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Abstract

Deep generative models parametrized up to a normalizing constant (e.g. energy-based models) are difficult to
train by maximizing the likelihood of the data because the likelihood and/or gradients thereof cannot be explicitly or
efficiently written down. Score matching is a training method, whereby instead of fitting the likelihood log p(x) for
the training data, we instead fit the score function r x  log p(x) — obviating the need to evaluate the partition
function. Though this estimator is known to be consistent, its unclear whether (and when) its statistical efficiency is
comparable to that of maximum likelihood — which is known to be (asymptotically) optimal. We initiate this line of
inquiry in this paper, and show a tight connection between statistical efficiency of score matching and the isoperi-metric
properties of the distribution being estimated — i.e. the Poincare, log-Sobolev and isoperimetric constant — quantities
which govern the mixing time of Markov processes like Langevin dynamics. Roughly, we show that the score
matching estimator is statistically comparable to the maximum likelihood when the distribution has a small
isoperimetric constant. Conversely, if the distribution has a large isoperimetric constant — even for simple families of
distributions like exponential families with rich enough sufficient statistics — score matching will be substantially less
efficient than maximum likelihood. We suitably formalize these results both in the finite sample regime, and in the
asymptotic regime. Finally, we identify a direct parallel in the discrete setting, where we connect the statistical
properties of pseudolikelihood estimation with approximate tensorization of entropy and the Glauber dynamics.

1 Introduction

Energy-based models (EBMs) are deep generative models parametrized up to a constant of parametrization, namely
p(x) /  exp(f (x)). The primary training challenge is the fact that evaluating the likelihood (and gradients thereof)
requires evaluating the partition function of the model, which is generally computationally intractable — even when
using relatively sophisticated MCMC techniques. Recent works, including the seminal paper of Song and Ermon
[2019], circumvent this difficulty by instead fitting the score function of the model, that is r x  log p(x). Though not
obvious how to evaluate this loss from training samples only, Hyvarinen [2005] showed this can be done via integration by
parts, and the estimator is consistent (that is, converges to the correct value in the limit of infinite samples).

The maximum likelihood estimator is the de-facto choice for model-fitting for its well-known property of being
statistically optimal in the limit where the number of samples goes to infinity [Van der Vaart, 2000]. It is unclear how
much worse score matching can be — thus, it’s unclear how much statistical efficiency we sacrifice for the algorithmic
convenience of avoiding partition functions. In the seminal paper [Song and Ermon, 2019], it was conjectured that
multimodality, as well as a low-dimensional manifold structure may cause difficulties for score matching — which was
the reason the authors proposed annealing by convolving the input samples with a sequence of Gaussians with different
variance. Though the intuition for this is natural: having poor estimates for the score in “low probability” regions of
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the distribution can “propagate” into bad estimates for the likelihood once the score vector field is “integrated” —
making this formal seems challenging.

We show that the right mathematical tools to formalize, and substantially generalize such intuitions are functional
analytic tools that characterize isoperimetric properties of the distribution in question. Namely, we show three quanti-
ties, the Poincare, log-Sobolev and isoperimetric constants (which are all in turn very closely related, see Section 2),
tightly characterize how much worse the efficiency of score matching is compared to maximum likelihood. These
quantities can be (equivalently) viewed as: (1) characterizing the mixing time of Langevin dynamics — a stochastic
differential equation used to sample from a distribution p(x) /  exp(f (x)), given access to a gradient oracle for f ;  (2)
characterizing “sparse cuts” in the distribution: that is sets S , for which the surface area of the set S  can be much smaller
than the volume of S . Notably, multimodal distributions, with well-separated, deep modes have very big log-
Sobolev/Poincare/isoperimetric constants [Gayrard et al., 2004, 2005], as do distributions supported over manifold
with negative curvature [Hsu, 2002] (like hyperbolic manifolds). Since it is commonly thought that complex, high di-
mensional distribution deep generative models are trained to learn do in fact exhibit multimodal and low-dimensional
manifold structure, our paper can be interpreted as showing that in many of these settings, score matching may be
substantially less statistically efficient than maximum likelihood. Thus, our results can be thought of as a formal jus-
tification of the conjectured challenges for score matching in Song and Ermon [2019], as well as a vast generalization of
the set of “problem cases” for score matching. This also shows that surprisingly, the same obstructions for efficient
inference (i.e. drawing samples from a trained model, which is usual done using Langevin dynamics for EBMs) are
also an obstacle for efficient learning using score matching.

We roughly show the following results:

1. For finite number of samples n, we show that if we are trying to estimate a distribution from a class with Rademacher
complexity bounded by R n ,  as well as a log-Sobolev constant bounded by C L S ,  achieving score matching loss at
most  implies that we have learned a distribution that’s no more than C L S R n  away from the data distribution in K L
divergence. The main tool for this is showing that the score matching objective is at most a multiplicative factor of
C L S  away from the K L  divergence to the data distribution.

2. In the asymptotic limit (i.e. as the number of samples n !  1 ) ,  we focus on the special case of estimating the
parameters  of a probability distribution of an exponential family fp(x)  /  exp(h; F (x)i) for some sufficient
statistics F  using score matching. If the distribution p we are estimating has Poincare constant bounded by C P
have asymptotic efficiency that differs by at most a factor of C P  . Conversely, we show that if the family of sufficient
statistics is sufficiently rich, and the distribution p we are estimating has isoperimetric constant lower bounded by
C I S ,  then the score matching loss is less efficient than the MLE estimator by at least a factor of C I S .

3. Based on our new conceptual framework, we identify a precise analogy between score matching in the continuous
setting and pseudolikelihood methods in the discrete (and continuous) setting. This connection is made by replacing
the Langevin dynamics with its natural analogue — the Glauber dynamics (Gibbs sampler). We show that the
approximation tensorization of entropy inequality [Marton, 2013, Caputo et al., 2015], which guarantees rapid
mixing of the Glauber dynamics, allows us to obtain finite-sample bounds for learning distributions in K L  via
pseudolikelihood in an identical way to the log-Sobolev inequality for score matching. A  variant of this connection is
also made for the related ratio matching estimator of Hyvarinen [2007b].

4. In Section 7, we perform several simulations which illustrate the close connection between isoperimetry and the
performance of score matching. We give examples both when fitting the parameters of an exponential family and
when the score function is fit using a neural network.

2 Preliminaries

Definition 1 (Score matching). Given a ground truth distribution p with sufficient decay at infinity and a smooth
distribution q, the score matching loss (at the population level) is defined to be

Jp (q ) : =  
2

E X p [kr log p ( X )       r l o g  q(X )k2 ] +  K p  =  E X p      Tr r 2  log q +  
2

kr log qk2 (1)
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where K p  is a constant independent of q. The last equality is due to Hyvarinen [2005]. Given samples from p, the
training loss Jp (q ) is defined by replacing the rightmost expectation with the average over data.

Functional and Isoperimetric Inequalities.     Let q (x) be a smooth probability density over Rd . A  key role in this
work is played by the log-Sobolev, Poincare, and isoperimetric constants of q — closely related geometric quantities,
connected to the mixing of the Langevin dynamics, which have been deeply studied in probability theory and geometric
and functional analysis (see e.g. [Gross, 1975, Ledoux, 2000, Bakry et al., 2014]).

Definition 2. The log-Sobolev constant C L S ( q )   0 is the smallest constant so that for any probability density p(x)

K L ( p ; q )   C L S ( q ) I ( p  j q) (2)

where K L ( p ; q )  =  EX p [ log(p(X )=q (X ))]  is the Kullback-Leibler divergence or relative entropy and the relative
Fisher information I ( p  j q) is defined 1 as I ( p  j q) : =  Eq       r l o g  q ; r q      .

The log-Sobolev inequality is equivalent to exponential ergodicity of the Langevin dynamics for q, a canonical
Markov process which preserves and is used for sampling q, described by the Stochastic Differential Equation d X t  =

 r l o g  q (X t ) dt +     2 dBt . Precisely, if pt is the distribution of the continuous-time Langevin Dynamics2 for q started
from X 0   p, then I ( p  j q) =   dt KL (p t ; q )  j t =0  and so by integrating

KL( p t ; q )   e t = C L S  KL(p; q ) : (3)

This holding for any p and t is an equivalent characterization of the log-Sobolev constant (Theorem 3.20 of Van Handel
[2014]). For a class of distributions P ,  we can also define the restricted log-Sobolev constant C L S ( q ; P )  to be the
smallest constant such that (2) holds under the additional restriction that p 2  P  — see e.g. Anari et al. [2021b]. For P  an
infinitesimal neighborhood of p, the restricted log-Sobolev constant of q becomes half of the Poincare constant or
inverse spectral gap C P  (q):

Definition 3. The Poincare constant C P  (q)  0 is the smallest constant so that for any smooth function f ,

Varq (f )  C P  (q )Eq krf k2 : (4)

It is related to the log-Sobolev constant by C P   2 C L S  (Lemma 3.28 of Van Handel [2014]).

Similarly, the Poincare inequality implies exponential ergodicity for the 2-divergence:

2(pt; q)  e 2 t =C P  2(p; q):

This holding for every p and t is an equivalent characterization of the Poincare constant (Theorem 2.18 of Van Handel
[2014]). We can equivalently view the Langevin dynamics in a functional-analytic way through its definition as a
Markov semigroup, which is equivalent to the SDE definition via the Fokker-Planck equation [Van Handel, 2014,
Bakry et al., 2014]. From this perspective, we can write pt =  q Ht  q where H t  is the Langevin semigroup for q, so H t

=  e t L  with generator
L f  =  hr log q ; r f i  +  f :

In this case, the Poincare constant has a direct interpretation in terms of the inverse spectral gap of L ,  i.e. the inverse
of the gap between its two largest eigenvalues.

