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24 Abstract

25 Climate change–triggered forest die-off is an increasing threat to global forests and

26 carbon sequestration but remains extremely challenging to predict. Tree growth resilience

27 metrics have been proposed as measurable proxies of tree susceptibility to mortality.

28 However, it remains unclear whether tree growth resilience can improve predictions of stand-

29 level mortality. Here, we use an extensive tree-ring dataset collected at ~3000 permanent

30 forest inventory plots, spanning 13 dominant species across the US Mountain West, where

31 forests have experienced strong drought and extensive die-off has been observed in the past

32 two decades, to test the hypothesis that tree growth resilience to drought can explain and

33 improve predictions of observed stand-level mortality. We found substantial increases in

34 growth variability and temporal autocorrelation as well declining drought resistance and

35 resilience for a number of species over the second half of the 20th century. Declining

36 resilience and low tree growth were strongly associated to cross- and within-species patterns

37 of mortality. Resilience metrics had similar explicative power compared to climate and stand

38 structure, but the covariance structure among predictors implied that the effect of tree

39 resilience on mortality could partially be explained by stand and climate variables. We

40 conclude that tree growth resilience offers highly valuable insights on tree physiology by

41 integrating the effect of stressors on forest mortality but may have only moderate potential to

42 improve large scale projections of forest die-off under climate change.
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43 Introduction

44 Rising global temperatures due to human greenhouse gas emissions pose a threat to

45 Earth’s forests. Notably, increasing temperature has been linked to higher frequency and

46 intensity of drought-induced forest background mortality and die-off (Breshears et al., 2009;

47 Williams et al., 2012; Allen et al., 2015). Large scale forest die-off is of particular concern

48 due to its dramatic disruption of forest function, with large consequences on biodiversity

49 (Betts et al., 2017; Feng et al., 2021), ecosystem goods and services and forests’ prominent

50 role in the global carbon cycle (Anderegg et al., 2020a). The western US has experienced

51 extensive drought- and insect-induced tree mortality over the past decades, associated to

52 strong drying trends in the area (Van Mantgem et al., 2009; Williams et al., 2012; Zhang et

53 al., 2021). These disturbances have resulted in the decline of several major tree species in the

54 region (Stanke et al., 2021).

55 A large diversity of interacting drivers and pathways mediate climate-induced tree

56 mortality. Drought-induced mortality results from the complex and interacting set of failures

57 across the hydraulic continuum and tree carbon economy (McDowell et al., 2022), which has

58 been typically studied as hydraulic failure and depletion of carbohydrate stores (McDowell,

59 2011). Hydraulic failure, i.e., the accumulation of emboli in the xylem past a threshold after

60 which water transport cannot be recovered, disrupts water supply, leading to cell death by

61 dehydration (Sperry & Tyree, 1988). Longer term, declines in carbon balance can eventually

62 trigger mortality through cell failure to maintain base metabolism or osmoregulation, almost

63 always interacting with hydraulic failure and/or biotic agents. Tree radial growth is a major

64 process integrating water and carbon processes involved in mortality (Preisler et al., 2021).

65 Previous to drought, tree growth favors carbon assimilation by sustaining photosynthesis. On

66 the other hand, larger allocation to conducting tissues can be at the expense of allocation to

67 osmoregulation or defense (Huot et al., 2014; de la Mata et al., 2017) or translate into

68 structural overshoot rendering trees more vulnerable to drought (Jump et al., 2017). After

69 drought, new xylem growth allows trees to recover hydraulic function and may influence

70 delayed mortality (Trugman et al. 2018).

71 Biotic agents, including diseases and insects can also drive large scale forest mortality,

72      often in interaction with climate stress, to the point that disentangling their relative

73 importance is often challenging (Anderegg et al., 2015a). Notably, western US forests have

74 been particularly prone to extensive bark beetle outbreaks in the last decades, where drought

75 was a key predisposing factor in many species (Raffa et al., 2008; Van Mantgem et al., 2009;
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76 Chapman et al., 2012; Meddens et al., 2015). Drought may facilitate biotic outbreaks by

77 impairing tree defenses against attacks such as resin and defense chemicals production, hence

78 favoring infestations and eventually mortality (Gaylord et al., 2013; Kolb et al., 2019). In

79 turn, infestations can weaken trees’ water and carbon economies (Frank et al., 2014) through

80 direct damage to the bark and xylem or defoliation , which may increase tree vulnerability to

81 drought (Paine et al., 1997; Anderegg & Callaway, 2012; Anderegg et al., 2015a). Finally,

82 stand factors such as host availability, density, age and size can play a substantial role in

83 determining whether infestations reach epidemic levels and eventually lead to extensive die-84

off events (Raffa et al., 2008). However, predisposing factors are often highly species-specific

85 (Reed & Hood, 2021).

86 Climate-induced tree mortality remains challenging to predict because of the wide

87 array of involved processes. Success of physiology-based models has been largely limited to

88 specific context and/or small scales, where environmental variations and the number of

89 processes are limited, in contrast to regional applications (e.g., Venturas et al., 2018, 2021;

90 see also Benito Garzón et al., 2018; Trugman et al., 2021). The challenge of accounting for

91 such complexity has led to the adoption of simpler frameworks based on tree vigor proxies

92 (Bigler & Bugmann, 2003; Lloret et al., 2011). Growth-based models of mortality are one

93 such approach, wherein, based on the empirical assertion that tree growth declines previous to

94 tree mortality (Cailleret et al., 2016), tree growth is assumed to integrate constraints on tree

95 physiological status. Growth-based mortality models use historical tree growth observations,

96 e.g., derived from tree-ring or forest inventory, to parameterize empirical models of tree

97 mortality, often in combination with cofactors such as tree diameter (Bigler & Bugmann,

98 2003; Hülsmann et al., 2018). These models have garnered relatively good success due to

99 their simplicity and predictive power but might be limited in that they assume a static

100 relationship between tree growth and mortality. Such assumption may allow one to simulate

101 smooth variations in stand background mortality, but it is unclear whether tree growth can

102 capture the effect of drought and biotic agent perturbations in a changing climate, as such

103 events can be uncoupled from it (e.g., epidemic insect outbreak) or instead select for slower

104 growing trees (Jump et al., 2017; de la Mata et al., 2017).

