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Abstract

We provide theoretical convergence guarantees for score-based generative models (SGMs) such as
denoising diffusion probabilistic models (DDPMs), which constitute the backbone of large-scale real-
world generative models such as DALL-E 2. Our main result is that, assuming accurate score estimates,
such SGMs can efficiently sample from essentially any realistic data distribution. In contrast to prior
works, our results (1) hold for an L?-accurate score estimate (rather than L°°-accurate); (2) do not
require restrictive functional inequality conditions that preclude substantial non-log-concavity; (3) scale
polynomially in all relevant problem parameters; and (4) match state-of-the-art complexity guarantees
for discretization of the Langevin diffusion, provided that the score error is sufficiently small. We view
this as strong theoretical justification for the empirical success of SGMs. We also examine SGMs based on
the critically damped Langevin diffusion (CLD). Contrary to conventional wisdom, we provide evidence
that the use of the CLD does not reduce the complexity of SGMs.

1 Introduction

Score-based generative models (SGMs) are a family of generative models which achieve state-of-the-art
performance for generating audio and image data [Soh+15; HJA20; DN21; Kin+421; Son+21a; Son+21b;
VKK21]; see, e.g., the recent surveys [Cao+22; Cro+22; Yan+22]. One notable example of an SGM are
denoising diffusion probabilistic models (DDPMs) [Soh+15; HJA20], which are a key component in large-
scale generative models such as DALL-E 2 [Ram+22]. As the importance of SGMs continues to grow due
to newfound applications in commercial domains, it is a pressing question of both practical and theoretical
concern to understand the mathematical underpinnings which explain their startling empirical successes.

As we explain in more detail in Section 2, at their mathematical core, SGMs consist of two stochastic
processes, which we call the forward process and the reverse process. The forward process transforms samples
from a data distribution ¢ (e.g., natural images) into pure noise, whereas the reverse process transforms pure
noise into samples from ¢, hence performing generative modeling. Implementation of the reverse process
requires estimation of the score function of the law of the forward process, which is typically accomplished
by training neural networks on a score matching objective [Hyv05; Vinll; SE19].

Providing precise guarantees for estimation of the score function is difficult, as it requires an understanding
of the non-convex training dynamics of neural network optimization that is currently out of reach. However,
given the empirical success of neural networks on the score estimation task, a natural and important question
is whether or not accurate score estimation implies that SGMs provably converge to the true data distribution
in realistic settings. This is a surprisingly delicate question, as even with accurate score estimates, as we
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explain in Section 2.1, there are several other sources of error which could cause the SGM to fail to converge.
Indeed, despite a flurry of recent work on this question [De +21; BMR22; De 22; Liu+22; LLT22; Pid22],
prior analyses fall short of answering this question, for (at least) one of three main reasons:

1. Super-polynomial convergence. The bounds obtained are not quantitative (e.g., [De +21; Liu+22;
Pid22]), or scale exponentially in the dimension and other problem parameters [BMR22; De 22], and
hence are typically vacuous for the high-dimensional settings of interest in practice.

2. Strong assumptions on the data distribution. The bounds require strong assumptions on the true
data distribution, such as a log-Sobelev inequality (LSI) (see, e.g., [LLT22]). While the LSI is slightly
weaker than log-concavity, it ultimately precludes the presence of substantial non-convexity, which im-
pedes the application of these results to complex and highly multi-modal real-world data distributions.
Indeed, obtaining a polynomial-time convergence analysis for SGMs that holds for multi-modal distribu-
tions was posed as an open question in [LLT22].

3. Strong assumptions on the score estimation error. The bounds require that the score estimate is
L®°-accurate (i.e., uniformly accurate), as opposed to L2-accurate (see, e.g., [De +21]). This is particularly
problematic because the score matching objective is an L? loss (see Section 2 for details), and there are
empirical studies suggesting that in practice, the score estimate is not in fact L>-accurate (e.g., [ZC23)).
Intuitively, this is because we cannot expect that the score estimate we obtain in practice will be accurate
in regions of space where the true density is very low, simply because we do not expect to see many (or
indeed, any) samples from such regions.

Providing an analysis which goes beyond these limitations is a pressing first step towards theoretically
understanding why SGMs actually work in practice.

Concurrent work. The concurrent and independent work of [LLT23] also obtains similar guarantees to
our Corollary 3.

1.1 Owur contributions

In this work, we take a step towards bridging theory and practice by providing a convergence guarantee
for SGMs, under realistic (in fact, quite minimal) assumptions, which scales polynomially in all relevant
problem parameters. Namely, our main result (Theorem 2) only requires the following assumptions on the
data distribution ¢, which we make more quantitative in Section 3:

A1 The score function of the forward process is L-Lipschitz.
A2 The second moment of ¢ is finite.
A3 The data distribution ¢ has finite KL divergence w.r.t. the standard Gaussian.

We note that all of these assumptions are either standard or, in the case of A2, far weaker than what is
needed in prior work. Crucially, unlike prior works, we do not assume log-concavity, an LSI, or dissipativity;
hence, our assumptions cover arbitrarily non-log-concave data distributions. Our main result is summarized
informally as follows.

Theorem 1 (informal, see Theorem 2). Under assumptions A1-A3, and if the score estimation error in L?
is at most O(e), then with an appropriate choice of step size, the SGM outputs a measure which is e-close
in total variation (TV) distance to q in O(L*d/e?) iterations.

We remark that our iteration complexity is actually quite tight: in fact, this matches state-of-the-art
discretization guarantees for the Langevin diffusion [VW19; Che+21a].

We find Theorem 1 to be quite surprising, because it shows that SGMs can sample from the data
distribution ¢ with polynomial complexity, even when ¢ is highly non-log-concave (a task that is usually
intractable), provided that one has access to an accurate score estimator. This answers the open question
of [LLT22] regarding whether or not SGMs can sample from multimodal distributions, e.g., mixtures of
distributions with bounded log-Sobolev constant. In the context of neural networks, our result implies that



so long as the neural network succeeds at the learning task, the remaining part of the SGM algorithm based
on the diffusion model is principled, in that it admits a strong theoretical justification.

