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Exponential Convergence of Sinkhorn Under Regularization Scheduling

Jingbang Chen* Li Chenf

Abstract

In 2013, Cuturi [9] introduced the SINKHORN algorithm
for matrix scaling as a method to compute solutions to
regularized optimal transport problems. In this paper,
aiming at a better convergence rate for a high accuracy
solution, we work on understanding the SINKHORN algorithm
under regularization scheduling, and thus modify it with
a mechanism that adaptively doubles the regularization
parameter 7 periodically. We prove that such modified
version of SINKHORN has an exponential convergence rate
as iteration complexity depending on log(1l/e) instead of
e 9M from previous analyses [1, 9] in the optimal transport
problems with integral supply and demand. Furthermore,
with cost and capacity scaling procedures, the general
optimal transport problem can be solved with a logarithmic
dependence on 1/¢ as well.

1 Introduction

The optimal transport (OT) problem asks to compute
the minimum cost needed to send supplies to demands.
It is formally described as the following linear program:

1.1 OPT & i
(LD) NS
i€[n],j€[m)]

Qi X5,

where U(r, ¢) is defined as
{X eRY™: X1, =r and X', = c}

where Q is the given cost matrix, and 7 € R} and c €
R’ are the demand and supply vectors. The optimal
transport problem is widely used in machine learning,
particularly in areas such as computer vision [10, [1§],
natural language processing [20], deep learning |26}, [33],
clustering [16], unsupervised learning (3], and semi-
supervised learning [31].

In 1964, Richard Sinkhorn discovered that for any
positive square matrix A, there exists a unique doubly
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stochastic matrix of the form X = diag(a)Adiag(b)
where diag(a) and diag(b) are diagonal matrices with
positive entries [29]. X can be computed using the
SINKHORN algorithm. This algorithm normalizes the
rows and columns of the matrix in an alternating
fashion [30]. In 2013, Cuturi showed that the matrix
scaling method can be used to approximate solutions to
the optimal transport problem with regularization [9].
Such regularization is achieved by adding an entropy
regularizer 1" 37,1 iem) Xij(log Xij — 1) to the OT
objective function. The idea of solving regularized OT
was already introduced in 1980s under the name of
gravity models [27].

The convergence rate of the SINKHORN algorithm
has been the subject of both theoretical and practi-
cal analyses in various settings. For instance, it has
been proven to have a log(1/e) convergence bound un-
der the Hilbert projective metric [12]. Since the work
of [9], several OT algorithms have been developed us-
ing the idea of entropic regularization, which have been
efficient in practice [4, [14]. However, there are only
a few theoretical guarantees for the optimal transport
problem directly. [1] shows that with the appropri-
ate choice of parameters, the standard SINKHORN or
GREENKHORN algorithm is a near-linear time approxi-
mation algorithm for input data of n dimensions, taking
O(n?]|QJ|2, (log n)e~3) runtime to give a solution within
OPT + €. However, the convergence rate may be sig-
nificantly slower when seeking high-accuracy solutions
due to the 73 factor.

To improve the convergence rate in high-accuracy
scenarios, we focus on the selection of the regulariza-
tion parameter 7, which balances the desired accuracy
and the iteration complexity of the subroutine. One ap-
proach uses a series of {1y }x>1 instead of a single value.
In 2019, Bernhard Schmitzer discussed such scheduling
in |2§], providing a new analysis of the SINKHORN algo-
rithm with regularization scheduling. In our work, we
examine the SINKHORN algorithm under this scheduling
and explore incorporating it into an adaptive regulariza-
tion scheme.