Both Poincare and log-Sobolev inequalities measure the isoperimetric properties of q from the perspective of
functions; they are closely related to the isoperimetric constant:

1There are several alternatives formulas for I ( p  j q), see Remark 3.26 of Van Handel [2014].
2See e.g. Vempala and Wibisono [2019] for more background and the connection to the discrete time dynamics.
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Definition 4. The isoperimetric constant C I S ( q )  is the smallest constant, s.t. for every set S ,

min
Z 

q(x)dx;
Z

q (x)dx
 
 CI S (q ) lim inf 

R
S  

q (x)dx      
R

S  q(x)dx
: (5)

S                            S C

where S  =  f x  : d(x; S )  g and d(x; S ) denotes the (Euclidean) distance of x  from the set S . The isoperimetric
constant is related to the Poincare constant by C P   4C 2     (Proposition 8.5.2 of Bakry et al. [2014]). Assuming S  is
chosen so q (x)dx <  1=2, the left hand side can be interpreted as the volume and the right hand side as the surface
area of S  with respect to q.

A  strengthened isoperimetric inequality (Bobkov inequality) upper bounds the log-Sobolev constant, see Ledoux
[2000], Bobkov [1997].

Mollifiers     We recall the definition of one of the standard mollifiers/bump functions, as used in e.g. Hormander
[2015]. Mollifiers are smooth functions useful for approximating non-smooth functions: convolving a function with a
mollifier makes it “smoother”, in the sense of the existence and size of the derivatives. Precisely, define the (infinitely
differentiable) function : Rd  !  R  as

(
 1   1=(1 j y j 2 )

(y) =
0

d
for jyj <  1
for jyj  1

where Id  : =  
R 

e 1=(1 jy j2 ) dy.
We will use the basic estimate 8 d Bd <  Id  <  B d  where B d  is the volume of the unit ball in Rd , which follows from

the fact that e 1=(1 jy j  )   1=4 for kyk  1=2 and e 1=(1 jy j  )   1 everywhere. is infinitely differentiable
and its gradient is

r y      (y) =   (2=Id)e 1=(1 k y k 2 )  
(1      kyk2)2 =  

(1      kyk2)2      (y)

It is straightforward to check that supy k r y      (y)k <  1=Id. For  >  0, we’ll also define a “sharpening” of     , namely
(y) =   d     (y=) so that  =  1 and (by chain rule)

r y      (y) =   d 1 ( r  )(y=) =  
(1      ky=k2) 

(y=)

so in particular k r y      k2   d 1=Id.

Glauber dynamics.     The Glauber dynamics will become important in Section 5 as the natural analogue of the
Langevin dynamics. The Glauber dynamics or Gibbs sampler for a distribution p is the standard sampler for dis-
crete spin systems — it repeatedly selects a random coordinate and then resamples the spin X i  there according to the
distribution p conditional on all of the other ones (i.e. conditional on X i ) .  See e.g. Levin and Peres [2017]. This is the
standard sampler for discrete systems, but it also applies and has been extensively studied for continuous ones (see e.g.
Marton [2013]).

Reach and Condition Number of a Manifold.     For a smooth submanifold M  of Euclidean space, the reach M  is
the smallest radius r  so that every point with distance at most r  to the manifold M  has a unique nearest point on M
[Federer, 1959]; the reach is guaranteed to be positive for compact manifolds. The reach has a few equivalent
characterizations (see e.g. Niyogi et al. [2008]); a common terminology is that the condition number of a manifold is
1=M .

Notation.     For a random vector X ,  X  : =  E [ X X T  ]      E [ X ] E [ X ] T  denotes its covariance matrix.

4
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3 Learning Distributions from Scores: Nonasymptotic Theory

Though consistency of the score matching estimator was proven in Hyvarinen [2005], it is unclear what one can
conclude about the proximity of the learned distribution from a finite number of samples. Precisely, we would like a
guarantee that shows that if the training loss (i.e. empirical estimate of (1)) is small, the learned distribution is close to
the ground truth distribution (e.g. in the K L  divergence sense). However, this is not always true! We will see an
illustrative example where this is not true in Section 7 and also establish a general negative result in Section 4.

In this section, we prove (Theorem 1) that minimizing the training loss does learn the true distribution, assuming
that the class of distributions we are learning have bounded complexity and small log-Sobolev constant. First, we
formalize the connection to the log-Sobolev constant:

Proposition 1. The log-Sobolev inequality for q is equivalent to the following inequality over all smooth probability
densities p:

K L ( p ; q )   2CL S (q ) ( Jp (q )       Jp (p)): (6)

More generally, for a class of distribution p 2  P  the restricted log-Sobolev constant is the smallest constant such that
K L ( p ; q )   C L S (q ; P ) ( Jp (q )       Jp (p)) for all distributions p.

Proof. This follows from the following equivalent form for the relative Fisher information (e.g. Shao et al. [2019],
Vempala and Wibisono [2019])

I ( p  j q) =  E q hr
q

; r log  
q

i

=  Ep h
p

r
q

; r log 
q

i =  Ep hr log 
q

; r log 
q

i =  Ep kr log p      r l o g  qk2: (7)

Using this and (1) the log-Sobolev inequality can be rewritten as K L ( p ; q )   C L S ( J p ( q )    Jp (q )) which proves the
first claim, and the same argument shows the second claim.

Remark 1 (Interpretation of Score Matching). The left hand side of (6) is K L ( p ; q )  =  Ep[log p]   Ep[log q]. The first
term is independent of q and the second term is the likelihood, the objective for Maximum Likelihood Estimation. So (6)
shows that the score matching objective is a relaxation (within a multiplicative factor of C L S ( q ) )  of maximum-likelihood
via the log-Sobolev inequality. We discuss connections to other proposed interpretations in Appendix A.

Remark 2. Interestingly, the log-Sobolev constant which appears in the bound is that of q and not p the ground truth
distribution. This is useful because q is known to the learner whereas p is only indirectly observed. If q is actually
close to p, the log-Sobolev constants are comparable due to the Holley-Stroock perturbation principle (Proposition
5.1.6 of Bakry et al. [2014]).

The connection between the score matching loss and the relative Fisher information used in (7) is not new to this
work—see the Related Work section for more discussion and references. The useful statistical implications which we
discuss next are new to the best of our knowledge. Combining Proposition 1, bounds on log-Sobolev constants from
the literature, and fundamental tools from generalization theory allows us to derive finite-sample guarantees for learning
distributions in K L  divergence via score matching. 3

Theorem 1. Suppose that P  is a class of probability distributions containing p and define

C L S ( P ; P )  : =  sup C L S ( q ; P )   sup C L S ( q )
q 2 P q 2 P

to be the worst-case (restricted) log-Sobolev constant in the class of distributions. (For example, if every distribution
in P  is -strongly log concave then C L S   1=2 by Bakry-Emery theory [Bakry et al., 2014].) Let

R n  : =  E X 1 ; : : : ; X n ; 1 ; : : : ; n  sup 
1 X

i  Tr r 2  log q ( X i )  +  
1

kr log q (Xi )k2
 
i = 1

3We use the simplest version of Rademacher complexity bounds to illustrate our techniques. Standard literature, e.g. Shalev-Shwartz and
Ben-David [2014], Bartlett et al. [2005] contains more sophisticated versions, and our techniques readily generalize.
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be the expected Rademacher complexity of the class given n samples X1 ; : : : ; Xn   p i.i.d. and independent 1; : : : ; n

U nif1g i.i.d. Rademacher random variables. Let p̂  be the score matching estimator from n samples, i.e. p̂  =  arg
minq 2P Jp (q ). Then

E KL(p ; p̂ )   4 C L S ( P ; P ) R n :

In particular, if C L S ( P ; P )  <  1  then l i m n ! 1  E KL( p ; p̂ )  =  0 as long as l i m n ! 1  R n  =  0.

Proof. By the standard symmetrization argument (Theorem 26.3 of Shalev-Shwartz and Ben-David [2014]) we have
EJp (p̂ )      Jp (p)  2R n ,  so by Proposition 1 we have E KL( p ; p̂ )   EC L S ( P ) ( J p ( p̂ )       Jp (p))  2 C L S ( P ) R n .

Example 1. Suppose we are fitting an isotropic Gaussian in d dimensions with unknown mean  satisfying kk  R .  The class
of distributions P  is q with kk  R  of the form q(x) /  exp  kx      k2=2 so the expected Rademacher complexity can be
upper bounded as so:

n

R n  =  E sup             i       d=2 +      k X i       k2

i = 1

=  E sup

*
1 n      

i X i ;

+  

=  R E
1  n      

i X i

 

 R

u

E
1  n      

i X i

2  

=  R

r
R 2  +

 
d

i = 1 i = 1 i = 1

where the inequality is Jensen’s inequality and in the last step we expanded the square and used that E i j  =  1(i =  j )
and EkX i k2   R 2  +  d. Recall that the standard Gaussian distribution is 1-strongly log concave so C L S   1=2.

Hence we have the concrete bound E KL( p ; p̂ )   R R 2 + d .

4 Statistical cost of score matching: asymptotic results

In this section, we compare the asymptotic efficiency of the score matching estimator in exponential families to the
effiency of the maximum likelihood estimator. Because we are considering asymptotics, we might expect (recall the
discussion in Section 2) that the relevant functional inequality will be the local version of the log-Sobolev inequal-ity
around the true distribution p, which is the Poincare inequality for p. Our results will show precisely how this occurs
and characterize the situations where score matching is substantially less statistically efficient than maximum
likelihood.

Setup.     In this section, we will focus on distributions from exponential families. We will consider estimating the
parameters of an exponential family using two estimators, the classical maximum likelihood estimator (MLE), and the
score matching estimator; we will use that the score matching estimator arg min0 Jp (p0  )  admits a closed-form formula
in this setting.

Definition 5 (Exponential family). For sufficient statistics F  : Rd  !  R m ,  the exponential family of distributions
associated with F  is fp(x)  /  exp (h; F (x)i) j 2    Rm g:

Definition 6 (MLE, Van der Vaart [2000]). Given i.i.d. samples x1; : : : ; xn  p, the maximum likelihood estimator is
MLE =  arg max0 2 E [log p0 (X )] ,  where E  denotes the expectation over the samples. As n !  1  and under

appropriate regularity conditions, we have n MLE      !  N  (0;  M L E ) ,  where  M L E  : =   1 and F  is known
as the Fisher information matrix.

