
Revisiting Sparse Convolutional Model for Visual
Recognition

Xili Dai1∗ Mingyang Li2 * Pengyuan Zhai3 Shengbang Tong4 Xingjian Gao4

Shao-Lun Huang2 Zhihui Zhu5 Chong You4 Yi Ma2,4

1The Hong Kong University of Science and Technology (Guangzhou)
2Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University

3 Harvard University 4 University of California, Berkeley 5 Ohio State University

Abstract

Despite strong empirical performance for image classification, deep neural net-
works are often regarded as “black boxes” and they are difficult to interpret. On
the other hand, sparse convolutional models, which assume that a signal can
be expressed by a linear combination of a few elements from a convolutional
dictionary, are powerful tools for analyzing natural images with good theoretical in-
terpretability and biological plausibility. However, such principled models have not
demonstrated competitive performance when compared with empirically designed
deep networks. This paper revisits the sparse convolutional modeling for image
classification and bridges the gap between good empirical performance (of deep
learning) and good interpretability (of sparse convolutional models). Our method
uses differentiable optimization layers that are defined from convolutional sparse
coding as drop-in replacements of standard convolutional layers in conventional
deep neural networks. We show that such models have equally strong empirical
performance on CIFAR-10, CIFAR-100 and ImageNet datasets when compared to
conventional neural networks. By leveraging stable recovery property of sparse
modeling, we further show that such models can be much more robust to input
corruptions as well as adversarial perturbations in testing through a simple proper
trade-off between sparse regularization and data reconstruction terms. Source code
can be found at https://github.com/Delay-Xili/SDNet.

1 Introduction

In recent years, deep learning has been a dominant approach for image classification and has
significantly advanced the performance over previous shallow models. Despite the phenomenal
empirical success, it has been increasingly realized as well as criticized that deep convolutional
networks (ConvNets) are “black boxes” for which we are yet to develop clear understanding [1]. The
layer operations such as convolution, nonlinearity and normalization are geared towards minimizing
an end-to-end training loss and do not have much data-specific meaning. As such, the functionality
of each intermediate layer in a trained ConvNets is mostly unclear and the feature maps that they
produce are hard to interpret. The lack of interpretability also contributes to the notorious difficulty
in enhancing such learning systems for practical data which are usually corrupted by various forms
of perturbation.

This paper presents a visual recognition framework by introducing layers that have explicit data
modeling to tackle shortcomings of current deep learning systems. We work under the assumption
that the layer input can be represented by a few atoms from a dictionary shared by all data points. This
∗Equal contribution

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/Delay-Xili/SDNet

is the classical sparse data modeling that, as shown in a pioneering work of [2], can easily discover
meaningful structures from natural image patches. Backed by its ability in learning interpretable
representations and strong theoretical guarantees [3, 4, 5, 6, 7, 8] (e.g. for handling corrupted
data), sparse modeling has been used broadly in many signal and image processing applications
[9]. However, the empirical performance of sparse methods have been surpassed by deep learning
methods for classification of modern image datasets.

Because of the complementary benefits of sparse modeling and deep learning, there exist many
efforts that leverage sparse modeling to gain theoretical insights into ConvNets and/or to develop
computational methods that further improve upon existing ConvNets. One of the pioneering works is
[10] which interpreted a ConvNet as approximately solving a multi-layer convolutional sparse coding
model. Based on this interpretation, the work [10] and its follow-ups [11, 12, 13, 14] presented
alternative algorithms and models in order to further enhance the practical performance of such
learning systems. However, there has been no empirical evidence that such systems can handle modern
image datasets such as ImageNet and obtain comparable performance to deep learning. The only
exception to the best of our knowledge is the work of [15, 16] which exhibited a performance on par
to (on ImageNet) or better than (on CIFAR-10) ResNet. However, the method in [15, 16] 1) requires a
dedicated design of network architecture that may limit its applicability, 2) is computationally orders
of magnitude slower to train, and 3) does not demonstrate benefits in terms of interpretability and
robustness. In a nutshell, sparse modeling is yet to demonstrate practicality that enables its broad
applications.

Paper contributions. In this paper, we revisit sparse modeling for image classification and demon-
strate through a simple design that sparse modeling can be combined with deep learning to obtain
performance on par with standard ConvNets but with better layer-wise interpretability and stability.
Our method encapsulates the sparse modeling into an implicit layer [17, 18, 19] and uses it as a
drop-in replacement for any convolutional layer in standard ConvNets. The layer implements the
convolutional sparse coding (CSC) model of [20], and is referred to as a CSC-layer, where the input
signal is approximated by a sparse linear combination of atoms from a convolutional dictionary. Such
a convolutional dictionary is treated as the parameters of the CSC-layer that are amenable to training
via back-propagation. Then, the overall network with the CSC-layers may be trained in an end-to-end
fashion from labeled data by minimizing the cross-entropy loss as usual. This paper demonstrates
that such a learning framework has the following benefits:

• Performance on standard datasets. We demonstrate that our network obtains better (on CIFAR-
100) or on par (on CIFAR-10 and ImageNet) performance with similar training time compared with
standard architectures such as ResNet [21]. This provides the first evidence on the strong empirical
performance of sparse modeling for deep learning to the best of our knowledge. Compared
to previous sparse methods [15] that obtained similar performance, our method is of orders of
magnitude faster.

• Robustness to input perturbations. The stable recovery property of sparse convolution model
equips the CSC-layers with the ability to remove perturbation in the layer input and to recover clean
sparse code. As a result, our networks with CSC-layers are more robust to perturbations in the
input images compared with classical neural networks. Unlike existing approaches for obtaining
robustness that require heavy data augmentation [22] or additional training techniques [23], our
method is light-weight and does not require modifying the training procedure at all.

