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We i ntr o d u c e t h e n o v el- vi e w a c o usti c s y nt h esis ( N V A S)
t as k: gi v e n t h e si g ht a n d s o u n d o bs er v e d at a s o ur c e vi e w-
p oi nt, c a n  w e s y nt h esiz e t h e s o u n d of t h at s c e n e fr o m a n
u ns e e n t ar g et vi e w p oi nt ?  We pr o p os e a n e ur al r e n d eri n g
a p pr o a c h:  Vis u all y-  G ui d e d  A c o usti c S y nt h esis ( Vi G A S) n et-
w or k t h at l e ar ns t o s y nt h esiz e t h e s o u n d of a n ar bitr ar y
p oi nt i n s p a c e b y a n al yzi n g t h e i n p ut a u di o- vis u al c u es.
T o b e n c h m ar k t his t as k,  w e c oll e ct t w o first- of- t h eir- ki n d
l ar g e- s c al e  m ulti- vi e w a u di o- vis u al d at as ets, o n e s y nt h eti c
a n d o n e r e al.  We s h o w t h at o ur  m o d el s u c c essf ull y r e as o ns
a b o ut t h e s p ati al c u es a n d s y nt h esiz es f ait hf ul a u di o o n b ot h
d at as ets. T o o ur k n o wl e d g e, t his  w or k r e pr es e nts t h e v er y
first f or m ul ati o n, d at as et, a n d a p pr o a c h t o s ol v e t h e n o v el-
vi e w a c o usti c s y nt h esis t as k,  w hi c h h as e x citi n g p ot e nti al
a p pli c ati o ns r a n gi n g fr o m  A R/ V R t o art a n d d esi g n.  U n-
l o c k e d b y t his  w or k,  w e b eli e v e t h at t h e f ut ur e of n o v el- vi e w
s y nt h esis is i n  m ulti-  m o d al l e ar ni n g fr o m vi d e os.

1. I nt r o d u cti o n

R e pl a yi n g a vi d e o r e c or di n g fr o m a n e w vi e w p oi nt 1 h as
m a n y a p pli c ati o ns i n ci n e m at o gr a p h y, vi d e o e n h a n c e m e nt,
a n d virt u al r e alit y. F or e x a m pl e, it c a n b e us e d t o e dit a
vi d e o, si m ul at e a virt u al c a m er a, or, gi v e n a vi d e o of a p er-
s o n al  m e m or y, e v e n e n a bl e us ers t o e x p eri e n c e a tr e as ur e d
m o m e nt a g ai n — n ot j ust o n a 2 D s cr e e n, b ut i n 3 D i n a vir-
t u al or a u g m e nt e d r e alit y, t h us ‘r eli vi n g’ t h e  m o m e nt.

W hil e t h e a p pli c ati o ns ar e e x citi n g, t h er e ar e still  m a n y
u ns ol v e d t e c h ni c al c h all e n g es.  R e c e nt a d v a n c es i n 3 D r e-
c o nstr u cti o n a n d n o v el- vi e w s y nt h esis ( N V S) a d dr ess t h e
pr o bl e m of s y nt h esi zi n g n e w i m a g es of a gi v e n s c e n e [ 3 1 ,
3 3 , 4 3 ].  H o w e v er, t h us f ar, t h e vi e w s y nt h esis pr o bl e m is
c o n c er n e d  wit h cr e ati n g vis u als al o n e; t h e o ut p ut is sil e nt or
at b est n ai v el y a d o pts t h e s o u n ds of t h e ori gi n al vi d e o (fr o m
t h e “ wr o n g ” vi e w p oi nt).  Wit h o ut s o u n d, t h e e m oti o n al a n d
c o g niti v e si g ni fi c a n c e of t h e r e pl a y is s e v er el y di mi nis h e d.

I n t his  w or k,  w e a d dr ess t his g a p a n d i ntr o d u c e t h e n e w
t as k of n o v el- vi e w a c o usti c s y nt h esis ( N V A S).  T h e g o al of

1 We us e “ vi e w p oi nt ” t o  m e a n a c a m er a or  mi cr o p h o n e p os e.
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Fi g ur e 1. N o v el- vi e w a c o usti c s y nt h esis t as k. Gi v e n a u di o- vis u al
o bs er v ati o ns fr o m o n e vi e w p oi nt a n d t h e r el ati v e t ar g et vi e w p oi nt
p os e, r e n d er t h e s o u n d r e c ei v e d at t h e t ar g et vi e w p oi nt.  N ot e t h at
t h e t ar g et is e x pr ess e d as t h e d esir e d p os e of t h e  mi cr o p h o n es; t h e
i m a g e at t h at p os e (ri g ht) is n eit h er o bs er v e d n or s y nt h esi z e d.

t his t as k is t o s y nt h esi z e t h e s o u n d i n a s c e n e fr o m a n e w
a c o usti c vi e w p oi nt, gi v e n o nl y t h e vis u al a n d a c o usti c i n p ut
fr o m a n ot h er s o ur c e vi e w p oi nt i n t h e s a m e s c e n e ( Fi g. 1 ).