Proposition 2 (Score matching estimator, Equation (34) of Hyvarinen [2007b]). Given i.i.d. samples x1; : : : ; xn  p, the
score matching estimator equals =   E [ ( J F ) X ( J F ) T  ] 1 EF , where ( J F ) X  : m  d is the Jacobian of F  at the
point X ,  f  = i  @2f is the Laplacian and it is applied coordinate wise to the vector-valued function F .

6
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4.1 Asymptotic normality
Next, we recall the asymptotic normality of the score matching estimator and give a formula for the limiting renor-
malized covariance matrix  S M  established by Forbes and Lauritzen [2015] (see also Theorem 6 of Barp et al. [2019]
and Corollary 1 of Song et al. [2020]). Since the MLE also satisfies asymptotic normality with an explicit covariance
matrix, we can then proceed in the next sections to compare their relative efficiency (as in e.g. Section 8.2 of Van der
Vaart [2000]) by comparing the asymptotic covariances  S M  and  M L E .

Proposition 3 (Asymptotic normality, Forbes and Lauritzen [2015]). As n !  1 ,  and assuming sufficient smoothness
and decay conditions so that score matching is consistent (see Hyvarinen [2005]) we have the following convergence in
distribution: n(SM      )  !  N (0;  S M  ), where

 S M  : =  E [ ( J F ) X ( J F ) T  ] 1
( J F ) X ( J F ) X + F  E [ ( J F ) X ( J F ) T  ] 1: (8)

Proof. We include the proof for the reader’s convenience. From Hyvarinen [2005], we have consistency of score
matching (Theorem 2) and in particular the formula

 =   E [ ( J F ) X ( J F ) T  ] 1 EF : (9)

We now compute the limiting distribution of the estimator as the number of samples n !  1 .  We will need to use
some standard results from probability theory such as Slutsky’s theorem and the central limit theorem, see e.g. Van der
Vaart [2000] or Durrett [2019] for references. To minimize ambiguity, let E n  denote the empirical expectation over n
i.i.d. samples samples and let n  denote the score matching estimator from n samples. Define n;1 and n;2 by the
equations

E n [ ( J F ) X ( J F ) T  ] =  E [ ( J F ) X ( J F ) T  ] +  n;1= n

and
E n F  =  E f  +  n;2 =

p
n:

By the central limit theorem, n  =  (n;1 ; n;2 ) converges in distribution to a multivariate Gaussian (with a covariance
matrix that we won’t need explicitly) as n !  1 .  From the definition

n  =   E n [ ( J F ) X ( J F ) X ]  1 E F

=   [ E [ ( J F ) X ( J F ) X ]  1 E n [ ( J F ) X ( J F ) T  ]] 1 E [ ( J F ) X ( J F ) T  ] 1 E F

and we now simplify the expression on the right hand side. By applying (9) we have

E [ ( J F ) X ( J F ) X ]  1 E n F  =  E [ ( J F ) X ( J F ) T  ] 1 (EF  +  n;2 =
p

n)

=    +  E [ ( J F ) X ( J F ) T  ] 1
n;2= n

Since
E [ ( J F ) X ( J F ) T  ] 1 E n [ ( J F ) X ( J F ) T  ] =  I  +  E [ ( J F ) X ( J F ) T  ] 1

n;1 =
p

n

and ( I  +  X )  1 =  I       X  +  X 2        we have by applying Slutsky’s theorem that

E [ ( J F ) X ( J F ) T  ] 1 E n [ ( J F ) X ( J F ) T  ]] 1 =  I       E [ ( J F ) X ( J F ) T  ] 1
n;1 =

p
n +  OP (1=n)

where we use the standard notation Yn =  OP (1=n) to indicate that nYn =f (n) !  0 in probability for any function f
with f (n) !  1 .  Hence

n  =   [ E [ ( J F ) X ( J F ) T  ] 1 E n [ ( J F ) X ( J F ) T  ]] 1 E [ ( J F ) X ( J F ) T  ] 1 E n F

=    I       E [ ( J F ) X ( J F ) T  ] 1
n;1= n +  OP (1=n) (   +  E [ ( J F ) X ( J F ) T  ] 1

n;2= n)

and applying Slutsky’s theorem again, we find
p

n ( n       )  =  E [ ( J F ) X ( J F ) X ]  1( n;1       n;2 ) +  OP (1=
p

n)

7
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From the definition, we know

p
n

(n ; 1       n;2 ) =  E n [  ( J F ) X ( J F ) X       F ]       E[  ( J F ) X ( J F ) X       F ]

so altogether by the central limit theorem, we have

n(n      )  !  N  0 ; E [ ( J F ) X ( J F ) T  ] 1
( J F ) X ( J F ) X + F  E [ ( J F ) X ( J F ) T  ] 1

as claimed.

4.2 Statistical efficiency of score matching under a Poincare inequality

Our first result will show that if we are estimating a distribution with a small Poincare constant (and some relatively
mild smoothness assumptions), the statistical efficiency of the score matching estimator is not much worse than the
maximum likelihood estimator.

Theorem 2 (Efficiency under a Poincare inequality). Suppose the distribution p satisfies a Poincare inequality with
constant C P  . Then we have

k S M  kO P   2C P  k M L E k O P  
 
kk2 Ek(J F ) X k O P  +  EkF k2 :

More generally, the same bound holds assuming only the following restricted version of the Poincare inequality: for
any w, Var(hw; F (x)i)  C P  Ekrhw; F (x)ik2 .

Remark 3. To interpret the terms in the bound, the quantities Ep  k ( J F ) X k 4 and EkF k2 can be seen as a measure of
the smoothness of the sufficient statistics F ,  and kk as a bound on the radius of parameters for the exponential family.
In Section 7 we will give an example to show bounded smoothness is indeed necessary for score matching to be efficient.

Remark 4. A direct consequence of this result is that with 99% probability and for sufficiently large n,

nk      S M  k2  nEk      M L E k 2
2  

 O 
 
C P  m

 
kk2 Ek(J F ) X k O P  +  EkF k2 (10)

. So if the the distribution is smooth and Poincare, score matching achieves small ‘2  error provided MLE does. To
show this, since n(   S M  ) !  N (0;  S M  )  by Proposition 3, for all sufficiently large n it follows from Markov’s
inequality that with probability at least 99%,

nk      S M  k2 =  O (E Z N ( 0 ;  S M  ) kZ k2 ) =  O(Tr  S M  )  =  O(mk S M  kO P  ):

On the other hand, by Fatou’s lemma we have that

lim inf nEk      M L E k 2   E Z N ( 0 ;  M L E ) k Z k 2  =  Tr (  M L E )   k M L E k O P

where in the first expression M L E  implicitly depends on n, the number of samples. Combining these two observations
with Theorem 2 and gives inequality 10.

The main lemma to prove the theorem is the following:

Lemma 1. E [ ( J F ) X ( J F ) X ]  1  C P  F
1  where C P  is the Poincare constant of p.

Proof. For any vector w 2  R m ,  we have by the Poincare inequality that

C P  hw ; E [ ( J F ) X ( J F ) X ]w i  =  C P  Ekr x hw ; F (x) i j X k2   Var(hw; F (x)i) =  hw; F wi

This shows C P  E [ ( J F ) X ( J F ) T  ]  F  and inverting both sides, using the well-known fact that the matrix inverse is
operator monotone [Toda, 2011], gives the result.
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We will also need the following helper lemma:

Lemma 2. For any random vectors A ; B  we have A + B   2 A  +  2B .

Proof. For any vector w we have

Var(hw; A +  B i )  =  Var(hw; Ai) +  2Cov(hw; Aihw; Bi) +  Var(hw; B i)

 Var(hw; Ai) +  2     Var(hw; Ai)Var(hw; Bi) +  Var(hw; Bi)
2Var(hw; Ai) +  2Var(hw; Bi)

where the first inequality is Cauchy-Schwarz for variance and the second is ab  a2=2 +  b2=2. We proved for this for
every vector which proves the PSD inequality.

With this in mind, we can proceed to the proof of Theorem 2:

Proof of Theorem 2. Recall from Proposition 3 that

 S M  : =  E [ ( J F ) X ( J F ) T  ] 1
( J F ) X ( J F ) X + F  E [ ( J F ) X ( J F ) T  ] 1:

By Lemma 1 and submultiplicativity of the operator norm, we have

k E [ ( J F ) X ( J F ) T  ] 1
( J F ) X ( J F ) T  + F  E [ ( J F ) X ( J F ) T  ] 1 kO P  C 2

k 1 kO P k ( J F ) X ( J F ) X + F  kO P  :

We will finally bound the two operator norms on the right hand side. By Lemma 2, we have

( J F ) X ( J F ) X + F   2 ( J F ) X ( J F ) X  +  2F

Furthermore, we have

k ( J F ) X ( J F ) T  kO P   k E [ ( J F ) X ( J F ) T  T  ( J F ) X ( J F ) T  ]kO P  E k ( J F ) X k O P  kk2

and
kF  kO P   kE(F ) (F ) T  kO P   Tr E ( F ) ( F ) T   EkF k2

which implies the statement of the theorem.

4.3 Statistical efficiency lower bounds from sparse cuts

In this section, we prove a converse to Theorem 2: whereas a small (restricted) Poincare constant upper bounds the
variance of the score matching estimator, if the Poincare constant of our target distribution is large and we have
sufficiently rich sufficient statistics, score matching will be extremely inefficient compared to the MLE. In fact, we will be
able to do so by taking an arbitrary family of sufficient statistics, and adding a single sufficient statistic ! Informally, we’ll
show the following:

Consider estimating a distribution p in an exponential family with isoperimetric constant C I S .  Then, p can be
viewed as a member of an enlarged exponential family with one more (O@S (1)-Lipschitz) sufficient statistic, such that
score matching has asymptotic relative efficiency
@ S (C I S )  compared to the MLE, where @S denotes the boundary of the isoperimetric cut of p and
@S indicates a constant depending only on the geometry of the manifold @S.