2 Related Work

Implicit layers. The idea of trainable layers defined from implicit functions can be traced back at
least to the work of [24]. Recently, there is a revival of interests in implicit layers [17, 18, 19, 25,
26, 27, 28, 29] as an attractive alternative to explicit layers in existing neural networks. However, a
majority of the cited works above define an implicit layer by a fixed point iteration, typically motivated
from existing explicit layers such as residual layers, therefore they do not have clear interpretation
in terms of modeling of the layer input. Consequently, such models do not have the ability to deal
with input perturbations. The only exceptions are differentiable optimization layers [30, 17, 18, 31]
that incorporate complex dependencies between hidden layers through the formulation of convex
optimization. Nevertheless, most of the above works focus on differentiating through the convex
optimization layers (such as disciplined parametrized programming [18]) without specializing in any

2

particular signal models such as the sparse models considered in this paper nor demonstrating their
performance when encapsulated in multi-layer neural networks.

Sparse prior in deep learning. Aside from image classification, sparse modeling has been intro-
duced to deep learning for many image processing tasks such as super-resolution [32], denoising [33]
and so on [34, 35, 36, 37]. These works incorporate sparse modeling by using network architectures
that are motivated by (but are not the same as) an unrolled sparse coding algorithm LISTA [38]. In
sharp contrast to ours, there is no guarantee that such architectures perform a sparse encoding with
respect to a particular (convolution) dictionary at all. As a result, they lack the capability of handling
input perturbations as in our method. A notable exception is the work of [15] where each layer
performs a precise sparse encoding and exhibits on par or better performance for image classification
over ResNet. However, the practical benefit of the sparse modeling in terms of robustness is not
demonstrated. Moreover, [15] adopts a patch-based sparse coding model for images and has a large
computational burden.

Robustness. It is known that modern neural networks are extremely vulnerable to small perturbations
in the input data. A plethora of techniques have been proposed to address this instability issue,
including stability training [23], adversarial training [39, 40, 41], data augmentation [42, 43, 22],
etc. Nevertheless, these techniques either need a computational and memory overhead, or require
a selection of appropriate augmentation strategies to cover all possible corruptions. With standard
training only, our model can be made robust to input perturbations in test data by simply adapting
sparse modeling to account for noise. Closely related to our work are [44, 45, 46] which use sparse
modeling to improve adversarial robustness. However, they either only demonstrate performance
on very simple networks [45, 46] or sacrifice natural accuracy for robustness [44]. In contrast, our
method is tested on realistic networks and does not affect natural accuracy.

3 Neural Networks with Sparse Modeling

In this section, we show how sparse modeling is incorporated into a deep network via a specific type
of network layer that we refer to as the convolutional sparse coding (CSC) layer. We describe the
CSC-layer in Sec. 3.1 and explain how we use them for deep learning in Sec. 3.2. Finally, Sec. 3.3
explains how CSC enables robust inference with corrupted test data.

Notations. Given a single-channel image ξ ∈ RH×W represented as a matrix, we may treat it as a
2D signal defined on the discrete domain [1, . . . ,H]× [1, . . . ,W] and extended to Z×Z by padding
zeros. Given a 2D kernel α ∈ Rk×k, we may treat it as a 2D signal defined on the discrete domain
[−k0 · · · , k0]× [−k0, · · · , k0] with k = 2k0 + 1 and extended to Z×Z by padding zeros. Then, for
convenience, we use “∗” and “?” to denote the convolution and correlation operators, respectively,
between two 2D signals:

(α ∗ ξ)[i, j]
.
=
∑
p

∑
q

ξ[i− p, j − q] ·α[p, q],

(α ? ξ)[i, j]
.
=
∑
p

∑
q

ξ[i+ p, j + q] ·α[p, q].
(1)

3.1 Convolutional Sparse Coding (CSC) Layer

Sparse modeling is introduced in the form of an implicit layer of a neural network. Unlike classical
fully-connected or convolutional layers in which input-output relations are defined by an explicit
function, implicit layers are defined from implicit functions. For our case, in particular, we introduce
an implicit layer that is defined from an optimization problem involving the input to the layer as well
as a weight parameter, where the output of the layer is the solution to the optimization problem.

A generative model via sparse convolution. Concretely, given a multi-dimensional input signal
x ∈ RM×H×W to the layer where H,W are spatial dimensions and M is the number of channels for
x. We assume the signal x is generated by a multi-channel sparse code z ∈ RC×H×W convoluting
with a multi-dimensional kernelA ∈ RM×C×k×k, which is referred to as a convolution dictionary.
Here C is the number of channels for z and the convolution kernelA. To be more precise, we denote

3

z as z .
= (ζ1, . . . , ζC) where each ζc ∈ RH×W (presumably sparse), and denote the kernelA as

A
.
=


α11 α12 α13 . . . α1C

α21 α22 α23 . . . α2C

...
...

...
. . .

...
αM1 αM2 αM3 . . . αMC

 ∈ RM×C×k×k, (2)

where each αij ∈ Rk×k is a kernel of size k × k. Then the signal x is generated via the following
operator A(·) defined by the kernelA as:

x = A(z)
.
=

C∑
c=1

(
α1c ? ζc, . . . ,αMc ? ζc

)
∈ RM×H×W . (3)

A layer as convolutional sparse coding. Given a multi-dimensional input signal x ∈ RM×H×W ,
we define that the function of “a layer” is to perform an (inverse) mapping to a preferably sparse
output z∗ ∈ RC×H×W , whereC is the number of output channels. Under the above sparse generative
model, we can seek the optimal sparse solution z by solving the following Lasso type optimization
problem:

z∗ = arg min
z
λ‖z‖1 +

1

2
‖x−A(z)‖22 ∈ RC×H×W . (4)

Figure 1: Illustration of the operator A in the convolu-
tional sparse coding model for the CSC-layer.

