of 
soils as well as material testing in general. For example, for 
the simple choice of whether to use force or displacement 
control for uniaxial compression of metals, although certain 
standards such as ASTM E9 (2019) give ample direction to 
use displacement control, no guidance or mention is given 
for a force-controlled test. Quantitative comparison of 
material test methods is critical for accurate and efficient 
assessment of material test methods for various objectives. 
Key benefits are (1) the ability to specify the optimal testing 
method for a specific application and (2) the ability to inform 
the development of new testing methods for optimal 
performance. A test can more accurately return the true 
mechanical properties of a material when the sensitivity of 
the material parameter/s of interest are maximized (Hill 
1998) while minimizing sensitivity to all other components 
of the test (Taguchi et al. 2000). 

This paper proposes a quantitative metric, which 
combines the work of Hill (1998) and Taguchi et al. (2000) 
to introduce a min-max sensitivity analysis, allowing the 
user to directly compare material tests. A thought 
experiment involving the determination of a spring constant 
is first introduced in Section 2, which gives context to the 
implementation of the proposed quantitative metric. Then, 

the mathematical construction of the proposed quantitative 
metric is outlined in detail in Section 3. Finally, in Section 
4, implementation of the quantitative metric for the 
fundamental material tests of spring extension and uniaxial 
compression provides information on the optimal test in the 
context of the proposed quantitative metric. 

2 THOUGHT EXPERIMENT 

As an explicit example, this paper first considers the simple 
problem of measuring spring constant k for a linear spring.  
Moreover, the analysis based on the proposed quantitative 
metric aims to answer the following question:  if faced with 
 

 

Figure 1. Springs of various spring constants (k1, k2, k3, and k4) 
determined by imposing/measuring force, F, and displacement, δ  



several springs of unknown spring constants (Figure 1), what 
is the optimal test to run on these specimens?  In other words, 
what type of test, which may be unique to each spring, will 
most accurately return the true spring constant? 

For the simple case of determining a spring constant, one 
has a single choice to make: (1) apply a force to the spring 
and measure the displacement, or (2) prescribe a 
displacement and measure the resulting force. The first 
option, referred to as a "force-controlled" test, is perhaps the 
most common for evaluating spring constants. The 
simplicity of being able to hang weights from a spring and 
measure the resulting displacement is often easier than 
attempting to control the displacement and measure the force 
(e.g., using a load cell), which represents the second choice 
of a "displacement-controlled" test. The analysis presented 
in this paper does not consider the practicality of conducting 
either force- or displacement-controlled tests and considers 
only the accuracy to which the spring constant can be 
calculated. Assuming idealized testing conditions where 
deviations in force and displacement are the only sources of 
error, inaccuracy is introduced in one of two ways for a 
force-controlled test: (1) the measurement of displacement 
differs from the true value, or (2) the prescribed force differs 
from the intended value. Similarly, for a displacement-
controlled test, inaccuracy arises due to errors in either (1) 
measured force or (2) prescribed displacement. 

The quantitative metric is applied to the extension of a 
spring in order to make a direct comparison of force-
controlled and displacement-controlled tests, as well as 
determine the optimal testing configuration. The same 
analysis is then extended to investigate the uniaxial 
compression test, retaining some of the simplicity of the 
spring test while incorporating more testing parameters. 

3  CONSTRUCTION OF QUANTITATIVE METRIC 

Construction of the quantitative metric is non-trivial, and the 
following sections detail the choices made in converging on 
the form proposed in this work: 
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Variables in Eq. (1) are defined as follows: n = number of 
test parameters, wi = ith component of a vector of given 
weights, α = output parameter, βi = ith component of a vector 
of input parameters, ∂α/∂βi = ith component of a vector of 
the sensitivities of the output parameter to the input 
parameters, and βi,avg = ith component of a vector of the 
average input parameters over their expected ranges. 

The general form of the quantitative metric is 
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In this work, sensitivities ∂α/∂βi are considered as the main 
component for optimization, and their selection is further 
discussed in Section 3.1. By implementing weights wi, 
individual sensitivities can be minimized or maximized, 
which is also further discussed in Section 3.1. The 
summation includes the overall normalization by m, as well 
as the exponents p, q, and r, which are all positive integers 
selected by the user. The selection of these integers is 
outlined in Section 3.2. The normalization of all the 
sensitivities (to produce dimensionless quantities) is 

achieved by including βi,norm/αnorm, as discussed in detail in 
Section 3.3. 