As noted in Section 2, a large Poincare constant implies a large isoperimetric constant — so we focus on showing
that the score matching estimator is inefficient when there is a set S  which is a “sparse cut”. Our proof uses differential
geometry, so our final result will depend on standard geometric properties of the boundary @S — e.g., we use the
concept of the reach M  of a manifold which was defined in the preliminaries (Section 2). The full proofs are in
Appendix B. We now give the formal statement.

9
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Theorem 3 (Inefficiency of score matching in the presence of sparse cuts). There exists an absolute constant c >  0
such that the following is true. Suppose that p is an element of an exponential family with sufficient statistic F1  and
parameterized by elements of 1. Suppose S  is a set with smooth boundary @S which has reach @S >  0. Suppose that 1S
is not an affine function of F1 , so there exists 1 >  0 such that

sup Cov
w 1 : Var ( h w 1 ; F 1 i ) = 1

! 2

hw1; F1i; p
Va r ( 1 S )

 1      1: (11)

n o
Suppose that  >  0 satisfies  <  min     ( 1 + k 1 k )  sup x : d ( x ; @ S )  k ( J F 1 ) x k O P  

; c d
S and is small enough so that 0 <

R 2

 : =  1  1      1 +  2 P r ( X 2 S ) ( 1  P r ( X 2 S ) ) . Define an additional sufficient statistic F2  =  1S    so that the

enlarged exponential family contains distributions of the form

p( 1 ; 2 ) (x) /  exp(h1; F1 (x)i +  2 F2 (x))

and consider the MLE and score matching estimators in this exponential family with ground truth p(;0) .
Then there exists some w so that the relative (in)efficiency of the score matching estimator compared to the MLE

for estimating hw; i admits the following lower bound

hw;  S M  wi c0 minfPr(X  2  S ) ; Pr ( X  2= S )g
hw;  M L E w i x2@ S p(x)dx

where c0 : =  1 + k F 1  k O P  
.

Remark 5. If we choose S  to be the set achieving the worst isoperimetric constant, then the right hand side of the
bound is simply c0 

C I S .  (See the appendix for details.) Finally, we observe that although c0 is exponentially small in d,
the bound is still useful in high dimensions because in the bad cases of interest C I S  is often exponentially large in d. For
example, this is the case for a mixture of standard Gaussians with
( d) separation between the means (see e.g. Chen et al. [2021a]).

Remark 6. The assumption 1 >  0 is a quantitative way of saying that the function 1S , the cut we are using to define the
new sufficient statistic F2 , is not already a linear combination of the existing sufficient statistics. The assumptions will
always holds with some 1  0 by the Cauchy-Schwarz inequality. The equality case is when 1S  is an affine function of
hw1; F1i — if such a linear dependence exists, the parameterization is degenerate and the coefficient of F2  is not
identifiable as  !  0.

Proof sketch.     The proof of the theorem proceed in two parts: we lower bound hw;  M L E w i  and upper bound hw;
M L E w i .  The former part, which ends up to be somewhat involved, proceeds by proving a lower bound on the spectral
norm of  S M  (the full proof is in Subsection B.1) — by picking a direction in which the quadratic form is large. The
upper bound on 2 (w) (the full proof is in Subsection B.2) will proceed by relating the Fisher matrix for
the augmented sufficient statistic (F1 ; F2 ) with the Fisher matrix for the original sufficient statistic F1 . Since the Fisher
matrix is a covariance matrix in exponential families, this is where the numerator minfPr(X 2  S ) ; Pr ( X  2= S )g,
which is up to constant factors the variance of 1S , naturally arises in the theorem statement.

For the lower bound, it is clear that we should select w which changes the distribution a lot, but not the observed
gradients. The w we choose that satisfies these desiderata is proportional to E [ ( J F ) X ( J F ) T  ](0; 1). This w also has the
property that it results in a simple expression for the quadratic form hw;  S M  wi, using the fact

 S M  =  E [ ( J F ) X ( J F ) T  ] 1
( J F ) X ( J F ) X + F  E [ ( J F ) X ( J F ) T  ] 1

The result of this calculation (details in Lemma 4, Appendix B) is that

hw;  S M  wi 8 d2 E X j d ( X ; @ S )  
 

( r F 2 ) T  ( J F ) T   +  F2
2 kwk2

Pr[d(X; @S)  ]                supd(x;@ S) k ( J F ) x k O P

10
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Note that the key term Pr[d(X; @S)  ], when divided by  and in the limit  !  0, corresponds to the surface area
p(x)dx of the cut. Showing that the other terms do not “cancel” this one out and determining the precise

dependence on  requires a differential-geometric argument, which is somewhat more intricate. The two key ideas are
to use the divergence theorem (or generalized Stokes theorem) to rewrite the numerator as a more interpretable surface
integral and then rigorously argue that as  !  0 and we “zoom in” to the manifold, we can compare to the case when the
surface looks flat. The quantitative version of this argument involves geometric properties of the manifold (precisely,
the curvature and reach). For example, Lemma 6 makes rigorous the statement that well-conditioned (i.e. large reach)
manifolds are locally flat. More details, as well as the full proof is included in Appendix B.

Example application.     We provide an instantiation of the theorem for a simple example of a bimodal distribution:

Example 2. A concrete example in one dimension with a single sufficient statistic is

F1 (x)  =   
8a2

 (x       a)2 (x +  a)2 =   x4=8a2 +  x2=4      a2=8

and  =  (1; 0) for a parameter a >  1 to be taken large. This looks similar to a mixture of standard Gaussians centered
at  a and a. Specializing Theorem 3 to this case, we get:

Corollary 1. There exists absolute constants 0 >  0 and c >  0 so that the following is true. Suppose that a >  1,  =
(1; 0), and expanded exponential family fp0  g0     with p0 (x )  /  exp (h0 ; (F1 (x); F2 (x))i) and new sufficient statistic F2
is the output of Theorem 3 applied to F1 , S  =  f x  : x  >  0g, and  =  0. Then there exists w so that the relative
(in)efficiency of estimating hw; i is lower bounded as

hw;  S M  wi a2 =8

hw;  M L E w i

Proof of Corollary 1. First observe that
Z 1 Z 1 Z 1

e F 1 ( x ) dx  =  2 e (1=8)(x a )  ( x = a + 1 )  dx  2 e (1=8)(x a )  dx
 1 0 Z 1

=  2 e (x 2 =8) dx = :  C
 1

where C  is a positive constant independent of a. Using that F1 (x)  =  (1=8)(x      a)2(x=a +  1)2 it then follows that
R a + 1       F 1 ( x )  (1=8)(x=a +1) 2

P r ( X  2  [a      1; a +  1]) =  R
 1  e

 F 1 ( x ) dx  C
 C  >  0

where C 0 is a positive constant independent of a. From this, we see by the law of total variance that Var(F1 )
Var(F1 j X  2  [a   1; a +  1]) Pr(X 2  [a   1; a +  1])  C00 >  0 where C00 >  0 is another positive constant
independent of a. Hence kF

1  
kO P  =  O(1) independent of a. Also, if we define S  =  f x  : x  >  0g then

Cov(F1 (x); 1S ) =  0

becuase F1 (x)  is even, 1S  is odd and the distribution is symmetric about zero. So we can take 1 =  1 in the statement of
Theorem 3. Therefore, applying Theorem 3 to S  and using that F1 (0) =   a2=8, we therefore get for  smaller than
an absolute constant, that the inefficiency is lower bounded by
(ea2 =8=). By taking  equal to a fixed constant we get the result.

In Section 7, we perform simulations which show the performance of score matching indeed degrades exponen-
tially as a beomes large.
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5  Discrete Analogues: Pseudolikelihood, Glauber Dynamics, and Approxi-
mate Tensorization

5.1 Pseudolikelihood

Several authors have proposed variants of score matching for discrete probability distributions, e.g. Lyu [2009],
Shao et al. [2019], Hyvarinen [2007b]. Furthermore, Hyvarinen [2005, 2006, 2007b,a] pointed out some connections
between pseudolikelihood methods (a classic alternative to maximum likelihood in statistics Besag [1975, 1977]),
Glauber dynamics (a.k.a. Gibbs sampler, see Preliminaries), and score matching. Finally, just like the log-Sobolev
inequality controls the rapid mixing of Langevin dynamics, there are functional inequalities [Gross, 1975, Bobkov and
Tetali, 2006] which bound the mixing time of Glauber dynamics. Thus, we ask: Is there a discrete analogue of the
relationship between score matching and the log-Sobolev inequality?

The answer is yes. To explain further, we need a key concept recently introduced by Marton [2013, 2015] and
Caputo et al. [2015]: if (
1; F1); : : : (
d ; Fd ) are arbitrary measure spaces, we say a distribution q on d

i  satisfies approximation tensorization of entropy with constant C A T  (q) if

K L ( p ; q )   C A T  ( q )
X

E X i p i  [ K L ( p ( X i  j X i ) ; q ( X i  j X i ) ) ] : (12)
i = 1

This inequality is sandwiched between two discrete versions of the log-Sobolev inequality (Proposition 1.1 of Caputo et
al. [2015]): it is weaker than the standard discrete version of the log-Sobolev inequality [Diaconis and Saloff-Coste,
1996] and stronger than the Modified Log-Sobolev Inequality [Bobkov and Tetali, 2006] which characterizes expo-
nential ergodicity of the Glauber dynamics.4 We define a restricted version C A T  (q ; P ) analogously to the restricted
log-Sobolev constant.

Finally, we recall the pseudolikelihood objective [Besag, 1975] based on entrywise conditional probabilities:
Lp (q ) : = i = 1  EX p [log q ( X i  j X i ) ] .  With these definition in place, we have:

Proposition 4. We have K L ( p ; q )   C A T  (q )(Lp (p)   Lp (q ))  and more generally for any class P  containing p, we
have K L ( p ; q )   C A T  (q ; P )(Lp (p)      Lp (q )).