In general, learning the score function is also a difficult task. Nevertheless, our result opens the door
to further investigations, such as: do score functions for real-life data have intrinsic (e.g., low-dimensional)
structure which can be exploited by neural networks? A positive answer to this question, combined with our
sampling result, would then provide an end-to-end guarantee for SGMs.

More generally, our result can be viewed as a black-box reduction of the task of sampling to the task of
learning the score function of the forward process, at least for distributions satisfying our mild assumptions.
As a simple consequence, existing computational hardness results for learning natural high-dimensional dis-
tributions like mixtures of Gaussians [DKS17; Bru+21; GVV22] and pushforwards of Gaussians by shallow
ReLU networks [DV21; Che+22a; CLL22] immediately imply hardness of score estimation for these distri-
butions. To our knowledge this yields the first known information-computation gaps for this task.

Arbitrary distributions with bounded support. The assumption that the score function is Lipschitz
entails in particular that the data distribution has a density w.r.t. Lebesgue measure; in particular, our
theorem fails when ¢ satisfies the manifold hypothesis, i.e., is supported on a lower-dimensional submanifold
of R%. But this is for good reason: it is not possible to obtain non-trivial TV guarantees, because the output
distribution of the SGM has full support. Instead, we show in Section 3.2 that we can obtain polynomial
convergence guarantees in the Wasserstein metric by stopping the SGM algorithm early, under the sole
assumption that that data distribution ¢ has bounded support. Since any data distribution encountered in
real life satisfies this assumption, our results yield the following compelling takeaway:

Given an L?-accurate score estimate, SGMs can sample from (essentially) any data distribution.
This constitutes a powerful theoretical justification for the use of SGMs in practice.

Critically damped Langevin diffusion (CLD). Using our techniques, we also investigate the use of the
critically damped Langevin diffusion (CLD) for SGMs, which was proposed in [DVK22]. Although numerical
experiments and intuition from the log-concave sampling literature suggest that the CLD could potentially
speed up sampling via SGMs, we provide theoretical evidence to the contrary: in Section 3.3, we conjecture
that SGMs based on the CLD do not exhibit improved dimension dependence compared to the original
DDPM algorithm.

1.2 Prior work

We now provide a more detailed comparison to prior work, in addition to the previous discussion above.

By now, there is a vast literature on providing precise complexity estimates for log-concave sampling; see,
e.g., the book draft [Che22] for an exposition to recent developments. The proofs in this work build upon
the techniques developed in this literature. However, our work addresses the significantly more challenging
setting of non-log-concave sampling.

The work of [De +21] provides guarantees for the diffusion Schrédinger bridge [Son+21b]. However, as
previously mentioned their result is not quantitative, and they require an L°°-accurate score estimate. The
works [BMR22; LLT22] instead analyze SGMs under the more realistic assumption of an L?-accurate score
estimate. However, the bounds of [BMR22] suffer from the curse of dimensionality, whereas the bounds
of [LLT22] require ¢ to satisfy an LSI.

The recent work of [De 22], motivated by the manifold hypothesis, considers a different pointwise as-
sumption on the score estimation error which allows the error to blow up at time 0 and at spatial co. We
discuss the manifold setting in more detail in Section 3.2. Unfortunately, the bounds of [De 22] also scale
exponentially in problem parameters such as the manifold diameter.

After the first version of this work appeared online, we became aware of two concurrent and independent
works [Liu+22; LLT23] which share similarities with our work. Namely, [Liu+22] uses a similar proof
technique as our Theorem 2 (albeit without explicit quantitative bounds), whereas [LLT23] obtains similar
guarantees to our Corollary 3 below. The follow-up work of [CLL23] further improves upon the results in
this paper.

We also mention that the use of reversed SDEs for sampling is also implicit in the interpretation of the
proximal sampler algorithm [LST21] given in [Che+22b], and the present work can be viewed as expanding
upon the theory of [Che+22b] using a different forward channel (the OU process).



2 Background on SGMs

Throughout this paper, given a probability measure p which admits a density w.r.t. Lebesgue measure,
we abuse notation and identify it with its density function. Additionally, we will let ¢ denote the data
distribution from which we want to generate new samples. We assume that ¢ is a probability measure on
R? with full support, and that it admits a smooth density. (See, however, Section 3.2 on applications of
our results to the case when ¢ does not admit a density, such as the case when ¢ is supported on a lower-
dimensional submanifold of R%.) In this case, we can write the density of ¢ in the form ¢ = exp(—U), where
U :R? — R is the potential.
In this section, we provide a brief exposition to SGMs, following [Son+21b].

2.1 Background on denoising diffusion probabilistic modeling (DDPM)

Forward process. In denoising diffusion probabilistic modeling (DDPM), we start with a forward process,
which is a stochastic differential equation (SDE). For clarity, we consider the simplest possible choice, which
is the Ornstein—Uhlenbeck (OU) process

dX; = —X,dt + V2dB,, X0 ~q, (2.1)

where (B;),~ is a standard Brownian motion in R?. The OU process is the unique time-homogeneous
Markov process which is also a Gaussian process, with stationary distribution equal to the standard Gaussian
distribution v% on R?. In practice, it is also common to introduce a positive smooth function g : R, — R
and consider the time-rescaled OU process

AdX, = —g(t)* X, dt +V2g9(t)dB,,  Xo ~q, (2.2)

but in this work we stick with the choice g = 1.

The forward process has the interpretation of transforming samples from the data distribution ¢ into
pure noise. From the well-developed theory of Markov diffusions, it is known that if ¢, := law(X;) denotes
the law of the OU process at time ¢, then g; — v¢ exponentially fast in various divergences and metrics such
as the 2-Wasserstein metric Wa; see [BGL14].