N V A S is v er y diff er e nt fr o m t h e e xisti n g  N V S t as k,
w h er e t h e g o al is t o r e c o nstr u ct i m a g es i nst e a d of s o u n ds,
a n d t h es e diff er e n c es pr es e nt n e w c h all e n g es. First, t h e 3 D
g e o m etr y of  m ost r e al-lif e s c e n es c h a n g es i n a li mit e d  m a n-
n er d uri n g t h e r e c or di n g.  O n t h e c o ntr ar y, s o u n d c h a n g es
s u bst a nti all y o v er ti m e, s o t h e r e c o nstr u cti o n t ar g et is hi g hl y
d y n a mi c. S e c o n dl y, vis u al a n d a u di o s e ns ors ar e v er y dif-
f er e nt.  A c a m er a  m atri x c a pt ur es t h e li g ht i n a hi g hl y-
dir e cti o n al  m a n n er, a n d a si n gl e i m a g e c o m pris es a l ar g e 2 D
arr a y of pi x els. I n c o ntr ast, s o u n ds ar e r e c or d e d  wit h o n e or
t w o  mi cr o p h o n es  w hi c h ar e at b est  w e a kl y- dir e cti o n al, pr o-
vi di n g o nl y a c o ars e s a m pli n g of t h e s o u n d fi el d.  T hir dl y,
t h e fr e q u e n c y of li g ht  w a v es is  m u c h hi g h er t h a n t h at of
s o u n d  w a v es; t h e l e n gt h of a u di o  w a v es is t h us l ar g er t o t h e
p oi nt of b ei n g c o m p ar a bl e t o t h e si z e of g e o m etri c f e at ur es
of t h e s c e n e,  m e a ni n g t h at eff e cts s u c h as diffr a cti o n ar e
oft e n d o mi n a nt, a n d s p ati al r es ol uti o n is l o w.  As a r es ult,
t e c h ni q u es t h at r e q uir e s p ati al pr e cisi o n, s u c h as tri a n g ul a-
ti o n a n d s e g m e nt ati o n, ar e n ot a p pli c a bl e t o a u di o.  L astl y,
s o u n ds  mi x t o g et h er,  m a ki n g it dif fi c ult t o s e g m e nt t h e m,
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and they are affected by environmental effects such as re-
verberation that are distributed and largely unobservable.

While the NVS and NVAS tasks are indeed very dif-
ferent, we hypothesize that NVAS is an inherently multi-
modal task. In fact, vision can play an important role in
achieving accurate sound synthesis. First, establishing cor-
respondences between sounds and their sources as they ap-
pear in images can provide essential cues for resynthesiz-
ing the sounds realistically. For instance, human speech is
highly directional and sounds very differently if one faces
the speaker or their back, which can only be inferred from
visual cues. In addition, the environment acoustics also af-
fect the sound one hears as a function of the scene geom-
etry, materials, and emitter/receiver locations. The same
source sounds very differently if it is located in the center of
a room, at the corner, or in a corridor, for example. In short,
vision provides cues about space and geometry that affect
sound, and are difficult to estimate from the sound alone.

In order to validate our hypothesis, we propose a novel
visually-guided acoustic synthesis network that analyzes au-
dio and visual features and synthesizes the audio at a target
location. More specifically, the network first takes as in-
put the image observed at the source viewpoint in order to
infer global acoustic and geometric properties of the envi-
ronment along with the bounding box of the active speaker.
The network then reasons how the speaker and scene geom-
etry change in 3D based on the relative target pose with a
fusion network. We inject the fused features into audio with
a gated multi-modal fusion network and model the acoustic
changes between viewpoints with a time-domain model.

In order to conduct our experiments on the new NVAS
task, we require suitable training and benchmarking data,
of which currently there is none available. To address that,
we contribute two new datasets: one real (Replay-NVAS)
and one synthetic (SoundSpaces-NVAS). The key feature
of these datasets is to record the sight and sound of dif-
ferent scenes from multiple cameras/viewpoints. Replay-
NVAS contains video recordings of groups of people per-
forming social activities (e.g., chatting, watching TV, doing
yoga, playing instruments) from 8 surrounding viewpoints
simultaneously. It contains 72 hours of highly realistic ev-
eryday conversation and social interactions in one home-
like environment. To our knowledge, Replay-NVAS repre-
sents the first large-scale real-world dataset enabling NVAS.
This dataset would also greatly benefit many other exist-
ing tasks including NVS, active speaker localization, etc.
For SoundSpaces-NVAS, we render 1.3K hours of audio-
visual data based on the SoundSpaces [7] platform. Using
this simulator, one can easily change the scene geometry
and the positions of speakers, cameras, and microphones.
This data serves as a powerful test bed with clean ground
truth for a large collection of home environments, offer-
ing a good complement to Replay-NVAS. For both datasets,

we capture binaural audio, which is what humans perceive
with two ears. Together the datasets contain 1,372 hours
of audio-visual capture, with 1,032 speakers across 121 3D
scenes. We will release both datasets.

We show that our model outperforms traditional signal
processing approaches as well as learning-based baselines,
often by a substantial margin, in a quantitative evaluation
and a human study. We show qualitative examples where
the model predicts acoustic changes according to the view-
point changes, e.g., left channel becomes louder when the
viewpoint changes from left to right. In a nutshell, we
present the first work that deals with novel-view acoustic
synthesis, and contribute two large-scale datasets along with
a novel neural rendering approach for solving the task.

2. Related Work
Novel-view synthesis (NVS). Kickstarted by advances in
neural rendering [33, 51], many recent works consider vari-
ants of the NVS problem. Most approaches assume dozens
of calibrated images for reconstructing a single static scene.
Closer to monocular video NVS, authors have considered
reducing the number of input views [19, 24, 37, 45, 60] and
modelling dynamic scenes [26,27,41,42,53,55]. However,
none of these works tackle audio.