Proof. Observe that Lp (p)   Lp (q ) =  
P d E X       jp      [ K L ( p ( X i  j X i ) ; q ( X i  j X i ) ) ] ,  so the result follows by

expanding the definition.

Thus, just as the score matching objective is a relaxation of maximum likelihood through the log-Sobolev inequal-
ity, pseudolikelihood is a relaxation through approximate tensorization of entropy.

Remark 7. Pseudolikelihood methods (and variants like node-wise regression) are one of the dominant approaches to
fitting fully-observed graphical models, e.g. [Wu et al., 2019, Lokhov et al., 2018, Klivans and Meka, 2017, Kelner et al.,
2020]. Like score matching, pseudolikelihood methods do not require computing normalizing constants which can be
slow or computationally hard (e.g. Sly and Sun [2012]). Pseudolikelihood is applicable in both discrete and
continuous settings, as is our connection with approximate tensorization.

We state explicitly the analogue of Theorem 1 for pseudolikelihood, which follows from the same proof by replac-
ing Proposition 1 with Proposition 4.

Theorem 4. Suppose that P  is a class of probability distributions containing p and C A T  (P ; P )  : =  sup C A T  (q ; P )
is the worst-case (restricted) approximate tensorization constant in the class of distributions (e.g. bounded by a con-
stant if all of the distributions in P  satisfy a version of Dobrushin’s uniqueness condition [Marton, 2015]). Let

2 3

R n  : =  E X 1 ; : : : ; X n ; 1 ; : : : ; n  sup 
1 X

i  4
X

l o g  q ( ( X i ) j  j ( X i ) j ) 5
i = 1 j = 1

4In most cases where the MLSI  is known, approximate tensorization of entropy is also, e.g. Chen et al. [2021b], Anari et al. [2021a], Marton
[2015], Caputo et al. [2015].
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be the expected Rademacher complexity of the class given n samples X1 ; : : : ; Xn   p i.i.d. and independent 1; : : : ; n

U nif1g i.i.d. Rademacher random variables. Let p̂  be the pseudolikelihood estimator from n samples, i.e. p̂  =  arg
minq 2P Lp (q ). Then

E KL(p ; p̂ )   2 C A T  ( P ; P ) R n :

In particular, if C A T  <  1  then l i m n ! 1  E KL( p ; p̂ )  =  0 as long as l i m n ! 1  R n  =  0.

5.2 Ratio Matching

[Hyvarinen, 2007b] proposed a version of score matching for distributions on the hypercube f1gd and observed that
the resulting method (“ratio matching”) bears similarity to pseudolikelihood. A  similar calculation as the proof of
Proposition 4 allows us to arrive at ratio matching based on a strengthening of approximate tensorization studied in
[Marton, 2015]. Our derivation seems more conceptual than the original derivation, explains the similarity to
pseudolikelihood, and establishes some useful connections.

Marton [2015] studied a strengthened version of approximate tensorization of the form

K L ( p ; q )   C A T 2 ( q )
X

E X i p i  T V 2 ( p ( X i  j X i ) ; q ( X i  j X i ) ) (13)
i = 1

where T V  denotes the total variation distance (see Cover [1999]). (This is known to hold for a class of distributions q
satisfying a version of Dobrushin’s condition and marginal bounds [Marton, 2015].) This inequality is stronger than the
standard approximate tensorization because of Pinsker’s inequality TV 2 ( P ; Q)  .  K L ( P ; Q )  [Cover, 1999]. In the
case of distributions on the hypercube, we have

T V 2 ( p ( X i  j X i ) ; q ( X i  j X i ) )  =  jp (X i  =  + 1  j X i )       q ( X i  =  + 1  j X i ) j2

=  E X i p X i j X i  
j1 (X i  =  + 1 )       q ( X i  =  + 1  j X i ) j 2

     E X i p X i j X i  
j1 (X i  =  + 1 )       p ( X i  =  + 1  j X i ) j2

where in the last step we used the Pythagorean theorem applied to the p X i j X i  -orthogonal decomposition

1 ( X i  =  + 1 )       q ( X i  =  + 1  j X i )  =  [1 (X i  =  + 1 )       p ( X i  =  + 1  j X i ) ]
+  [p(X i  =  + 1  j X i )       q ( X i  =  + 1  j X i ) ]

Hence, there exists a constant K p  not depending on q such that

X
E X i p i  T V 2 ( p ( X i  j X i ) ; q ( X i  j X i ) )  =  K p  +  Mp(q) (14)

i = 1

where we define the ratio matching objective function to be

Mp(q) : =  
X

E X p j 1 ( X i  =  + 1 )       q ( X i  =  + 1  j X i ) j 2 (15)
i = 1

This objective is now straightforward to estimate from data, by replacing the expectation with the average over data.
Analogous to before, we have the following proposition:

Proposition 5. We have
K L ( p ; q )   CAT 2 (q )(Mp (q )      Mp(p))

and more generally for any class P  containing p, we have K L ( p ; q )   CAT 2 (q ; P )(Mp (q )      Mp(p)).
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We now show how to rewrite Mp(q) to match the formula from the original reference. Observe

Mp(q) =  
1 X

E X p j X i       E q [ X i  j X i ] j2  =  
1 X

E X p j 1       X i E q [ X i  j X i ] j2  i = 1

i = 1

Observe that for any z 2  f1g we have

q ( X i  =  z j X i )       q ( X i  =   z j X i )  q
i i q ( X i  =  z j X i )  +  q ( X i  =   z j X i )

and

1      z E q [X i  j X i ]  =  
q ( X i  =  z j X i )  +  q ( X i  =

i

 z j X i )

=  
1 +  q ( X i  =  z j X i ) = q ( X i  =   z j X i )

:

Also for z 2  f1gd we have q ( X i  =  zi j X i  =  z i )=q (X i  =   zi  j X i  =  zi ) =  q(z)=q(z i )  where z i
reprsents z with coordinate i  flipped, so

d 2

Mp(q) =  
i = 1  

E X p        1 +  q (X )= q (X  i )

which matches the formula in Theorem 1 of Hyvarinen [2007b].
Summarizing, minimizing the ratio matching objective makes the right hand side of the strengthened tensorization

estimate (13) small, so when CA T 2 (q )  is small it will imply successful distribution learing in K L .  (The obvious variant of
Theorem 4 will therefore hold.) In this way ratio matching can also be understood as a relaxation of maximum
likelihood.

6 Related work

Score matching was originally introduced by Hyvarinen [2005], who also proved that the estimator is asymptotically
consistent. In [Hyvarinen, 2007b], the authors propose estimators that are defined over bounded domains. [Song and
Ermon, 2019] scaled the techniques to neurally parameterized energy-based models, leveraging score matching
versions like denoising score matching Vincent [2011], which involves an annealing strategy by convolving the data
distribution with Gaussians of different variances, and sliced score matching [Song et al., 2020]. The authors conjec-
tured that annealing helps with multimodality and low-dimensional manifold structure in the data distribution — and
our paper can be seen as formalizing this conjecture.

The connection between Hyvarinen’s score matching objective and the relative Fisher information in (7) is known
in the literature — see e.g. [Shao et al., 2019, Nielsen, 2021, Barp et al., 2019, Vempala and Wibisono, 2019, Yamano,
2021]. Relatedly, Hyvarinen [2007a] pointed out some connections between the score matching objective and con-
trastive divergence using the lens of Langevin dynamics. We also remark that since I (pjq ) =    d  KL (p t ; q )  j t =0

for pt the output of Langevin dynamics at time t, score matching can be interpreted as finding a q to minimize the
contraction of the Langevin dynamics for q started at p. Previously, [Guo, 2009, Lyu, 2009] observed that the score
matching objective can be interpreted as the infinitesimal change in K L  divergence as we add Gaussian noise — see
Appendix A  for an explanation why these two quantities are equal. We note that Hyvarinen [2008] also gave a related
interpretation of score matching in terms of adding an infinitesimal amount of Gaussian noise.

In the discrete setting, it was recently observed that approximate tensorization has applications to identity testing of
distributions in the “coordinate oracle” query model [Blanca et al., 2022], which is another application of approximate
tensorization outside of sampling otherwise unrelated to our result. Finally, [Block et al., 2020, Lee et al., 2022a] show
guarantees on running Langevin dynamics, given estimates on r l o g  p that are only -correct in the L2 (p) sense. They
show that when the Langevin dynamics are run for some moderate amount of time, the drift between the true Langevin
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dynamics (using r l o g  p exactly) and the noisy estimates can be bounded. Recent concurrent works [Lee et al., 2022b,
Chen et al., 2022] show results of a similar flavor for denoising diffusion model score matching, specifically when the
forward SDE is an Ornstein-Uhlenbeck process.

7 Simulations

7.1 Exponential family experiments.

Fitting a bimodal distribution with a cut statistic.     First, we show the result of fitting a bimodal distribution (as in
Example 2) from an exponential family. In Figure 1, the difference of the two sufficient statistics we consider
corresponds to the cut statistic used in our negative result (Theorem 3). As predicted (Corollary 1) score matching
performs poorly compared to the MLE as the distance between modes grows.

In Figure 2, we illustrate the distribution of the errors in the bimodal experiment with the cut statistic. As expected
based on the theory, the direction where score matching with large offset performs very poorly corresponds to the
difference between the two sufficient statistics, which encodes the sparse cut in the distribution.

Fitting a bimodal distribution without a cut statistic.     In Figure 3 we show the result of fitting the same bimodal
distribution using score matching, but we remove the second sufficient statistic (which is correlated with the sparse cut in
the distribution). In this case, score matching fits the distribution nearly as well as the MLE. This is consistent with our
theory (e.g. the failure of score matching in Theorem 3 requires that we have a sufficient statistic approximately
representing the cut) and justifies some of the distinctions we made in our results: even though the Poincare constant is
very large, the asymptotic variance of score matching within the exponential family is upper bounded by the restricted
Poincare constant (see Theorem 2) which is much smaller.