Reverse process. If we reverse the forward process (2.1) in time, then we obtain a process that transforms
noise into samples from ¢, which is the aim of generative modeling. In general, suppose that we have an
SDE of the form

dXt = bt(Xt) de + oy dBt )

where (0¢),~ is a deterministic matrix-valued process. Then, under mild conditions on the process (e.g., [F6185;
Cat+22]), which are satisfied for all processes under consideration in this work, the reverse process also ad-
mits an SDE description. Namely, if we fix the terminal time T' > 0 and set

X5 =Xr_y, for t € [0,T7,

then the process (X;_)te[O,T] satisfies the SDE
dXS =b7 (X)) dt + or_ dB;,
where the backwards drift satisfies the relation
b + b, = 0,0/ Ving, q = law(X;) . (2.3)
Applying this to the forward process (2.1), we obtain the reverse process

dX; ={X +2Vingr_ (X)) dt +v2dB,,  X{ ~aqr, (2.4)

where now (By),c(o 7 is the reversed Brownian motion.!

Here, VIng; is called the score function for g;.
Since ¢ (and hence ¢; for t > 0) is not explicitly known, in order to implement the reverse process the score

function must be estimated on the basis of samples.

1For ease of notation, we do not distinguish between the forward and the reverse Brownian motions.



Score matching. In order to estimate the score function V In g;, consider minimizing the L?(g;) loss over
a function class F,

miningrize By, [lls: — VIngl?], (2.5)
st€

where F could be, e.g., a class of neural networks. The idea of score matching, which goes back to [Hyv05;
Vinll], is that after applying integration by parts for the Gaussian measure, the problem (2.5) is equivalent
to the following problem:

minimize E {H s¢(X¢) +

st€F

af] oo

l—exp

where Z; ~ normal(0, ;) is independent of Xy and X; = exp(—t) Xo + /1 — exp(—2t) Z;, in the sense
that (2.5) and (2.6) share the same minimizers. We give a self-contained derivation in Appendix A for the
sake of completeness. Unlike (2.5), however, the objective in (2.6) can be replaced with an empirical version

(D

and estimated on the basis of samples X . ,Xén) from ¢, leading to the finite-sample problem

1 .
Z(Z)

S — (2.7)
1 — exp(—2t)

se( X)) +

1
minimize — E ’
st€F n 4 1
1=

where (Zt(i)) | are 1.i.d. standard Gaussians independent of the data (Xéi)) ien)- Moreover, if we parame-

i€[n
terize the score function as s; = —ﬁ Z;, then the empirical problem is equivalent to
—exp(—
1 n
minimize — Z l|Zze(X; (l) l) ||
zie—y/1—exp(—2t)F T i—1

which has the illuminating interpretation of predicting the added noise Zt(i) from the noised data )_(t(i).

We remark that given the objective function (2.5), it is most natural to assume an L?(g) error bound
Eq[llst — VIng|?] < 2, for the score estimator. If s; is taken to be the empirical risk minimizer for
an appropriate function class, then guarantees for the L?(g;) error can be obtained via standard statistical
analysis, as was done in [BMR22].

Discretization and implementation. We now discuss the final steps required to obtain an imple-
mentable algorithm. First, in the learning phase, given samples Xél), e ,)_(én) from ¢ (e.g., a database
of natural images), we train a neural network on the empirical score matching objective (2.7), see [SE19].
Let h > 0 be the step size of the discretization; we assume that we have obtained a score estimate sy of
Vln ggp, for each time k =0,1,..., N, where T = Nh.

In order to approximately implement the reverse SDE (2.4), we first replace the score function V Ingr_;
with the estimate sp_;. Then, for ¢ € [kh, (k + 1)h] we freeze the value of this coeflicient in the SDE at time

kh. It yields the new SDE
dX; = {X + 257 pn(Xi5)}dt +V2dB;,  t € [kh, (k+1)h]. (2.8)

Since this is a linear SDE, it can be integrated in closed form; in particular, conditionally on X, the next
iterate X (I 1)k has an explicit Gaussian distribution.

There is one final detail: although the reverse SDE (2.4) should be started at gy, we do not have access
to gr directly. Instead, taking advantage of the fact that gr ~ v%, we instead initialize the algorithm at
X§ ~~% ie., from pure noise.

Let p; := law(X/") denote the law of the algorithm at time ¢. The goal of this work is to bound TV (pr, ),
taking into account three sources of error: (1) the estimation of the score function; (2) the discretization of
the SDE with step size h > 0; and (3) the initialization of the algorithm at v? rather than at qr.



2.2 Background on the critically damped Langevin diffusion (CLD)
The critically damped Langevin diffusion (CLD) is based on the forward process

dX, = -V, dt,

. pdt, (2.9)
AV = —(X, +2V,)dt +2dB,.

Compared to the OU process (2.1), this is now a coupled system of SDEs, where we have introduced a new
variable V representing the velocity process. The stationary distribution of the process is 4%, the standard
Gaussian measure on phase space R? x R?, and we initialize at Xy ~ ¢ and Vj ~ 7%,

More generally, the CLD (2.9) is an instance of what is referred to as the kinetic Langevin or the under-
damped Langevin process in the sampling literature. In the context of log-concave sampling, the smoother
paths of X leads to smaller discretization error, thereby furnishing an algorithm with O(\/E/ ¢) gradient com-
plexity (as opposed to sampling based on the overdamped Langevin process, which has complexity O (d/e?)),
see [Che+18; SL19; DR20; Ma+21]. In the recent paper [DVK22], Dockhorn, Vahdat, and Kreis proposed
to use the CLD as the basis for an SGM and they empirically observed improvements over DDPM.

