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Fi g u r e 1: Ill u st r ati o n of t h e NI S Q c o m pl e xit y cl a s s: ( a)  C o m pl e xit y cl a s s e s: NI S Q c o nt ai n s p r o b-
l e m s t h at c a n b e s ol v e d b y cl a s si c al c o m p ut ati o n (B P P ), a n d s o m e p r o bl e m s t h at c a n b e s ol v e d
b y q u a nt u m c o m p ut ati o n ( B Q P ). ( b) NI S Q al g orit h m:  A n al g orit h m i n t h e c o m pl e xit y cl a s s NI S Q
i s  m o d el e d b y a h y b ri d q u a nt u m- cl a s si c al al g orit h m,  w h er e a cl a s si c al c o m p ut er c a n s p e cif y t h e
ci r c uit t o r u n o n a n oi s y q u a nt u m d e vi c e a n d t h e d e vi c e  w o ul d r u n a n oi s y v er si o n of t h e ci r c uit
a n d r et u r n a r a n d o m cl a s si c al bit st ri n g o bt ai n e d f r o m n oi s y  m e a s u r e m e nt.

all q u bit s si m ult a n e o u sl y.  Fr o m a p h y si c al p er s p e cti v e, t hi s c o n st r ai nt ari s e s d u e t o t h e di ffi c ult y
of i s ol ati n g s u b s et s of q u bit s a n d  m e a s uri n g t h e m  wit h o ut d e c o h eri n g t h e r e si d u al q u bit s.

Fi n all y,  w e c o n si d er a cl a s si c al c o m p ut er t h at c a n r e p e at e dl y r u n t h e n oi s y q u a nt u m d e vi c e a n d
a n al y z e t h e o ut p ut f r o m t h e n oi s y q u a nt u m d e vi c e.

T h e s e c o n st r ai nt s ar e c h o s e n t o e n c a p s ul at e t h e g a p b et w e e n t h e p h y si c al li mit ati o n s of  w h at  w e
c a n a c hi e v e  wit h e xi sti n g q u a nt u m c o m p ut er s, a n d g e n er al q u a nt u m c o m p ut ati o n.  We n ot e t h e s e
c o n si d er ati o n s pr e cl u d e t h e i m pl e m e nt ati o n of all k n o w n g e n er al f a ult-t ol er a nt q u a nt u m c o m p u-
t ati o n s c h e m e s [ 5 3 , 5 4 , 5 5 , 5 6 , 5 7 , 5 8 , 5 9 ], b ut t h at r e m o vi n g a n y o n e of t h e s e c o n st r ai nt s  w o ul d
al r e a d y all o w f or s o m e f or m of n o nt ri vi al q u a nt u m f a ult t ol er a n c e [ 5 3 , 5 7 , 5 8 ].  T h e o b st r u cti o n t o
f a ult t ol er a n c e c a n b e u n d er st o o d i nt uiti v el y.  T h e n oi s y q u a nt u m g at e s c a u s e all q u bit s t o a c cr u e
e nt r o p y,  w hi c h c a n n ot b e p u m p e d o ut u ntil t h e  m e a s u r e m e nt at t h e e n d. Si n c e t o o  m u c h e nt r o p y
w o ul d d e st r o y all u s ef ul q u a nt u m c or r el ati o n s, it i s n ot p o s si bl e f or t h e n oi s y q u a nt u m d e vi c e s
u n d er t h e a b o v e c o n st r ai nt s t o p erf or m a n ar bit r aril y l o n g q u a nt u m c o m p ut ati o n.

M oti v at e d b y t h e a b o v e c o n si d er ati o n s, i n S e cti o n 2. 1 w e f or m all y d e fi n e t h e NI S Q c o m pl e xit y
cl a s s t o b e t h e s et of all p r o bl e m s t h at c a n b e e ffi ci e ntl y s ol v e d b y a cl a s si c al c o m p ut er  wit h a c c e s s
t o a n oi s y q u a nt u m d e vi c e t h at c a n (i) p r e p ar e a n oi s y p ol y ( n )- q u bit all- z e r o st at e, (ii) e x e c ut e
n oi s y q u a nt u m g at e s, a n d (iii) p erf or m a n oi s y  m e a s u r e m e nt o n all of t h e p ol y ( n ) q u bit s.