3.1   Sensitivities and min-max optimization 

Sensitivity (∂α/∂βi) is a measure of how much a change in 
the input will change the output. By investigating this as the 
measure of the quality of a test, the influence of all aspects 
of the test on the output can be assessed. Particularly relevant 
applications of sensitivity to the analysis presented here are 
works in robust design and topological sensitivity analysis 
(Park et al., 2006; Eschenauer et al., 1994; Novotny et al., 
2003), soil and groundwater parameter determination (Hill 
1992; Hill 1998; Calvello & Finno 2004), population 
biology (Heppell et al. 2000; Link & Doherty 2002) and 
other environmental modeling applications for ranking, 
mapping or screening of data (Pianosi et al. 2016). 
Topological sensitivity analysis uses sensitivities to 
determine redundant components of a design that can be 
removed. Robust design assesses areas that have minimal 
influence on the design, such that design or manufacturing 
tolerances can be increased. Studies pertaining to 
groundwater and soil parameter determination use 
sensitivities to determine which parameters have the greatest 
influence on the output and therefore are most easily 
discovered. Finally, population biology and other 
environmental modeling applications use the sensitivities of 
animal populations to various events as a means of 
investigating the past, present, and future of our natural 
world. All the previously mentioned fields of research focus 
on local sensitivities, which consider only one set of 
parameters for any given analysis. The implementation of 
sensitivity analysis presented in this paper requires the 
analysis of global sensitivities. In global sensitivity analysis, 
consideration must be given to the variation of parameters 
across their respective parameter space. The sensitivity 
function is used here to refer to the variation of sensitivity 
across the parameter space.  

Positive and negative weights wi can be applied to 
individual sensitivities to minimize and maximize these 
quantities, respectively. The sensitivity of the output to the 
relevant material parameters to be determined should be 
maximized to enhance test accuracy. At the same time, the 
sensitivity of the output to all other inputs should 
simultaneously be minimized to reduce their influence on the 
output. Such min-max optimization is achieved by 
minimizing the value of Q and including negative weights 
for sensitivities that should be maximized. By including 
negative weights, one is minimizing the negative of 
corresponding terms, resulting in a maximization of the 
term. Weights other than unity can be added to increase or 
decrease the significance of particular sensitivities. 
However, such a possibility is not addressed in this work, 
where weights wi take values of −1 or +1 depending on 
whether the corresponding sensitivity should be maximized 
or minimized, respectively. 

3.2   Sensitivity combinations 

A combination technique is required for the analysis of 
multiple parameter sensitivities through a single quantitative 
metric, denoted here by Q. In this work, sensitivities are 
combined through simple summation. There are various 
methods available for which most cases result in similar or 
the same outcomes of the optimization problem. A selection 



of options is provided here, along with applicable reasoning 
as to the proposed method. 

Normalization of Q by the number of parameter 
sensitivities assessed allows for comparison across tests with 
a varying number of parameters. Therefore, m = n in Eq. (2) 
for all the following applications. 

The metric given by Eq. (1) arises for a particular choice 
of exponents p, q, and r in Eq. (2). A sum of absolute values 
is achieved when p = q = 2 and r = 1. This method is 
particularly effective when large and isolated errors are 
present in a data set (Dielman 1986; Ge 1997), although, in 
this application, the forward models are known and free of 
error. Alternatively, an absolute value is undesirable as it 
introduces complications for further analytical analysis due 
to the non-smoothness of the resulting function. A “sum of 
squares” is achieved with Eq. (2) when p = 2 and q = r = 1. 
This method theoretically produces the same result as the 
sum of absolute values when no error is present and is 
especially easy to work with mathematically. Although it 
does not perform well with outliers in a data set, it has been 
shown to perform well with a normally distributed error (Ge 
1997). The square root of the sum of squares is achieved with 
Eq. (2) when both p = r = 2 and q = 1. Although commonly 
used in similar applications (Hill 1998; Calvello & Finno 
2004), this is undesirable for the specific application here. 
The addition of the square root hinders the possibility of 
using a negative metric in the presence of maximized 
sensitivities. It is therefore determined that the mean sum of 
squares is the most suitable combination technique due to the 
mathematical tractability and the same performance in 
optimization with the presence of a lack of error. Future 
work may consider alternatives, including the various 
options described above. 