Example 3 (Application of Theorem 2 to this example). To briefly expand the last point, we show how to apply
Theorem 2 in this example (Example 2, where we have not added a bad cut statistic.) The restricted Poincare constant for
applying Theorem 2 will be

Var(F 1 (X )) Var(X 2       X 4 =2a2 )
E(F 1 (X ) ) 2 E ( 2 X       2X 3=a2)2

which asymptotically goes to a constant, rather than blowing up exponentially, as a goes to infinity. (This can be
made formal using arguments as in the proof of Corollary 1; informally, the distribution is similar to a mixture of two
standard Gaussians centered at a so the numerator is close to VarZ N (0;1) ((a +  Z ) 2    (a +  Z )4=2a2) =  Var(2aZ +
Z    (4aZ +  6Z  +  4Z  =a +  Z  )=2) =  (1) and the denominator is approximately EZ N (0 ;1 ) (2(a +  Z )       2(a +  Z )
=a )  =  E ( 2 Z       2(3Z +  3Z  =a +  Z  =a ))  =  (1).)

Given this bound on the restricted Poincare constant, we can apply Theorem 2. Based on similar reasoning
to above, one can show that EF 0 (X )4  =  (  1=4a2 )4 E((X   a ) ( X  +  a)2 +  ( X    a)2 (X +  a))4 =  (1) and
EF 00 (X )2 =  E (  3x2=2a2 +  1=2)2 =  (1), so we conclude that k SM kO P =  O(k MLEk2      ). This proves that score
matching will perform not much worse than the MLE, as we saw in the experimental result of Figure 3.

Remark 8. Example 3 shows a case where there is a large gap between the restricted and unrestricted Poincare
constants. This also implies a completely analogous gap between appropriate restricted and unrestricted log-Sobolev
constants, as used e.g. in the context of Theorem 1. To elaborate, we know that the unrestricted log-Sobolev constant
blows up exponentially in a, just like the unrestricted Poincare constant, because C L S   C P  =2 [Van Handel, 2014]. On
the other hand, if we fix the ground truth distribution pa consider the class of distributions

P r  =  fpa 0  : ja      a0j  rg;

we have that
lim C L S ( q ; P r )  =  C=2
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p (x)=p (x)  = 1

lim =  lim =  C=2

x

´

where C  is the constant defined in (16) in terms of a (and which is O(1) as a !  1 ) .  This is because from the definition
as an exponential family, we have

exp ((a      a0)F (x))
a a0

Ea 0  exp ((a      a0 )F1 (x))

so
KL(p a ; p a 0  ) (a      a0)2Varpa0 (F1 (x))

a 0 ! a  I ( p a  j pa0 )         a 0 ! a  2(a      a0)2Epa0 k rF 1 (x)k 2

where the first equality is by a standard Taylor expansion argument (see proof of Lemma 3.28 of [Van Handel, 2014]).

Fitting a unimodal distribution with rapid oscilation.     In Figure 5, we demonstrate what happens when the distri-
bution is unimodal (and has small isoperimetric constant), but the sufficient statistic is not quantitatively smooth. More
precisely, we consider the case p(x) /  e 0 x2 =2 1  s i n ( ! x )  as !  increases. In the figure, we used the formulas from
asymptotic normality to calculate the distribution over parameter estimates from 100,000 samples. We also verified via
simulations that the asymptotic formula almost exactly matches the actual error distribution.

The result is that while the MLE can always estimate the coefficient 1 accurately, score matching performs much
worse for large values of ! .  This demonstrates that the dependence on smoothness in our results (in particular,
Theorem 2) is actually required, rather than being an artifact of the proof. Conceptually, the reason score matching
fails even when though the distribution has no sparse cuts is this: the gradient of the log density becomes harder to fit
as the distribution becomes less smooth (for example, the Rademacher complexity from Theorem 1 will become larger
as it scales with r x  log p and r 2  log p).

7.2 Score matching with neural networks

Fitting a mixture of Gaussians with a one-layer network.     We also show that empirically, our results are robust
even beyond exponential families. In Figure 4 we show the results of fitting a mixture of two Gaussians via score
matching5 , where the score function is parameterized as a one hidden-layer network with tanh activations. We see that
the predictions of our theory persist: the distribution is learned successfully when the two modes are close and is not
when the modes are far. This matches our expectations, since the Poincare, log-Sobolev, and isoperimetric constants
blow up exponentially in the distance between the two modes (see e.g. Chen et al. [2021a]) and the neural network is
capable of detecting the cut between the two modes.

In the right hand side example (the one with large separation between modes), the shape of the two Gaussian
components is learned essentially perfectly — it is only the relative weights of the two components which are wrong.
This closely matches the idea behind the proof of the lower bound in Theorem 3; informally, the feedforward network
can naturally represent a function which detects the cut between the two modes of the distribution, i.e. the additional bad
sufficient statistic F2  from Theorem 3. The fact that the shapes are almost perfectly fit where the distribution is
concentrated indicates that the test loss J p  is near its minimum. Recall from (1) that the suboptimality of a distribution q
in score matching loss is given by Jp (q )   Jp (p) =  E p kr log p   r l o g  qk2. If we let q be the distribution
recovered by score matching, we see from the figure that the slopes of the distribution were correctly fit wherever p is
concentrated, so Ep kr log p   r l o g  qk2 is small. However near-optimality of the test loss Jp (q ) does not imply that q is
actually close to p: the test loss does not heavily depend on the behavior of log q in between the two modes, but the
value of r l o g  q in between the modes affects the relative weight of the two modes of the distribution, leading to failure.

Both models illustrated in the figure have 2048 tanh units and are trained via SGD on fresh samples for 300000
steps. After training the model, the estimated distribution is computed from the learned score function using numerical
integration.

5We note that this experiment is similar in flavor to plots in (Figure 2) in Song and Ermon [2019], where they show that the score is estimated
poorly near the low-probability regions of a mixture of Gaussians. In our plots, we numerically integrate the estimates of the score to produce the pdf
of the estimated distribution.
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8 Conclusion

In this paper, we studied the statistical efficiency of score matching and identified a close connection to functional
inequalities which characterize the ergodicity of Langevin dynamics. For future work, it would be interesting to
characterize formally the improvements conferred by annealing strategies like [Song and Ermon, 2019], like it has
been done in the setting of sampling using Langevin dynamics [Lee et al., 2018].

Acknowledgements.     We are grateful to Lester Mackey and Aapo Hyvarinen, as well as to the anonymous reviewers,
for feedback on an earlier draft.

Figure 1: Statistical efficiency of score matching vs MLE for fitting the distribution with ground truth parameters
(0; 1) =  (1; 0) of the form p(x) /  e0 ( x 2  x 4 = ( 2 a 2 ) ) + 1 ( x 2  x 4 =( 2a 2 ) + e r f ( x ) )  as we vary the offset a between 1 and 7 and
train with fixed number of samples (105). We see score matching (red) performs very poorly compared to the MLE
(blue) as the offset (distance between modes) grows, by plotting the log of the Euclidean distance to the true parameter
for both estimators.
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Figure 2: Level sets for the distribution over estimates in the same example as Figure 1. We see that as the distance a
between modes increases, the direction of large variance for the score matching estimator (right figure) corresponds to
the difference of the sufficient statistics which encodes the sparse cut in the distribution. On the other hand, the MLE
(left figure) does not exhibit this behavior and has low variance in all directions.

Figure 3: Here we see the result of running an identical experiment to Figure 1, only we remove the second sufficient
statistic, so our distribution is now p(x) /  e 0 ( x 2  x 4 =(2a 2 ) )  where 0 =  1 and we again vary the offset a between 1 and 7.
With only the single sufficient statistic, score matching performs comparably to MLE.
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Figure 4: Training a single hidden-layer network to score match a mixture of Gaussians (ground truth orange, score
matching output blue) succeeds at learning the distribution when the modes are close (left, small isoperimetric con-
stant), but not when they are distant (right, large isoperimetric constant) in which case it weighs the modes incorrectly.
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Figure 5: Score matching vs MLE for a distribution with a rapidly oscillating sufficient statistic, p(x) /  e
0 x2 =2 1  s i n ( ! x )  where (0; 1) =  (1; 1), and increasing ! .  On the top, for increasing !  we show a log-log plot of the average
Euclidean distance in parameter space between  and the output of each estimator. On the bottom, for each value of ! ,  we
draw a level set of the distribution within which a fixed fraction of returned estimates lie (MLE left, score matching
right). Score matching becomes increasingly inaccurate as !  increases while the MLE stays extremely accurate.
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A Recovering an interpretation of score matching

We remarked that if we use the fact I (pjq ) =    d  KL ( p t ; q )  jt=0 , the score matching objective has a natural inter-
pretation in terms of select q to minimize the contraction of the Langevin dynamics for q started at p. On the other
hand, Guo [2009] and Lyu [2009] previously observed that the score matching objective can be interpreted as the
infinitesimal change in K L  divergence between p and q as we add noise to both of them, which is closely related to the
de Bruijn identity. We now explain why these two quantities are equal by giving a proof of their equality (which is shorter
than the one you get by going through the proof in Lyu [2009]).

Before giving the formal proof, we give some intuition for why the statement should be true. The Langevin
dynamics approximately adds a noise of size N (0; 2t) and subtracts a gradient step along r l o g  q, and this dynamics
preserves q. For small t, the gradient step is essentially reversible and preserves the K L .  So heuristically, reversing the
gradient step gives K L(p t ; q )   K L(N (0; 2t)   p; N (0; 2t)  q). We now give the formal proof.

Lemma 3. Assuming smooth probability densities p(x) and q (x) decay sufficiently fast at infinity,

d 
K L ( p  ; q) =  

d 
K L ( p   N (0; 2t); q  N (0; 2t))

t = 0 t = 0

where  denotes convolution.