Acoustic matching and spatialization. NVAS requires
accounting for (1) the environmental acoustics and (2) the
geometric configuration of the target microphone(s) (e.g.,
monaural vs binaural). Modelling environmental acous-
tics has been addressed extensively by the audio commu-
nity [4, 25]. Room impulse response (RIR) functions char-
acterize the environment acoustics as a transfer function be-
tween the emitter and receiver, accounting for the scene
geometry, materials, and emitter/receiver locations. Esti-
mating the direct-to-reverberant ratio and the reverberation
time, is sufficient to synthesize simple RIRs that match au-
dio in a plausible manner [11,15,21,29,36,59]. These meth-
ods do not synthesize for a target viewpoint, rather they
resynthesize to match an audio sample. In [46, 47] sound
from a moving emitter is spatialized towards a receiver con-
ditioned on the tracked 3D location of the emitter.

Recently, the vision community explores using visual in-
formation to estimate environmental acoustics [6,50]. How-
ever, these works only synthesize acoustics for a given
viewpoint rather than a novel viewpoint. In addition, they
have only addressed monaural audio, which is more forgiv-
ing than binaural because humans do not perceive subtle ab-
solute acoustic properties, but can detect easily inconsisten-
cies in the sounds perceived by the two ears. Recent work
spatializes monaural sounds by upmixing them to multiple
channels conditioned on the video, where the sound emit-
ters are static [16, 35]. Because the environment, emitter
and receiver are static, so are the acoustics. Other work
predicts impulse responses in simulation either for a single



environment [28], or by using few-shot egocentric obser-
vations [30], or by using the 3D scene mesh [44]. While
simulated results are satisfying, those models’ impact on
real-world data is unknown, especially for scenarios where
human speakers move and interact with each other. Unlike
any of the above, we introduce and tackle the NVAS prob-
lem, accounting for both acoustics and spatialization, and
we propose a model that addresses the problem effectively
on both synthetic and real-world data.
Audio-visual learning. Recent advances in multi-modal
video understanding enable new forms of self-supervised
cross-modal feature learning from video [2, 23, 34], sound
source localization [18,20,54], and audio-visual speech en-
hancement and source separation [1, 13, 32, 39, 61]. All
of these existing tasks and datasets only deal with a single
viewpoint. We introduce the first audio-visual learning task
and dataset that deals with multi-view audio-visual data.

3. The Novel-view Acoustic Synthesis Task
We introduce a new task, novel-view acoustic synthesis

(NVAS). Assuming there are N sound emitters in the scene
(emitter i emits Ci from location Li), given the audio AS

and video VS observed at the source viewpoint S, the goal
is to synthesize the audio AT at the target viewpoint T , as
it would sound from the target location, specified by the
relative pose PT of the target microphone (translation and
orientation) with respect to the source view (Fig. 1). Fur-
thermore, we assume that the active sound emitters in the
environment are visible in the source camera, but we make
no assumptions about the camera at the target location.

The sound received at any point R can be expressed as:

AR = F(L1,...,N , C1,...,N , R | E), (1)

where R is the receiver location (S or T ) and E is the
environment. The emitted sounds Ci are not restricted to
speech but can be ambient noise, sounding objects, etc.
Our goal here is to learn a transfer function T (·) defined
as AT = T (AS , VS , PT ), where S, T, L1,...,N , C1,...,N , E
are not directly given and need to be inferred from VS and
PT , which makes the task inherently multi-modal.

This task is challenging because the goal is to model the
sound field of a dynamic scene and capture acoustic changes
between viewpoints given one pair of audio-visual measure-
ments. While traditional signal processing methods can be
applied, we show in Sec. 6 that they perform poorly. In this
work, we present a neural rendering approach.

4. Datasets
We introduce two datasets for the NVAS task: live

recordings (Sec. 4.1), and simulated audio in scanned real-
world environments (Sec. 4.2) (see Fig. 2). The former is
real and covers various social scenarios, but offers limited

Figure 2. Example source and target views for the two introduced
datasets: Replay-NVAS (left) and SoundSpaces-NVAS (right).

diversity of sound sources, viewpoints and environments,
and is noisy. The latter has a realism gap, but allows perfect
control over these aforementioned elements.

Both datasets focus on human speech given its relevance
in applications. However, our model design is not specific
to speech. For both datasets, we capture binaural audio,
which best aligns with human perception. Note that for both
datasets, we collect multiple multi-modal views for train-
ing and evaluation; during inference the target viewpoint(s)
(and in some cases target environment) are withheld. We
will release both datasets to assist future research.

4.1. The Replay-NVAS Dataset

Replay-NVAS contains multi-view captures of acted
scenes in apartments. We capture 109 different scenarios
(e.g., having a conversation, having dinner, or doing yoga)
from 8 different viewpoints. In total, we collect 72 hours of
video data, involving 32 participants across all scenarios.

In each scenario, we invite 2–4 participants to act on a
given topic. Each participant wears a near-range micro-
phone, providing a clean recording of their own speech. The
scene is captured by 8 DLSR cameras, each augmented with
a 3Dio binaural microphone. In this way, the data captures
video and audio simultaneously from multiple cameras, re-
sulting in 56 possible source/target viewpoint combinations
for each scene. The videos are recorded at 30 FPS and the
audio is recorded with a 48k sampling rate. We use a clap-
per at the beginning of the recording for temporal synchro-
nization. Each scenario lasts 3–8 min. We use off-the-shelf
software for multi-view camera calibration (see Supp.).

To construct the dataset, we extract one-second long
clips from each video with overlapping windows. We auto-
matically remove silent and noisy clips based on the energy
of near-range microphones, which results in 77K/12K/2K
clips in total for train/val/test (details in Supp.) During
training, for one sample, we randomly select two out of
eight viewpoints, one as the source and one as the target.

This dataset is very challenging. It covers a wide range
of social activities. It is harrowed by ambient sound, room



reverberation, overlapping speech and non-verbal sounds
such as clapping and instruments. Participants can move
freely in the environment. We believe that this data will be
useful to the community beyond the NVAS task as it can
be used for benchmarking many other problems, including
active speaker localization, source separation, and NVS.