Applying (2.3), the corresponding reverse process is

dX, = -V, dt,

i _ (Vv Vi v 1 (2'10)
dVi© = (X[ +2V;" +4V,Ing_ (X, V7)) dt + 2dB,,

where q, = law(Xy,V;) is the law of the forward process at time ¢. Note that the gradient in the score
function is only taken w.r.t. the velocity coordinate. Upon replacing the score function with an estimate s,
we arrive at the algorithm

dX;” = -V, d¢t,
dVi© = (X7 +2Vi +dsr_mn (X5, Vi) dt +2dB;,
for t € [kh, (k4 1)h]. We provide further background on the CLD in Section 6.1.

3 Results

We now state our assumptions and our main results.

3.1 Results for DDPM

For DDPM, we make the following mild assumptions on the data distribution gq.
Assumption 1 (Lipschitz score). For all t > 0, the score VIng, is L-Lipschitz.
Assumption 2 (second moment bound). We assume that m3 = E,[||-||*] < cc.

Assumption 1 is standard and has been used in the prior works [BMR22; LLT22]. However, unlike [LLT22],
we do not assume Lipschitzness of the score estimate. Moreover, unlike [De +21; BMR22], we do not assume
any convexity or dissipativity assumptions on the potential U, and unlike [LLT22] we do not assume that ¢
satisfies a log-Sobolev inequality. Hence, our assumptions cover a wide range of highly non-log-concave data
distributions. Our proof technique is fairly robust and even Assumption 1 could be relaxed (as well as other
extensions, such as considering the time-changed forward process (2.2)), although we focus on the simplest
setting in order to better illustrate the conceptual significance of our results.

We also assume a bound on the score estimation error.

Assumption 3 (score estimation error). For all k =1,..., N,

EQkh, [”Skh —Vin qth2] < Egcorc :

This is the same assumption as in [LLT22], and as discussed in Section 2.1, it is a natural and realistic
assumption in light of the derivation of the score matching objective.
Our main result for DDPM is the following theorem.



Theorem 2 (DDPM). Suppose that Assumptions 1, 2, and 3 hold. Let pr be the output of the DDPM
algorithm (Section 2.1) at time T, and suppose that the step size h .= T/N satisfies h < 1/L, where L > 1.
Then, it holds that

TV(pr,q) < KL(g || v®) exp(=T) + (LVdh+ Lmoh)VT + Escore VT
N—_——

i izati score estimation error
convergence of forward process discretization error

Proof. See Section 5. O

To interpret this result, suppose that KL(g || %) < poly(d) and my < d. Choosing T < log(KL(q || v%)/¢)

and h =< LE—;d, and hiding logarithmic factors,

_ 72
TV(rr,0) < 0 + o), for N=8(51).

In particular, in order to have TV(pr,q) < ¢, it suffices to have score error escore < 6(5)

We remark that the iteration complexity of N = é(La—zd) matches state-of-the-art complexity bounds for
the Langevin Monte Carlo (LMC) algorithm for sampling under a log-Sobolev inequality (LSI), see [VW19;
Che+21a]. This provides some evidence that our discretization bounds are of the correct order, at least with
respect to the dimension and accuracy parameters, and without higher-order smoothness assumptions.

3.2 Consequences for arbitrary data distributions with bounded support

We now elaborate upon the implications of our results under the sole assumption that the data distribution
q is compactly supported, suppg C B(0, R). In particular, we do not assume that ¢ has a smooth density
w.r.t. Lebesgue measure, which allows for studying the case when ¢ is supported on a lower-dimensional
submanifold of R? as in the manifold hypothesis. This setting was investigated recently in [De 22].

For this setting, our results do not apply directly because the score function of g is not well-defined and
hence Assumption 1 fails to hold. Also, the bound in Theorem 2 has a term involving KL(q || v¢) which is
infinite if ¢ is not absolutely continuous w.r.t. v%. As pointed out by [De 22|, in general we cannot obtain
non-trivial guarantees for TV(pr, q), because pr has full support and therefore TV(pr,q) = 1 under the
manifold hypothesis. Nevertheless, we show that we can apply our results using an early stopping technique.

Namely, consider g; the law of the OU process at a time ¢ > 0, initialized at q. Then, we show in
Lemma 20 that, if ¢t < EQM,Q/(\/E(R V V/d)) where 0 < e, < Vd, then ¢ satisfies Assumption 1 with
L <dR?*(RV \/8)2/5?,[,2, KL(g: || v¢) < poly(R,d,1/¢), and Wa(qs,q) < ew,. By substituting ¢ by ¢ into
the result of Theorem 2, we obtain Corollary 3 below.

Taking ¢; as the new target corresponds to stopping the algorithm early: instead of running the algorithm
backward for a time T', we run the algorithm backward for a time T'—¢ (note that T'—¢ should be a multiple
of the step size h).

Corollary 3 (compactly supported data). Suppose that q is supported on the ball of radius R > 1. Let
t = 6%%/(\/8 (RV +/d)). Then, the output pr_; of DDPM is epy-close in TV to the distribution q;, which
15 ew,-close in W to q, provided that the step size h is chosen appropriately according to Theorem 2 and

and Escore S 6(5TV) .

N é(d3R4 (RV \/8)4)

v e,
Observing that both the TV and W; metrics are upper bounds for the bounded Lipschitz metric

der(p,v) = sup{f fdu — [ fdv | f : R® - [-1,1] is 1-Lipschitz}, we immediately obtain the following
corollary.

Corollary 4 (compactly supported data, BL metric). Suppose that q is supported on the ball of radius
R>1. Lett < 2/(\d(RV Vd)). Then, the output pr_; of the DDPM algorithm satisfies dpr,(pr—1,q) < €,
provided that the step size h is chosen appropriately according to Theorem 2 and N = O(d3R* (RV/d)* /')
and Escore < 6(5)



Finally, if the output pr_; of DDPM at time T — t is projected onto B(0, Ry) for an appropriate choice
of Ry, then we can also translate our guarantees to the standard W5 metric, which we state as the following
corollary.

