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Abstract
A key challenge with supervised learning (e.g ., image clas-
sification) is the shift of data distribution and domain from
training to testing datasets, so-called “domain shift” (or “dis-
tribution shift”), which usually leads to a reduction of model
accuracy. Various meta-learning approaches have been pro-
posed to prevent the accuracy loss by learning an adaptable
model with training data, and adapting it to test time data
from a new data domain. However, when the domain shift
occurs in multiple domain dimensions (e.g ., images may be
transformed by rotations, transitions, and expansions), the av-
erage predictive power of the adapted model will deteriorate.
To tackle this problem, we propose a domain disentangled
meta-learning (DDML) framework. DDML disentangles the
data domain by dimensions, learns the representations of
domain dimensions independently, and adapts to the domain
of test time data. We evaluate our DDML on image classifi-
cation problems using three datasets with distribution shifts
over multiple domain dimensions. Comparing to various base-
lines in meta-learning and empirical risk minimization, our
DDML approach achieves consistently higher classification
accuracy with the test time data. These results demonstrate
that domain disentanglement reduces the complexity of the
model adaptation, thus increases the model generalizability,
and prevents it from overfitting.

1 Introduction

Machine learning models (e.g ., trained for image classi-
fication and object recognition) have many real-world
applications, for example, teaching children to learn zoo
animals, enabling a self-driving car to travel safely on
road networks, or assisting customers to find products in
grocery stores. However, a practical challenge in these
applications is that the statistical distribution of the data
to be classified differs (sometimes significantly) from that
of the training data. For example, a well-trained hand-
writing digit classifier may not work well when applied
to a new user with a different writing style from the data
used in the training process [1].

Such a challenge is called a domain shift (or
distribution shift) [1–4], which usually leads to a reduc-
tion of classification accuracy. Various meta-learning
approaches have been proposed to prevent or mitigate
the accuracy loss by domain shift, such as optimization
based model MAML [5], black-box model MBB [6–8],
and ARM [9]. All these works assume that training tasks
with different (shifted) data domains are provided, and
each testing task represents a set of data from a new

Figure 1: Illustration of domain shift (i.e., distribution
shift). Domain dimensions are independent. (z: domain
shift vector; x: domain data examples.)

domain. To tackle the domain shift problem, these meta-
learning approaches aim to learn an adaptable model that
are able to deal with the shift by adapting to the test
time data domain. At test time, MAML and MBB adapt
the model to a batch of labeled data, where the model
adaptation by ARM is based on a batch of unlabeled
data.
Motivation. All the above literature works consider
the domain shift along one unified domain dimension,
and adapt the model by extracting and integrating a
task representation from the test time data. However,
the shift may occur in a high-dimensional domain space.
Taking the affNIST dataset [10] as an example, as shown
in Fig. 1, the domain shift to MNIST images involves
five different affine transformations (as shifting over
domain dimensions), such as the image rotation, vertical
and horizontal transitions, and vertical and horizontal
expansions. It is well-known that, with a fixed number
of training samples, the average (expected) predictive
power of the extracted test time data representation
deteriorates (a.k.a. overfitting), as the number of
domain dimensions (i.e., “features”) increases [11, 12].
As validated in [13–16], disentangling and learning
representations of the factors of variation from the high-
dimensional input data space is effective in improving the
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model generalizability, by reducing the model complexity.
In this work, we are motivated to develop a model to
disentangle the data domain by domain dimensions, for
meta-learning to better adapt to the test time data
domain.
Our DDML. We focus on the problem of domain shift
in high-dimensional domain space, and propose domain
disentangled meta-learning (DDML) by extracting and
adapting domain disentangled representations from test
time data. Our key contributions are summarized below:
• We are the first to introduce the domain independence

assumption, that is widely valid in many computer
vision tasks such as image classification, into meta-
learning to reduce the model complexity for better
generalization;

• We propose a domain disentangled meta-learning
framework to learn an adaptable meta-model from
training tasks with a domain disentanglement module,
and adapt it to the domain disentangled representa-
tions of test time data;

• We present evaluation results of DDML in compar-
ison to various state-of-the-art meta-learning algo-
rithms on three benchmark image datasets with high-
dimensional domain shift, i.e., rotated MNIST [9],
affNIST [10], and rotated Tiny ImageNet-C [17]. We
make our code available to contribute to the
research community1.