4.2. The SoundSpaces-NVAS Dataset
In this dataset, we synthesize multi-view audio-visual

data of two people having conversations in 3D scenes. In
total, we construct 1.3K hours of audio-visual data for a to-
tal of 1,000 speakers, 120 3D scenes and 200K viewpoints.

Our goal is to construct audio-visual data with strong
spatial and acoustic correspondences across multiple view-
points, meaning that the visual information should indicate
what the audio should sound like, e.g., observing speaker
on the left should indicate the left ear is louder and ob-
serving speaker at a distance should indicate there is higher
reverberation. We use the SoundSpaces 2.0 platform [7],
which allows highly realistic audio and visual rendering for
arbitrary camera and microphone locations in 3D scans of
real-world environments [5, 52, 58]. It accounts for all ma-
jor real-world acoustics phenomena: direct sounds, early
specular/diffuse reflections, reverberation, binaural spatial-
ization, and effects from materials and air absorption.

We use the Gibson dataset [58] for scene meshes and
LibriSpeech [40] for speech samples. As we are simulating
two people having conversations, for a given environment,
we randomly sample two speaker locations within 3 m and
insert two copyright-free mannequins (one male and one fe-
male) at these two locations.2 We then randomly sample
four nearby viewpoints facing the center of the two speak-
ers at a height of 1.5 m (Fig. 2, right). For each speaker,
we select a speech sample from LibriSpeech with matching
gender. We render images at all locations as well as binau-
ral impulse response for all pairs of points between speakers
and viewpoints. The received sound is obtained by convolv-
ing the binaural impulse response with the speech sample.

During training, for one sample, we randomly sample
two out of four rendered viewpoints, one as the source and
one as the target. We also randomly choose one speaker to
be active, simulating what we observe on the real data (i.e.,
usually only one person speaks at a time).

5. Visually-Guided Acoustic Synthesis
We introduce a new method, Visually-Guided Acoustic

Synthesis (ViGAS), to address the NVAS problem, taking
as input sound and an image and outputting the sound from
a different target microphone pose.

ViGAS consists of five components: ambient sound sep-
aration, active speaker localization, visual acoustic network,
acoustic synthesis, and temporal alignment. The high-level

2https://renderpeople.com/free-3d-people

idea is to separate the observed sound into primary and am-
bient, extract useful visual information (active speaker and
acoustic features), and use this information to guide acous-
tic synthesis for the primary sound. Temporal alignment is
performed during training for better optimization. ViGAS
is discussed in detail next and summarised in Fig. 3.

5.1. Ambient Sound Separation

ViGAS starts by decomposing the input sound into pri-
mary and ambient (traffic, electric noise from a fridge or the
A/C, etc.). Ambient sound is important for realism, but it
also interferes with learning the model because it can carry
significant energy, making the model focus on it rather than
on the primary sounds, and its spatial distribution is very
different from the primary sounds.

By explicitly separating primary and ambient sounds,
ViGAS: (1) accounts for the fact that the transfer func-
tions of primary and ambient sounds are very different and
thus difficult to model together; (2) avoids wasting repre-
sentational power on modelling ambient sounds that might
be difficult to reconstruct accurately and depend less on
the viewpoint; and (3) prevents ambient sounds, which are
noise-like and high-energy, from dominating learning and
reconstruction. In practice, as we show in Sec. 6, without
the ambient sound separation, the model performs poorly.

The goal of ambient sound separation is thus to con-
struct a function (AC , AN ) = P(AS) that separates the
input sound AS into primary sound AC and ambient sound
AS . Existing approaches to this problem are based on sig-
nal processing [3, 12] or learning [10, 14]. We find that pre-
trained speech enhancement models such as Denoiser [10]
tend to aggressively remove the noise including the primary
sound, which hinders re-synthesis. We thus opt for band-
pass filtering, passing frequencies within a certain range
and rejecting/attenuating frequencies outside of it, which
we found to work well. We cut frequencies below 80 Hz
for SoundSpaces-NVAS and 150 Hz for Replay-NVAS.

5.2. Active Speaker Localization

Knowing where the emitters of different primary sounds
are located in the environment can help to solve the NVAS
task. In this paper, we focus on localizing the active speaker,
although there can be other important primary sound events
like instruments playing, speakers interacting with objects,
etc. The goal of active speaker localization is to predict
the bounding box of the active speaker in each frame of
the video (examples in Fig. 4). The bounding box is in the
format of (ymin, ymax, xmin, xmax) and x, y are normalized
to [0, 1] by the image width and height, respectively.

On SoundSpaces-NVAS, this task is relatively easy be-
cause of the strong correspondence between the appearance
of the speaker and the gender of the speech sample, which
enables to easily train a classifier for active speakers. How-

https://renderpeople.com/free-3d-people
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Figure 3. Visually Guided Acoustic Synthesis (ViGAS). Given the input audio AS , we first separate out the ambient sound to focus on
the sound of interest. We take the source audio and source visual to localize the active speaker on the 2D image. We also extract the visual
acoustic features of the environment by running an encoder on the source visual. We concatenate the active speaker feature, source visual
features, and the target pose, and fuse these features with a MLP. We feed both the audio stream AC and fused visual feature VC into the
acoustic synthesis network, which has M stacked audio-visual fusion blocks. In each block, the audio sequence is processed by dilated
conv1d layers and the visual features are processed by conv1d layers. Lastly, the previously separated ambient sound is added back to the
waveform. During training, our temporal alignment module shifts the prediction by the amount of delay estimated between the source and
the target audio to align the prediction well with the target.

ever, this is much harder on Replay-NVAS because cameras
record speakers from a distance and from diverse angles,
meaning that lip motion, the main cue used by speaker lo-
calization methods [20, 48, 54], is often not visible. Hence,
the model has to rely on other cues to identify the speaker
(such as body motion, gender or identity). Furthermore,
sometimes people speak or laugh over each other.