1.1 Our Results In this paper, we show that the

SINKHORN algorithm with regularization scheduling has
an exponential convergence rate. This means that the
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Algorithm # of Iterations

Comments

Theorem [1.1 O (lIr|13 10g(11Qll< /2))

Integral OT

Theorem (1.2 | poly(n,m,log(1/¢c),log||Q||cc, log ||7]]1)

General OT

[1] o(|Ql3./€*) Plain SINKHORN with 7 = logn/e
[12] O(exp(||Ql|oc log n/e) log(1/¢)) Plain SINKHORN with n = logn/e
(23] O(n®log(1/¢)) Modified row/column scaling

Table 1: SINKHORN-based algorithms

number of iterations needed to achieve an e-additive er-
ror desired is polylog(1/¢). Additionally, the algorithm
has a runtime of poly(n,m,log(1/¢)) using row/column
scaling operations. The closest similar result to this is
the weakly polynomial time matrix scaling algorithm in
[23], which uses a more complicated scaling procedure.
We provide a table comparing our result with some pre-
vious works in Table Il

For the analysis, we first focus on cases where the
demands and supplies are integers bounded by some
integer u. The convergence result is summarized as
follows:

THEOREM 1.1. (ALGORITHMIC RESULT) If both the
demand vector r and the supply vector c are integral and
bounded by p, i.e. g = max{||r||, |||}, Algorithm|[]]
computes a feasible solution X to with e-additive
error using

O (|71} 10g (ngn)log (1Q« 171l /2))

iterations of row/column scaling operations.

Additionally, note that if r is integer and ||r||; =
O(n) (which is relevant in problems like weighted bi-
partite matching), then Theorem 1.1 gives a stronger
guarantee than [23].

We will provide a detailed explanation and proof
of our statement in Section [2} Essentially, the proof is
based on analyzing the duality gap of the regularized op-
timal transport problem. Given a good primal-dual so-
lution pair, we show that after doubling the regulariza-
tion parameter, the duality gap is proportional to 1/7.
On the other hand, we also show that a row/column
scaling operation reduces the duality gap by roughly
1/n. Both 1/n terms cancel each other and we can effi-
ciently find a good primal-dual pair w.r.t. to the dou-
bled 7.
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To achieve poly(n, m,log(1/e)) runtime and to han-
dle non-integral input, we use a cost/capacity scaling
scheme commonly used in network flow algorithms (see
Appendix C in [8]). The method involves reducing
to O(log(]|QJ|,)log(x)) instances each with a dimen-
sion of at most 2n? and demand /supply entries at most
ns.

To handle fractional input, we can round each cost,
demand, and supply entry to the nearest integral multi-
ple of poly(e,1/n,1/m), that is, an integral instance
with g = max{||r| e, |||} - POly(n,m,1/e). This
allows us to solve the problem in poly(n,m,log(1/e))
time. However, this solution may not be feasible for
the original fractional input. But, we can use standard
rounding methods to make the solution feasible such as
Algorithm 2 in [1]. This process is summarized in the
following Lemma.

THEOREM 1.2. (POLYNOMIAL RUNTIME viA COST /
CAPACITY SCALING AND ROUNDING) There is an al-
gorithm that gives a solution X to with € additive
error with O(log(||Q|| ) log()) calls to Algorithm 1] on
integral OT instances with dimension at most n? and
the total demand/supply at most O(n'0).

1.2 Related Work

Optimal Transport Many combinatorial tech-
niques have been introduced to compute the exact solu-
tion for certain kinds of OT problems. The Hungarian
method invented by Kuhn [19] in 1955 solves the as-
signment problem (equivalent to OT) in O(n?®) time.
In 1991, Gabow and Tarjan gave an O(n?®log(nN))
time cost/capacity scaling algorithm [13] to solve OT,
where N is the largest element in the scaled cost ma-
trix. Using cost/capacity scaling techniques, min-cost
flow algorithms such as network simplex also provide
exact algorithms for the optimal transport problem in
O(n®lognlog(nN)) time [11]. There are also studies on
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certain kinds of OT problems, such as geometric OT [2]
[27]. Additionally, there has been significant recent the-
oretical work studying the runtime of solving mincost
flow, which generalizes OT [5} |6, |8, [21]. These meth-
ods rely heavily on second order methods and primitives
from graph theory.

Regularization In machine learning, regulariza-
tion is widely used to resolve various kinds of datasets’
heterogeneity |15} 25} 32, 35]. Recently, there have been
more works on developing adaptive regularization meth-
ods, including deep learning on imbalanced data |7] and
learning neural networks [34]. There are also studies on
regularization hyperparameter selection |22} 24].

