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(a) Complexity class (b) An algorithm in NISQ
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Figure 1: Illustration of the NISQ complerity class: (a) Complexity classes: NISQ contains prob-
lems that can be solved by classical computation (BPP), and some problems that can be solved
by quantum computation (BQP). (b) NISQ algorithm: An algorithm in the complexity class NISQ
is modeled by a hybrid quantum-classical algorithm, where a classical computer can specify the
circuit to run on a noisy quantum device and the device would run a noisy version of the circuit
and return a random classical bitstring obtained from noisy measurement.

all qubits simultaneously. From a physical perspective, this constraint arises due to the difficulty
of isolating subsets of qubits and measuring them without decohering the residual qubits.

Finally, we consider a classical computer that can repeatedly run the noisy quantum device and
analyze the output from the noisy quantum device.

These constraints are chosen to encapsulate the gap between the physical limitations of what we
can achieve with existing quantum computers, and general quantum computation. We note these
considerations preclude the implementation of all known general fault-tolerant quantum compu-
tation schemes [53, 54, 55, 56, 57, 58, 59], but that removing any one of these constraints would
already allow for some form of nontrivial quantum fault tolerance [53, 57, 58]. The obstruction to
fault tolerance can be understood intuitively. The noisy quantum gates cause all qubits to accrue
entropy, which cannot be pumped out until the measurement at the end. Since too much entropy
would destroy all useful quantum correlations, it is not possible for the noisy quantum devices
under the above constraints to perform an arbitrarily long quantum computation.

Motivated by the above considerations, in Section 2.1 we formally define the NISQ complexity
class to be the set of all problems that can be efficiently solved by a classical computer with access
to a noisy quantum device that can (i) prepare a noisy poly(n)-qubit all-zero state, (ii) execute
noisy quantum gates, and (iii) perform a noisy measurement on all of the poly(n) qubits.

2 Main Results

In Section 2.1 we give an overview of the definition of NISQ. Then, in Section 2.2, we give two
modifications of Simon’s problem which respectively yield a super-polynomial separation between
BPP and NISQ, and an exponential separation between NISQ and BQP. In Section 2.3, we study the
NISQ) complexity of three well-known problems: unstructured search, Bernstein-Vazirani problem,
and shadow tomography. We defer all technical details to the appendix.
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Figure 2: Illustration of the tree representation for NISQ algorithms. (a) At every memory state u
of the classical computer/algorithm, it could either make a noisy circuit query or a classical query.
(b) The tree representation with a mix of noisy circuit queries and classical queries.

The following lemma shows that slight perturbations to the distributions over children for each
node do not change the overall distribution over leaves of T by too much.

Lemma B.2. Given learning tree T corresponding to a NISQ, algorithm with query complerity N,
suppose T' is a learning tree obtained from T as follows. For every node u at which a noisy quantum
circuit A is run, replace A by another circuit A’ such that the new induced distribution over children
of w is at most e-far from the original distribution in total variation. Then the distributions over
leaves of T and T' are at most N -far in total variation.

Proof. Consider the sequence of trees 71 where T\% = T and T is given by taking all u in
layer i of 711 that run some noisy quantum circuit A and replacing them with the corresponding
circuit A’ from 7’. By design, TW) = 77, Let p'¥) denote the distribution over leaves of 7). It
suffices to show that dpy(p®™,pli—1) < &

Note that pli~1) specifies some mixture over distributions p,, where p, is the distribution over
leaves conditioned on reaching node v in the i-th layer. In particular, in this mixture, v is sampled
by sampling parent node u by running the NISQ algorithm corresponding to 7" for i — 1 steps and
then running the corresponding quantum circuit A from 7. In contrast, p'¥) is a mixture over the
same distributions p,, but v is sampled by running the NISQ algorithm corresponding to 7' for
i steps and then running the corresponding quantum circuit A’ from 7'. These two distributions
over v are at most s-far in total variation, so the two mixture distributions are also at most =-far
in total variation as claimed. |:|

Our lower bounds will be based on Le Cam’s method—- see Section 4.3 of [48] for an overview
in the context of the tree formalism of Definition B.1. In every case we will reduce to some
distinguishing task in which the algorithm must discern whether the oracle it has access to comes
from one family of oracles or from another. For example, for unstructured search, the distinguishing
task will be whether the oracle corresponds to some element in the search domain or whether the
oracle is the identity channel.

More concretely, given two disjoint sets of oracles Sp, 51, we will design distributions Dy, Ih
over Sg, 51. Given any algorithm specified by some (7T, .4), we will upper bound the total variation
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Figure 3: Bernstein-Vazirani algorithm in the presence of arbitrary noise (each box labeled by “local
noise” denotes that with probahility A, an arbitrary, adversarially chosen single-qubit operation is
applied). We have labeled the layers of noise for ease of reference in the proof.

Definition E.2 (Permutation operators). Forn > 0, let 5, be the permutation group on m objects.
To each 7 in S, we associate an operator acting on [CEJ‘E“ defined by

I(lwl) & |'¢]2) e @ |‘I."IJ"‘»"-!}} = |'¢]rr_1{l]} @ |¢w‘1{2}} @--- @ I%bw—i[n]) , ¥ |'¢]1}: |¢?)5 “esy |¢n} = C?
which ertends by multilinearity to all of (C*)®™,
We have a similar definition for permutations acting on bit strings.

Definition E.3 (Permutations acting on bit strings). Again letting S, be the permutation group
on 1 objects, to each w in S;, we associate a function w : {0,1}" — {0,1}" defined by

T(5189- - Sm) = Sa-1(1)S7=1(2) " Sr—1(m) » V5183 s, € {0,1}".
Moreover, if f : {0,1}" — {0,1} is the unknown function in the Bernstein-Vazirani problem, then
we define f_ ;== fom.

Bernstein-Vazirani algorithm. We conclude this subsection by reviewing how the original
Bernstein-Vazirani algorithm [92] works, see Figure 3. One begins by preparing the initial state
|4+)®" @ |-), and then acting on it with the oracle. In so doing, we obtain the state

1 8-
= L (U el
ze{0,1}"
Tracing out the |—) qubit, we can then apply the Hadamards H®" to the first n qubits to obtain
1 L B
Y (F)ERT) =)
{01}

which gives us the hidden string s.
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