2  M ai n  R e s ul t s

I n S e cti o n 2. 1 w e gi v e a n o v er vi e w of t h e d e fi niti o n of NI S Q .  T h e n, i n S e cti o n 2. 2 ,  w e gi v e t w o
m o di fi c ati o n s of Si m o n’ s pr o bl e m  w hi c h r e s p e cti v el y yi el d a s u p er- p ol y n o mi al s e p ar ati o n b et w e e n
B P P a n d NI S Q , a n d a n e x p o n e nti al s e p ar ati o n b et w e e n NI S Q a n d B Q P . I n S e cti o n 2. 3 ,  w e st u d y t h e
NI S Q c o m pl e xit y of t h r e e  w ell- k n o w n p r o bl e m s: u n st r u ct ur e d s e ar c h,  B er n st ei n- V a zi r a ni p r o bl e m,
a n d s h a d o w t o m o gr a p h y.  We d ef er all t e c h ni c al d et ail s t o t h e a p p e n di x.
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Fi g u r e 2: Ill u st r ati o n of t h e t r e e r e pr e s e nt ati o n f or NI S Q al g orit h m s. ( a)  At e v er y  m e m or y st at e u
of t h e cl a s si c al c o m p ut er / al g orit h m, it c o ul d eit h er  m a k e a n oi s y ci r c uit q u er y or a cl a s si c al q u er y.
( b)  T h e t r e e r e p r e s e nt ati o n  wit h a  mi x of n oi s y ci r c uit q u eri e s a n d cl a s si c al q u eri e s.

T h e f oll o wi n g l e m m a s h o w s t h at sli g ht p ert u r b ati o n s t o t h e di st ri b uti o n s o v er c hil d r e n f or e a c h
n o d e d o n ot c h a n g e t h e o v er all di st ri b uti o n o v er l e a v e s of T b y t o o  m u c h.

L e m m a  B. 2. Gi v e n l e a r ni n g t r e e T c o r r e s p o n di n g t o a NI S Q λ al g o rit h m  wit h q u e r y c o m pl e xit y N ,
s u p p o s e T i s a l e a r ni n g t r e e o bt ai n e d f r o m T a s f oll o w s.  F o r e v e r y n o d e u at  w hi c h a n oi s y q u a nt u m
ci r c uit A i s r u n, r e pl a c e A b y a n ot h e r ci r c uit A s u c h t h at t h e n e w i n d u c e d di st ri b uti o n o v e r c hil d r e n
of u i s at  m o st ε -f a r f r o m t h e o ri gi n al di st ri b uti o n i n t ot al v a ri ati o n.  T h e n t h e di st ri b uti o n s o v e r
l e a v e s of T a n d T a r e at  m o st ε N -f a r i n t ot al v a ri ati o n.

P r o of. C o n si d er t h e s e q u e n c e of t r e e s T ( i) w h e r e T ( 0 ) = T a n d T ( i) i s gi v e n b y t a ki n g all u i n
l a y er i of T ( i− 1 ) t h at r u n s o m e n oi s y q u a nt u m ci r c uit A a n d r e pl a ci n g t h e m  wit h t h e c or r e s p o n di n g
ci r c uit A f r o m T .  B y d e si g n, T ( N ) = T .  L et p ( i) d e n ot e t h e di st ri b uti o n o v er l e a v e s of T ( i) . It
s u ffi c e s t o s h o w t h at d T V ( p ( i) , p( i− 1 ) ) ≤ ε .

N ot e t h at p ( i− 1 ) s p e ci fi e s s o m e  mi xt u r e o v er di st ri b uti o n s p v ,  w h e r e p v i s t h e di st ri b uti o n o v er
l e a v e s c o n diti o n e d o n r e a c hi n g n o d e v i n t h e i-t h l a y er. I n p arti c ul ar, i n t hi s  mi xt u r e, v i s s a m pl e d
b y s a m pli n g p ar e nt n o d e u b y r u n ni n g t h e NI S Q al g orit h m c or r e s p o n di n g t o T f or i − 1 st e p s a n d
t h e n r u n ni n g t h e c or r e s p o n di n g q u a nt u m ci r c uit A f r o m T . I n c o nt r a st, p ( i) i s a  mi xt u r e o v er t h e
s a m e di st ri b uti o n s p v , b ut v i s s a m pl e d b y r u n ni n g t h e NI S Q al g orit h m c or r e s p o n di n g t o T f or
i st e p s a n d t h e n r u n ni n g t h e c or r e s p o n di n g q u a nt u m cir c uit A f r o m T .  T h e s e t w o di st ri b uti o n s
o v er v ar e at  m o st ε -f ar i n t ot al v ari ati o n, s o t h e t w o  mi xt u r e di st ri b uti o n s ar e al s o at  m o st ε -f ar
i n t ot al v ari ati o n a s cl ai m e d.