Since our focus is not speaker localization, for the
Replay-NVAS we assume that this problem is solved by
an external module that does audio-visual active speaker
localization. To approximate the output of such a mod-
ule automatically, we rely on the near-range audio record-
ings. Specifically, we first run an off-the-shelf detection and
tracker [9] on the video at 5 FPS and obtain, with some man-
ual refinement, bounding boxes Bi

t for i = 1, . . . , N at each
frame t. We manually assign the near-range microphone au-
dio Ai

N to each tracked person. We select the active speaker
D based on the maximum energy of each near-range micro-
phone, i.e., D = argmaxi

{∑
Ai

N [t : t+∆t]2
}
, where ∆t

is the time interval we use to calculate the audio energy. We
output bounding box BD as the localization feature VL.

5.3. Visual Acoustic Network and Fusion

The active speaker bounding box BD only disam-
biguates the active speaker from all visible humans on 2D,
which is not enough to indicate where the speaker is in 3D.
To infer that, the visual information is also needed. Since
there is usually not much movement in one second (the
length of the input video clip), the video clip does not pro-
vide much extra information compared to a single frame.
Thus, we choose the middle frame to represent the clip and
extract the visual acoustic features VE from the input RGB
image with a pretrained ResNet18 [17] before the average

pooling layer to preserve spatial information. To reduce the
feature size, we feed VE into a 1D convolution with kernel
size 1 and output channel size 8. We then flatten the visual
features to obtain feature VF .

The target pose is specified as the translation along
x, y, z axes plus difference between orientations of the
source “view” and the target “view” expressed via rotation
angles: +y (roll), +x (pitch) and +z (yaw). We encode
each angle α as its sinusoidal value: (sin(α), cos(α)).

Similarly, the target pose is not enough by itself to in-
dicate where the target viewpoint T is in the 3D space; to
infer that, the source view VS is again needed. For example,
in top row of Fig 4, for target viewpoint 3, “two meters to
the right and one meter forward” is not enough to indicate
the target location is in the corridor, while the model can
reason that based on the source view.

We use a fusion network to predict a latent representa-
tion of the scene variables S, T, LD, E (cf . Sec. 3) by first
concatenating [VL, PT , VF ] and then feeding it through a
multilayer perceptron (MLP). See Fig. 3 for the network.

5.4. Acoustic Synthesis

With the separated primary sound AC and the visual
acoustic feature VC as input, the goal of the acoustic syn-
thesis module is to transform AC guided by VC . We design
the acoustic synthesis network to learn a non-linear trans-
fer function (implicitly) that captures these major acoustic
phenomena, including the attenuation of sound in space, the
directivity of sound sources (human speech is directional),
the reverberation level, the head-related transfer function,
as well as the frequency-dependent acoustic phenomena.
Training end-to-end makes it possible to capture these sub-
tle and complicated changes in the audio.



Inspired by recent advances in time-domain signal mod-
eling [38, 47], we design the network as M stacked synthe-
sis blocks, where each block consists of multiple conv1D
layers. We first encode the input audio AC into a latent
space, which is then fed into the synthesis block. The key
of the synthesis block is a gated multimodal fusion network
that injects the visual information into the audio as follows:

z=tanh(pkA(A
k
F )+pkV (VC))⊙σ(qkA(A

k
F )+qkV (VC)), (2)

where ⊙ indicates element-wise multiplication, σ is a logis-
tic sigmoid function, k = 1, . . . ,M is the layer index and
p, q are both learnable 1D convolutions.

After passing z through a sinusoidal activation function,
the network uses two separate conv1D layers to process the
feature, one producing the residual connection Ak+1

F and
one producing the skip connection Ak+1

P . All skip connec-
tions Ak+1

P are mean pooled and fed into a decoder to pro-
duce the output AO. We add back the separated ambient
sound AN as the target audio estimate: ÂT = AO + AN .
See Supp. for more details on the architecture.

5.5. Temporal Alignment

In order for the model to learn well, it is important that
input and output sounds are temporally aligned. While the
Replay-NVAS data is already synchronised based on the
clapper sound, due to the finite speed of sound, the sounds
emitted from different locations may still arrive at micro-
phones with a delay slightly different from the one of the
clapper, causing misalignments that affect training.

To align source and target audio for training, we find the
delay τ that maximizes the generalized cross-correlation:

RAS ,AT
(τ) = Et[hS(t) · hT (t− τ)], (3)

where hS and hT are the feature embedding for AS and
AT respectively at time t. We use the feature extractor
h from the generalized cross-correlation phase transform
(GCC-PHAT) algorithm [22], which whitens the audio by
dividing by the magnitude of the cross-power spectral den-
sity. After computing τ , we shift the prediction AO by τ
samples to align with the AT and obtain AL. Note that
alignment is already exact for SoundSpaces-NVAS.

5.6. Loss

To compute the loss, we first encode the audio with
the short-time Fourier transform (STFT), a complex-valued
matrix representation of the audio where the y axis repre-
sents frequency and the x axis is time. We then compute the
magnitude of the STFT, and optimize the L1 loss between
the the predicted and ground truth magnitudes as follows:

L =
∣∣||STFT(AL)||2 − ||STFT(A′

T )||2
∣∣, (4)

where A′
T is the primary sound separated from AT with

P(·). By taking the magnitude, we do not model the ex-
act phase values, which we find hinders learning if being
included in the loss. See implementation details in Supp.