2 Preliminaries and Problem Definition

2.1 Preliminaries

A supervised learning task, τ , is defined by a set of
labeled training data points {(x, y)} sampled i.i.d. from
an unknown distribution p(x, y). The task aims to learn
a model g(·; θ) : X → Y parameterized by θ, from the
training dataset {(x, y)}, such that the learned model
can accurately predict a label ŷ = g(x; θ) ∈ Y for each
input x ∈ X at the test time. The task objective is
minθ Epxy [`(g(x; θ), y)], with `(ŷ, y) as the loss function
quantifying the difference between predicted vs ground-
truth labels.
A meta-learning problem is defined as a set of
supervised learning tasks {τ}, with each τ ∈ T sampled
i.i.d. from a task distribution p(τ). The goal is to
optimize a model from {τ}, such that it can quickly
adapt to each new test task τ ∈ T , also sampled i.i.d.
from p(τ). Overall, as summarized in Eq. (2.1), where
{(x, y)} denotes the labeled dataset from a task, meta-
learning aims to optimize both θ and φ, so that the
adaptation function h can quickly adapt the prediction
function g to achieve high prediction accuracy on each

1The code is accessible from https://www.dropbox.com/sh/

lrdkul2l1nqwxfd/AADVWX5b2qzjwNCDxazwqxTca?dl=0.

new test task with a small set of data:

min
θ,φ

Epτ
[
Epxy|τ [`(g(x; θ′), y)]

]
, s.t. θ′ = h(θ, {(x, y)};φ).

(2.1)

In the literature, there are different paradigms in
implementing the adaptation function h. For instance,
MAML [5], MBB [6–8], and ARM [9] employ gradient-
based fine-tuning and deep neural network models,
respectively.

2.2 Problem Definition

A domain shift problem. Meta-learning focuses on
tasks {τ} all sampled from the same data domain. A
domain shift problem is defined by a set of labeled
training data sampled from different data domains.
Each data point (x, y, z) has an observed domain
identifier (i.e., a vector) z = [z1, · · · , zM ] representing
the associated data domain with M dimensions. For
example, in affNIST dataset [10], zm could represent
the rotation degree, offsets in vertical and horizontal
transitions and expansions of the MNIST images. Hence,
in the domain shift problem, the task sampling process
is governed by a domain sampling distribution, z ∼ p(z),
and a task sampling distribution τ ∼ p(τ |z). The goal
is to learn a model g(·; θ) : X → Y from training tasks
i.i.d. sampled from the different data domains. At test
time, the learned model g(·; θ) can quickly adapt to a
test task with a batch of K data points, without domain
identifier z observed. By adaptation, it updates the
model parameters to θ′, i.e., ŷ = g(·; θ′), that predicts a
label ŷ ∈ Y for an input x ∈ X from the same test task.
Hence a domain shift problem is modeled as follows2

min
θ,φ

Epz
[
Epτ|z

[
Epxy|τz`(g(x; θ′), y)

]]
,

s.t. θ′ = h(θ, {x};φ).(2.2)

Such a formulation determines that the network architec-
tures in learning have to be sequential, i.e., one module
taking the output of another module as its input. Theo-
rem 1 below explains the solution to Eq. (2.2) from the
probability perspective, and is proved using the Jensen’s
inequality 3 as in Appendix.

Theorem 1. The solution to Eq. (2.2) represents a
tight upper bound of the maximum log-likelihood of the
observed data {(x, y)}.