Proof. Recalling from Section 2 that H t  =  e t L  we have that dt q =  d t Ht  q =  L q  . Since K L(p t ; q )  =  Eq [ q log q ]
and dx [x log x] =  log x  +  1, it follows by the chain rule that

dt
K L(pt ; q )  =  Eq log 

q 
+  1 L

q     
 
=  Eq log 

q 
+  1 hr log q ; r

q
i  +  

q

=  Eq log 
q 

+  1  hr log q ; r
p

i  +  
p 

  
pq

where in the last step we used the quotient rule p =  q
p      2

D
r log q ; r q  

E  
  pq . On the other hand, by using the

Fokker-Planck equation @t (p  N (0; 2t)) =  p (Lemma 2 of Lyu [2009]) and the chain rule we have Z

dt
K L(p   N (0; 2t); q  N (0; 2t)) =  

dt
(q  N (0; 2t))

q  N (0; 2t) 
log 

q  N (0; 2t)
dx =

(q)
p 

log 
p

dx +  Eq log 
p 

+  1
p 

  
pq

Since by the chain rule and integration by parts we have
Z Z

Eq log 
q 

+  1 r l o g  q ; r
q

= r q ; r
q  

log 
q

dx =   (q)
q 

log 
q

dx;

we see that the two derivatives are indeed equal.

B Proof of Theorem 3 and Applications

We restate Theorem 3 for the reader’s convenience and in a slightly more detailed form (we include an upper bound
on the covariance of the MLE error which follows from the proof).

Theorem 5 (Inefficiency of score matching in the presence of sparse cuts, Restatement of Theorem 3). There exists an
absolute constant c >  0 such that the following is true. Suppose that p is an element of an exponential family with
sufficient statistic F1  and parameterized by elements of 1. Suppose S  is a set with smooth and compact boundary
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@S. Let @S >  0 denote the reach of @S (see Section 2) Suppose that 1S  is not an affine function of F1 , so there exists
 >  0 such that

sup Cov     hw1; F1i; p  
1S

2 

 1      1: (17)
w 1 : Var ( h w 1 ; F 1 i ) = 1 S

n o
Suppose that  >  0 satisfies  <  min     ( 1 + k 1 k )  sup x : d ( x ; @ S )  k ( J F 1 ) x k O P  

; c d
S           and is small enough so that 0 <   : =  1

p
1

 
     1 +  2     P r ( X 2 S ) ( 1  P r ( X 2 S ) )       

2

. Define an additional sufficient statistic F2  =  1S    so that the

enlarged exponential family contains distributions of the form

p( 1 ; 2 ) (x) /  exp(h1; F1 (x)i +  2 F2 (x))

and consider the MLE and score matching estimators in this exponential family with ground truth p(;0) .
Then the asymptotic renormalized covariance matrix  M L E  of the MLE is bounded above as

 M L E   
1       0

1 0
1

P r ( X 2 S ) ( 1  P r ( X 2 S ) )

and there there exists some w so that the relative (in)efficiency of the score matching estimator compared to the MLE
for estimating hw; i admits the following lower bound

hw;  S M  wi c0 minfPr(X  2  S ) ; Pr ( X  2= S )g
hw;  M L E w i x2@ S p(x)dx

where c0 : =  1 + k F 1  k O P  
.

B.1 Lower bounding the spectral norm of  S M

We recall the new statistic F2 , defined in terms of the mollifier
Z

introduced in Section 2:
Z

F2 (x)  : =  (1S   ) (x)  = 1S (y) (x       y)dy = (x       y)dy
R d                                                                                        S

and the new sufficient statistic is F ( x )  =  (F1 (x); F2 (x)).  We first show the following lower bound on the largest
eigenvalue of  S M  , the renormalized limiting covariance of score matching:

Lemma 4 (Largest eigenvalue of  S M  ). The largest eigenvalue of  S M  satisfies

8 d2 E X j d ( X ; @ S )  
 

( r F 2 ) T  ( J F ) T   +  F2
2 m a x

S M Pr[d(X; @S)  ]                supd(x;@ S) k ( J F ) x k O P (18)

Proof. We have Z
r x F 2 ( x )  =  r x      ( x       y)dy; S

Z
r x F 2 ( x )  =  

S  
r x      ( x       y)dy:

Defining
u : =  E [ ( J F ) X ( J F ) X ] ( 0 ; 1 )  =  E [ ( J F ) X r x F 2 ( x ) ]

we have, by the variational characterization of eigenvalues of symmetric matrices, that

hu; E [ ( J F ) X ( J F ) T  ] 1
( J F ) X ( J F ) T  + F  E [ ( J F ) X ( J F ) T  ] 1ui m a x

S M kuk2
(19)
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To upper bound the denominator we observe that if B d  is the volume of the unit ball,
Z

kr x F 2 (x )k 2  =   ( r  ) (x       y)dy (20)
S                                                 2

 1(d(x; @S)  )  d 1 v ol (B (X; ))=Id (21)

 8d1(d(x; @S)  )  1 (22)

and so

kuk2  8d 1 Pr[d(X; @S)  ] sup k( J F ) x k O P
d(x;@ S )2[ ;]

where we used the computation of the derivative of . To lower bound the numerator we have

hu; E [ ( J F ) X ( J F ) T  ] 1
( J F ) X ( J F ) T  + F  E [ ( J F ) X ( J F ) T  ] 1ui =

(0; 1)T 
( J F ) X ( J F ) X + F  (0; 1)

=  Eh(0; 1) ; ( J F ) X ( J F ) T   +  F i 2  =  E  ( r x F 2 ) T  ( J F ) T   +  F2  
2 :

The integrand is zero except when d(X; @S)   so it equals

Pr[d(X; @S)  ]EX j d ( X ; @ S ) 2 [  ;] 
 

( r F 2 ) X ( J F ) X  +  F2
2

and combining gives the result.

We now estimate the right hand side of (18) for small , using differential geometric techniques. The main idea is
that as we take  smaller, we end up zooming into the manifold @S which locally looks closer and closer to being flat.
Differential-geometric quantities describing the manifold appear when we make this approximation rigorous. The most
involved term to handle ends up to be calculating the expectation E X j d ( X ; @ S )      ( r F 2 ) T  ( J F ) T   +  F2  

2. To do this,
we first argue that the term with the Laplacian dominates as  !  0, then by Stokes theorem, we end up
integrating h r  ; dN i over intersections of S  with small spheres of radius , where N  is a normal to S . Such
quantities can be calculated by comparing to the “flat” manifold case — i.e. when N  does not change. How far away
these quantities are (thus how small  needs to be) depends on the curvature of S  (or more precisely, the condition
number of the manifold). Lemma 6 makes rigorous the statement that well-conditioned manifolds are locally flat and
then Lemma 7, which is part of the proof of Weyl’s tube formula [Gray, 2003, Weyl, 1939], lets us rigorously say that
the tubular neighborhood (that is, a thickening of the manifold) behaves similarly to the flat case.

Lemma 5. There exists an absolute constant c >  0 such that the following is true. For any  >  0 satisfying
( )

 <  min
(1 +  k1k) supx:d(x;@ S) k ( J F 1 ) x kO P  

; c
d

S

for score matching on the extended family with m +  1 sufficient statistics and distribution p with  =  (1; 0) we have

m a x (  S M  )   R
@S

 
p(x)dA

Proof. In the denominator, we can observe by (22) that

k ( J F ) x k O P   kJ F 1 kO P  +  krF 2 k 2   kJ F 1 kO P  +   2 Bd  2 2 Bd

where the last inequality holds assuming  is sufficiently small that kJ F1 k2 
P    2B2 .
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In the numerator we can observe

( r x F 2 ) X ( J F ) X  +  F2

= h ( r  ) ( ( X       y )) ; ( J F ) T  i  +  ( ) ( X       y)dy ZS

= h ( r  ) ( ( X       y )) ; ( J F ) T  i  +  ( ) ( X       y)dy S \ B ( X ; )

=  d h ( r  ) (u); (J F ) T  i  +  (  )(u)du Z
B ( 0 ; 1 ) \ ( X  S ) =

=  1 h r  (u); (J F ) T  i  +   2( )(u)du
Z B ( 0 ; 1 ) \ ( X  S ) =                                                                     Z

=  1 h r  (u); (J F ) T  i  +  2 h r  ; dN i
Z B ( 0 ; 1 ) \ ( X  S ) =                                                                     Z@ ( B ( 0 ; 1 ) \ ( X  S ) = )

=  1 h r  (u); ( J F ) T  i  +  2 h r  ; dN i
B ( 0 ; 1 ) \ ( X  S ) =                                                                        B ( 0 ; 1 ) \ ( X  @S)=

where the second-to-last expression is a surface integral which we arrived at by applying the divergence theorem, using
that the Laplacian is the divergence of the gradient, and in the last step we used that and all of its derivatives vanish
on the boundary of the unit sphere.