3.3   Sensitivity normalization 

The parameter sensitivities are dimensional and require 
normalization to be correctly summed. Normalization must 
be achieved without distorting the trends of parameter 
sensitivity variation across the parameter range; otherwise, 
the normalization would influence the optimization. The 
various forms considered for the 𝛽𝛽𝑖𝑖,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛/𝛼𝛼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 
normalization terms in Eq. (1) are outlined here, with their 
applicability to the optimization procedure detailed.  

Hill (1992) normalizes the sensitivity by the input 
parameter resulting in a normalization term of 1/𝛽𝛽𝑖𝑖. In this 
case, the sensitivity term will remain dimensional. All terms 
in the quantitative metric have units of the output parameter 
and can therefore be summed. Although this method 
normalizes the sensitivities to have common units, they are 
not scaled by the input variable, and therefore a direct 
comparison is heavily weighted toward input parameters 
with larger magnitudes.  

In the field of population biology, sensitivities are 
normalized by a multiplication of the input and output 
parameters, a technique known as elasticity (Link & 
Doherty, 2002). For application into the quantitative metric, 
the normalization term becomes 𝛼𝛼/𝛽𝛽𝑖𝑖  not only making the 
result dimensionless but also scaling such that comparisons 
are reasonable. However, as with the normalization only by 
the input parameter presented above, the scaling of the 
sensitivity by the input is not appropriate to this application 
of optimization. Alternatively, applying this normalization 
and making the sensitivity independent of the output 
parameter, α, will not influence the results of an 
optimization. The output factors all sensitivity functions 

equally, meaning that the combined minimum will occur at 
the same location, with only the value of the metric scaled 
by a function of the output. 

To achieve a normalization of the input parameter that 
does not distort the sensitivity function yet still produces a 
dimensionless metric and scales the sensitivities to 
comparable magnitudes, the normalization of the input 
parameter must be constant. Possibilities include making the 
numerator of the normalization term in Eq. (2) equal to the 
minimum or maximum expected parameter (𝛽𝛽𝑖𝑖,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
 𝛽𝛽𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚  or 𝛽𝛽𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚), the range of expected parameters 
(𝛽𝛽𝑖𝑖,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =  𝛽𝛽𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), or the average expected parameter 
defined as the midpoint across an expected range (𝛽𝛽𝑖𝑖,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
 𝛽𝛽𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎). In this work, the average parameter 𝛽𝛽𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎 is 
considered favorable as it presents the least variation across 
the various parameter sensitivity functions. It has particular 
benefits when the minimum value of a parameter range does 
not approach zero, or the range is very narrow, for example, 
in the case of a friction angle. All these terms are considered 
subjective, and their values should be selected with 
consideration given to any relevant testing apparatus 
restrictions and general limits on the expected input 
parameters. 

Finally, it can be seen that the proposed metric in Eq. (1) 
is obtained from the general form of Eq. (2) by selecting 
𝛼𝛼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝛼𝛼. Simplicity is the main factor motivating this 
choice, though one can envision other possibilities that are 
not explored here. 

The final normalization, as presented in Eq. (1), 
combines normalization by the output parameter and 
average input parameter. This creates a quantitative metric 
that is independent of the output parameter and provides a 
consistent scaling across each of the independent sensitivity 
functions. 

4  IMPLEMENTATION OF QUANTITATIVE METRIC  

The quantitative metric has been designed with such 
versatility that it can be implemented for any problem. Here 
the implementation is demonstrated first through the 
extension of a spring and then with a uniaxial compression 
test. The quantitative metric is used to inform the decision of 
(1) a force- or displacement-controlled test and (2) the 
optimal configuration of a test considering all possible 
variables. 