2The data for adaptation can be either labeled {(x, y)} or

unlabeled {x}. Our presentation will focus on unlabeled test time
data, and our proposed approach can naturally adapt to the setting

with labeled test time data.
3See more details in https://en.wikipedia.org/wiki/Jensen%

27s_inequality.
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Figure 2: DDML architecture, with
⊕

denoting the feature concatenation operation.

Proof. The objective of meta-learning in Eq. 2.1 is
equivalent to maximizing the probability of given
data {(x, y)}, i.e. maxω∈Ω E(x,y)∼X×Y [p(x, y;ω)], with
p(x, y;ω) representing the probability distribution of
observing a data point (x, y) parameterized by ω. By
introducing latent variables z ∈ Z, τ ∈ T representing
domain and task information, we have

max
ω∈Ω

E(x,y)∼X×Y [p(x, y;ω)]

=

∫
pxyτzp(x, y, τ, z;ω)d(x, y, τ, z)

=

∫∫
pτzpxy|τzp(x, y;ω|τ, z)p(τ, z)d(x, y)d(τ, z)

≡ Epτz
[
Epxy|τzp(x, y;ω|τ, z)

]
= Epz

[
Epτ|z

[
Epxy|τzp(x, y;ω|τ, z)

]]
.

Suppose that probability p(x, y;w|τ, z) follows Gaus-
sian, i.e. p(·) ≡ exp(−`(·)) with some loss function `,
then a tight lower bound of maximum log-likelihood of
the data (x, y) exists (by Jensen’s inequality), i.e.,

max
ω∈Ω

Epz
[
Epτ|z

[
Epxy|τzp(x, y;ω|τ, z)

]]
≤ min

ω∈Ω
Epz

[
Epτ|z

[
Epxy|τz`(x, y;ω|τ, z)

]]
,(2.3)

where the loss function in meta-learning follows
`(x, y;ω|τ, z) = `(g(x; θ′), y) with θ′ = h(θ, {x}τz;φ),
that is, ω = [θ, φ]. �
The Challenges of high-dimensional data do-
mains. In the literature, the meta-learning meth-
ods [5, 6, 8, 18–24] have been validated extensively on
solving the problem of domain shift in Eq. (2.2) over one
unified domain space [5, 6, 8, 21, 25]. However, when the
domain shift occurs in a high-dimensional domain space,
e.g ., with shifting over rotation, expansion, transition,
occlusions, and more, by “the curse of dimensionality”,
the adaptability of function h will deteriorate (a.k.a over-
fitting). To tackle this problem, we are motivated to

advance the model h by disentangling the task domain
dimensions to reduce the model complexity, thus im-
proving the model generalizability and effectiveness of
g, when adapting to the test task data. The rational of
this disentanglement has been validated in [13–16].
Domain Disentangled Meta-Learning (DDML).
The domain disentanglement is done by assuming the
domain dimensions to be independent, i.e., p(z) ≡∏M
m=1 p(zm). In fact, our assumption in general holds

in reality, i.e., each domain dimension zm can be well-
defined to represent one independent aspect of the data
points. For example, in affNIST dataset [10], each
affine transformation (as a domain dimension), i.e.,
rotation, transition, or expansion, has no impact on
other dimensions. Therefore, from the perspective of log-
likelihood maximization we have the following equivalent
expectation where at the right-hand side, the expectation
operators are exchangeable:

Epz ≡ Epz1
◦ Epz2

◦ · · · ◦ EpzM .(2.4)

This decomposition allows us to design networks where
the input of each module for a domain can be indepen-
dent and parallel, i.e., domain disentanglement. Based
on Eq. (2.2) and Eq. (2.4), our DDML objective func-
tion with domain disentanglement can be further written
as follows:

min
θ,φ

Epz1
◦ · · · ◦ EpzM

[
Epτ|z

[
Epxy|τz [`(g(x; θ′), y)]