The optimization problem in (4) is based
on the convolutional sparse coding (CSC)
model [20]2. Hence, we refer to the im-
plicit layer defined by (4) as a CSC-layer.
The goal of the CSC model is to reconstruct
the input x via A(z), where the feature
map z specifies the locations and magni-
tudes of the convolutional filters inA to be
linearly combined (see Figure 1 for an illus-
tration). The reconstruction is not required
to be exact in order to tolerate modeling
discrepancies, and the difference between
x and A(z) is penalized by its entry-wise
`2-norm (i.e., the `2 norm of x−A(z) flat-
tened into a vector). Sparse modeling is
introduced by the entry-wise `1-norm of z
in the objective function, which enforces z
to be sparse. The parameter λ > 0 controls the tradeoff between the sparsity of z and the magnitude of
the residual x−A(z), and is treated as a hyper-parameter that subjects to tuning via cross-validation.
As we will show in Sec. 3.3, λ can be used to improve the performance of our model in the test phase
when the input is corrupted.

Based on the input-output mapping of the CSC-layer given in (4), one may perform forward propa-
gation by solving the associated optimization, and perform backward propagation by deriving the
gradient of z∗ with respect to the input x and parameterA. In this paper, we adopt the fast iterative
shrinkage thresholding algorithm (FISTA) [47] for the forward propagation, which also produces an
unrolled network architecture that can carry out automatic differentiation for backward propagation.
We defer a discussion of the implementation details of the CSC-layer to the Appendix.

3.2 Sparse Dictionary Learning Network Architecture and Training

Convolution layers are basic ingredients of ConvNets that appear in many common network archi-
tectures such as LeNet [48] and ResNet [49]. In this paper, we incorporate sparse modeling into a
given existing/baseline network architecture by replacing certain / all convolution layers with the
CSC-layer. Meanwhile, all other layers such as normalization, nonlinear, and fully connected layers

2Typically, convolution operators “∗” are used in the definition of the operator A (see (3)), rather than the
correlation operators “?”. We adopt the definition in (3) to be consistent with the convention of modern deep
learning packages.

4

are retained. This simple design choice allows the CSC-layers to be broadly applicable. We will refer
to our network with CSC-layers as Sparse Dictionary learning Network (SDNet).

Give a set of training data {xi,yi}Ni=1 where xi denotes an image and yi is the corresponding label,
we train a network with CSC-layers by solving the following optimization problem:

min
θ

1

N

N∑
i=1

`CE

(
f(xi; θ),yi

)
s.t. As ∈ N ∀s ∈ S, (5)

where `CE denotes the cross-entropy loss. In above, we use f(·; θ) to denote the mapping that is
performed by the neural network, where θ is a set of learnable parameters containing a subset of
kernel parameters {As}s∈S associated with the set S of CSC-layers. Following the convention in the
sparse dictionary learning literature, we add the constraintAs ∈ N for the dictionaries in CSC-layers,
where N denotes the set of normalized dictionaries:

N .
=

{
A ∈ RM×C×k×k :

M∑
m=1

‖αmc‖22 = 1, ∀c ∈ [C]

}
.

To handle such a constraint, we use the projected stochastic gradient descent (SGD) for solving the
problem in (5). That is, after each gradient update step for the parameters θ and {As}s∈S as in a
regular SGD, an extra step is taken to project eachAs onto the constraint set N .

3.3 Robust Inference

The fundamental difference of the CSC-layer vis-a-vis a classical explicit layer (e.g., a convolutional
layer) is that the CSC-layer imposes an assumption on the input feature map. That is, it assumes
that the input feature map (or image) can be approximated by a superposition of a few atoms of a
dictionary, which is the layer parameter that is learnable and is shared across all data. In this section,
we show that CSC-layers enables us to design a robust inference strategy to obtain robustness to
corruptions in ways that cannot be achieved by classical explicit layers.

We leverage an attractive property of the CSC model is that it admits a stable recovery of the sparse
signals with respect to input noise.

In particular, Theorem 1 shows that any bounded perturbation to the input of a CSC-layer produces a
bounded perturbation to its output and does not change the support of the output, if one uses a λ in (4)
that is proportional to the norm of the perturbation in the layer input, provided that certain technical
conditions are satisfied.
Theorem 1. (Informal version of [50, Theorem 19]) Suppose x\ has a representation A(z\) as in
(3), and that it is contaminated by noise e to create the input x = x\ + e. Then as long as z\ is
sufficiently sparse, the solution z∗ to (4) with λ = O(‖e‖2) satisfies (i) the support of z∗ is contained
in that of z\ and (ii) ‖z∗ − z\‖2 = O(‖e‖2).

Intuitively, the parameter λ in (4) controls a balance between the sparsity regularization ‖z‖1 and the
residual x−A(z), the latter of which accounts for modeling discrepancies and increases when x is
noisy. Therefore, using a larger value of λ helps the model to handle a larger residual.

We thus present a very simple approach to obtain model robustness. We consider the setting where a
model is trained on an uncorrupted dataset but is tested on data that is corrupted by random noise.
Corruptions in the input image may propagate into deeper feature maps (hence corrupting the input
of all CSC-layers) during forward propagation. Therefore, instead of directly using the CSC-layers
that are obtained from the training phase, our method is to adjust the trade-off parameter λ in the
CSC-layers for the test data. As we show in the experiments (see Sec. 4.2), an optimal value of λ
indeed increases with the variance of the noise in the input image, which is well-aligned with the
result in Theorem 1.