1.3 Notation We use bold lowercase characters such
as a to denote vectors. Specially, we use 1 or 1, to
denote the all ones vector with proper length. We use
bold capital letters (such as Q) as matrices. Specially,
we denote the matrix that we are rescaling as X. We
denote the inner product of two matrix as (-,-), so
(X,Q) = Xicmpjerm XijQij-  We use the integral
vectors r € Z™ and ¢ € Z™ to denote the desired row
and column sums. Note that the matrix X has row sums
X1 and column sums X '1. We use «; for i € [n] and
B; for j € [m] as the dual variables in our matrix scaling
algorithm. As above, 7 is the regularization parameter.

2 Matrix
Scheduling

Scaling with Regularization

We propose an algorithm EXPSINKHORN to solve the
OT problem to high accuracy. The algorithm maintains
a matrix X to be scaled and a regularization parameter
1. It rescales the rows and columns iteratively for this
fixed parameter 7. When the rows and columns are
close enough to scaled, the algorithm doubles n. We
ultimately show that this algorithm converges in time
depending logarithmically on e~! (see Theorem , as
opposed to the standard Sinkhorn algorithm requiring
time depending polynomially on e~! to converge |1} (9].

The analysis of our algorithm hinges on under-
standing the interaction between the ¢; error of the
row/column scaling and a dual objective. Formally,
when the quantities || X1 —r|j; and ||[XT1 — ¢||; are
small, the algorithm doubles the regularization parame-
ter . We show that when they are large, then rescaling
the rows or columns of X causes the dual objective to
significantly improve (see Lemma [2.4). We also prove
that when the ¢; errors are small, the duality gap is
small (see Lemma [2.3]), which bounds the number of
iterations (see Lem.

We now formally present our matrix scaling algo-
rithm that doubles 1 over time to give a high accuracy
solution to optimal transport.

182

We will assume throughout this analysis that
I7]loos [l€]loc < 1, such that pr,uc € Z™. This is be-
cause we scale r, ¢, which are originally in Z™, down by
i in line 2] of Algorithm

The analysis is based on looking at the dual pro-
gram of the optimal transport objective:

max T + ciPj-
;i +B;<Qq;Vi€[n],j€[m] Z'ez{';] j€z[’":1] jj

The value of this program is also OPT, the same
as the value of the optimal transport objective
minx>o,xeu(r,c)(X, Q) by linear programming duality.

Thus, as long as we can guarantee that the oy, 3;
parameters in Algorithm [I] always satisfy a; + 8; <
Q;j, then the dual potential D := Zie[n] rioy +
Zje[m] c;B; < OPT at all times. We will show these
by induction.

LEMMA 2.1. (ALGORITHM INVARIANTS) At all times
during an execution of Algorithmm we have that X;; <
1 for alli € [n],j € [m] and 3, ; X5 < |r|li. Hence
a; + B < Qyj at all times.

Proof. The “hence” part follows because X;; =
exp(n(ai +ﬂj — Qij))7 so if Xij S 1 then o —‘rﬂj S Q”
Thus, in this proof we focus on showing the claims about
X.

We will proceed by induction. We first check that
all conditions hold at the start of the algorithm. For
the initial choices of 1, a;, 8; we have that

Xij = exp(10] Q< log n(—2[Qll + Qi)
< exp(—10logn) < n~ 10,

Hgnce, Zij X;; <n 8 <1< |rl;, and X;; <1 for all
i,

Now, we check that the condition continues to hold
after we double 7 in line[I7] Let X% be the new matrix
after 7 is doubled. Clearly, X7 = ij < X;; because
X;; <1 by induction. So Zij Xiw < Zij Xij < |Irll1
by induction, and X}V = X7, < X;; < 1.

Finally, we check the conditions after a rescaling
step in lines [T} [[4] By symmetry, we consider a row
rescaling step in line After such a step, we know
that } -, Xij =7 for all i € [n]. Because |7 <1,
we deduce that X;; <1 for all 4, j and >_,; X;; < [|r[lx
as desired. The same argument applies to a column
rescaling in line if we note that ||c||1 = [|7||1- |

Because the dual potentials «;, 8; are feasible, we know
that the dual potential is upper bounded.