105 By acknowledging highly non-linear responses, complex system theory may provide a

106 useful framework to predict stand-level mortality patterns across space. In this framework a

107 system approaching a tipping point is denoted by critical slowing down that manifests in

108 declining system resilience to perturbations, i.e., the system’s capacity to remain in a
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109 reference regime (Scheffer et al., 2001, 2009). Declining resilience and associated increasing

110 state variability and autocorrelation, can hence theoretically be used as early warning signals

111 (EWS) of impending system transition to an alternative stable state (Scheffer et al., 2009;

112 Hammond, 2020). Stand or regional-scale forest mortality can be viewed as one such tipping

113      point, where a perturbation might induce an abrupt transition towards a fundamentally

114      different regime (e.g., change in stand structure, species composition or transition to a

115 different cover type) (Hammond, 2020). Consequently, a body of literature has focused on

116 applying critical slowing down theory to forest mortality by developing EWS based on radial

117 tree growth (Lloret et al., 2011; Camarero et al., 2015). Recent syntheses notably show that

118 large tree growth variability –in the case of gymnosperms– and low resilience (Cailleret et al.,

119 2019; DeSoto et al., 2020) are associated to subsequent tree-level mortality, suggesting that

120 these could predict future forest mortality. Implications are vast given observation of

121 widespread declining tree resilience to drought (Zheng et al., 2021, 2023; Forzieri et al.,

122 2022). Several uncertainties nevertheless remain that hinder the application of EWS to predict

123 forest mortality. First and foremost, previous studies mostly investigated the relationship

124 between EWS and mortality at the tree level (i.e., differences among individual trees growing

125 in the same stand), but it is unclear if such a relationship scales to the stand or landscape level.

126 At large spatial scales, the role of covarying environmental and genetic factors (e.g., stand

127 structure, climate, species identity) might complicate or overshadow the relationship between

128 growth resilience and mortality observed at the individual level (Kannenberg et al., 2019).

129 Second, previous analyses typically reported qualitatively on the existence of such

130 relationship but lacked quantification of their predictive power. Finally, because EWS metrics

131 have often been investigated individually, it is not clear how different metrics, including tree

132 growth, variability, autocorrelation and resilience might be complementary to or on the

133 contrary be redundant with stand and climate predictors of mortality.

134 Here, in order to address the link between tree growth resilience to drought and stand-

135 level mortality, we leverage a large tree-ring dataset comprised of over 7000 records from ~

136 3000 national forest inventory plots in the US Mountain West, where extensive mortality has

137 been reported in recent decades. Specifically, we (1) test the hypothesis that low tree growth

138 resilience and associated metrics are related to subsequent stand-level mortality, (2)

139 investigate the regional stand and climatic drivers of mortality and their covariation with tree

140 growth and resilience, and finally (3) quantify the relative power of stand, climate, growth
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141 and resilience drivers to capture spatial patterns of stand mortality in explicative vs. predictive

142 modelling contexts.
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143 Material and methods

144 Forest inventory, stand structure and mortality

145 The USDA Forest Service Forest Inventory and Analysis (FIA) program monitors

146 forest structure, growth and health in a systematic way based on an extensive network of

147 permanent plots distributed across the United States (Bechtold & Scott, 2005). Here we use a

148 subset of 3028 FIA plots from five states of the US Mountain West where tree cores were

149 sampled in addition to the FIA standard sampling effort (DeRose et al., 2017). Following the

150 FIA sampling design, four circular subplots of a radius of 7.3 m comprise each plot, where the

151 diameter at breast height (DBH) of all trees with a diameter superior to 12.7 cm are measured.

152 Each subplot contains a circular microplot of 2.1 m, within which trees with a diameter

153 inferior to 12.7 cm are measured. Plots included in this study were selected on the basis that

154 no silvicultural treatment was applied, and that mortality was attributed either to no agent

155 (unknown agent), insect, drought (weather), or disease.

156 Trees are classified into live, recently dead and older dead based on canopy status. On

157 repeated inventory plots (~35% of all plots), ‘recent dead’ is assigned to the trees that were

158 live during the previous inventory and dead in current inventory. On first-visit plots, ‘recent

159 dead’ is assigned to trees that appear to have died during the previous 5 years, assessed by the

160 census crew based on canopy and bark status (Shaw et al., 2005). This initial-visit approach

161 has been commonly and successfully used in tree mortality research in this region (e.g.,

162 Venturas et al., 2021). ‘Old dead’ trees are ignored in the following analysis and ‘recently

163 dead’ trees are referred to as ‘dead’ hereafter.

164 We computed species-specific per hectare sum of basal area of individual trees in live

165 and dead categories (BA). Mortality was subsequently defined at the stand level as the BA of

166 dead in percent of total BA (live and dead). Tree density was calculated as the sum of live and

167 dead stems per hectare. Tree species diversity was estimated based on the Shannon index

168 where species abundance is taken as species total basal area.

169 Climate data

170 Several climatic variables have been previously shown to be closely related to tree

171 mortality across the US (Venturas et al., 2021). Monthly min and max temperature,

172 precipitation, Palmer’s drought severity index (PDSI), vapor pressure deficit and climatic

173 water deficit were retrieved from the TerraClimate database (Abatzoglou et al., 2018) for

174 each of the plots on the period 1958 to 2019 (TerraClimate variable names: tmin, tmax, ppt,

175 PDSI, vpd and def, respectively). Mean annual temperature (MAT, computed as the average
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176 of min and max temperature), precipitation (MAP), vapor pressure deficit and climatic water

177 deficit were calculated on the same period. We further calculated plot-level historical

178 temporal trends of these climatic variables by means of linear regression. Drought intensity,

179 frequency and heat stress during the FIA census period were calculated at each plot

180 respectively, as the minimum growing season PDSI (averaged over April through September),

181 the number of years with growing season PDSI < -1.5, and the difference between maximum

182 and average growing season max temperature .

183 FIA tree-ring collection & growth metrics

184 Generally, one (about 75% of the plots) but up to 16 and an average of 2.2 tree cores

185 per plot were collected (~1.6 cores per plot and per species), yielding a total of 7281 cores.