Choosing the optimal λ. In practical applications, the amount of noise in a given test dataset is often
unknown. Hence, the optimal choice of parameter λ becomes a nontrivial task. Here we present a
practical technique for determining a proper choice of value λ, based on the simple observation that
the amount of noise in the test data correlates with the magnitude of the residual x − A(z). That
is, for test data corrupted by a larger amount of noise, we expect the magnitude of the residual in
CSC-layers to become larger with such data fed into the network. Since the residual for any test data

5

Algorithm 1 Robust inference with neural networks constructed from CSC-layers
Input: A network architecture with CSC-layers f(·;θ, λ0), a (clean) training data Ttrain, a (corrupted)

test data Ttest, corruption type T, a set C of corruption levels, a set Λ of values for λ.
1: # Training the network
2: Train the network f(·;θ, λ0) on Ttrain as described in Sec. 3.2 to obtain learned parameters θ?.
3: # Fitting a relationship between optimal λ and the residual from CSC-layers using Ttrain
4: for each noise level c ∈ C do
5: Generate corrupted data T ctrain by injecting random noise of type T with level c to Ttrain.
6: Apply f(·;θ?, λ0) on T ctrain and compute averaged residual from all CSC-layers as rc.
7: for each parameter λ ∈ Λ do
8: Apply f(·;θ?, λ) on T ctrain and compute averaged accuracy as aλ.
9: end for

10: Set λc = arg maxλ∈Λ aλ.
11: end for
12: Fit a function λ := λ(r) from {λc, rc}c∈C via linear least squares.
13: # Computing the residual from CSC-layers on Ttest
14: Apply f(·;θ?, λ0) on Ttest and compute averaged residual from all CSC-layers as rtest.
Output: Predicted labels on Ttest with the network f(·;θ?, λ(rtest)).

can always be computed, the key question here is how we can find a relationship between an optimal
value λ and the magnitude of the residual.

Our technique for addressing this challenge is to learn such a relationship on the training set, by
injecting synthetic data corruptions. For simplicity we summarize our technique in Algorithm 1,
and explain it in details below. We assume that although the amount of noise in a test dataset Ttest is
unknown, the type of the noise (e.g., Gaussian noise, shot noise, etc.) is known. Given the noise type,
we first determine a set C which contains a set of values specifying the potential amount of noise
in test data. For example, if we consider Gaussian noise, then C contains a set of values specifying
the variance of the noise. We also specify a set Λ of potential values for λ to be used for inference.
After training the network as specified in Step 2, we use a procedure described in between Step 4 and
Step 12 to fit a function that maps a residual value r to an optimal choice of λ. The idea for fitting
such a relation is to generate synthetic noise of varying magnitudes in C on the training set, and for
each noise magnitude we sweep the parameter λ ∈ Λ to find a λ that produces the best accuracy on
training set. Once such a relationship is learned, we feed in the residual value computed on the test
dataset Ttest to predict an optimal λ to be used for inference on test data, as described in Step 14.

4 Experiments

In this section, we provide experimental evidence for neural networks with CSC-layers as discussed
in Sec. 3. Through experiments on CIFAR-10, CIFAR-1003, and ImageNet4, Sec. 4.1 shows that our
networks have equally competitive classification performance as mainstream architectures such as
ResNet. Furthermore, we show in Sec. 4.2 that our network is able to handle input perturbations with
the robust inference technique. Finally, we demonstrate in Sec. 4.3 that our network is able to handle
adversarial perturbations as well. More details about implementation are given in the Appendix.
Datasets. We test the performance of our method using the CIFAR-10 and CIFAR-100 [51] datasets.
Each dataset contains 50,000 training images and 10,000 testing images where each image is of size
32× 32 with RGB channels. We also use the ImageNet dataset [52] that contains 1,000 classes and a
total number of around 1 million images.
Network architecture. We use the network architectures with the first convolutional layers of
ResNet-18 and ResNet-34 [21]5 replaced by CSC-layers, and refer to these networks as SDNet-18
and SDNet-34, respectively. We use λ = 0.1 as the trade-off parameter in (4) for all CSC-layers

3CIFAR-10 and CIFAR-100 are available at https://www.cs.toronto.edu/~kriz/cifar.html
4ImageNet is a publicly available dataset: https://www.image-net.org
5We use the implementation at https://github.com/kuangliu/pytorch-cifar, which is under the

MIT License with Copyright (c) 2017 liukuang.

6

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.image-net.org
https://github.com/kuangliu/pytorch-cifar

Table 1: Comparison of different network archtectures, including ResNet, Multi-scale Deep Equalib-
rium (MDEQ), Sparse Coding Network (SCN, SCN-first), and our SDNet, for image classification
tasks. We report the number of model parameters (i.e., Model Size), accuracy on test data (i.e., Top-1
Acc), GPU memory consumption during training (i.e., Memory), and the number of images that are
handled per second (n/s) during training (i.e., Speed).