]]
,

s.t.θ′ = h(θ, {x};φ).(2.5)

Why domain disentanglement works? Intuitively,
let us consider the information flows (i.e. paths) in a deep
neural network: Given M modules, where each module is
a layer of Nm(∀m ∈ [M ]) neurons, the fully connected M
layers induce

∏
mNm paths in the deep neural network,

while our disentangled modules in Eq. (2.5) only induce
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Algorithm 1 Domain Disentangled Meta-Learning

1: // Training procedure

Require: Training data {Dz}z∈Z , M -dimensional do-
main Z, the number of training steps T , learning
rate η, batch size K.

2: Randomly initialize θ and φ.
3: for t = 1, · · · , T do
4: Sample a domain Dz, by uniformly sampling

z = [z1, · · · , zM ] from Z.
5: Sample a training task τtr uniformly from Dz.
6: Extract M disentangled tasks {x}1, · · · , {x}M via

Alg. 2.
7: θ′ = [θ, hτ ]← hφ(θ, {x}tr, {x}1, · · · , {x}M ;φ)
8: (θ, φ)← (θ, φ)− η

∑
(x,y)∈τtr `(g(x; θ′), y)).

9: end for
10: // Testing procedure

Require: θ, φ, test task τt = {x(1), · · · ,x(K)}.
11: θ′ = [θ, hτ ]← hφ(θ, {x}t, {x}t, · · · , {x}t;φ).
12: ŷk ← g(x(k); θ′) for k = 1, · · · ,K.

∑
mNm paths, which is exponentially smaller in terms

of model complexity. Similar to the observations in [13–
16], disentangling the domain dimensions reduces the
function complexity, thus increases its generalizability
and mitigates the potential overfitting problem. In
contrast, without domain disentanglement, the state-of-
the-art meta-learning works [5,6,8,9,21] learn a unifying
adaptation function h to extract the task representation,
thus implicitly characterizes the potential correlations
among the domain dimensions, which significantly
increases the model complexity, thus downgrades the
model generalizability, and is prone to overfitting.

3 Domain Disentangled Meta-Learning

From the DDML objective in Eq. (2.5), there are two
functions to learn, i.e., the prediction function g, and
the adaptation function h. We model both functions
with deep neural networks parameterized by θ and φ
respectively. In this section, we will tackle two key
challenges, including i) how to design an algorithm to
jointly learn hφ and gθ that solve the DDML objective
in Eq. (2.5); and ii) how to design hφ to learn and adapt
a task from its disentangled domain space. Fig. 2 shows
our DDML architecture.

3.1 DDML Algorithm

The goal of DDML algorithm is to jointly meta-learn the
adaptation network hφ and gθ, such that hφ can learn
representations of a given task in its disentangled domain
dimensions, and adapt the prediction network gθ to the
task. Hence, we need to specify a domain distribution

Algorithm 2 Domain Disentanglement

Require: A task τtr, domain z, training data {Dz}z∈Z .

1: for m = 1, · · · ,M do

2: Randomly sample z(m) ∈ Z, with z
(m)
m = zm.