6. Experiments

We compare with several traditional and learning-based
baselines and show that ViGAS outperforms them in both a
quantitative evaluation and a human subject study.

Evaluation. We measure performance from three aspects:
1. closeness to GT as measured by the magnitude spectro-
gram distance (Mag). 2. correctness of the spatial sound as
measured by the left-right energy ratio error (LRE), i.e.,
the difference of ratio of energy between left and right chan-
nels and 3. correctness of the acoustic properties measured
by RT60 error (RTE) [6, 50], i.e., the error in reverbera-
tion time decaying by 60dB (RT60). We use a pretrained
model [6] to estimate RT60 directly from speech.

Baselines. We consider the following baselines: 1. In-
put audio. Copying the input to the output. 2. TF Es-
timator [56] + Nearest Neighbor, i.e. storing the transfer
function estimated during training and retrieving the nearest
neighbor during test time. We estimate transfer functions
with a Wiener filter [56] and index them with the ground-
truth locations of the speaker, source viewpoint, and target
viewpoint for the single environment setup and their rel-
ative pose for the novel environment setup. At test time,
this method searches the database to find the nearest trans-
fer function and applies it on the input audio. 3. Digital
Signal Processing (DSP) [8] approach that takes the dis-
tance, azimuth, and elevation of the sound source, applies
an inverse a head-related transfer function (HRTF) to es-
timate the speech spoken by the speaker and then applies
another HRTF to estimate the audio at the target micro-
phone location. This baseline adjusts the loudness of the
left and right channels based on where the speaker is in the
target view. We supply GT coordinates for SoundSpaces-
NVAS and speakers’ head positions estimated with trian-
gulation on Replay-NVAS. 4. Visual Acoustic Matching
(VAM) [6], recently proposed for a related task of matching
acoustics of input audio with a target image. This task only
deals with single viewpoint and single-channel audio. We
adapt their model with minimal modification by feeding in
the image from the source viewpoint and concatenating the
position offset of the target microphone at the multimodal
fusion step. See Supp. for details.

6.1. Results on SoundSpaces-NVAS

Table 1 shows the results. For synthetic data, we con-
sider two evaluation setups: 1. single environment: train
and test on the same environment and 2. novel environ-
ment: train and test on multiple non-overlapping Gibson
environments (90/10/20 for train/val/test).

In the single environment setup, our model largely out-
performs all baselines as well as our audio-only ablation
on all metrics. TF Estimator performs poorly despite be-
ing indexed by the ground truth location values because es-



SoundSpaces-NVAS Replay-NVAS
Single Environment Novel Environment Single Environment

Mag LRE RTE Mag LRE RTE Mag LRE RTE

Input audio 0.225 1.473 0.032 0.216 1.408 0.039 0.159 1.477 0.046
TF Estimator [56] 0.359 2.596 0.059 0.440 3.261 0.092 0.327 2.861 0.147

DSP [8] 0.302 3.644 0.044 0.300 3.689 0.047 0.463 1.300 0.067
VAM [6] 0.220 1.198 0.041 0.235 1.131 0.051 0.161 0.924 0.070

ViGAS w/o visual 0.173 0.973 0.031 0.181 1.007 0.036 0.146 0.877 0.046
ViGAS 0.159 0.782 0.029 0.175 0.971 0.034 0.142 0.716 0.048

Table 1. Results on SoundSpaces-NVAS and Replay-NVAS. We report the magnitude spectrogram distance (Mag), left-right energy
ratio error (LRE), and RT60 error (RTE). Replay-NVAS does not have novel environment setup due to data being collected in a single
environment. For all metrics, lower is better. In addition to baselines, we also evaluate ViGAS w/o visual by removing the active speaker
localization and visual features. Note that reverberation time is mostly invariant of the receiver location in the same room and thus input
audio has low RTE. A good model should preserve this property while synthesizing the desired acoustics for the target viewpoint.

timating a transfer function directly from two audio clips
is non-trivial and noisy for low-energy parts of the signal.
DSP also performs badly despite having the ground truth
3D coordinates of the sound source. This is because head
related transfer functions are typically recorded in anechoic
chambers, which does not account for acoustics of differ-
ent environments, e.g., reverberation. Both traditional ap-
proaches perform worse than simply copying the input au-
dio, indicating that learning-based models are needed for
this challenging task. The recent model VAM [6] performs
much better compared to the traditional approaches but still
underperforms our model. There is a significant difference
between ViGAS w/o visual and the full model; this shows
that the visual knowledge about the speaker location and the
environment is important for this task.

Fig. 4 shows an example where given the same input
source viewpoint, our model synthesizes audio for three
different target viewpoints. The model reasons about how
the geometry and speaker locations changes based on the
source view and the target pose, and predicts the acoustic
difference accordingly. See Supp. video to listen to sounds.

For the novel environment setup, our model again out-
performs all baselines. Compared to ViGAS in the single
environment setup, both the magnitude spectrogram dis-
tance and the left-right energy ratio error increase. This is
expected because for novel (unseen) environments, single
images capture limited geometry and acoustic information.
The model fails sometime when there is a drastic viewpoint
change, e.g., target viewpoint 3 in Fig. 4. This setup re-
quires the model to reason or “imagine” the environment
based on single audio-visual observation, which poses great
challenge for NVAS as well as NVS, where typically syn-
thesis is performed in a fully observed environment.