186 Tree cores were initially collected to determine stand age and site index, based on the average

187 age per species within 12.7 cm diameter classes and the dominant size class, respectively. As

188 a result, tree selection consisted exclusively of live trees and was typically skewed toward the

189 dominant size cohort. Cores were collected during the period 2000-2022, but over 90% of the

190 cores were collected after 2010. The cores were processed, and ring width was measured

191 following standard dendrochronological methodology (DeRose et al., 2017). Cross-dating

192 was performed using nearby chronologies from the International Tree-Ring Data Bank

193 (ITRDB), as well as adjacent FIA plots as the tree-ring collection grew. Past tree basal area

194 increment (BAI) was retrieved backward from tree DBH at core collection. A detrended ring

195 width index (RWI) was calculated by dividing RW series by splines with 50% cutoff at 30

196 years fitted on individual ring width series. In order to investigate the potential of past tree

197 growth temporal patterns as early warning metrics of mortality, BAI and RWI series were

198 used to calculate a set of six metrics to characterize average and trends in past tree growth and

199 resilience to drought events, during the 40 years prior to the mortality census period.

200 Growth metrics included BAI, as well as RWI autocorrelation (1 year lag; ar) and

201 RWI variation coefficient (VC) calculated on 10-year windows, which have been previously

202 proposed as early warning metrics of tree mortality (Cailleret et al., 2019). Resilience metrics

203 included tree growth resilience (Rl) to past droughts and its resistance (Rs) and recovery (Rc)

204 components. Resilience metrics were calculated for each RWI series and drought years.

205 Drought years were defined as years for which growing season PDSI (averaged over April–

206 September) was inferior to the 1st decile at a given plot. Rl, Rs and Rc were calculated as

207 differences, analogous to Lloret’s ratios (Lloret et al., 2011):
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Y

ᵅ� 1

ᵄ�ᵆ� = ᵄ�ᵄ�ᵃ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ℎᵆ� − ᵄ�ᵄ�ᵃ�ᵅ�ᵅ�ᵅ� Eq. 1

ᵄ�ᵅ� = ᵄ�ᵄ�ᵃ�ᵅ�ᵅ�ᵆ�ᵆ� − ᵄ�ᵄ�ᵃ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ℎᵆ� Eq. 2

ᵄ�ᵅ� = ᵄ�ᵄ�ᵃ�ᵅ�ᵅ�ᵆ�ᵆ� − ᵄ�ᵄ�ᵃ�ᵅ�ᵅ�ᵅ� = ᵄ�ᵆ� + ᵄ�ᵅ� Eq. 3

208 Where RWIdrought is RWI during the drought year, RWIpre is the average RWI during

209 the 4 years prior and RWIpost is the average RWI during the 4 years posterior to the drought

210 year, following (Anderegg et al., 2015b). The use of differences instead of ratios was

211 motivated by the distribution of RWI, which included zeroes and values close to zero.

212 In order to investigate tree-ring metric temporal variations and their effect on tree

213 mortality, all six growth and resilience metrics were decomposed at the core level into a

214 temporal trend and a period-independent average. To do so we fitted two sets of mixed linear

215 models. First, each metric was modelled as a function of species identity, including one

216 random intercept per core as well as a random effect of year per species, such that:

ᵅ�ᵅ�ᵅ� = ᵯ�0,ᵅ� + ᵆ�0,ᵅ� + ᵆ�1,ᵅ�ᵅ� + ᵱ�ᵅ�ᵅ�ᵅ� Eq. 4

217 Where, Yijt is the metric value of the ith species, jth core and kth year, β0,i is a fixed species

218 intercept, u0,j is a random intercept per core, u1,ik is the random effect of year per species and ϵ

219 is an error term. Based on this model we estimated period-independent mean values per core

220 for each metric (hereafter metric name plus ‘mean’) such as β0,i + u0,j. Second, we fitted a

221 mixed linear model which included fixed species and year per species effects, as well as a

222 random intercept and slope per core, nested within species:

Y ᵅ�  = ᵯ�0,ᵅ� + ᵯ� ,ᵅ�ᵄ�ᵅ�ᵄ�ᵅ� + ᵆ�0,ᵅ� + ᵆ�1,ᵅ�ᵄ�ᵅ�ᵄ�ᵅ� + ᵱ�ᵅ�ᵅ� Eq. 5

223 Where, β1,i is the slope for the fixed effect of year. From this model we extracted core-level

224 linear temporal trends for each metric (hereafter metric name plus ‘trend’) such as β1,i + u1,j.

225 When relevant, previous to model fitting we normalized leptokurtic-distributed metrics using

226 the Lambert W function in the R package ‘LambertW’. Homoskedasticity and normality of

227 residuals were visually checked for each model and metric.

228 Stand mortality models

229 We considered the role of a total of ~40 unique variables as predictors of stand

230 mortality, that were classified into one of stand, climate, growth, or resilience categories.

231 Stand structure predictors included overall and species-specific basal area, tree density,

232 average and maximum height and diameter at breast height (DBH), as well as stand age,

233 aspect, slope and diversity (Shannon index). Climate variables included MAT, MAP, mean
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234 annual vapor pressure and climatic water deficit, temporal trends of the previous, as well as

235 drought intensity, frequency and heat stress during the census period. Growth variables

236 consisted in the overall mean and temporal trends of BAI, BAI autocorrelation and BAI

237 variation coefficient. Resilience variables consisted in overall mean and temporal trends of Rl,

238 Rs and Rc.

239 In order to perform a balanced comparison between the effects of stand, climate,

240 growth and resilience factors on stand mortality and to limit the total number of model

241 parameters to avoid overfitting, we performed a preliminary model selection to restrict the

242 number of predictors per category to four. To do so, for each predictor category (i.e., stand,

243 climate, growth and resilience), we fitted logistic models of stand-level mortality with all

244 combinations of up to four predictors per category. For each category we then identified the

245 best model based on the Akaike information criterion (AIC) and retained the corresponding

246 set of predictors. When the AIC difference between models was < 2, we retained the most

247 parsimonious and biologically meaningful model (Table S1–4). The covariance structure of

248 selected predictors was assessed by calculating pairwise Pearson’s correlation between each

249 predictor.