3: Sample {x}m uniformly from Dz(m) .
4: end for

pz as a prior, for sampling task domains in the training
stage. However, we have no knowledge how the test time
domain sample distribution pz looks like. Fortunately,
the state-of-the-art works in deep learning have shown
that uniformly sampling over a quantity of interest, can
achieve robust performance to that quantity [9,26–28].
Hence, in DDML algorithm, we sample training tasks
τtr’s uniformly from the domain space Z. We introduce
the proposed DDML algorithm in both training and
testing processes below, with the pseudo-code presented
in Alg. 1.
Training procedure. For each iteration in training,
one domain z is uniformly sampled from Z, and one
training task τtr is uniformly sampled from the domain
data Dz (line 4–5). Then, based on the training task
dataset τtr, we prepare M disentangled task datasets,
i.e., {x}1, · · · , {x}M , with each {x}m preserving the
dimension zm from τtr, while randomly changing all
other M−1 domain dimensions (line 6). See more details
of preparing all {x}m’s in Sec. 3.2 and Alg. 2. Taking
the training task dataset {x}tr, and its M disentangled
task datasets {x}1, · · · , {x}M as input, hφ network (line
7 and Fig. 2) outputs a representation hτ of the training
task τtr, which as an input is fed into the prediction
network gθ. Then, θ and φ are both updated by gradient
descent to minimize the objective in Eq. (2.5) (line 8).
Testing procedure. During the test time, given a task
τt as a batch of data points, hφ takes its test dataset
{x}t as input to extract the test task representation
hτ (line 11). Then, taking hτ as input, the prediction
network gθ is adapted to the test task, and can perform
prediction for any data point from the the test task τt
(line 12).

3.2 Domain Disentanglement with Network hφ
In the training process, we disentangle the M domain
dimensions of a task τtr, using M deep neural networks,
i.e., hφ1

, · · · , hφM (see Fig. 2). Each hφm with 1 ≤
m ≤ M learns a representation hm of the domain
dimension zm from the task τtr. Given a training task
τtr, M disentangled task datasets to τtr are prepared,
i.e., {x}1, · · · , {x}M , where each {x}m preserves the
dimension zm from τtr, while randomly changing all
other M − 1 domain dimensions. The process of
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preparing M disentangled tasks for τtr is summarized in
Alg. 2. The data points of each disentangled task {x}m is
used to train the corresponding disentangled adaptation
network hφm , to guarantee that hφm only extracts a
representation for zm. Then, the concatenation of all
hm’s (m = 1, · · · ,M) and the task data samples {x}tr
together are input into the task adaptation network hφτ ,
which extracts the representation hτ of the task τtr. As
a result, the adaptation network hφ consists of M + 1
networks hφ1

, · · · , hφM , and hφτ , with the parameter
vector φ = [φ1, · · · , φM , φτ ].
In the testing process, no domain identifier z is provided
for a test task τt. Hence, the same dataset {x}t of
τt will be used as an input to all adaptation networks
hφ1

, · · · , hφM , and hφτ to extract the task representation
hτt for prediction network gθ to adapt.

4 Experiments

We evaluate our proposed DDML by comparing it with
baselines on three image classification benchmarks, which
naturally lie in high-dimension data domains, including
the rotated MNIST [9], affNIST [10] and rotated Tiny
ImageNet-C [17]. In this section, we introduce the
experiment settings, and present the experimental results
on the three datasets to show: i) our DDML outperforms
baselines on test tasks with domain shifts; ii) with the
domain disentanglement module, DDML can extract
higher quality representations for individual domain
dimensions than other baselines; iii) DDML converges
faster than baselines, and it is a robust approach to
various model parameters, such as the training data size,
the number of disentangled domain dimensions, and the
size of the domain representation vector.

4.1 Experiment settings

We evaluate and compare DDML with four baselines
below in meta-learning and empirical risk minimization
models [5–9].
• ERM [29] (empirical risk minimization) is a zero-

shot generalization approach. It assumes that the
training and testing data follow the same underlying
distribution and strives to train a model with minimal
average error over the training data.

• ARM [9] (adaptive risk minimization) is a SOTA
domain adaptation approach in tackling the domain
shift problem by meta-learning. It uses unlabeled data
adaptation for test time adaptation.

• MAML [5] represents the family of model-agnostic
meta-learners, which is an optimization based meta-
learning approach. It adapts to test tasks by min-
imizing the classification loss on test task support
data.

• MBB [7, 8] is a black-box meta-learning approach,
which aims to learn task-specific parameters to be
used for test time prediction, from an LSTM trained
with a sequence of labeled training data.