Ablations. Table 2 shows ablations on the model design.
To understand if the model uses visual information, we ab-
late the visual features VF and the active speaker feature

SS-NVAS Replay-NVAS
ViGAS Mag LRE Mag LRE

full model 0.159 0.782 0.142 0.716
w/o visual features 0.171 0.897 0.146 0.920

w/o ASL 0.161 0.814 0.143 0.757
w/o alignment 0.176 0.771 0.144 0.706
w/o separation 0.165 0.840 0.182 0.859

Table 2. Ablations of the model on both datasets.

VL. Removing the active speaker feature leads to less dam-
age on the model performance, because without the explic-
itly localized active speaker, the model can still implicitly
reason about the active speaker location based on the im-
age and audio. If both are removed (“ViGAS w/o visual” in
Table 1), the performance suffers most.

To study the effectiveness of the temporal alignment and
ambient sound separation modules, we ablate them sepa-
rately. Removing the temporal alignment leads to higher
Mag error and slightly lower LRE. As for ambient sound
separation, the results show that optimizing for the high-
energy noise-like ambient sound degrades the performance.

6.2. Results on Replay-NVAS

Table 1 (right) shows the Replay-NVAS results. Com-
pared to SoundSpaces-NVAS, the magnitudes of all errors
are smaller because there are less drastic acoustic changes
between viewpoints (8 DLSR cameras form a circle around
the participants). Traditional approaches like TF Estima-
tor and DSP still perform poorly despite using the 3D co-
ordinates of the camera and the speaker (triangulated from
multiple cameras). VAM performs better due to end-to-end
learning; however, our model outperforms it. Compared to
ViGAS w/o visual, the full model has much lower left-right
energy ratio error and slightly higher reverberation time er-
ror, showing that the model takes into account the speaker
position and viewpoint change for synthesizing the audio.
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Figure 4. Qualitative examples. For all binaural audio, we show the left-channel and the right-channel waveforms side-by-side. Row
1: SoundSpaces-NVAS example where given the source viewpoint and input audio, the model synthesizes audio for three different target
viewpoints (target views are for reference only). In this case, the active speaker is the male speaker as indicated by the bounding box.
For target viewpoint 1, the view rotates about 90 degrees and the male speaker is on the left side and the predicted left channel is louder
than the right channel. Viewpoint 2 moves away from the speaker and thus yields lower amplitude compared to the first prediction. For
target viewpoint 3, it is completely located outside of the living room, in which case, the sound could only come from the door open on the
right (louder right channel) and the reverberation also greatly increases due to the vanishing direct sound. Row 2: Replay-NVAS example
where the speaker is located on the left in the source viewpoint which becomes the right and further from the camera in target viewpoint
2, the model also predicts lower amplitude and louder right channel. On the right side, we show an example of the audio-visual speech
enhancement for the active speaker. The model enhances the speech to largely match with the near-range audio (target).

Mag RTE

Input 0.279 0.376
ViGAS (ours) 0.234 0.122

Table 3. Speech enhancement on Replay-NVAS.

Fig. 4 (row 2, left) shows a qualitative example. In the
source viewpoint, the active speaker is on the left, while in
the target viewpoint, he is further from the camera and on
the right. The model synthesizes an audio waveform that
captures the corresponding acoustic change, showing that
our model successfully learns from real videos.
Audio-visual speech enhancement. In some real-world
applications, e.g., hearing aid devices, the goal is to obtain
the enhanced clean speech of the active speaker. This can
be seen as a special case of NVAS, where the target view-
point is the active speaker. Our model is capable of perform-
ing audio-visual speech enhancement without any modifica-
tion. We simply set the target audio to the near-range audio
recording for the active speaker. We show the results in Ta-
ble 3. Our model obtains cleaner audio compared to the
input audio (example in Fig. 4, row 2, right).
Human subject study. To supplement the quantitative
metrics and evaluate how well our synthesized audio cap-
tures the acoustic change between viewpoints, we conduct
a human subject study. We show participants the image of
the target viewpoint VT as well as the audio AT as refer-
ence. We provide three audio samples: the input, the pre-
diction of ViGAS, and the prediction of DSP (the most nat-

Dataset Input DSP ViGAS

SoundSpaces-NVAS 24% 2% 74%
Replay-NVAS 43% 6% 51%

Table 4. Human Study. Participants favor our approach over the
two most realistic sounding baselines, (1) copying the input signal,
and (2) a digital signal processing baseline.

urally sounding baseline) and ask them to select a clip that
sounds closest to the target audio. We select 20 examples
from SoundSpaces-NVAS and 20 examples from Replay-
NVAS and invite 10 participants to perform the study.

See Table 4 for the results. On the synthetic dataset
SoundSpaces-NVAS, our approach is preferred over the
baselines by a large margin. This margin is lower on the
real-world Replay-NVAS dataset but is still significant.

7. Conclusion
We introduce the challenging novel-view acoustic syn-

thesis task and a related benchmark in form of both real and
synthetic datasets. We propose a neural rendering model
that learns to transform the sound from the source view-
point to the target viewpoint by reasoning about the ob-
served audio and visual stream. Our model surpasses all
baselines on both datasets. We believe this research un-
locks many potential applications and research in multi-
modal novel-view synthesis. In the future, we plan to incor-
porate active-speaker localization model into the approach
and let the model jointly learn to localize and synthesize.
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8. Supplementary Material
In this supplementary material, we provide additional

details about:

1. Supplementary video for qualitative assessment of our
model’s performance.

2. Replay-NVAS dataset details (referenced in Sec. 4.1
of the main paper).

3. SoundSpaces-NVAS dataset details.

4. Implementation and training details (referenced in Sec.
5.6).

5. Baseline details (referenced in Sec. 6).

8.1. Supplementary Video

This video includes examples for the Replay-NVAS
dataset and the SoundSpaces-NVAS dataset as well our
model’s prediction on both datasets. Listen with a head-
phone for the spatial sound.