250 Species-specific basal area mortality occurrence, intensity (i.e., proportion of

251 conspecific mortality basal area at plots where mortality occurred) and overall basal area

252 mortality (hereafter ‘mortality’) were subsequently modelled both as a function of one

253 predictor at a time (univariate case) and as a function of all predictors at the same time

254 (multivariate case). In all cases, the three components of mortality were modelled using

255 logistic regressions with binomial residual distribution in the case of mortality occurrence and

256 overall mortality, and beta distribution in the case of intensity (generalized linear models;

257 GLMs). FIA census repeat interval was found to have only a small effect on mortality but was

258 nevertheless included in all models as a covariable. Species-specific tree density was similarly

259 found to induce a positive bias on mortality occurrence detection (increased likeliness to

260 observe at least one mortality tree with large sample size; Fig. S1A) as well as a negative bias

261 on mortality intensity (increased likeliness of mortality to make up for a large proportion of

262 species BA with low sample size; Fig. S1B), but these biases cancelled out in the case of

263 overall mortality (Fig. S1C). Hence, we included species-specific density as a second

264 covariable in mortality occurrence and intensity models. GLMs had the form:

logit(M) = ᵯ�0 + ᵯ� ᵄ�1 + ᵯ�2ᵄ�2 + ⋯+ ᵯ�ᵅ�ᵄ�ᵅ� + Eq. 6
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ᵯ�ᵅ�+1CensusPeriod + (ᵯ�ᵅ�+2SpeciesDensity) + ϵ

265 Where, M is mortality occurrence, intensity or overall mortality β0 is the intercept, β1, β2, …,

266 βn are the coefficient estimates for the included X1, X2, …, Xn variables, βn+1 is the effect of

267 repeat census period, βn+2 is the effect of species density (only for mortality occurrence and

268 intensity models) and ϵ is an error term.

269 In the univariate case we used generalized linear mixed models (GLMMs) that had the

270      same general form as Eq. 6 but further included a random intercept per species, in order to

271      account for different mortality pathways between species and evaluate the predictive power of

272      each variable within in addition to across species. Finally, multivariate models’ variance was

273      decomposed into stand, climate, growth and resilience contributions based on the Lindeman,

274      Merenda and Gold (LMG) and proportional marginal variance decomposition (PMVD)

275 metrics (Grömping, 2007). Both metrics are similar in that they fully decompose total model

276 variance into non-negative shares between predictors irrespective of their order in the model.

277 However, by attributing equal weights to all variables, LMG informs on the explicative power

278 of predictors (‘marginal’ perspective), whereas PMVD provides an estimate of variable

279 usefulness in a predictive modelling setting by giving larger weights to variables that capture

280 a larger proportion of the variance in combination with a smaller number of variables

281 (‘conditional’ perspective). Last, we calculated the unique variance carried by each predictor

282 category as the additional amount of explained variance by the full model compared to the

283 model without this predictor category.
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284

285 Fig. 1. (A) Geographic and (B) climatic distribution of stand-level mortality, in percent of conspecific basal area, at sampled

286 forest inventory plots. (C) Number of cores collected per species. The bars color indicates species-level mortality average.

287 (D) Average mortality per species and reported proximal disturbance agent based on field evidence of disease, insect or

288 drought mortality. The absence of observable dominating disturbance agent is reported as “no disturbance”. Mortality is

289 calculated for each core as a plot-level conspecific basal area proportion.

290 Results

291 Mortality spatial distribution

292 About 1200 of the ~3000 FIA plots considered here exhibited some degree of

293 mortality. In these plots, mortality affected 25±1% (mean ± SE) of basal area on average (6%,

294 16%, 38% for 1st, 2nd and 3rd quartiles). In the field, ~31% of observed basal area mortality

295 was associated to insect outbreaks, 12% were associated to diseases and only 1% to drought,

296 due to the limited field evidence and use of this disturbance code by crews. The remaining

297 56% of all mortality was listed as ‘no disturbance’ but can most likely be attributed to drought

298 (see Discussion). Stand mortality varied widely spatially and across space and species (Fig.

299 1). Dry and warm, low elevation, pinyon-juniper dominated areas exhibited the lowest
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300 mortality levels, whereas colder and wetter subalpine areas exhibited extensive mortality, in

301 relation with insect outbreaks, such as mountain pine beetles and spruce bark beetles.

302 Subalpine pines, spruces and firs (Abies lasiocarpa, Picea engelmannii, Pinus albicaulis, P.

303 contorta and P. flexilis) hence experienced mortality of ~20% basal area on average, of which

304 46% were associated to insect disturbance. Mortality averaged only 5% for the remaining

305 conifer species, 20% of which were associated to insects. Quaking aspen (Populus

306 tremuloides), which stands out as the only angiosperm species in our dataset, also experienced

307 substantial mortality (16% on average). P. tremuloides was further unlike other species in the

308 study in that its mortality agent was largely associated to diseases (38%) induced by

309 pathogens such as Cytospora canker (Marchetti et al., 2011), in addition to insects (35%).

310

311 Fig. 2. Temporal trend of (A) tree growth and (B) resilience metrics. From top to bottom and left to right, basal area

312 increment (BAI), RWI autocorrelation (ar), RWI variation coefficient (VC), growth resilience (Rl), resistance (Rs) and
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313 recovery (Rc). Temporal trends were estimated from mixed linear models including a random intercept and slope per core.

314 Variables were transformed to approximate a gaussian distribution when necessary. Solid and transparent dots represent

315 significant and unsignificant species-level temporal trends, respectively (α = 0.05).

316 Tree growth resilience decline

317 We observed that tree-level BAI of all species significantly increased between 1958–

318      2010 (Fig. 2A). Tree-ring based BAI estimates were found to be representative of FIA plot-

319      level BAI on the same period (r = 0.68, p < 0.0001). We found that this temporal increase in

320      BAI was matched for most species by an increase in growth variability (11 out of 13 species

321      with a significantly positive trend) and, to a lower extent, autocorrelation (5 out of 13 species

322      with a significantly positive trend). We further observed a general tendency of growth drought

323      resilience to decline over time (Fig. 2B; overall mean ± SE: –1.40±0.52 10-3 year-1, p < 0.05),

324      with 7 out of 13 species that exhibited a significant decline, and only one species with a

325 significant increase (Juniperus scopulorum), although this last result should be interpreted

326 cautiously due to lower sample size for J. scopulorum. The resilience decline appeared to be

327 driven overall by a decrease in drought resistance (on average –1.26±0.42 10-3 year-1, p <

328 0.05), whereas trends in drought recovery were inconsistent across species and overall did not

329 compensate for decreased resistance (p = 0.84).

330 Mortality predictors selection

331 Preliminary category-wise variable selection yielded 3 to 4 best predictors of forest

332      mortality per predictor category. The best stand structure predictors were conspecific and

333      other species basal area, species maximum tree height and overall maximum DBH. Selected

334      climate predictors were MAT, MAP, drought intensity and heat stress. Growth predictors

335      comprised mean BAI, mean and temporal trend of BAI variation coefficient and mean BAI

336      autocorrelation. Resilience predictors were mean Rl, Rs trend and Rt trend. Rl trend was not

337 selected, likely due to its high correlation to Rs and Rt trends but was nevertheless included in

338 univariate analyses for comparison.