Corollary 5 (compactly supported data, Wa metric; see Section 5.5). Suppose that q is supported on the
ball of radius R > 1. Let t < €2/(v/d(RV V/d)), and let pr_; g, denote the output of DDPM at time T — t

projected onto B(0, Ry) for Ry = ©O(R). Then, it holds that Wa(pr—t.Rr,,q) < €, provided that the step size h
is chosen appropriately according to Theorem 2, N = O(d°R® (R V Vd)*/e'2), and egcore < O(€).
Note that the dependencies in the three corollaries above are polynomial in all of the relevant problem

parameters. In particular, since the last corollary holds in the W5 metric, it is directly comparable to [De 22]
and vastly improves upon the exponential dependencies therein.

3.3 Results for CLD

In order to state our results for score-based generative modeling based on the CLD, we must first modify
Assumptions 1 and 3 accordingly.

Assumption 4. For allt > 0, the score V,Ingq, is L-Lipschitz.
Assumption 5. Forallk=1,...,N,

]Eqkh[”Skh - V'U 1nqkh||2] S Ef‘core °

If we ignore the dependence on L and assume that the score estimate is sufficiently accurate, then the
iteration complexity guarantee of Theorem 2 is N = ©(d/e?). On the other hand, recall from Section 2.2
that based on intuition from the literature on log-concave sampling and from empirical findings in [DVK22],
we might expect that SGMs based on the CLD have a smaller iteration complexity than DDPM. We prove
the following theorem.

Theorem 6 (CLD). Suppose that Assumptions 2, 4, and 5 hold. Let pp be the output of the SGM algorithm
based on the CLD (Section 2.2) at time T, and suppose that the step size h .= T /N satisfies h < 1/L, where
L > 1. Then, there is a universal constant ¢ > 0 such that

TV(pr.a©1%) £ /KL |79 + Fllg | 7)) exp(~cT) + (VAR + Lmo) VT + ooV T

i i 1 score estimation error
convergence of forward process discretization error

where FI(q || v9) is the relative Fisher information Fl(q || v¢) == E4[||V In(q/7%)|?].
Proof. See Section 6. O

Note that the result of Theorem 6 is in fact no better than our guarantee for DDPM in Theorem 2.
Although it is possible that this is an artefact of our analysis, we believe that it is in fact fundamental. As
we discuss in Remark 6.2, from the form of the reverse process (2.10), the SGM based on CLD lacks a certain
property (that the discretization error should only depend on the size of the increment of the X process, not
the increments of both the X and V processes) which is crucial for the improved dimension dependence of
the CLD over the Langevin diffusion in log-concave sampling. Hence, in general, we conjecture that under
our assumptions, SGMs based on the CLD do not achieve a better dimension dependence than DDPM.

We provide evidence for our conjecture via a lower bound. In our proofs of Theorems 2 and 6, we rely
on bounding the KL divergence between certain measures on the path space C([0,7];R?) via Girsanov’s
theorem. The following result lower bounds this KL divergence, even for the setting in which the score
estimate is perfect (€score = 0) and the data distribution ¢ is the standard Gaussian.

Theorem 7. Let py be the output of the SGM algorithm based on the CLD (Section 2.2) at time T, where
the data distribution q is the standard Gaussian 7‘1, and the score estimate is exact (Escore = 0). Suppose
that the step size h satisfies h < %. Then, for the path measures Pr and QY of the algorithm and the
continuous-time process (2.10) respectively (see Section 6 for details), it holds that

KL(Q§ || Pr) > dAT .



Proof. See Section 6.5. O

Theorem 7 shows that in order to make the KL divergence between the path measures small, we must
take h < 1/d, which leads to an iteration complexity that scales linearly in the dimension d. Theorem 7 is
not a proof that SGMs based on the CLD cannot achieve better than linear dimension dependence, as it is
possible that the output ps of the SGM is close to ¢®~? even if the path measures are not close, but it rules
out the possibility of obtaining a better dimension dependence via our Girsanov-based proof technique. We
believe that it provides compelling evidence for our conjecture, i.e., that under our assumptions, the CLD
does not improve the complexity of SGMs over DDPM.

We remark that in this section, we have only considered the error arising from discretization of the SDE.
It is possible that the score function for the SGM with the CLD is easier to estimate than the score function
for DDPM, providing a statistical benefit of using the CLD. Indeed, under the manifold hypothesis, the
score V In ¢; for DDPM blows up at ¢t = 0, but the score V,, In g, for CLD is well-defined at t = 0, and hence
may lead to improvements over DDPM. We do not investigate this question here and leave it as future work.

4 Technical overview

We now give a detailed technical overview for the proof for DDPM (Theorem 2). The proof for CLD
(Theorem 6) follows along similar lines.

Recall that we must deal with three sources of error: (1) the estimation of the score function; (2) the
discretization of the SDE; and (3) the initialization of the reverse process at v¢ rather than at gr.

First, we ignore the errors (1) and (2), and focus on the error (3). Hence, we consider the continuous-time
reverse SDE (2.4), initialized from either v¢ or from qr. Let the law of the two processes at time ¢ be denoted
pt and gr_; respectively; how fast do these laws diverge away from each other?

The two main ways to study Markov diffusions is via the 2-Wasserstein distance Wa, or via information
divergences such as the KL divergence or the x? divergence. In order for the reverse process to be contractive
in the W5 distance, one typically needs some form of log-concavity assumption for the data distribution gq.
For example, if VIng(z) = —z/0? (i.e., ¢ ~ normal(0,021;)), then for the reverse process (2.4) we have

_ _ _ 2 _
dX§ ={X; +2VIng(X;)}dt +v2dB, = (1 - =) X§ dt + V2dB,.
ag

For o2 >> 1, the coefficient in front of )_CT_ is positive; this shows that for times near T, the reverse process
is actually expansive, rather than contractive. This poses an obstacle for an analysis in W5. Although it is
possible to perform a W5 analysis using a weaker condition, such as a dissipativity condition, it typically
leads to exponential dependence on the problem parameters (e.g., [De 22]).