8.2. Replay-NVAS Dataset Details

Multi-view camera calibration. We estimate camera
poses with COLMAP [49] Structure-from-Motion (SfM)
framework on each scene separately. Each scene is filmed
with 8 static DSLR cameras and 3 wearable GoPro cam-
eras (the latter are not used in our acoustic synthesis exper-
iments). We first run SfM on the segments of the GoPro
recordings where the wearers move significantly; followed
by registration of the static camera frames to the model and
a final round of bundle adjustment where we enforce con-
stant relative poses between static camera frames taken at
the same timestamp. This two-stage procedure greatly re-
duces the scale of the problem by making SfM focus first on
the most diverse part of the data. Upon feature extraction
stage, we cull the local features belonging to potentially dy-
namic object categories (such as persons or animals) as de-
tected by Detectron2 instance segmentation [57]. We then
exploit the stationarity of DSLRs by picking a medoid cam-
era pose among the frames filmed by each camera. Finally,
we rotate and scale the coordinate system so that Z axis is
pointing roughly upwards and the distances between cam-
eras match the approximate distances in centimeters. Fig. 5
plots all camera coordinates and orientations projected to
XY plane.
Training data construction. We align different DSLR
videos with the clapper sound, which gives us synchronized
multi-view audio-visual data. However, this data is not di-
rectly usable for training because some data are noisy (e.g.,
people frequently talking over each other) or silent, which
leads to additional learning challenges for the model. Thus,
we design an automatic process for filtering out noisy clips.
More specifically, we first extract all one-second audio clips
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Y
(c

m
)

Figure 5. Camera coordinates estimated from COLMAP.

Figure 6. Environment mesh.

of all videos and obtain the corresponding near-range audio
clips and bounding boxes for each speaker. As described in
Sec. 5.2, we select the active speaker based on the maxi-
mum energy of near-range audio with ∆t = 0.2. For a one-
second video clip, we obtain 5 candidate bounding boxes.
We choose a threshold δ% and only keep clips where more
than δ% of the bounding boxes belong to the same person.
We set δ to 80. In this way, we keep clips where there is
one main speaker talking, and this speaker’s bounding box
is used as the localization feature VL.

8.3. SoundSpaces-NVAS Dataset Details

For the single environment experiment, we use an apart-
ment environment from the Gibson dataset [58]3. Fig. 6
shows the mesh of the environment (the ceiling is removed).
For the novel environment experiment, we use the public
train/val/test splits.

For all images, we render with a resolution of 256× 256
and a field of view of 120 degrees. We render binaural audio
at a sample rate of 16000.

8.4. Implementation and Training Details

All audio clips during training are one second long with
a sample rate of 16000. The shape of AS and AT is thus
2 × 16000. The audio encoder is a conv1d layer that en-
codes audio from 2 channel (binaural) to latent features of

3http://gibsonenv.stanford.edu/models/?id=Oyens

http://gibsonenv.stanford.edu/models/?id=Oyens


64 channels, i.e., Ak
F is of shape 64 × 16000. For acoustic

synthesis, we have M = 30 gated multi-modal fusion lay-
ers, which are equally divided into 3 blocks. In each block,
the dilation of the dilated conv1d increases exponentially
with base 3. The kernel size for each dilated conv1d is also
3. Both the skip and residual layers are conv1d layers with
kernel size 1. The decoder network is a conv1d layer that
encodes the latent audio features from 64 channels back to
2 channels.

The image resolutions are downsampled to 216 × 384
and 256 × 256 for Replay-NVAS (downsampled) and
SoundSpaces-NVAS respectively. After being processed by
a cond1d layer and flattened, the output visual feature VF

is of size 672 for Replay-NVAS and 512 for SoundSpaces-
NVAS. The fusion layer consists of two fully connected lay-
ers with the first output dimension being 512 and the second
being 256.

We train all models for 1000 epochs on the
SoundSpaces-NVAS dataset and for 600 epochs on
the Replay-NVAS dataset with a learning rate of 0.001. We
evaluate the checkpoint with the lowest validation loss on
the test set.

8.5. Baseline Details

For the Digital Signal Processing (DSP) baseline, we use
the head-related transfer function (HRTF) measured by a
KEMAR Dummy-Head Binaural Microphone. We apply a
Wiener filter [56] to estimate the inverse HRTF. We adjust
the gain of the HRTF by performing a binary search on the
validation dataset and selecting the best gain value for test-
ing. For the VAM [6] baseline, we take the original model
from the paper, and we make minimal modifications by con-
catenating the visual feature with the target viewpoint pose
PT . We train the model with the same hyper-parameters
described in the paper until convergence on both datasets.


	1 . Introduction
	2 . Related Work
	3 . The Novel-view Acoustic Synthesis Task
	4 . Datasets
	4.1 . The Replay-NVAS Dataset
	4.2 . The SoundSpaces-NVAS Dataset

	5 . Visually-Guided Acoustic Synthesis
	5.1 . Ambient Sound Separation
	5.2 . Active Speaker Localization
	5.3 . Visual Acoustic Network and Fusion
	5.4 . Acoustic Synthesis
	5.5 . Temporal Alignment
	5.6 . Loss

	6 . Experiments
	6.1 . Results on SoundSpaces-NVAS
	6.2 . Results on Replay-NVAS

	7 . Conclusion
	8 . Supplementary Material
	8.1 . Supplementary Video
	8.2 . Replay-NVAS Dataset Details
	8.3 . SoundSpaces-NVAS Dataset Details
	8.4 . Implementation and Training Details
	8.5 . Baseline Details