Dataset Architecture Model Size Top-1 Acc Memory Speed

CIFAR-10

ResNet-18 [21] 11.2M 95.54% 1.0 GB 1600 n/s
ResNet-34 [21] 21.1M 95.57% 2.0 GB 1000 n/s

MDEQ [27] 11.1M 93.80% 2.0 GB 90 n/s
SCN [15] 0.7M 94.36% 10.0GB 39 n/s
SCN-18 11.2M 95.12% 3.5 GB 158 n/s

SDNet-18 (ours) 11.2M 95.20% 1.2 GB 1500 n/s
SDNet-34 (ours) 21.1M 95.57% 2.4 GB 900 n/s

CIFAR-100

ResNet-18 [21] 11.2M 77.82% 1.0 GB 1600 n/s
ResNet-34 [21] 21.1M 78.39% 2.0 GB 1000 n/s

MDEQ [27] 11.2M 74.12% 2.0 GB 90 n/s
SCN [15] 0.7M 80.07% 10.0GB 39 n/s
SCN-18 11.2M 78.59% 3.5 GB 158 n/s

SDNet-18 (ours) 11.3M 78.31% 1.2 GB 1500 n/s
SDNet-34 (ours) 21.2M 78.48% 2.4 GB 900 n/s

ImageNet

ResNet-18 [21] 11.7M 68.98% 24.1 GB 2100 n/s
ResNet-34 [21] 21.5M 72.83% 32.3 GB 1400 n/s

SCN [15] 9.8M 70.42% 95.1 GB 51 n/s
SDNet-18 (ours) 11.7M 69.47% 37.6 GB 1800 n/s
SDNet-34 (ours) 21.5M 72.67% 46.4 GB 1200 n/s

unless specified otherwise. Forward propagation through each CSC-layer is performed via unrolling
two iterations of FISTA.
Network training. For CIFAR-10 and CIFAR-100, we use a cosine learning rate decay schedule
with an initial learning rate of 0.1, and train the model for 220 epochs. We use the SGD optimizer
with 0.9 momentum and Nestrov. The weight decay is set to 5× 10−4, and batch size is set to 128.
All the experiments are conducted on a single NVIDIA GTX 2080Ti GPU. For ImageNet, we use
multi-step learning rate decay schedule with an initial learning rate of 0.1 decayed by a factor of 0.1
at the 30th, 60th, and 90th epochs, and train the model for 100 epochs. The batch size is 512, and the
optimizer is SGD with 0.9 momentum and Nestrov. All experiments on ImageNet are conducted on 4
NVIDIA RTX 3090 GPUs.

4.1 Performance for Image Classification

We compare our method with standard network architectures ResNet-18 and ResNet-34 [21]. In
addition, we compare architectures with implicit layers (i.e., MDEQ [27]) and architectures with
sparse modeling (i.e., SCN [15]). For ResNet-18 and ResNet-34, we train the model using the same
setup as our SDNet models. For MDEG and SCN, we train the models using the settings as stated
in their respective papers. SCN has both a different sparse coding layer and a different network
architecture compared to our SDNet. Hence, we also include a baseline referred to as SCN-18, which
is constructed by replacing the first convolutional layer of ResNet-18 with the sparse coding layer
from SCN (hence has the same architecture as SDNet-18 but a different sparse coding layer).

The results are reported in Table 1. We see that with similar model size, SDNet-18/34 produces a
Top-1 accuracy that closely matches (for CIFAR-10 and ImageNet) or surpasses (for CIFAR-100)
that of ResNet-18/34 while having a comparable speed. This shows the potential of our network with
modeling based layers as a powerful alternative to existing data-driven models, since our model has
the additional benefit of handling corruptions.

7

(a) Gaussian Noise (b) Shot Noise (c) Speckle Noise (d) Impulse Noise

Figure 2: Test accuracy of SDNet-18 trained on CIFAR-10 dataset with λ = 0.1 and evaluated on 4
types of additive noise from CIFAR-10-C [53] in 5 severity levels each with varying values of λ. For
each corruption type, optimal value of λ for testing increases monotonically with the severity level.

We also compare our SDNet-18 model with the MDEQ model, which has a similar model size, and
see that SDNet-18 is not only more accurate than MDEQ but is much (> 7 times) faster. Note that
MDEQ cannot handle corrupted data as in our method as well.

The SCN network, which also uses sparse modeling, obtains a Top-1 accuracy that is highly competi-
tive to all methods. However, a significant drawback of SCN is that it is very slow to train. This is
true even with SCN-18, where only one convolutional layer is replaced by the sparse coding layer.
The reason may be that SCN uses a patch-based sparse coding model for images, in contrast to a
convolutional sparse coding model as in our method, which requires solving many sparse coding
problems in each forward propagation that cannot benefit from parallel computing.

4.2 Handling Input Perturbations

To test the robustness of our method to input perturbations, we use the CIFAR-10-C dataset [53]
which contains a test set for CIFAR-10 that is corrupted with different types of synthetic noise and
5 severity levels for each type. Because the CSC model in (4) penalizes the entry-wise difference
between input and reconstructed signals, it is more suited for handling additive noises. Hence, we
focus on four types of additive noises in CIFAR-10-C, namely, Gaussian noise, shot noise, speckle
noise, and impulse noise. We evaluate the accuracy of our SDNet-18 and compare its performance
with ResNet-18.

Robustness as a function of λ. As discussed in Sec. 3.3, we may improve the performance of our
model to noisy test data by using values of λ that are different from the training phase. Therefore,
we report the performance of our method with varying λ in the range of [0.1, 1.5] in Figure 2 (recall
that λ = 0.1 is used for training). It can be seen that for all types of noises and all severity levels
(except for impulse noise with levels 0, 1, and 2), properly choosing a value of λ that is different from
that used during training helps to improve the test performance. In particular, the accuracy curves as
a function of λ exhibit a unimodal shape where the performance first increases and then decreases.
Moreover, within each corruption type the values of λ where a peak performance is achieved increase
monotonically with the severity level of the corruption. Such an observation is well-aligned with our
discussion in Sec. 3.3.