Note that ERM and ARM are baselines for adapta-
tion with unlabeled test data, where MAML and MBB
are designed to adapt to labeled test data. Our proposed
DDML can be naturally extended to adapt labeled test
data, by taking labeled support set data as input to
adaptation function hφ, and evaluate the classification
loss on a labeled query set data on gθ′ . As a result, we
compare our proposed DDML with all the above base-
lines on three image classification benchmark datasets
below.
Rotated MNIST. We modify the MNIST by ro-
tating the images with 5◦ increments from 0◦ to
350◦ to generate the training data. We consider
two (2) domain dimensions for tasks on this dataset, in-
cluding i) the rotation degrees and ii) the number of
image classes (N) and the number of copies (k) for a
class in a task, namely, this dimension defines an N -
way-K-shot problem. For the N -way-K-shot dimension,
we only choose four settings, including 5-way-1-shot,
5-way-5-shot, 10-way-1-shot, and 10-way-5-shot.
AffNIST Dataset [10] imposes different affine trans-
formations on the MNIST data. The affine transforma-
tions includes counter-clockwise rotations (from −20◦ to
20◦), vertical and horizontal transitions, and vertical and
horizontal expansion. In the experiment, we consider
five (5) domain dimensions for tasks on this dataset, in-
cluding i) the rotation degrees, ii) transition, iii) vertical
expansion, iv) horizontal expansion, and v) the N -way-
K-shot setting.

For the rotation degree dimension, we divide the
rotations into 8 disjoint equal rotation degree bins.
For the transition dimension, we consider 4 quadrant
directions as four possible choices. For the vertical
and horizontal expansion dimensions, we equally divide
the expansion degree from 0.8 to 1.2 into 4 equal bins.
For the N -way-K-shot dimension, we only choose four
settings, including 5-way-1-shot, 5-way-5-shot, 10-way-1-
shot, and 10-way-5-shot.
Rotated Corrupted Image Datasets. We evaluate
DDML and all baselines on a rotated Tiny ImageNet-C
dataset [17]. This dataset augments the Tiny ImageNet
dataset using different types of image corruptions and
the level of severity. In the experiment, we consider
four (4) domain dimensions for tasks on this dataset, in-
cluding i) the rotation degrees, ii) the type of corruption,
iii) the severity level of the corruption, and iv) the N -
way-K-shot setting.

For the domain dimension i) of the rotation, we
consider 4 rotation degrees including 10◦ and 30◦ for
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Table 1: State-of-the-art performance comparison on testing accuracy (with standard deviations in parentheses)
over domains with metrics BCA (best case accuracy), AA (average accuracy) and WCA (worst case accuracy).

Method & Setup Rotated MNIST AffNIST Rotated Tiny ImageNet-C
AA WCA AA WCA BCA AA WCA

ERM 81.9 (0.2) 62.0 (0.8) 92.2 (0.2) 83.5 (0.2) 56.7 (0.7) 50.3 (0.7) 37.3 (1.7)
ARM 97.1 (0.3) 94.0 (0.7) 96.3 (0.2) 90.5 (0.5) 58.2 (0.6) 51.3 (0.6) 35.0 (1.2)
MBB 92.8 (0.2) 80.0 (1.0) 94.0 (1.1) 82.3 (1.4) 58.0 (0.7) 51.0 (0.6) 34.0 (1.7)

MAML 92.8 (0.4) 87.2 (1.2) 93.6 (0.4) 80.2 (0.9) 57.2 (0.5) 49.8 (0.5) 30.7 (1.0)
DDML (Ours) 98.1 (0.1) 95.9 (0.6) 98.3 (0.2) 93.4 (0.7) 62.7 (0.9) 54.1 (0.8) 42.7 (1.0)

(a) DDML (Ours) on rotated MNIST. (b) ARM on rotated MNIST. (c) ERM on rotated MNIST.