COROLLARY 2.1. (DUAL POTENTIAL UPPER BOUND)
During an execution of Algorithm aq, B satisfy
D=3 e Tt + X jem) €8 < OPT at all times.
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Algorithm 1: EXPSINKHORN(Q, 7, ¢, €) - Solves the optimal transport problem.

Input: A n x m cost matrix Q.

Output: A n x m matrix X;; > 0 such that X € U(r, ¢) and (X, Q) < OPT + ¢, where

OPT ¥

1p max{maxie[n] T4, MaXj [ ¢}
2T <—r/u,c<— c/u
3 1 < 10[Ql| ! log(np).

4 @i = —[Qlleo, B; = —[1Qllo for i € [n], j € [m].
5 while < 4ue~Y|7||1 log(nu) do

6 | X < exp(n(a; + 55 — Qij)).

7 for £ > 0 do

8 a + X1.

9 b« XT1.

10 if la -7l >1/(2 )

11 Xu<_(az/"°z) 0T1<Z<n1<]<m
12 Lm%av 110( iJri) for 1 <i<n

13 else if ||b—c||1> /( 1) then

14 Xi; « (bj/cj)~ ijf0r1<2<n1<]<m
15 B; < B; —n~tlog(b;/c;) for 1< j<m

16 else

17 | 7+ 2n and return to line

18 X + puX

19 Repair the demands routed by X and return X.

min (X,Q).

X;;>0,XeU(r,c)

> Scale 7, ¢ to have |7l < 1,[lc[joc < 1.
> Starting value of 7.
> Dual variable initialization

> Initialize matrix to be scaled.

> Row sums
> Column sums

> Row scaling
> Row dual adjustment

> Column scaling
> Row dual adjustment

> Scale X back up.

Proof. By Lemma 2.1 we know that o; +; < Qij at all
times. As noted above, by linear programming duality

D < max rio; + c OPT.
= @i +8,<Q;Vie[n],j€[m] Z Z iP5 =

i€[n] JE[m]

|

The remainder of the analysis requires the following
claims. First, we show that the duality gap OPT — D
is small when ||r —a|; < 1/(2u) and |[e—bl|; < 1/(2u)
trigger, i.e. line When these do not hold, we
show that a rescaling step in lines or causes D
to significantly increase. Finally, we will show how to
round our approximately scaled solution X to a feasible
point.

Towards this, we show the following useful helper
lemma which intuitively shows that an approximately
feasible X “contains” half of a truly feasible solution.

LEMMA 2.2. (CONTAINING A FEASIBLE SOLUTION)
Let r, ¢ be vectors with ||r||1, |lc]ls <1 and pr, pc € 2.
If X > 0 satisfies X1 = r and | XT1 —¢||; < 1/(2u),
then there is a vector X € R™*™ with 0 < )/iij < Xy
for alli € [n],j € [m] and X1 =7/2 and X1 = ¢/2.
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Additionally, such an X can be found by running
any mazximum flow algorithm.

Clearly we may swap the roles of r, ¢ above. We state
only one case in Lemma [2.2] for brevity.

Proof. Let @ > 0 be maximal so that there exists a
0 < X < X such that X1 = ar and X71 = ac. Let Y
satisfy Y1 = ar and Y1 = ac. We wish to show that
a>1/2.

Assume a < 1/2 for contradiction, and let X(1) =
X —Y, so that X(V1 = (1 —a)r and [[(XM)T1 - (1 -
a)ell; < 1/(2u). Multiplying the previous equations by
(1 — o)~y on both sides yields that

1

- —T
2.2) X1 = d HX 1- H <t
(2:2) A el = 20—

<1,

where X := (1 — o) 'uX™. Note that if there exists
0 < Z < Xwsuch that 0 < Z < X and § > 0
with Z1 = ér and ZT1 = Jc, then letting W =
(1—a)p 'Z +Y gives that W < XV +Y < X, and
W1 = (a+(1-a)p16)r, Wil = (a+ (1 —a)u"1d)c,
contradicting the maximality of . Thus, it suffices to
use the fact that both ur and uc are integral vectors to

Copyright © 2023 by SIAM
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construct 0 < Z < X and § > 0 such that Z1 = §r and
Z"1 = je.