Choosing an optimal λ. While Figure 2 demonstrates that one may improve the performance on
corrupted data via a proper choice of λ, it does not show how to choose the best λ in practice. Here
we show that the technique presented in Algorithm 1 can be used to select λ for robust inference.
Specifically, we apply Algorithm 1 with f(·;θ, λ0) being SDNet-18 with λ0 = 0.1, Ttrain being the
CIFAR-10 training set, Ttest being CIFAR-10-C data with a particular type of corruption under a
particular severity level, and report the performance of the algorithm output in Table 2 and Table 3.

Table 2 shows the results with varying severity levels of Gaussian noise. We can see that if we use
the same λ = 0.1 as in training (i.e., SDNet-18 w/ λ = 0.1), then the performance of SDNet-18
is already significantly better ResNet-18. This may be attributed to the fact that the CSC-layer is
intrinsically more robust to input perturbations than convolution layers owning to its sparse modeling.
However, if we use an adaptive λ computed from Algorithm 1 (i.e., SDNet-18 w/ adaptive λ), then
the performance is further significantly improved at all noise levels. To demonstrate that our method
works beyond Gaussian noise, we report results for each of the four types of additive noises averaged
over all severity levels in Table 3 for CIFAR-10-C as well as ImageNet-C. The results demonstrate

8

Table 2: Classification result under varying severity levels of Gaussian noise on CIFAR-10-C with
λ = 0.1 (i.e., same as training) and with an adaptive λ computed from Algorithm 1.

Severity Level Level-0 Level-1 Level-2 Level-3 Level-4

ResNet-18 [21] 79.43% 56.17% 34.86% 28.23% 23.45%
SCN [15] 80.89% 60.21% 44.97% 37.79% 30.11%

SDNet-18 w/ λ = 0.1 81.78% 63.50% 43.86% 35.84% 27.92%
SDNet-18 w/ adaptive λ 84.76% 74.87% 61.38% 54.77% 48.84%
λ from linear fitting 0.49 0.60 0.75 0.84 0.94

Table 3: Classification result under varying corruption types (averaged over all severity levels for
each type) on CIFAR-10-C and ImageNet-C with λ = 0.1 (i.e., same as training) and with an adaptive
λ computed from Algorithm 1.

CIFAR-10-C ImageNet-C
Noise Type Gaussian Shot Speckle Impulse Gaussian Shot Impulse

ResNet-18 [21] 44.43% 57.88% 62.16% 51.72% 22.73% 21.78% 17.38%
SCN [15] 50.79% 62.97% 67.45% 54.19% - - -

SDNet-18 w/ λ = 0.1 50.58% 63.29% 67.11% 54.13% 24.98% 23.97% 19.12%
SDNet-18 w/ adaptive λ 64.92% 71.13% 71.42% 57.48% 29.16% 27.59% 22.01%

that sparse modeling enables us to effectively handle various types of additive noises in test data very
easily with the procedure in Algorithm 1.

(a) Gaussian Noise (b) Shot Noise (c) Speckle Noise (d) Impulse Noise

Figure 3: Relation between the optimal choice of λ and the magnitude of residual in CSC-layers
(i.e., {λc, rc}c∈C in Algorithm 1, drawn as red crosses) as well as the linear fitting (i.e., λ = λ(c) in
Algorithm 1, drawn as black lines) for four corruption types T ∈ {Gaussian, Shot, Speckle, Impulse}.

Finally, in Figure 3 we plot the relationship between the optimal choice of λ (in y-axis) and the
magnitude of residual in CSC-layers (in x-axis) learned from training data according to Algorithm 1.
We also plot the linear fitting of such a relation, which can be seen to provide a good quality
approximation for each of the four corruption types. On the other hand, we note that the fitted linear
relations differ across different types of corruption. Hence, it is important that the relationship is
estimated for each corruption type separately.

4.3 Handling Adversarial Perturbations
We show that our method also exhibits robustness to adversarial perturbations. In this experiment, we
generate adversarial perturbations on the CIFAR-10 test dataset using PGD attack on our SDNet (with
λ = 0.1), with L∞ norm of the perturbation being ε = 8/255 and L2 norm of the perturbation being
ε = 0.5, respectively. The robust accuracy of our method is reported in Table 4 and is compared with
that of ResNet-18. We can see that while SDNet does not perform much better than ResNet with
λ = 0.1, we may tune the parameter λ to drastically improve the robust accuracy.

4.4 Analysis

Effect of number of iterations. Recall from Sec. 3.1 that forward propagation through a CSC-layer
is performed by running a few iterative steps of the FISTA algorithm. Here we provide a study
on how the number of iterations affects model performance on ImageNet and ImageNet-C using
SDNet-18. The results are shown in Table 5. With the increasing number of FISTA iterations, the
model performance on both natural accuracy and robust accuracy improves.

9

Table 4: Robust accuracy on CIFAR-10 with adversarial perturbation using PGD attack.

Model Robust Accuracy
(L∞ = 8/255)

Robust Accuracy
(L2 = 0.5)

ResNet-18 [21] 0.01% 29.47%

SDNet-18 w/ λ = 0.1 0.11% 29.95%
SDNet-18 (After tuning λ) 35.18% 62.80%

Table 5: Effect of number of FISTA iteration on natural and robust accuracy (evaluated with ImageNet-
C) for SDNet-18 trained on ImageNet.

of FISTA Iterations Natural Accuracy Gaussian Shot Impulse

2 69.47% 29.16% 27.59% 22.01%
4 69.51% 29.69% 28.15% 24.15%
8 69.79% 30.91% 29.87% 25.69%

Replacing all convolution layer by the CSC-layer. We also train a version of SDNet obtained
from replacing all convolution layers of a ResNet with the CSC-layer (as opposed to only the first
convolution layer), and refer to such a model as SDNet-18-All and SDNet-34-All. On ImageNet we
observe that SDNet-18-All and SDNet-34-All obtain 69.37% and 72.54% Top-1 accuracy, respectively.
Comparing such results with those of SDNet-18/34 reported in Table 1, we see that the performance
is not significantly affected by replacing more convolution layers with CSC-layers (see Table D.1
in Appendix for more results). Moreover, SDNet-18/34-All enables us to develop a visualization
technique as described in the Appendix B.