4.1   Spring extension 

As described in Section 2, the first test considered in this 
paper involves the extension of a spring to determine the 
spring constant k. This example allows for the 
implementation of the proposed metric and comparison of 
tests in one of the simplest conceivable forms. The forward 
model for spring extension is  
 

𝑘𝑘 = 𝐹𝐹
𝛿𝛿
 (3) 

 
In an actual test, k is an unknown but fixed constant that 

is determined by applying displacement and measuring force 
(displacement control) or applying force and measuring 
displacement (force control). If k were considered constant 
in the optimization of Q, the force-displacement ratio for the 
spring extension test would also be constant due to the 
simplicity of the forward model. Therefore, optimization of 
the test is best analyzed by allowing all components of the 



test to be variable. In this case, that means that the k, F, and 
δ are considered variables in the optimization.  

When a spring extension test is run as a displacement-
controlled test, variables in Eq. (1) are 𝛼𝛼 = 𝐹𝐹, 𝛽𝛽1 = 𝑘𝑘, and 
𝛽𝛽2 = 𝛿𝛿. It may be noted that sensitivity of the force to the 
displacement, which is controlled, is minimized to reduce 
the influence of potential variation in this quantity (i.e., 
error) on the measured output F. At the same time, the 
sensitivity of measured force F to the spring constant is 
maximized. The resulting quantitative metric is 
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Equation (4) includes the general form of the sensitivities 

∂α/∂βi. At first glance, one might be inclined to include the 
length of the spring, L, in the quantitative metric (𝛽𝛽3 = 𝐿𝐿). 
However, the inclusion of L results immediately in Eq. (4) 
since 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 = 0.  

Upon substituting the derivatives of the forward model 
given by Eq. (3) into Eq. (4), the quantitative metric becomes 
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Further substitution using for the forward model for δ/F and 
k/F can be made to ascertain  
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Equation (6) reveals that the optimization can be 

analyzed independent of the output parameter F. 
Furthermore, Eq. (6) takes a sufficiently simple form such 
that the trend towards optimal can be seen without an 
optimization solver. In searching for the optimal test, the 
objective is to minimize Eq. (6). Without implementing 
bounds on the variables in Eq. (6), the analytical solution 
results in δ → ∞ and k → 0. As 𝑘𝑘 and δ must be positive 
constants within limits determined by practical 
considerations, constraints need to be added to bound the 
results. It can be seen by assessing Eq. (6) with constraints, 
Q will be minimized when δ is at its upper limit and k is at 
its lower limit. 

For a practical application, k is a fixed property of the 
spring, and the practical outcome is that the optimal 
displacement-controlled test should have the largest 
displacement possible. The large displacement will 
minimize the influence of any variation in displacement on 
F and therefore produce the most accurate estimate of k. 

For a force-controlled test, 𝛼𝛼 = 𝛿𝛿, 𝛽𝛽1 = 𝑘𝑘 and 𝛽𝛽2 = 𝐹𝐹. 
The sensitivity of the displacement to the force is minimized, 
and the sensitivity of the displacement to the spring constant 
is maximized: 
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Upon substituting the derivatives of the forward model 

given by Eq. (3), the quantitative metric becomes 
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Further substitution using the forward model of Eq. (3) 

for F/δ and 1/δ results in 
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The progression from Eq. (7) to Eq. (9) is similar to that 

for displacement control, where Eq. (9) includes the critical 
substitution revealing simplification of the optimization and 
independence from the output parameter δ.  

The optimal configuration for a force-controlled test can 
be determined through the minimization of Q given by Eq. 
(9). As with displacement control, without the 
implementation of constraints, there is no sensible analytical 
solution. Once constraints are implemented, it can be seen 
that the ideal test will occur when F is maximized, and k is 
minimized. Similar to displacement control, for a practical 
application, when k is constant, a large force will minimize 
the sensitivity to variation in force, resulting in the optimal 
test. In both force- and displacement-controlled cases, a test 
of constant k can be improved by increasing the applied force 
and displacement. 

For the purpose of this paper, force- and displacement-
controlled tests will be compared directly. Justification for 
direct comparison of Qspring,DC, and Qspring,FC is not provided 
here due to constraints on the length of the article but will be 
provided in a forthcoming article by the co-authors. The 
comparison of Eqs. (6) and (9) can be used to conclude 
whether force or displacement control is preferred. A 
displacement-controlled test is preferred when  
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By substituting Eq. (6) and (9) into this expression, Eq. 