On the other hand, the situation is different for an information divergence d. By the data-processing
inequality, we always have

d(qTftle)t) S d(qulN)O) = d(QT}’Yd) .

This motivates studying the processes via information divergences. We remark that the convergence of
reversed SDEs has been studied in the context of log-concave sampling in [Che+22b] for the proximal
sampler algorithm [LST21], providing the intuition behind these observations.

Next, we consider the score estimation error (1) and the discretization error (2). In order to perform a dis-
cretization analysis in KL or x2, there are two salient proof techniques. The first is the interpolation method
of [VW19] (originally for KL divergence, but extended to x? divergence in [Che+21a]), which is the method
used in [LLT22]. The interpolation method writes down a differential inequality for d;d(qr—+, p¢), which is
used to bound d(g7—(x+1)n, P(k+1)n) in terms of d(gr—xn, pxn) and an additional error term. Unfortunately,
the analysis of [LLT22] required taking d to be the x? divergence, for which the interpolation method is
quite delicate. In particular, the error term is bounded using a log-Sobolev assumption on ¢, see [Che+21a]
for further discussion. Instead, we pursue the second approach, which is to apply Girsanov’s theorem from
stochastic calculus and to instead bound the divergence between measures on path space; this turns out to



be doable using standard techniques. This is because, as noted in [Che+21a], the Girsanov approach is more
flexible as it requires less stringent assumptions.?

To elaborate, the main difficulty of using the interpolation method with an L2-accurate score estimate
(Assumption 3) is that the score estimation error is controlled by assumption under the law of the true
process (2.4), but the interpolation analysis requires a control of the score estimation error under the law of
the algorithm (2.8). Consequently, the work of [LLT22] required an involved change of measure argument in
order to relate the errors under the two processes. In contrast, the Girsanov approach allows us to directly
work with the score estimation error under the true process (2.4).

Notation

Stochastic processes and their laws.
e The data distribution is ¢ = qo.

e The forward process (2.1) is denoted (Xt)te[O,T]7 and X; ~ q;.

e The reverse process (2.4) is denoted (X;_)te[O,TP where X~ = X7_ ~ q7_¢.

e The SGM algorithm (2.8) is denoted (X;™),c(o 7}, and X~ ~ p¢. Recall that we initialize at py = 74,
the standard Gaussian measure.

e The process (Xf"qT)te[o 71 is the same as (X;7),c(0, ), except that we initialize this process at qr
rather than at v%. We write X, 97 ~ pi.

Conventions for Girsanov’s theorem. When we apply Girsanov’s theorem, it is convenient to instead
think about a single stochastic process, which for ease of notation we denote simply via (Xt)te[o oL and we

consider different measures over the path space C([0, T]; R%).
The three measures we consider over path space are:

e Qf , under which (X;),¢|y 7 has the law of the reverse process (2.4);

te
e PI” under which (Xt)te(o,7) has the law of the SGM algorithm initialized at ¢r (corresponding to the
process (X, "), o 7| defined above).

We also use the following notion from stochastic calculus [Le 16, Definition 4.6]:

e A local martingale (L¢)iepo,r] is a stochastic process s.t. there exists a sequence of nondecreasing
stopping times T, — T s.t. L™ = (Ltat, )tejo, 7] IS @ martingale.

Other parameters. We recall that 7" > 0 denotes the total time for which we run the forward process;
h > 0 is the step size of the discretization; L > 1 is the Lipschitz constant of the score function; m3 = E,[||-|?]
is the second moment under the data distribution; and egcore is the L? score estimation error.

Notation for CLD. The notational conventions for the CLD are similar; however, we must also consider
a velocity variable V. When discussing quantities which involve both position and velocity (e.g., the joint
distribution g, of (X;,V;)), we typically use boldface fonts.

5 Proofs for DDPM

5.1 Preliminaries on Girsanov’s theorem and a first attempt at applying Gir-
sanov’s theorem

First, we recall a consequence of Girsanov’s theorem that can be obtained by combining Pages 136—139,
Theorem 5.22, and Theorem 4.13 of [Le 16].

2After the first draft of this work was made available online, we became aware of the concurrent and independent work
of [Liu+22] which also uses an approach based on Girsanov’s theorem.
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Theorem 8. Fort € [0,T], let L; = fot bs dBs where B is a QQ-Brownian motion. Assume Eg fOT llbs|?ds <
oo. Then, L is a Q-martingale in L*(Q). Moreover, if

t 1 t
EQ&(L)r =1, where &(L); = eXp(/ by dB, — 5/ ||bs|\2ds), (5.1)
0 0

then £(L) is also a Q-martingale and the process

t
t>—>Bt—/ bs ds
0

is a Brownian motion under P == E(L)r Q, the probability distribution with density E(L)r w.r.t. Q.

If the assumptions of Girsanov’s theorem are satisfied (i.e., the condition (5.1)), we can apply Girsanov’s
theorem to @ = Q% and

by = \/i(ST—kh(th) - VIDQT—t(Xt))a

where t € [kh, (k4 1)h]. This tells us that under P = £(L)r Q% , there exists a Brownian motion (Bt)te[O,T]
s.t.
dBy = V2 (s7—pn(Xgn) — VIngr_y(Xy)) dt + dB; . (5.2)

Recall that under Q% we have a.s.
dX, = {X; +2VIngr_(X,)}dt + V2dB,,  Xo~qr. (5.3)

The equation above still holds P-a.s. since P < Q% (even if B is no longer a P-Brownian motion). Plugging
(5.2) into (5.3) we have P-a.s.,®

dXe = {X; + 2 s7_pn(Xin) } At + V2dB; Xo~qr.