5 Conclusion and Discussion

This paper revisits the classical sparse modeling and provides a simple way of using it to guide
the design of interpretable deep networks. Despite multiple prior attempts, our work is the first
to demonstrate that such a design can produce performance (in terms of accuracy, model size,
and memory) that is on par with standard ConvNets on modern image datasets such as ImageNet.
The success in combining sparse modeling with deep learning provides a means of borrowing and
utilizing the rich results in the well-developed field of sparse modeling [54, 55] for network design
and analysis. While it is not the purpose of this work to fully explore all potentials, our experiments
already demonstrate clear advantages of so-designed networks in handling various forms of data
corruption. Looking forward, other fundamental principles, algorithms, and techniques in sparse
modeling may be introduced to further enhance the capability of our presented framework. Along
this line, we provide some preliminary evidence on how sparse modeling enables interpretability in
the Appendix, and leave further study to future work.

Acknowledgments and Disclosure of Funding

Zhihui Zhu acknowledges support from NSF grants CCF-2240708. Shao-Lun Huang acknowledges
support from Shenzhen Science and Technology Program under Grant KQTD20170810150821146,
National Key R&D Program of China under Grant 2021YFA0715202 and High-end Foreign Expert
Talent Introduction Plan under Grant G2021032013L. Yi Ma acknowledges support from ONR
grants N00014-20-1-2002 and N00014-22-1-2102, the joint Simons Foundation-NSF DMS grant
#2031899, as well as partial support from Berkeley FHL Vive Center for Enhanced Reality and
Berkeley Center for Augmented Cognition, Tsinghua-Berkeley Shenzhen Institute (TBSI) Research
Fund, and Berkeley AI Research (BAIR).

References

[1] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

10

[2] Bruno A Olshausen and David J Field. Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature, 381(6583):607–609, 1996.

[3] Daniel A Spielman, Huan Wang, and John Wright. Exact recovery of sparsely-used dictionaries.
In Conference on Learning Theory, pages 37–1. JMLR Workshop and Conference Proceedings,
2012.

[4] Ju Sun, Qing Qu, and John Wright. Complete dictionary recovery over the sphere i: Overview
and the geometric picture. IEEE Transactions on Information Theory, 63(2):853–884, 2016.

[5] Yuqian Zhang, Han-Wen Kuo, and John Wright. Structured Local Optima in Sparse Blind
Deconvolution. IEEE Transactions on Information Theory, 66(1):419–452, 2019.

[6] Qing Qu, Yuexiang Zhai, Xiao Li, Yuqian Zhang, and Zhihui Zhu. Geometric Analysis of
Nonconvex Optimization Landscapes for Overcomplete Learning. In International Conference
on Learning Representations, 2019.

[7] Yuexiang Zhai, Zitong Yang, Zhenyu Liao, John Wright, and Yi Ma. Complete Dictionary Learn-
ing via `4-Norm Maximization over the Orthogonal Group. J. Mach. Learn. Res., 21(165):1–68,
2020.

[8] Yuexiang Zhai, Hermish Mehta, Zhengyuan Zhou, and Yi Ma. Understanding `4-based Dic-
tionary Learning: Interpretation, Stability, and Robustness. In International Conference on
Learning Representations, 2019.

[9] Julien Mairal, Francis Bach, and Jean Ponce. Sparse modeling for image and vision processing.
arXiv preprint arXiv:1411.3230, 2014.

[10] Vardan Papyan, Yaniv Romano, and Michael Elad. Convolutional neural networks analyzed via
convolutional sparse coding. The Journal of Machine Learning Research, 18(1):2887–2938,
2017.

[11] Jeremias Sulam, Vardan Papyan, Yaniv Romano, and Michael Elad. Multilayer convolutional
sparse modeling: Pursuit and dictionary learning. IEEE Transactions on Signal Processing,
66(15):4090–4104, 2018.

[12] Aviad Aberdam, Jeremias Sulam, and Michael Elad. Multi-layer sparse coding: The holistic
way. SIAM Journal on Mathematics of Data Science, 1(1):46–77, 2019.

[13] Zhiyang Zhang and Shihua Zhang. Towards understanding residual and dilated dense neural
networks via convolutional sparse coding. National Science Review, 8(3):nwaa159, 2021.

[14] George Cazenavette, Calvin Murdock, and Simon Lucey. Architectural adversarial robustness:
The case for deep pursuit. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 7150–7158, 2021.

[15] Xiaoxia Sun, Nasser M Nasrabadi, and Trac D Tran. Supervised deep sparse coding networks.
In 2018 25th IEEE International Conference on Image Processing (ICIP), pages 346–350. IEEE,
2018.

[16] Xiaoxia Sun, Nasser M Nasrabadi, and Trac D Tran. Supervised deep sparse coding networks
for image classification. IEEE Transactions on Image Processing, 29:405–418, 2019.

[17] Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural
networks. In International Conference on Machine Learning, pages 136–145. PMLR, 2017.

[18] Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and Zico
Kolter. Differentiable convex optimization layers. arXiv preprint arXiv:1910.12430, 2019.

[19] Stephen Gould, Richard Hartley, and Dylan Campbell. Deep declarative networks: A new hope.
arXiv preprint arXiv:1909.04866, 2019.