Figure 3: tSNE results of ARM, DDML and ERM by learned hidden features on rotated MNIST.

the training data, and 20◦ and 40◦ for the test data.
For the domain dimension ii) of the corruption type,
we consider seven different corruption types from [17].
For the domain dimension iii) of the severity level, we
consider two severity levels (i.e., high and low). For iv)
the N -way-K-shot dimension, we consider four settings,
including 10-way-1-shot, 10-way-5-shot, 20-way-1-shot,
and 20-way-5-shot.

For all the experiments, we report the average
accuracy (AA) over all domains, the worst case accuracy
(WCA) on the worst performed domain, and best
case accuracy (BCA) on the best-performed domain.
We delegate more implementation details and model
architectures in Appendix.

4.2 DDML Performance

Tab. 1 summarizes our state-of-the-art result comparison,
where our DDML model outperforms baselines over
all datasets in the best case accuracy (BCA), average
accuracy (AA), and worst case accuracy (WCA). This
shows that the proposed DDML has good generalization
ability over all domain shifts at test time. Below, we use
tSNE4 to visualize and understand the learned hidden
features in the prediction model, and show how model
accuracy evolves when the test domain shifts along

4tSNE is a dimension reduction approach for the visualization
of a high-dimensional data. See details in [30].

different domain dimensions. For brevity, we present
results for the setting of unlabeled adaptation, where
similar results for labeled adaptation are in Appendix.

Looking over different N -way-K-shot tasks of a
fixed dataset, Fig. 3 shows the tSNE results on learned
hidden features of test images sampled from different test
domains on rotated MNIST. Comparing with baselines
ARM and ERM, we observe that the hidden features
learned by DDML (captured from the last hidden layer in
the prediction network gθ) generate more compact data
clusters with clearer cluster separations. This echoes and
explains the classification accuracy results in Tab. 1, that
the adapted models by DDML can better capture key
features to classify the input images than other baselines.
For other datasets, we obtained similar results, and we
delegate them to Appendix.

Next, we evaluate how the accuracy changes, when
the test domain shifts along different domain dimensions.
Fig. 4 and Fig. 5 show the comparison results to all
baselines on the rotated MNIST and affNIST datasets,
respectively. Our DDML outperforms all baselines in
different settings.

4.3 How well is the domain disentangled?

Fig. 6 and Fig. 7 show the tSNE results on learned do-
main representations of each test task with ARM [9]
and our model DDML on the rotated MNIST and the
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Figure 4: Rotated MNIST results. Figure 5: AffNIST results.

Figure 6: tSNE of learned domain represen-
tations on rotated MNIST.

Figure 7: tSNE of learned domain representations on affNIST.

affNIST data respectively. Note that the domain repre-
sentation in DDML is a concatenation of [h1, · · · , hM ]
from M adaptation networks, while that of ARM is the
output vector from its adaptation network. Based on
the data compactness within a cluster and data distance
across clusters, we observe that DDML extracts higher
quality domain representations than ARM. In rotated
MNIST, we first apply tSNE on the domain representa-
tions from ARM and DDML by coloring the tasks by
their rotation degrees. As shown in Fig. 6a, the domain
representations learned from DDML can better capture
different rotation degrees, as tasks with the same rota-
tion degree are clearly clustered. In contrast, with ARM,
the tasks with different rotation degrees are not well
clustered. In Fig. 6b, we show tSNE results by color-
ing test tasks in the two N -way-K-shot settings. We
observe that there is no clear cluster structure for the
domain dimension of N -way-K-shot. This shows that
the rotation degree is a dominant domain dimension on
rotated MNIST.

Fig. 7a shows tSNE results on test tasks from
affNIST data, colored by their rotation degrees. Clearly,
test tasks are not clustered by their rotation degrees. On
the other hand, looking at the domain dimensions of N -
way-K-shot and quadrant translation, we observe from
Fig. 7b that these two domain dimensions dominate
the clustering structure of test tasks. It shows that
our model DDML extracts eight task clusters with each
cluster representing a combination of N -way-K-shot and
quadrant translation. However, for ARM in Fig. 7b, the
test tasks are only grouped in four clusters by different
quadrant-transitions.