O u r l o w er b o u n d s  will b e b a s e d o n  L e  C a m’ s  m et h o d – s e e S e cti o n 4. 3 of [ 4 8 ] f or a n o v e r vi e w
i n t h e c o nt e xt of t h e t r e e f or m ali s m of  D e fi niti o n B. 1 . I n e v er y c a s e  w e  will r e d u c e t o s o m e
di sti n g ui s hi n g t a s k i n  w hi c h t h e al g orit h m  m u st di s c er n  w h et h er t h e or a cl e it h a s a c c e s s t o c o m e s
f r o m o n e f a mil y of or a cl e s or f r o m a n ot h er.  F or e x a m pl e, f or u n st r u ct ur e d s e ar c h, t h e di sti n g ui s hi n g
t a s k  will b e  w h et h er t h e or a cl e c or r e s p o n d s t o s o m e el e m e nt i n t h e s e ar c h d o m ai n or  w h et h er t h e
or a cl e i s t h e i d e ntit y c h a n n el.

M or e c o n cr et el y, gi v e n t w o di sj oi nt s et s of or a cl e s S 0 , S1 ,  w e  will d e si g n di st ri b uti o n s D 0 , D1
o v e r S 0 , S1 .  Gi v e n a n y al g orit h m s p e ci fi e d b y s o m e (T , A ),  w e  will u p p er b o u n d t h e t ot al v ari ati o n
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O f

Fi g ur e 3: B er n st ei n- V a zir a ni al g orit h m i n t h e p r e s e n c e of ar bitr ar y n oi s e ( e a c h b o x l a b el e d b y “l o c al
n oi s e ” d e n ot e s t h at wit h p r o b a bilit y λ , a n ar bitr ar y, a d v er s ari all y c h o s e n si n gl e- q u bit o p er ati o n i s
a p pli e d). We h a v e l a b el e d t h e l a y er s of n oi s e f or e a s e of r ef er e n c e i n t h e pr o of.

D e fi ni ti o n E. 2 ( P er m ut ati o n o p er at or s) . F o r n > 0 , l et S n b e t h e p e r m ut ati o n g r o u p o n m o bj e ct s.
T o e a c h π i n S n w e a s s o ci at e a n o p e r at o r a cti n g o n (C 2 ) ⊗ n d e fi n e d b y

π |ψ 1 ⊗ | ψ 2 ⊗ · · · ⊗ | ψ n = |ψ π − 1 ( 1 ) ⊗ | ψ π − 1 ( 2 ) ⊗ · · · ⊗ | ψ π − 1 ( n ) , ∀ | ψ 1 , |ψ 2 , ..., |ψ n ∈ C 2

w hi c h e xt e n d s b y m ultili n e a rit y t o all of (C 2 ) ⊗ m .

We h a v e a si mil ar d e fi niti o n f or p er m ut ati o n s a cti n g o n bit stri n g s.

D e fi ni ti o n E. 3 ( P er m ut ati o n s a cti n g o n bit stri n g s) . A g ai n l etti n g S n b e t h e p e r m ut ati o n g r o u p
o n n o bj e ct s, t o e a c h π i n S n w e a s s o ci at e a f u n cti o n π : { 0 , 1 } n → { 0 , 1 } n d e fi n e d b y

π (s 1 s 2 · · · s m ) = s π − 1 ( 1 ) s π − 1 ( 2 ) · · · s π − 1 ( m ) , ∀ s 1 s 2 · · · s m ∈ { 0 , 1 } n .

M or e o v er, if f : { 0 , 1 } n → { 0 , 1 } i s t h e u n k n o w n f u n cti o n i n t h e B er n st ei n- V a zir a ni pr o bl e m, t h e n
w e d e fi n e f π : = f ◦ π .

B e r n s t ei n- V a zi r a ni al g o ri t h m. We c o n cl u d e t hi s s u b s e cti o n b y r e vi e wi n g h o w t h e ori gi n al
B er n st ei n- V a zir a ni al g orit h m [ 9 2 ] w o r k s, s e e Fi g ur e 3 . O n e b e gi n s b y pr e p ari n g t h e i niti al st at e
|+ ⊗ n ⊗ | − , a n d t h e n a cti n g o n it wit h t h e or a cl e. I n s o d oi n g, w e o bt ai n t h e st at e

1

2 n / 2
x ∈ { 0 ,1 } n

(− 1) s ·x |x ⊗ | − .

Tr a ci n g o ut t h e | − q u bit, w e c a n t h e n a p pl y t h e H a d a m ar d s H ⊗ n t o t h e fir st n q u bit s t o o bt ai n

1

2 n
x, y ∈ { 0 ,1 } n

(− 1) ( s + y ) ·x |y = |s

w hi c h gi v e s u s t h e hi d d e n stri n g s .
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