339 Univariate models of stand mortality

340 When considering the relationship between individual predictors and stand mortality

341 across species (generalized linear models, black lines in Fig. 3), we found a significant effect

342 of all predictors, except Rl mean and max DBH. Best individual predictors of stand mortality

343 were MAT, Rl trend, heat stress and species max height, in that order. We found a negative

344 relationship between MAT or drought frequency and mortality, which was consistent with

345 observed geographical distribution of mortality that was strongly skewed towards high
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346 mountain areas of Colorado and Wyoming (Fig. 1). However, the positive effect of heat stress

347 during the census interval, indicated that given MAT, positive temperature anomalies were

348 associated to higher mortality. Finally, rather than absolute tree growth resilience to drought,

349 its decline over time was most strongly associated with mortality across species. The

350 association between mortality and resilience decline across species appeared to be carried

351 mostly by its resistance component.

352

353 Fig. 3. Univariate logistic models of stand mortality (in percent of conspecific basal area). Both generalized (thick black

354 lines) and mixed linear models including a random species intercept (thin colored lines) were fitted to the data. All models

355 include the effect of census period duration. Predictors are transformed to approximate a normal distribution but its

356 contribution to model variance is little (< 1%). Corresponding model marginal or conditional R2 (GLMMs: R2
m, R2

c) and R2

357 (GLMs) and significance (p < 0.05: * – p < 0.01: ** – p < 0.001: ***) are indicated on the top left and right corner of each

358 panel, respectively. Significant effect of x-axis variable is further denoted by solid lines (p < 0.05). Note that Rl trend is

359 included here to illustrate its effect on mortality but has been discarded from multivariate analyses in favor of its resistance

360 and recovery components.
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361 When looking at within species relationships (colored lines in Fig. 3, GLMMs) we

362 found similar effects of MAT, heat stress, max species height and Rl trend compared to cross-

363 species patterns. The effect of some variables which was significant cross-species was found

364 to fade or disappear within species, showing that some or most of the cross-species effect was

365 driven by between-species variations. This was the case of mean growth variation coefficient

366 and growth autocorrelation, and to some extent, that of other species BA and MAP. By

367 contrast, we found a stronger effect of Rl mean on mortality at the within-species level, which

368 indicated that species-specific differences in resilience blurred the cross-species pattern.

369 Individual predictors of mortality intensity were somewhat similar to overall mortality (Fig.

370 S2 & S3), whereas the drivers of mortality occurrence more largely differed. Most strikingly,

371 mortality intensity was most strongly related to resilience and growth metrics, whereas

372 mortality occurrence was best described by stand structure metrics.

373

374 Fig. 4. Pearson’s correlation matrix of the selected mortality predictors. Correlations which absolute value is > 0.25 (p <

375 0.0001) are displayed on top of the corresponding cells. Outlined cells denote correlations between variables of a same

376 group: i.e., stand (green), climate (blue), tree growth (brown) and resilience variables (yellow).
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377 Covariation of stand mortality drivers

378 Substantial covariation was observed between the predictors of mortality considered

379 here (Fig. 4). Notably MAT and MAP were strongly correlated to each other and to a range of

380 other variables, including species max height, mean growth variation coefficient and

381 autocorrelation, as well as to a lesser extent, trends in resistance and recovery. Namely,

382 colder- and wetter-than average climates, were associated to lower tree growth variation

383 coefficient and higher autocorrelation, as well as stronger declines in drought resistance and

384 recovery.

385 Trees that experienced increasing resistance and recovery to drought also tended to

386 exhibit higher resilience overall. We found a negative association between Rs and Rc trends,

387 suggesting that at the tree level, decline in growth resistance to drought was partially

388 mitigated by increased recovery. We did not find that fast-growing trees were more resilient

389 to drought. However, resistance and recovery trends were positively associated to mean

390 growth variability, which was in turn negatively correlated to growth autocorrelation.

391 Multivariate stand mortality models

392 Full models (including all 15 predictors and 1-2 covariables –census return time and

393      species density when applicable) explained 40%, 20% and 24% percent of observed mortality

394      occurrence, intensity and overall mortality, respectively (Fig. 5A). Variance decomposition

395      showed that the weight of the different predictors strongly differed between models. Mortality

396      occurrence appeared to be mostly driven by stand structure, followed by climate and denoted

397      little relative importance of growth and resilience metrics. Mortality intensity displayed an

398      opposite pattern, where growth and resilience metrics had the largest relative importance

399 overall, followed by climate and a small contribution of stand structure. These effects

400 balanced each other when considering overall mortality, leading to a roughly similar relative

401 importance of the different predictor categories. Variance decomposition nevertheless gave

402 somewhat different results depending on the perspective. Notably, from the marginal

403 perspective (LMG), variance decomposition gave substantially higher importance to

404 resilience and lower importance to stand and climate overall, compared to the conditional

405 perspective (PMVD). This result was related to the fact that predictors shared a substantial

406 amount of variance, depending on the model. Predictor unique variance in occurrence model

407 averaged about 68% of overall predictor explained variance (unique/marginal variance), but

408 that number fell under half for intensity and overall mortality.
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409 Coefficient estimates showed substantial consistency across occurrence, intensity and

410 mortality models (Fig. 5B). This was mostly true for climate, growth and resilience

411 coefficients, although less so in the case of stand coefficients. Namely, we found a strong

412 positive effect of conspecific BA and max height on occurrence and overall mortality, but all

413 stand coefficients were non-significant in the intensity model. Max DBH had no effect in all

414 models. In contrast, we found consistently strong negative effect of resistance and recovery

415 trends, as well as a positive effect of mean resilience on the three components of mortality.

416 We also found a consistent negative effect of mean BAI across models, but other growth

417 variables had small and inconsistent effect. Last, the effect of all climate variables was found

418 to be positive across models, except MAT which was insignificant in the case of overall

419 mortality.