[20] Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Rob Fergus. Deconvolutional net-
works. In 2010 IEEE Computer Society Conference on computer vision and pattern recognition,
pages 2528–2535. IEEE, 2010.

11

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[22] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo,
Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A
critical analysis of out-of-distribution generalization. arXiv preprint arXiv:2006.16241, 2020.

[23] Stephan Zheng, Yang Song, Thomas Leung, and Ian Goodfellow. Improving the robustness of
deep neural networks via stability training. In Proceedings of the ieee conference on computer
vision and pattern recognition, pages 4480–4488, 2016.

[24] Julien Mairal, Francis Bach, and Jean Ponce. Task-driven dictionary learning. IEEE transactions
on pattern analysis and machine intelligence, 34(4):791–804, 2011.

[25] Laurent El Ghaoui, Fangda Gu, Bertrand Travacca, and Armin Askari. Implicit deep learning.
arXiv preprint arXiv:1908.06315, 2, 2019.

[26] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. Advances in Neural
Information Processing Systems, 32:690–701, 2019.

[27] Shaojie Bai, Vladlen Koltun, and J Zico Kolter. Multiscale deep equilibrium models. arXiv
preprint arXiv:2006.08656, 2020.

[28] Tiancai Wang, Xiangyu Zhang, and Jian Sun. Implicit feature pyramid network for object
detection. arXiv preprint arXiv:2012.13563, 2020.

[29] Sheng Liu, Xiao Li, Yuexiang Zhai, Chong You, Zhihui Zhu, Carlos Fernandez-Granda, and
Qing Qu. Convolutional normalization: Improving deep convolutional network robustness and
training. Advances in Neural Information Processing Systems, 34:28919–28928, 2021.

[30] Josip Djolonga and Andreas Krause. Differentiable learning of submodular models. Advances
in Neural Information Processing Systems, 30:1013–1023, 2017.

[31] Brandon Amos. Differentiable optimization-based modeling for machine learning. PhD thesis,
PhD thesis. Carnegie Mellon University, 2019.

[32] Zhaowen Wang, Ding Liu, Jianchao Yang, Wei Han, and Thomas Huang. Deep networks for
image super-resolution with sparse prior. In Proceedings of the IEEE international conference
on computer vision, pages 370–378, 2015.

[33] Meyer Scetbon, Michael Elad, and Peyman Milanfar. Deep k-svd denoising. arXiv preprint
arXiv:1909.13164, 2019.

[34] Hillel Sreter and Raja Giryes. Learned convolutional sparse coding. In 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2191–2195. IEEE,
2018.

[35] Bruno Lecouat, Jean Ponce, and Julien Mairal. Fully trainable and interpretable non-local
sparse models for image restoration. In European Conference on Computer Vision (ECCV)
2020. Springer, 2020.

[36] Bruno Lecouat, Jean Ponce, and Julien Mairal. A flexible framework for designing trainable
priors with adaptive smoothing and game encoding. In Conference on Neural Information
Processing Systems (NeurIPS), 2020.

[37] Tianlin Liu, Anadi Chaman, David Belius, and Ivan Dokmanić. Interpreting u-nets via task-
driven multiscale dictionary learning. arXiv preprint arXiv:2011.12815, 2020.

[38] Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In Proceedings
of the 27th international conference on international conference on machine learning, pages
399–406, 2010.

[39] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale.
arXiv preprint arXiv:1611.01236, 2016.

12

[40] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick Mc-
Daniel. Ensemble adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204,
2017.

[41] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense
of security: Circumventing defenses to adversarial examples. In International Conference on
Machine Learning, pages 274–283. PMLR, 2018.

[42] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann,
and Wieland Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias
improves accuracy and robustness. arXiv preprint arXiv:1811.12231, 2018.

[43] Dong Yin, Raphael Gontijo Lopes, Jonathon Shlens, Ekin D Cubuk, and Justin Gilmer. A
fourier perspective on model robustness in computer vision. arXiv preprint arXiv:1906.08988,
2019.

[44] Soorya Gopalakrishnan, Zhinus Marzi, Upamanyu Madhow, and Ramtin Pedarsani. Robust
adversarial learning via sparsifying front ends. arXiv preprint arXiv:1810.10625, 2018.

[45] Yaniv Romano, Aviad Aberdam, Jeremias Sulam, and Michael Elad. Adversarial noise attacks
of deep learning architectures: Stability analysis via sparse-modeled signals. Journal of
Mathematical Imaging and Vision, 62(3):313–327, 2020.

[46] Jeremias Sulam, Ramchandran Muthukumar, and Raman Arora. Adversarial robustness of
supervised sparse coding. Advances in Neural Information Processing Systems, 33:2110–2121,
2020.

[47] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

[48] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[49] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[50] Vardan Papyan, Jeremias Sulam, and Michael Elad. Working locally thinking globally: Theo-
retical guarantees for convolutional sparse coding. IEEE Transactions on Signal Processing,
65(21):5687–5701, 2017.

[51] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[52] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[53] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In International Conference on Learning Representations, 2019.

[54] Simon Foucart and Holger Rauhut. A mathematical introduction to compressive sensing. Bull.
Am. Math, 54(2017):151–165, 2017.

[55] John Wright and Yi Ma. High-Dimensional Data Analysis with Low-Dimensional Models:
Principles, Computation, and Applications. Cambridge University Press, 2021.

13

	Introduction
	Related Work
	Neural Networks with Sparse Modeling
	Convolutional Sparse Coding (CSC) Layer
	Sparse Dictionary Learning Network Architecture and Training
	Robust Inference

	Experiments
	Performance for Image Classification
	Handling Input Perturbations
	Handling Adversarial Perturbations
	Analysis

	Conclusion and Discussion