(10) becomes   
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With the aid of Eq. (3), simplification and rearrangement of 
Eq. (11) gives 

 
𝑘𝑘 < 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎

𝛿𝛿𝑎𝑎𝑎𝑎𝑎𝑎
 (12) 

 
Equation (12) shows that the decision to use force or 

displacement control depends on the comparison of the 
spring constant to the average force and displacement, Favg 
and δavg, to which physical meaning can be ascribed as 
discussed in further detail below. This result is possible due 
to the normalization of sensitivities creating a quantitative 
metric that is independent of the output. The significant 
contribution of the substitution made to get from Eq. (5) to 
(6), and Eq. (8) to (9) results in the comparison of force- and 
displacement-controlled tests subsequently becoming only a 
comparison of the sensitivity of force to displacement and 
displacement to force.  

Equation (12) suggests that in order to determine which 
test is preferable, one must first know critical details about 
the testing apparatus, referred to her simply as the 
"machine." Interpreting Favg and δavg as representative of the 
force and displacement that the machine is capable of 
measuring or applying, the ratio Favg/δavg can be interpreted 
as machine stiffness. Figure 2 illustrates how machine 
stiffness can be represented in the plane created by 
representing Favg and δavg along the vertical and horizontal 
axes, respectively. 

Because spring stiffness k is unknown, Eq. (12) also 
reveals that the optimal test cannot be determined without 
prior knowledge. Application of Eq. (12) to determine the  



 
 

Figure 2. Varying machine stiffness represented in the place 
created by showing Favg as a function of δavg 

 

 
 

Figure 3. Normalized force controlled to displacement comparison 
for spring extension 

 
optimal test requires an estimate of k. A machine capable of 
applying small displacement and measuring large force is 
optimal for a spring with large stiffness (klarge), as depicted 
in Figs. 2 and 3.  Correspondingly, a machine capable of 
applying small force and measuring large displacement is 
optimal for springs with low stiffness (ksmall).  Significantly, 
Eq. (12) shows that as the spring constant decreases, the 
more likely it is that one should run a displacement-
controlled test. Likewise, increasing spring stiffness makes 
it more likely that one should run a force-controlled test. 
Figure 3 summarizes this concept. 

For the springs shown schematically in Fig. 1, assuming 
they are the same material, the spring represented by 
stiffness 𝑘𝑘1 likely has a lower 𝑘𝑘 than that of 𝑘𝑘4. It is, 
therefore, likelier that the spring with stiffness 𝑘𝑘1 should be 
tested in displacement control. This is indicated in Figure 3, 
which shows that smaller values of 𝑘𝑘 produce a greater area 
over which displacement control is preferred. For the fourth 
spring, with a higher 𝑘𝑘4, it is likelier that force control will 
be optimal. The exact threshold determining which test is 
optimal depends on the machine stiffness Favg/δavg and the 
exact value of k. 

4.2 Uniaxial compression 

The uniaxial compression test appears regularly in 
geotechnical engineering and includes additional geometric 

components compared to the previous example. The forward 
model for a uniaxial compression test is  

𝐸𝐸 = 𝐹𝐹𝐹𝐹
𝛿𝛿𝛿𝛿𝛿𝛿

 (13) 
 
Variables in Eq. (13) are as follows: E = elastic modulus of 
the material, F = force, δ = displacement, L = sample length, 
b = sample width, and d = sample depth. While a circular 
cross-section is typically utilized in practice, a rectangular 
cross-section is here used to highlight the influence of 
geometric variables. 

The added complexity of additional components allows 
the optimization to hold the material parameter (elastic 
modulus E) constant and optimize overall geometric 
components, as well as force and displacement. This is of 
benefit to a situation where the material for testing is known, 
and the determination of the ideal testing configuration is of 
interest. 