420

421 Fig. 5. Multivariate models of stand mortality occurrence, intensity and overall mortality (‘mortality’). (A) Variance

422 decomposition analysis. Variance is partitioned between four previously defined predictor groups (stand, climate, growth and

423 resilience variables) based on the LMG (dark colors) and PMVD (light colors) metrics (Grömping, 2007). LMG gives an

424 estimate of each predictor contribution to explain observed variance, whereas PMVD is a metric of the usefulness of each

425 variable for predictive purposes. Marginal and conditional R2 of corresponding models are indicated on the top-left of each

426 panel. The dashed line indicates the theoretical metric value if all variables equally participated to model variance (0.25) (B)

427 Model coefficient estimates. Coefficients are standardized. Points and intervals indicate mean and standard error. Significant

428 (p < 0.05) coefficients are denoted by filled points. Diamonds indicate consistent coefficient sign and significance across

429 models. Colors indicate variable groups: stand (green), climate (blue), growth (brown) and resilience (yellow).

430
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431 Discussion

432 Drought and biotic imprint on widespread Mountain West stand mortality

433 We report widespread elevated mortality rates, though highly variable, across many

434 taxa and five states of the US Mountain West in the past two decades, consistent with

435 previous reports in the region (McNellis et al., 2021; Stanke et al., 2021). Mortality was most

436 pronounced in species found in high mountain regions of the Rockies, in Colorado and

437 Wyoming. This clear distribution towards cool and moist forests contrasts with previous large

438 scale pinyon pine die-off in warm and dry lowlands of the region during the 2000’s, where

439 climate-change type drought had been identified as a primary triggering factor (Breshears et

440 al., 2005; Shaw et al., 2005; Greenwood & Weisberg, 2008). Pathogens and insects –notably

441 bark beetles–, have been found to be a primary disturbance for a third of mortality reported

442 here (Fig. 1D), while about half of the time no disturbance was reported. Our results

443 nevertheless suggest a strong contribution of drought and heat to observed mortality (Fig. 3 &

444 5). Attribution of mortality to drought by the crews in the field is notoriously challenging

445 because of the lack of clear diagnosis elements (Anderegg et al., 2015a), but a broad body of

446 literature in this region reveals that most of observed mortality is primarily driven by drought

447 and with frequent insect interactions (Breshears et al., 2005; Shaw et al., 2005; Worrall et al.,

448 2010; Williams et al., 2012; Stanke et al., 2021). Overall, biotic and climate factors may

449 interact through various processes and it is often challenging to disentangle the two as

450 mortality drivers. For example, droughted trees are much more likely to suffer and succumb

451 to biotic attacks, e.g., because of reduced production of resin and defense compounds against

452 biotic agents (Turtola et al., 2003; Rissanen et al., 2020). On the other hand, insects and

453 pathogens may cause direct damage to trees’ vascular system and thus compromise trees’

454 drought resistance (Anderegg et al., 2015a). Such interactions make it difficult in many cases

455 to identify the primary agent of mortality, and blur the role climate and biotic factors in

456 shaping the spatial distribution of mortality.

457 Our results revealed that the observed decreased probability of mortality occurrence

458 with temperature was essentially driven by between-species variations, whereas within

459 species, this probability on the contrary tended to increase with temperature (Fig S2). This

460 reflects larger susceptibility of high elevation species to perturbations. Pronounced increase of

461 overall mortality with colder temperature within-species (Fig. 3) nevertheless shows that

462 despite lower probability of mortality occurrence, cold vs warm populations of a given

463 species were considerably more susceptible to mortality events reaching high intensity (Fig.
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464 S3). Multivariate analyses revealed that the negative effect of temperature on was underlaid

465 by several covarying variables. Notably, cool forests in the region, which also tend to be

466 wetter and more productive, generally exhibit larger basal area and maximum tree height

467 under colder climates. Tall trees –because of their hydraulic architecture– may be particularly

468 sensitive to drought, which might be exacerbated by important competition for resources,

469 including water, in stands with large basal area (McDowell & Allen, 2015; Grote et al., 2016).

470 On the other hand, lower stand basal area might reflect competition release or enhanced

471 microsite suitability in areas previously affected by mortality, such as lowland pinyon-juniper

472 communities (Greenwood & Weisberg, 2008). Finally, biomass availability and the presence

473 of large trees is critical for insect infestations to develop sufficiently to reach epidemic levels

474 (Raffa et al., 2008). Consistently with all these potential processes, here we find strong

475 positive effects of both species basal area and max height on overall mortality and occurrence.

476 Surprisingly though, we did not find any effect of stand factors on mortality intensity. This is

477 odd considering that higher drought and insect sensitivity conferred by a given stand structure

478 would be expected to similarly drive mortality occurrence and intensity, but this result might

479 be explained by the contrasting properties entailed by stand structure. For example, large

480 basal area and max tree height may also reflect large competition asymmetry, whereby

481 dominated individuals may be more vulnerable to mortality, while dominant trees, which

482 make up for most of plot basal area, benefit from large resource availability (Pretzsch &

483 Biber, 2010).

484 Cool forests also tended to experience more relative heat stress (i.e., larger summer

485 temperature anomaly). Heat stress together with drought intensity were found to be strongly

486 related to mortality, hence suggesting an important role of recent hotter droughts in triggering

487 mortality (Hammond et al., 2022). Positive temperature anomalies also favor bark beetle

488 population development and outbreaks (Raffa et al., 2008), especially at cold species

489 boundaries where warming might allow biotic agents to infest new tree populations (Deutsch

490 et al., 2008; McDowell et al., 2020). Hence, species vulnerability, stand history and current

491 structure, as well as recent climate extremes all help explain why cool forests were found to

492 be more susceptible to tree mortality than their warm counterparts. We further observed

493 higher growth autocorrelation, as well as stronger declines in growth resistance and recovery

494 to drought in cool forests, suggesting deteriorating tree physiology and a role in mediating

495 observed mortality patterns along the temperature gradient.
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496 Historic decline of tree growth resilience to drought

497 Over the study period, we found that BAI of sampled trees increased over time, and

498 this held for all species. Because increment core sampling was biased towards dominant

499 crown class trees, this result is likely inflated (Duchesne et al., 2019). Positive tree growth

500 trends were nevertheless largely confined to relatively young stands (<100 years, Fig. S4),

501 consistent with expected stand development. We further observed that tree growth tended to

502 increase faster in cool and moist high-elevation forests, which hinted that besides stand

503 development positive tree growth trends could be partly explained by alleviation of cold-

504 limitation (Gao et al., 2022).