Let E be the support of X, i.e. E =
{(i,j) : Xi; > 0}. For a subset S C [n], let N(S) :=
{t : 3s € S,(s,t) € E}, i.e. the neighborhood of S.
By Hall’s marriage theorem (for weighted sources and
sinks), the subset F supports a flow between pr and
pe as long as for all subsets S C [n], we have that

Yses(tr)s <D ien(s)(ne)i. By the guarantee in (2.2)

we know that

Z(/“")sz Z Xt < Z Zist

ses (s,t)eE teN(S) s€[n]
T
< Z (pe)e + X1 = pelly
teEN(S)
< X (wenr
teN(S)

Because > co(ur)s and }-,cy(s)(pc)e are both in-
tegral quantities, the previous equation implies that

Y ses(br)s < D ien(s)(ue): as desired.  This shows
that there is some 0 < Z < X and strictly positive § > 0
such that Z1 = 6r and Z71 = dc. This completes the
proof. O

The above lemma lets us bound the duality gap right
before we double 7, i.e. when line [T7] occurs.

LEMMA 2.3. (DUALITY GAP) Let D = 37, ciri +
Zje[m] Bjcj.  During an execution of Algorithm |1
when line occurs, we have that OPT — D
20~ |r [+ log(np).

Proof. We only handle the case where X1 = r, as
the other case is symmetric (recall that ||r|; = |le|1)-
Hence X1 =r.

By Jensen’s inequality, we know that

> XylogXij=—> Z Xij log 1/X;)

1€[n],j€[m] i€[n] jE[mM
X;i 1
>= milog| Y T
1€[n] jE[m] ¢ K

= — Z r;log(m/r;)

i€[n]
> — v}y log(np),
because r; > p~! for all i, because pur € Z" b

assumption. Let X be as constructed in Lemma
Because X;; < 1 for all 7, j by Lemma (sologX;; <

0), we can write

Y Xijlog Xy
i€[n],j€[m]
—y Y

i€[n],j€[m]

=n(D/2 - (X,Q))
<n(D/2~ OPT/2),

Z Xij log Xij S

1€[n],j€[m]

Xij (o + B — Qi)

where the final inequality follows because X1 = r /2
and X1 = ¢/2, hence (X, Q) > OPT/2 by the mini-
mality of OPT. Combining the previous two expressions
completes the proof. ]

Now, we prove that if line [I7] does not occur, then the
dual solution increases significantly.

LEMMA 2.4. (DUAL INCREASE) Let a = X1, and con-
sider updating o as in line [I3 Then the dual D :=
D icln) QiTi T X jem) Bi€; increases by at least

1~ /10 - min{p " 17l|T e — 73}

Proof. Note the following numerical bound: —log(1 —
t) >t + min{1/10,¢2/3} for all t < 1. By the formula
in line the dual increases by

-1 Z r;log(a;/r;) =
1€[n]
>t Z T
i€[n]

+ min{(1 — ai/ri)2/3= 1/10)}

=t Z r;-min{(1 — a;/r;)*/3
i€[n]

,1/10},

1 —ai/ri)

because |lalli = >, ;X < [[r|1 by Lemma [2.1] . If
any of the min’s in the previous expression evaluate to
1/10, then the expression is clearly at least n~1r; /10 >
n~1/10 - p~1, because ur is integral. Otherwise, by the
Cauchy-Schwarz inequality,

_127'11—111/1'1 3—7)_1/3 Z a;— ;) /r2

i€[n]
- || — |3
>3
[P
as desired. This completes the proof. 0

We can now bound the total number of iterations of the
algorithm.
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LEMMA 2.5. (ITERATION COUNT) For integral wvec-
tors r,e € Z", and p = max{||7|lec, |lC|loo}
an execution of Algorithm uses at most
O |2 10g () 1og (= 1| Qllocit)) iterations.