In other words, under P, the distribution of X is the SGM algorithm started at gr, i.e., P = P{" = E(L)r Q% .
Therefore,
dQr

KL(QF || P{™) =Eqs In P =Eqgs n&(L)7" (5.4)

N-1

(k+1)h
Eg / s7—kn(Xkn) — VIngr— (X[ dt,
k=0

where we used Eqs £¢ = 0 because L is a martingale.
The equality (5.4) allows us to bound the discrepancy between the SGM algorithm and the reverse
process.

5.2 Checking the assumptions of Girsanov’s theorem and the Girsanov dis-
cretization argument

In most applications of Girsanov’s theorem in sampling, a sufficient condition for (5.1) to hold, known as
Novikov’s condition, is satisfied. Here, Novikov’s condition writes

Eqs exp Z/

and if Novikov’s condition holds, we can apply Girsanov’s theorem directly. However, under Assumptions 1,
2, and 3 alone, Novikov’s condition need not hold. Indeed, in order to check Novikov’s condition, we would
want Xy to have sub-Gaussian tails for instance.

(k+1)h
lls7—1n (Xin) — Vlan_t(Xt)szt) < o0,

3We still have Xg ~ g under P because the marginal at time ¢t = 0 of P is equal to the marginal at time ¢ = 0 of Q% . That
is a consequence of the fact that £(L£) is a (true) Q% -martingale.
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Furthermore, we also could not check that the condition (5.1), which is weaker than Novikov’s condition,
holds. Therefore, in the proof of the next Theorem, we use a approximation technique to show that

KL(Q§ || PAT) = By In S2L

N-1

(k+1)h
E / HST,kh(th)—Vlan,t(Xt)||2dt.
k=0

We then use a discretization argument based on stochastic calculus to further bound this quantity. The
result is the following theorem.

Theorem 9 (discretization error for DDPM). Suppose that Assumptions 1, 2, and 3 hold. Let Q% and Pf"
denote the measures on path space corresponding to the reverse process (2.4) and the SGM algorithm with
L?-accurate score estimate initialized at qr. Assume that L > 1 and h < 1/L. Then,

TV(PE, QT )? < KL(QT || PF7) S (Zeore + LPdh + L*m3n*) T

Proof. We start by proving

N-1 (k+1)h
Eq / 57—k (Xkn) = VIngr—o(Xo)[|” dt S (3eore + L2dh + L*m3h?) T .
k=0

Then, we give the approximation argument to prove the inequality (5.5).
Bound on the discretization error. For ¢ € [kh, (k + 1)h], we can decompose

Eqs [lls7—kn(Xkn) — VIngr_(X)||?]
S EQs [llsr—kn(Xin) = VIngr—gn (Xin)|%]
+ B IV Ingr—in(Xen) — VIngr—(Xpn) %]
+ EQe [[VIngr—+(Xin) — Vingr—(Xy)||]

T—kh

2
S e2ore + Egs {HVI th)H } + L*Eqs [|| Xkn — Xol?] - (5.6)

qr—t

We must bound the change in the score function along the forward process. If S : R — R? is the mapping
S(x) = exp(—(t — kh)) z, then gr_gn = Sgqr—; * normal(0,1 — exp(—2 (¢t — kh))). We can then use [LLT22,
Lemma C.12] (or the more general Lemma 16 that we prove in Section 6.4) with o = exp(t — kh) = 1+ O(h)
and 02 = 1 — exp(—2 (t — kh)) = O(h) to obtain

2
|V qTT—’“h(th)H < L2dh+ LW | Xl + (1+ L) b2 |V Ingr—e(Xpn)|
t

< L2dh + LPR? || X |1? + L2B? |V Ingr o (Xn)||?

where the last line uses L > 1.
For the last term,

[V Ingr—¢(Xen)|I? S NVIngr—o(X)|* + IV Ingr—¢(Xpn) — VIngr_(X)||?
SAIVIngr—¢(Xo)||* 4+ L [| Xpn — X¢|?,

where the second term above is absorbed into the third term of the decomposition (5.6). Hence,

EQ;[HST kn(Xin) — VIngr—i(Xe)|?]
< e2iore + L2dh + L*h* Eqs [|| Xin|?]
+ L?1* Eqs [IV Inqr—o(X4)|1?] + L Eqs (| Xkn — Xel?].-

12



Using the fact that under )7, the process (Xt)te[o,T] is the time reversal of the forward process (Xt)te[o,T]v
we can apply the moment bounds in Lemma 10 and the movement bound in Lemma 11 to obtain

EQs [[|s7—kn(Xkn) — VIngr—(X)|?]
< €2 e + L2dh + L?h? (d + m3) + L3dh?* + L? (m3h? + dh)

< €2 ire + L2dh + L?m3h? .

~ score

Approximation argument. For ¢t € [0,7T], let £; = fot bs dB, where B is a Q% -Brownian motion and
we define
be = V2 {sr—kn(Xpn) — VIngr_(X)},

for t € [kh, (k + 1)h]. We proved that Eq« fOT |bs]12 ds < (€206 + L2dh 4+ L?m3h?) T < oco. Using [Le 16,

score
Proposition 5.11], (£(L)t):e[0, is a local martingale. Therefore, there exists a non-decreasing sequence of

stopping times T3, ' T s.t. (£(L)tat, )ielo,s) is a martingale. Note that £(L)iat, = (L") where L} = Liar, .
Since £(L") is a martingale, we have

Eqs E(L")r =Eqs E(L™)o =1,

i.e., EQ; 5(£)Tn =1.
We apply Girsanov’s theorem to L} = fg bs Ljo,7,1(s) dBs, where B is a Qf -Brownian motion. Since

Eqs fOT 105 Ljo,7,,)(s)[|* ds < Eqs fOT [[bs]|? ds < oo (see the last paragraph) and Eqs £(L™)r = 1, we obtain
that under P™ := E(L™)r Q% there exists a Brownian motion 8" s.t. for ¢t € [0, T,

dBy = V2 {s7—rn(Xpn) — VIngr_¢(Xe)} Ljo 7,1 (t) dt + dBy .
Recall that under Q% we have a.s.
AdX; = {X; +2VIngr_ (X))} dt +vV2dB;,  Xo~qr.