For the displacement-controlled uniaxial compression 
test, 𝛼𝛼 = 𝐹𝐹, and 𝛽𝛽 = [𝐸𝐸, 𝛿𝛿, 𝐿𝐿, 𝑏𝑏,𝑑𝑑]. The resulting 
quantitative metric is  
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Equation (12) shows the general form including 

derivatives, and by making the substitution for the 
derivatives using the forward model of Eq. (13), the 
quantitative metric becomes 
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This can be simplified by making an additional 

substitution for the forward model (Eq. 13) into each of the 
sensitivity terms, resulting in 
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As was the case for spring extension, the result of Eq. 

(16) is independent of the output parameter F. 
For the force-controlled uniaxial compression test, 𝛼𝛼 =

𝛿𝛿 and 𝛽𝛽 = [𝐸𝐸,𝐹𝐹,𝐿𝐿, 𝑏𝑏,𝑑𝑑]. The resulting quantitative metric is 
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Making the substitution for the derivatives using the 

forward model (Eq. 13) gives 
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Further substitution of the forward model (Eq. 13) in 

each of the sensitivity terms results in 
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As in the case of the spring, by comparing the results for 

force and displacement control (Eqs. (16) and (19)), the 
following inequality indicating when displacement control 
test is preferred can be determined: 

 
𝐹𝐹
𝛿𝛿

< 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎
𝛿𝛿𝑎𝑎𝑎𝑎𝑎𝑎

 (20) 

 
Upon substituting for F/δ, Eq. (20) can alternatively be 

written to show dependence on the material parameter and 
geometric configuration explicitly: 

 
𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿

< 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎
𝛿𝛿𝑎𝑎𝑎𝑎𝑎𝑎

 (21) 

 
Overall conclusions from this analysis of the uniaxial 

compression test are similar to those obtained for spring 
extension (Section 4.1). For the case of displacement 
control, Equation (16) for uniaxial compression takes a 
similar form to Eq. (6) for spring extension but with three 
additional terms corresponding to the three geometric 
parameters (L, b, and d). Equation (21) indicates that 
displacement control is preferred when the stiffness of the 
specimen, given by Ebd/L, is small relative to machine 
stiffness (Favg/δavg). 

Consideration to the optimal configuration of the 
uniaxial compression test for either force or displacement 
control is significantly more complicated due to the 
variability of five or six parameters in the optimization 
(depending on if the material parameter is variable or not), 
coupled with the nonlinear constraint introduced by Eq. (13). 
An optimization solver is required for such an analysis, 
which is considered in a forthcoming article by the co-
authors. 

5  CONCLUDING REMARKS 

This paper proposes a quantitative metric that allows for 
optimization of testing configurations, including general 
cases extending well beyond the specific examples 
considered in this article. 

The simple example of spring extension demonstrates 
how the proposed metric can be applied for the selection of 
the test type and ideal testing configuration. With the 
selected normalization method, the choice to run a force- or 
displacement-controlled test is effectively determined by 
machine stiffness, as well as spring stiffness. Since spring 
stiffness is unknown prior to testing, an estimate must be 
made for practical determination of the optimal 
configuration. The smaller the spring constant, the more 
likely a displacement-controlled test will be preferred. As 
the spring constant increases, so does the likelihood that 
force control is preferred. When assessing the force- and 
displacement-controlled tests individually, the quantitative 
metric decreases (becomes closer to optimal) as the spring 
stiffness is reduced. In other words, accuracy generally 
deteriorates as stiffness increases. For a displacement-
controlled test, the objective is to minimize the sensitivity of 
the displacement with respect to the force, resulting in a 
large force. Alternatively, in a force-controlled test, the 
objective is to minimize the sensitivity of force with respect 
to displacement, resulting in a preferred large displacement.  

Furthermore, implementation of the quantitative metric 
for the uniaxial compression test displays a similar 
discriminator with respect to the comparison of force and 
displacement control: the stiffness of the material. The added 
complexity of additional geometric components means that 
the selection of the test is not entirely dependent on the 
material parameter. However, as an area of future work, 
optimization can be completed numerically for specific 
values of the material parameter. 

Future work will implement the quantitative metric to 
compare different testing methods with larger numbers of 
contributing factors and implement for use in finite element 
analysis for topology optimization for optimal soil parameter 
determination. Application of the proposed metric to more 
complex problems, including those relevant to laboratory 
testing and in situ testing in geotechnical engineering, is a 
potentially fruitful area of future research. 
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