Proof. After doubling n the duality gap is
at most 4n~Y|r||;log(ny) by Lemma If
la — 7|1 > 1/(2n), then the dual increase is
at least 7 1/10 - min{u L vl a — 2 >
1/40 - 7Y rll7 w2 Hence the number of it-
erations during a doubling phase is bounded by

A = O((ullr]|1) log(np)). Additionally,

the total number of doubling phases is bounded by
log((4ue™" (7|1 log(np))/(10]|Ql| log(np))).  Thus,
the lemma follows (recall that the = in the Lemma
statement is really pr after scaling). 0

Finally, we show how to recover a feasible solution from
X, and complete the proof of Theorem

Proof. [Proof of Theorem The iteration complexity
bound follows from Lemma [2.5] so it suffices to explain
how to round our final solution X to an accurate
solution Y. R

To construct Y, let X be as in Lemma Aand let
Y = 2X. By definition, we know that Y1 = 2X1 = r,
and similarly Y1 = ¢. To bound the optimality gap
of Y, note by the equations in the proof of Lemma |2.3
that — 7| log(nu) < n(D/2 — (X, Q)), s0

(X, Q) < Hrll log(np) + D/2
< 7Y |r ]y log(np) + OPT/2,
as D < OPT by Corollary Hence

(Y,Q) = 2(X, Q) < 2p~Y|r|| log(nu) + OPT

< OPT +pte

by the ending choice of 1. Because Algorithm [I] scales
everything down by p, the error in terms of the original
objective is €, as desired. Y can be computed efficiently
by calling maximum flow. 0

3 Reducing to Polynomially Bounded
Instances via Scaling

In this section, we will present cost and capacity scaling
procedures that reduce solving integral OT to instances
with polynomially bounded entries and prove Theorem
1W)

The following proof can be extended to the case
where n # m in the OT problem to obtain a
poly(n,m,log%) time algorithm. However, one may
find such a proof confusing to read, since m, in addi-
tion to being the size of the demand vector, also denotes
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the number of edges in a min-cost circulation instance.
Thus, for ease of exposition, we present the proof for
n=m.

Instead of OT, we consider the problem of finding
minimum cost circulation (MCC) on directed graphs. In
the problem of minimum cost circulation, we are given
a directed graph G = (V, E) with integral edge costs
c € £[C]? and integral capacities u € [U]¥. The goal
is to find a circulation f viewed as a vector over the
set of edges F of minimum cost. It is formulated as the
following linear program:

: T

3.3) BT £20.0 f<u d

where B is the edge-vertex incidence matrix of G. We
use Throc(n, m, C,U) to be the time to find an integral
solution that minimizes , given a graph with n
vertices and m edges. We also define Tor(n,C,U)
to denote the time for solving for n-dimensional
r,c within 1/poly(n)-additive error where C is the
maximum absolute value of costs and U is the maximum
demand or supply entries.

We first show that OT can be reduced to MCC.

LEMMA 3.1. Given an integral instance of (1.1)), we
have

Tor(n,[|Qlls 1) = O(n*) + Trrcc(2n,7*, |Qll , 1)-

Proof. First, we can construct in O(n?) time a integral
matrix X such that X1 =  and XOT1 = ¢.
Solving (|1.1]) is equivalent to finding A that minimizes

min Y~ Qu Ay, such that X + A > 0,A1=0,
2,7
and AT1=0

This corresponds to an MCC problem on a complete
bipartite graph with n vertices on each side. The
direction and capacity of each edge between the i-th
vertex on the left and the j-th vertex on the right
depend on the value of XZ(?). 0

Next, we show that one can reduce solving (3.3) to
few instances where the largest cost in absolute value
is O(n). This is done via a revisit of the cost scaling
scheme that appears in [8].

LEMMA 3.2. (CosT ScALING, LEMMA C.3 [8]) We
have

Tyvec(n,m,C,U) = O((Tarec(n, m,10n,U) + m) log C)

Proof. In Lemma C.8 of [§], we only need the rounded
cost differs from the real cost by at most £/2. Therefore,
we only need to round edge costs to the nearest integral
multiple of £/2 within the range [—&, en]. Thus, the new
rounded costs are within +(g/2) - [10n]. 0
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Given the largest cost in absolute value is O(n), we
can further reduce to few instances whose capacity
is poly(n). This is also done via a revisit of the capacity
scaling scheme of [8].