Using that  =  (1; 0) we have
Z Z

 1 h r  (u); (J F ) T  i    1 k r  (u)kk(J F1 )X kO P  kk (23)
B ( 0 ; 1 ) \ ( X  S ) =                                                                                       B (0;1)

 8d 1 k( J F 1 ) X k O P  kk: (24)

Let p be the point in @(X   S )= which is closest in Euclidean distance to the origin. Let n(q) denote the unit
normal vector at point q oriented outwards (Gauss map). Note that by first-order optimality conditions for p, we must
have n(p) =  p=kpk. Since dN =  n(q)dA where dA is the surface area form, we have

Z Z
h r  ; dN i = h r  (q); n(p) +  (n(q)      n(p))idA

B ( 0 ; 1 ) \ ( X  @S)=                                       q 2 B ( 0 ; 1 ) \ ( X  @S)=

=
 2 (q)    

 
hq; 

p 
+  (n(q)

n(p))idA: q 2 B ( 0 ; 1 ) \ ( X  @S)=

We now show how to lower bounding the integral by showing hq; kpk +  (n(q)      n(p))i is lower bounded.
Let c(t) be a minimal unit-speed geodesic on M  : =  ( X    @S)= from p to q. Note that M  =  @S= so if  is very

small, M  is very well-conditioned. By the fundamental theorem of calculus, we have that
Z 1 Z 1

hp; qi =  hp; pi +  
0 

hp; c0(t)idt =  hp; pi +  
0 

hPro jT c ( t )  
p; c0(t)idt

where Tc(t)  is the tangent space to M  at the point c(t). Hence by the Cauchy-Schwarz inequality we have
Z 1

jhp; qi  hp; pi   
0     

k Pro jT c ( t )  
pkkc0(t)kdt:

By Proposition 6.3 of Niyogi et al. [2008], we have that for t  the angle between the tangent spaces Tp and Tc(t)  that

cos t  1   
1 

dM (p; c(t)) =  1   
t 

dM (p; q): (25)
M M
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p

   

Z

2 2(1      kqk ) kpk
Z

(q)

2

(q) (q)

(1      kqk )2 2

(1      kqk )2 2

T T
k

0

( r F  ) TE ( J F ) T  +  F  C 4      0 :

Since sin2 
t  +  cos2

 
t  =  1 and p is orthogonal to the tangent space at Tp, it follows that

k Pro jT c ( t )  
pk  kpkj sin tj =  kpk

p
1

 
     cos2 t   kpk

p
(2t=M )d M (p;

 
q)

 
+

 
(t=M )2 dM (p; q )2

 kpk     (2t=M )dM (p; q ) +  kpk(t=M )dM (p; q )

hence Z

0

1 

k Pro jT c ( t )  
pkkc0(t)kdt  (2=3)kpk

p
(2=M )dM (p; q )3=2 +  kpk(1=2M )dM (p; q)2 :

Since kp      qk  2, provided that M  >  16 we have by Proposition 6.3 of Niyogi et al. [2008] that

dM (p; q )  M ( 1       
p

1
 
     2kp

 
 

 
q k=M )  4:

Combining, we have for some absolute constant C  >  0 that

Also, we can compute

so

hp; qi  hp; pi(1      C
p

1 = M       C = M ) :

kn(q)      n(p)k =  
p

2
 
     2 cos

 
1  

r  
2

 
dM (p; q )  

r  
8

M M

jhq; n(q)      n(p)iij  kqkkn(q)      n(p)k  
r  

8
 

: M

Hence provided M  >  C 0 for some absolute constant C 0 >  0 and kpk >  0:1, we have

2 (q)     
hq; 

p 
+  (n(q)      n(p))idA

q 2 B ( 0 ; 1 ) \ ( X  @S)=

 
q 2 B ( 0 ; 1 ) \ ( X  @S)= (1      kqk2)2 kpkdA

using that the integrand on the left is always negative. We can further lower bound the integral by considering the
intersection of M  with a ball of radius r  : =  1 kpk centered at p. We have

Z Z

q 2 B ( 0 ; 1 ) \ ( X  @S)= (1      kqk2)2 kpkdA  
q 2 B ( p ; r ) \ M  (1      kqk2)2 kpkdA

 kpk(cos )k vol(B k (p; r)) inf
(q)

q 2 B ( p ; r ) \ M

=  kpk(cos )k rk inf
B k      (q)

q 2 B ( p ; r ) \ M

where k =  d      1 is the dimension of M  and  =  arcsin(r=2) and we applied Lemma 5.3 of Niyogi et al. [2008]. If
kpk 2  (0:1; 0:9) this is lower bounded by a constant C k  >  0 which is at worst exponentially small in k.

Hence recalling (24) we have for any X  with d(X; @S) 2  (0:1; 0:9) and for  sufficiently small so that
8 k + 1 k( J F 1 ) X k O P  kk <  Ck =4 for any such X ,  we have that

 
( r F 2 ) X ( J F ) X  +  F2

2   4C0

where C k  >  0 is a constant that is at worst exponentially small in k. Therefore

 2 Pr(d(X; @S) 2  (0:1; 0:9))
X j d ( X ; @ S ) 2 [  ;]                2 X                X                      2                              k                Pr(d(X; @S)  )
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     k(  )  :

p

1

p

x:d(x;@ S )

k   1

k

Combining these estimates, we have for some constant C00 >  0 which is at worst exponentially small in k and
sufficiently small (to satisfy the conditions above, including the requirement M  >  C00) that

C00 Pr(d(X; @S) 2  (0:1; 0:9))
m a x S M Pr(d(X; @S)  )2

Observe that for any points x; y and  =  (1; 0) we have by the mean value theorem that

(26)

!

p(x)=p(y) =  exp (h1; F1(x)      F1 (y ))  exp     kk sup k ( J F 1 ) x + ( 1  ) y kO P  kx      yk     : (27)
2[0;1]

so the log of the density is Lipschitz. This basically reduces estimating Pr(d(X; @S)  )  for small  to understanding the
volume of tubes around @S, which can be done using the same ideas as the proof of Weyl’s tube formula [Weyl, 1939,
Gray, 2003].

Lemma 6 (Proposition 6.1 of Niyogi et al. [2008]). Let M  be a smooth and compact submanifold of dimension q in Rd .
At a point p 2  M  let B  : Tp  Tp !  T ?  denote the second fundamental form, and for a unit normal vector u, let L u
be the linear operator defined so that hu; B(v; w)i =  hv; Lu wi (this matches the notation from Niyogi et al. [2008]).
Then

kL u k O P  : M

Lemma 7 (Lemma 3.14 of Gray [2003]). Let M  be a smooth and compact submanifold of dimension q in Rd . Let
expp denote the exponential map from the normal bundle at p. The Jacobian determinant of the map

M   ( 1=M ; 1=M )  Sd q 1 !  Rd ; (p; t; u) !  expp(tu)

is det(I      tLu ) .

We can compute
Z Z Z r  Z

Pr(d(X; @S)  r )  = p(x)dx = det(I      tLu )p(exp (tu)) du dt dA
x:d(x;@ S )r                                    p2@S      0        S 0

where in the second equality we performed a change of variables and obtained the result by applying Lemma 7. We
have

det(I      tL u )  2  [(1      t=)k ; (1 +  t=)k ]

and so applying (27) we find that if we define c : =  kk sup k(J F1 ) x kO P  which can be made arbitrarily
small by taking  sufficiently small, then

Pr(d(X; @S)  r )  2  [2e c (1      =)k V; 2ec(1 +  =)k V ] (28)

where Z
V : = p(x)dA: @S

Note that (1 + =)k   ek= and (1 =)k  exp( O(k=)) provided that = =  O(1=k). Since Pr(d(X; @S) 2  (0:1; 0:9)) =
Pr(d(X; @S) <  0:9)   Pr(d(X; @S)  0:1) and the distribution we consider has a density, by combining (28) and (26)
we find that for  sufficiently small we have

m a x (  S M  )  C000  R
@S

 
p(x)dA

where C000 is at worst exponentially small in k.
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B.2 Relating Fisher matrices of augmented and original sufficient statistics
Next, we show that adding the extra sufficient statistic F2  has a comparatively minor effect on the efficiency of MLE.
Intuitively, to be able to estimate the coefficient of F2  correctly we just need: (1) the variance of F2  is large, so that a
nonzero coefficient of F2  can be observed from samples (e.g. when F2  encodes the cut S , the coefficient can be
estimated by looking at the relative weight between S  and S C ),  and (2) there is no redundancy in the sufficient
statistics, e.g. F2  =  F1  since otherwise different coefficients can encode the same distribution. The proof of this uses
that the inverse covariance of the MLE has a simple explicit form (the Fisher information, which is the covariance
matrix of (F1 ; F2 )), and conditions (1) and (2) naturally appear when we use this fact.

Quantitatively, we show:

Lemma 8. Suppose that F  =  (F1 ; F2 ) is a random vector valued in R m + 1  with F1  valued in R m  and F2  valued in R.
Suppose that F2  is not in the affine of linear combinations of the coordinates of F1 , i.e. for all w1 2  R m  there exists
>  0 such that

Cov(hw1; F1i; F2)2  Var(hw1; F1 i)Var(F2):

Then we have the lower bound
F   (1      ) 0

1

0
Var(F2 )

in the standard PSD (positive semidefinite) order.

Proof. To show a lower bound on

     =  
 

F 1 F 1 F 2F 2 F 1 F 2

observe that
hw; F wi =  hw1; F1 w1 i +  2w2hw1; F1 F2 i  +  w2 F2

so under the assumption we have by the AM-GM inequality that

hw; F wi  (1      )[hw1; F1 w1 i +  w2 F2  ]

and hence F  is lower bounded in the PSD order as long as F 1  is and F 2  is.

The lower bound on Var(F2 ) is guaranteed when F2  corresponds to a cut with large mass on both sides since the
variance of F2  is lower bounded by its variance conditioned on being away from the boundary of S .

B.3 Putting together

Finally, given Lemma 5 and 8, we can complete the proof of Theorem 3.

Proof of Theorem 3. Define  =  P r ( X  2  S )  for the purpose of this proof. Observe that by (28)

Var(1S      F2 )   E (1 S       F2 )2  Pr(d(X; @S)  )   4V where V

=  
R

@
S p(x)dA. We have that

Cov(hw1; F1 i; F2) =  Cov(hw1; F1i; 1S ) +  Cov(hw1; F1i; F2      1S )

so if w1 is arbitrary and normalized so that Var(hw1; F1i) =  1 then we have

jCov(hw1; F1i; F2)j  
p

1
 
     1

p
Var(1 S )  +  

p
Va r ( F 2

 
 

 
1S )

p
1

 
     1 +  2

(1      )

p
Var(1 S ) :
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1  1
F 0

c

2

2  1  1 :

Therefore provided  >  0 we have

F
1   

 0
1

Var(F2 ) 1     :

On the other hand, by Lemma 5 we have

Hence there exists some w such that

d

m a x (  S M  )  
V 

:

      S M  (w)  cd 1 cd (1      )

M L E ( w )        maxfkF 1  
kO P  ; 1=(1      )g V        1 +  (1      )kF 1  

kO P           V

Using that minf; 1      g=2  (1      )   1=4 and dividing c by two gives the result.
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