505 Despite positive growth trends, we observed parallel increases in growth

506 autocorrelation and variability for a majority of the study species. On the theoretical basis that

507 system state autocorrelation and variability should increase close to a tipping point (Scheffer

508 et al., 2009), these metrics have been proposed as early warning signals of mortality (Hereş et

509 al., 2012; Camarero et al., 2015; Cailleret et al., 2019). This expectation relies on the

510 common hypothesis that tree growth is a reliable proxy of system state, i.e., tree physiological

511 status. However, growth autocorrelation and variability might integrate other signals on top of

512 tree physiology. Notably, autocorrelation and variability of tree growth are partly driven by

513 that of climate and hydrology (Bowers et al., 2013; Coulthard et al., 2020). For example,

514 PDSI is a strong determinant of tree growth in the region and was substantially more

515 autocorrelated at colder sites (r = –0.45, p < 0.001), hence potentially explaining the strong

516 negative correlation observed between MAT and growth autocorrelation. Autocorrelation can

517 further be determined by species functional traits such as leaf or carbon reserves lifespan

518 (Zweifel & Sterck, 2018) and tree ontogeny (Zweifel et al., 2006). Here, we find strong

519 association between stand structure (tree height), climate and tree growth autocorrelation and

520 variability. Such dependences might thus substantially blur potential relationships between

521 tree growth autocorrelation, variability and mortality, which could explain inconsistent reports

522 (Cailleret et al., 2019; Tai et al., 2022).

523 In parallel to increasing growth autocorrelation and variability, we observed declining

524 growth resilience to drought across several species. Despite mathematical connection between

525 growth variability, autocorrelation and resilience, these metrics were only weakly correlated,

526 suggesting that they encoded different signals. Decline in tree growth resilience to drought

527 has been previously reported at the local scale (Gazol et al., 2018) and across temperate and

528 boreal forests (Zheng et al., 2021, 2023). The decline observed here was primarily a result of
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529 decreasing resistance, which was not compensated for by increasing recovery (Fig. 2).

530 Declining drought resistance is often symptomatic of increasing drought intensity and/or

531 competition (Gazol et al., 2018; Castagneri et al., 2021). Though increasing temperature and

532 drought intensity over part of the study area (Andreadis & Lettenmaier, 2006), as well as

533 increasing stand density due to fire suppression (Noss et al., 2006) reflected in current stand

534 structure, could indeed explain some of the decline in tree growth resilience, most of the

535 spatial variability in Rl decline was nevertheless related to annual temperature, which was

536 ultimately related to species distribution (Fig. S5-6, Table S5). Like mortality, species-

537 dependence of observed Rl decline suggests either species-specific variation in drought

538 vulnerability and/or host-biotic agent interactions. Notably, increasing temperatures may have

539 allowed insect infestation of naive species at higher latitude and elevations (Raffa et al.,

540 2008), causing decline in tree growth resilience to subsequent droughts in these populations.

541 Overall, several factors, including increasing stand competition, drought and insect outbreaks,

542 are likely responsible for the observed decline in tree growth resilience to drought. In this

543      regard, temporal resilience trends most likely carry information on past stand history and tree

544      physiological damage, which could influence stand vulnerability to subsequent perturbations.

545 Despite their differences, temporal trends of tree growth autocorrelation, variability

546 and resilience to drought converge to suggest tree physiological decline in the US Mountain

547 West during the second half of the 20th century. This result contrasts with a context of

548 increasing basal area growth and highlight a divergence between tree productivity and

549 physiological status. Further, while tall, productive forests located in moist and cool

550 environments exhibited the largest temporal growth trends, they were also the most exposed

551 to physiological weakening denoted by declining growth resilience. Progressive lifting of cold

552 limitation might thus benefit tree growth while at the same time exposing trees to larger

553 vulnerability to drought and insect outbreaks, e.g., because of structural overshoot and insect

554 population development (Raffa et al., 2008; Jump et al., 2017).

555 Declining resilience mediates stand mortality

556 Our results reveal strong association between stand-level mortality and tree growth

557 resilience to drought. Long-term average resilience was negatively associated with mortality,

558 but only within-species. While difference in mean resilience between species might reflect

559 different exposition to drought, it may not reflect different susceptibility to mortality.

560 Resilience levels are in fact in large part dependent on growth temporal autocorrelation

561 (Klesse et al., 2022), which is notably related to species functional traits such as leaf and
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562 carbon lifespan (Zweifel & Sterck, 2018; Zweifel et al., 2020; Song et al., 2022) or wood

563 density (Serra‐Maluquer et al., 2022). Unexpectedly, we found a positive effect of mean

564 resilience on mortality in multivariate models, indicating that all else being equal, trees with

565 higher resilience level were associated with higher stand mortality, similar to a previous

566 remote-sensing study (Tai et al., 2022). This likely reflects larger vulnerability of trees

567 historically little exposed to drought, e.g., because of structural overshoot (Jump et al., 2017).

568 Univariate and multivariate models both indicated that resilience trends were strong

569 predictors of stand mortality, superior to resilience means in that regard. This indicates that

570 trends in resilience successfully capture the integrated effect of past stresses on tree

571 physiological status and susceptibility to mortality. Hence in refinement of previous report on

572 the potential of growth resilience to drought as early warning metric (DeSoto et al., 2020), we

573 propose that declining resilience, rather than absolute resilience, is indicative of unhealthy

574 stands, which are likely more vulnerable to perturbations, regardless of the agent. The

575 observed relationship between declining resilience and mortality further suggests that damage

576 build up induced by repeat perturbations may be an important component of observed stand

577 mortality patterns, consistent with regional and global analyses (Anderegg et al., 2013,

578 2020b). For example, declining resilience might be indicative of drought-induced cavitation

579 fatigue, i.e., larger hydraulic vulnerability of the xylem induced by previous drought, which is

580 a major factor of subsequent Populus tremuloides mortality following drought in the region

581 (Anderegg et al., 2013). More generally, by hindering trees’ capacity to regrow functional

582 vascular tissue, declining growth resilience to drought might fundamentally alter trees’ water

583 and carbon economies. Processes include reduced hydraulic conductance and increased

584 vulnerability to embolism, reduced carbon assimilation and shifting C allocation away from

585 resin and defense molecule production, which may compromise tree vulnerability to

586 subsequent biotic and abiotic perturbations (Raffa et al., 2008; McDowell, 2011; Rissanen et

587 al., 2020). At the forest scale, the processes that underlie loss of resilience likely destabilize

588 the system and increase the likelihood that future perturbations may lead forests to transition

589 to an alternate stable state (Hammond, 2020; Johnson et al., 2022).