LEMMA 3.3. (CAPACITY SCALING, LEMMA C.10 [8])
We have

Tyvce(n,m,10n,U) = O(Tycc(n, m, O(n), O(m2n4))
+m)logU)

Proof. In Lemma C.11 of [8], the cycle found via
solving unit-capacitated MCC has an approximation
ratio 10mn? instead of m!'? because the cost is bounded
by 10n instead of m'®. Thus, the rounded capacities are
integers at most O((mn?)?). 0

Finally, we show that MCC can be solved using the
SINKHORN algorithm with regularization scheduling. In
particular, we reduce any integral MCC to an integral
OT instance. Using the algorithm from Theorem [L.1
we can compute a feasible solution within OPT +
1/poly(n). Then, we can round the solution to a
feasible integral solution without increasing the cost in
n?-time via a cycle cancellation procedure from [17].
The reduction is summarized as follows:

LEMMA 3.4. (SoLviNg MCC via OT) We have
Trco(n,m,C,U) = Tor(max{n,m}, mUC,mU).

In addition, the total demand/supply of the reduced OT
instance is mU as well.

Proof. Given an instance of (3.3), we construct an
integral OT instance as follows: We define the row and
column space indexed by V and E respectively. For
any u € V, we define its demand r, to be the weighted
incoming degree r, = deg"(u) = 2 e (u,) W(€). For
any edge e € E, we define its supply ¢, to be its capacity
c. = u(e). Clearly, both the demand and supply vectors
r and c are integers at most m - U. The cost matrix
Q € RV*¥ is defined as follows:

c(e) if e = (u,v)
Que =40

m-U-C otherwise

if e = (v,u)

Next, we show that solving the OT w.r.t. r, ¢, and
Q we construct is equivalent to solving the given MCC
instance. Given any integral OT solution X, we define
the flow f as follows:

.fe :Xue > O,VCZ (u7/U)

We have ¢ f = Zu’e QueXye. To see that f is a
circulation, let us look at the net flow at any vertex
u

frruy="> fo= > fe

e=(v,u) e=(u,v)
= > Xpem Y X
e=(v,u) e=(u,v)
= > (ule) = Xue) - Xue
e=(v,u) e=(u,v)
= deg™(u) — Z Xye = deg™(u) — 1, =0
euce

where the 3,; equality comes from that the supply
on edge e in the OT instance is exactly wu(e), i.e.
Xye + Xpe = ¢ = u(e). In addition, X, = 0 whenever
Que = mUC because X is an optimal solution.

On the other hand, given any feasible circulation f
to the MCC instance, we can construct X, a feasible
OT solution of identical cost as follows:

fe if e = (u,v)
Xue=qule) = fo ife=(v,u)
0 otherwise

Using a similar argument as above, we know that ¢” f =
Zu’e QueXye, X1=r,and X1 =c.

Thus, to solve the MCC, we can apply Theorem [I.]]
to solve the OT instance with 1/poly(n)-additive error
in

2
<Z dH (u)> ’ cost pgzli?eration - 6((Um)2mn)_tlme

# of iterations

o)

Then, we round the fractional solution to an integral one
without additional error in O(m?)-time (see Section 5 of
[17]). Integrity ensures that any integral solution within
OPT + 1/poly(n) is an exact optimal solution. d

Given all these Lemmas, we are now ready to prove
Theorem

Proof. [Proof of Theorem Given an integral OT
instance, combining Lemma Lemma Lemma
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and Lemma [3.4] solves the instance in time

Tor(m 1Qllo 1) | =

Lemma 311

= _ O0((n*+T o2n,n?,
Lemma [3:2] (TL + MCC(nn

O(n), u)log (1Qll )

i 0 Tuce (.

O(n), 0(n*)) log (||Qll ) log(k))

Lem?am() (n2 +nt 4+ Tor (712,

O(n'"),0(n')) log (|1Qll ) log(k)) -

This concludes the proof. 0
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