These observations show that DDML can extract
higher quality domain representations than ARM. As
a result, with the disentangled domain representation,
DDML can thus better adapt the prediction function gθ
to test tasks.
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(a) Accuracy w/ domain disentangle-
ment.

(b) Accuracy w/ domain representa-
tion size.

(c) AffNIST training curves.

Figure 8: Performance with different training data size and disentangled domain dimension number on affNIST (a),
with different domain representation size on rotated Tiny ImageNet-C (b), and the training curve on affNIST (c).

4.4 Ablation Studies & Convergence Analysis

In this section, we investigate how various hyper-
parameters affect the performances of the proposed
DDML, including i) the size of training data, ii) the
number of domain dimensions disentangled, and iii) the
size of domain representation vector. We also conduct
convergence analysis of our DDML.
• Impact of training data size. Now, we investigate how
the training data size affects the performance of DDML.
We do experiments on the affNIST dataset with either
the entire dataset as training dataset or a portion of
it, i.e., 100% (all), 80%, 60%, 40%, and 20% of the
entire dataset. Fig. 8a shows the results. The x-axis
represents the DDML models with different numbers
of domain dimensions disentangled. The y-axis shows
the average test accuracy, The curves in different colors
represent the results obtained with different training
data sizes. Clearly, when increasing the training data
size, the DDML performance increases accordingly.
• Impact of the number of disentangled domain dimen-
sions. Now, we examine how the number of disentangled
domain dimensions affect the DDML performances. We
conduct experiments on the affNIST dataset by using
different numbers (from 1 to 5) of (parallel) adaptation
networks to extract the domain representation. Note
that when only one adaptation network is used, it is
equivalent to the ARM approach. Fig. 8a shows the av-
erage accuracy over test tasks. It shows a clear increase
in average model performance when more domain dimen-
sions are disentangled. Moreover, with different training
data sizes, Fig. 8a shows that there is more performance
space to improve when smaller training datasets are used.
For example, when using 20% (blue) and 40% (yellow)
of training data, DDML (with 5 disentangled domain

dimensions) can improve the classification accuracy by
4%, comparing to 2% when (100%) all training data are
used.
• Impact of the size of domain representation. We further
investigate how the size of domain representation affects
the performance in DDML vs ARM [9]. Fig. 8b shows
the performance changes (i.e., average accuracy over
test domains, the best case accuracy, and the worst case
accuracy) with respect to the latent variable dimensions,
namely, the number of channels, using the rotated Tiny
ImageNet-C data. In general, we observe that in both
ARM and DDML, increasing the latent dimension to be
large (i.e., more than 5) does not promote performance.
This is likely due to the meta-overfitting of a large
model [25].
• Convergence rate. Fig. 8c shows the training curve
of both ARM and DDML on the affNIST dataset.
We only show the two training curves (of DDML and
ARM), because they have the same objective, thus are
comparable. From Fig. 8c, we observe that DDML shows
a faster convergence rate than ARM. We observe similar
convergence properties on all other datasets, and we
delegate their results to Appendix.

5 Conclusion

In this paper, we study the problem of domain shift (or
distribution shift) in a high-dimensional domain space,
namely, the test data may shift significantly from the
training data across a high-dimensional data domain,
which significantly decreases the average predictive
power of the learned model. We propose a domain
disentangled meta-learning (DDML) framework that
learns an adaptable meta-model from training tasks with
a domain disentanglement module, and adapts it to the
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domain disentangled representations of test-time data.
Our results on three image classification benchmark
datasets, including rotated MNIST, affNIST, rotated
Tiny ImageNet-C, show promising results, comparing
to state-of-the-art baseline approaches in meta-learning
and empirical risk minimization.
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