590 On the other hand, the capacity to grow new xylem rapidly would confer trees reduced

591      vulnerability to following droughts. Despite resilience level being a weak predictor of

592 mortality, we found that rapid tree growth overall was associated with lower stand mortality

593 rates, consistent with a widely observed pattern (Bigler & Bugmann, 2003; Hülsmann et al.,

594 2018). Hence, rather than the capacity to quickly resume baseline wood growth as denoted by
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595 average resilience the ability to maintain resilience to drought and rapid overall tree growth

596 appears as a key factor to mitigate mortality (Anderegg et al., 2015b), despite rapid tree

597 growth might come at the expense of allocation to drought resistance and pathogen defense

598 (Huot et al., 2014; de la Mata et al., 2017). Multivariate models show that decomposing

599 resilience into resistance and recovery components improved predictions, and further indicate

600 similar importance of growth resistance and recovery components of resilience trends in

601 mediating stand mortality (Fig. 5, Table S4). This suggests that stress avoidance and

602 tolerance strategies (Oliveira et al., 2021) can both be successful in mitigating mortality. Our

603 results illustrate the role of resilience in denoting past physiological decline and mediating

604 subsequent stand mortality. The loss of growth resilience to drought following past

605 perturbations, due to either declining resistance or recovery,

606 Modelling stand mortality

607 Here, we assess the relative importance of stand, climate, growth and resilience factors

608 to model stand-level mortality. We make the distinction between explicative (i.e., how much

609 variance can a variable explain overall) and predictive power (i.e., how much does a model

610 improve by adding a new variable) denoted by the marginal and conditional decomposition of

611 model variance, respectively (Grömping, 2007). Moderate model performance overall was

612 expected on the basis of the complexity of processes involved and variability between species,

613 but was within the range of previous studies (Trugman et al., 2021; Venturas et al., 2021). As

614 expected from longstanding literature on the topic, stand and climate factors played an

615 important role in explaining stand mortality (Dietze & Moorcroft, 2011; Ruiz-Benito et al.,

616 2013; Neumann et al., 2017). Stand variables notably most largely contributed to explain the

617 occurrence of mortality observations, related to stand basal area and tree height, but had

618 strikingly little effect on mortality intensity. This is likely related to stand dynamics, where

619 mature stands are more likely to exhibit low intensity mortality (Franklin, 2002). Tree growth

620 and resilience to drought nevertheless had similarly large importance, explaining together

621 about half of observed spatial variations in overall stand-level mortality. Tree growth and

622 resilience performed particularly well to explain mortality intensity, explaining over two

623 thirds of the observed variance. These results upscale previous tree-level evidence (Bigler &

624 Bugmann, 2003; Cailleret et al., 2016; DeSoto et al., 2020), and demonstrate the potential of

625 growth and resilience metrics to encapsulate tree physiological status and help explain

626 mortality over broad scales, despite large complexity diversity of pathways across species

627 (Lloret et al., 2011).
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628 On the other hand, covariation between tree growth and resilience, climate and stand

629 factors (Lloret et al., 2011; Serra‐Maluquer et al., 2022) is important to take into account as it

630 may partially underlie their respective effect on mortality. This is particularly the case for tree

631 growth variation coefficient and autocorrelation, which despite showing a strong effect on

632 mortality across species, is mostly driven by other climate and stand variables, hence yielding

633 non-significant parameters in multivariate models (Fig 5B). To a lesser extent, the difference

634 between the conditional and marginal decomposition of variance (Fig. 5A) also suggests that

635 part of the resilience effect on mortality could be explained by other variables in the

636 multivariate model, notably stand and climate factors. This view is supported by the fact that

637 resilience exhibited limited unique model variance. Although this result does not necessarily

638 imply non-causality between resilience and mortality, it does suggest modest gains from

639 adding resilience in a model for prediction purposes. The relative importance of tree growth

640 on the other hand appeared to be robust to the adopted perspective, indicating limited

641 redundancy with other variables in the model. The potential of past tree growth to predict

642 future mortality that we observe here is consistent with its common use in vegetation models

643 (Hülsmann et al., 2018). The existence of a survivorship and dominance bias in our dataset

644 (mostly live and often dominant trees were sampled (DeRose et al., 2017)) might have led to

645 underestimating the growth- and resilience-mortality relationships. Analyses based on a more

646 representative sampling design might thus conclude to a larger relative importance of these

647 metrics to explain and predict stand mortality.

648 Our results highlight the strengths but also some of the limitations of tree-growth

649 based resilience as early warning signal of stand mortality. Models, including that of forest

650 mortality, need to strike a balance between predictive power versus the number of parameters

651 and associated costs (Bentler & Mooijaart, 1989). Though model selection criterion (AIC)

652 suggested that the benefits of including resilience outweighs statistical costs, further costs

653 associated with enabling resilience-based forest mortality models need to be considered.

654 Notably, such a model would require extensive and annually resolved tree growth monitoring.

655 Existing national forest inventory programs generally lack temporal resolution and though

656 adding core sampling to inventories would provide necessary resolution (DeRose et al., 2017;

657 Evans et al., 2022), repeat sampling and processing to enable updated predictions might

658 reveal costly. Finding a way around this issue would require lower costs and/or higher

659 benefits of including resilience metrics in mortality models. Remote sensing of canopy status

660 thus seems a promising avenue in this regard, although mortality inferences have been
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661 restricted in time so far, which limits the capacity to take action (Rogers et al., 2018; Liu et

662 al., 2019). Automated tree growth measurement networks such as TreeNet (Zweifel et al.,

663 2021) could also show potential, in that they might enable exploring new proxies of tree

664 physiological status in addition to reducing the return-time to forest plots. Spatial and

665 temporal limitations to such networks yet currently hinders testing these applications. Despite

666 limitations, tree-ring based estimates of forest resilience hold great value for retrospective

667 analysis of past mortality events and to gain insights on underlying mechanisms. Tree-ring

668 based resilience proved to be a reliable proxy of tree physiological status and forest

669 vulnerability to perturbations. In that sense, widespread decline in tree growth resilience to

670 drought (Zheng et al., 2021) adds to the growing evidence of increasing risk of pervasive

671 forest mortality at the global scale (Allen et al., 2015; Hammond et al., 2022).

672
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