The equation above still holds P"-a.s. since P" < Q% . Combining the last two equations we then obtain
Pm™-a.s.,

dXy = {X¢ + 257 kn(Xen)} Loz, (1) dt +{Xe +2VIngr— (X))} Lz, 7 (t) dt + V2dsy, (5.7)

and Xo ~ gr. In other words, P™ is the law of the solution of the SDE (5.7). At this stage we have the
bound

1 1

Ty Ty
KL(QF | P*) = Boz nE(0)7! =Bor [~Lr, +3 [ I0Pds] =Bar 5 [ IalPas

1 T
<Bop g [ 0P ds S (o + b+ L3 T,
0

where we used that Eqs L7, = 0 because L is a Qf -martingale and T}, is a bounded stopping time [Le 16,
Corollary 3.23]. Our goal is now to show that we can obtain the final result by an approximation argument.

We consider a coupling of (P™), .y, Pf": a sequence of stochastic processes (X"), .y over the same
probability space, a stochastic process X and a single Brownian motion W over that space s.t.*

d)(gI = {th + QST_kh(X]?h)} ]l[O,Tn](t) dt + {ng +2Vin qT_t(th)} ]l[Tn,T] (t) dt + \/§th ,

and
dXy = {X; + 257 pn (X)) dt +V2dW;

with Xo = X' a.s. and X ~ gr. Note that the distribution of X™ (resp. X) is P™ (resp. P#").

4Such a coupling always exists, see [Le 16, Corollary 8.5].
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Let ¢ > 0 and consider the map 7. : C([0, T]; R?) — C([0, T]; RY) defined by
me(W)(t) =w(Et AT —¢).

Noting that X* = X; for every t € [0,T},] and using Lemma 12, we have 7.(X"™) — 7.(X) a.s., uniformly
over [0,T]. Therefore, . 4 P"* — 7.4 PJ" weakly. Using the lower semicontinuity of the KL divergence and
the data-processing inequality [AGS05, Lemma 9.4.3 and Lemma 9.4.5], we obtain

KL((me) % Q7 || (me)%Pp") < liminf KL((me)4 Q7 || ()4 P™)
< lirginf KL(Q% || P™)
< (2o + L2dh + LPm3h) T

Finally, using Lemma 13, m.(w) — w as ¢ — 0, uniformly over [0, T]. Therefore, using [AGS05, Corollary
9.4.6], KL((7e) Q% || (me) 2 PET) — KL(Q% || PE") as e N\, 0. Therefore,
KL(Q% || PF7) S (2o + L*dh + L*m3h*) T .

score

We conclude with Pinsker’s inequality (TV? < KL). O

5.3 Proof of Theorem 2

We can now conclude our main result.

Proof. [Proof of Theorem 2] We recall the notation from Section 4. By the data processing inequality,
TV(pr,q) < TV(Pr, PI7) + TV(PIT, QF ) < TV(ar,v?) + TV(PF, QF).-

Using the convergence of the OU process in KL divergence [see, e.g., BGL14, Theorem 5.2.1] and applying
Theorem 9 for the second term,

TV(pr,q) S A/KL(g || v4) exp(—=T) + (gscore + LV dh + Lmah) VT,

which proves the result. O

5.4 Auxiliary lemmas

In this section, we prove some auxiliary lemmas which are used in the proof of Theorem 2.

Lemma 10 (moment bounds for DDPM). Suppose that Assumptions 1 and 2 hold. Let (Xt)te[o ) denote
the forward process (2.1).

1. (moment bound) For allt > 0,

E[| X" < dvm3.

2. (score function bound) For all t > 0,

E[|VIng(Xy)|?] < Ld.

Proof.

1. Along the OU process, we have X, 4 exp(—t) Xo + /1 — exp(—2t) &, where & ~ normal(0, Iy) is

independent of X. Hence,

E[||X,1%) = exp(—26) E[| X |12 + {1 — exp(~26)} d < d v m3.
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2. This follows from the L-smoothness of In ¢; [see, e.g., VW19, Lemma 9]. We give a short proof for the
sake of completeness.

If L.f = Af —(VU;, Vf) is the generator associated with ¢; o< exp(—Uy), then

0=E, L:U; = E,, AU, — E,, [|VU||?] < Ld — E,,[|VU:|?] -
O

Lemma 11 (movement bound for DDPM). Suppose that Assumption 2 holds. Let (Xt)te[o 7] denote the
forward process (2.1). For 0 <s <t withd:=1t—s, if 6 <1, then

IE[HXt - )_(SHQ] < 52m§ +4d.
Proof. We can write
]

t
< 5/ E[|| X, ||?] dr 4 6d < 6% (d +m2) + 6d

B~ Xl =] - [ Kodr+ VBB - B)

< 6%m3 +4dd,
where we used Lemma 10. O
We omit the proofs of the two next lemmas as they are straightforward.

Lemma 12. Consider f,, f :[0,T] — R? s.t. there exists an increasing sequence (Ty)nen C [0,T] satisfying
the conditions

e T, =T asn — oo,
o fo(t) = f(t) for every t < T,.

Then, for everye >0, f, — f uniformly over [0,T —¢€]. In particular, f,(- NT —e) = f(- AT —¢) uniformly
over [0,T].

Lemma 13. Consider f : [0,T] — R? continuous, and f. : [0,T] — R? s.t. f.(t) = f(t A (T —¢)) for e > 0.
Then f. — [ uniformly over [0,T] as ¢ — 0.

5.5 Proof of Corollary 5

Proof. [Proof of Corollary 5] For Ry > 0, let IIg, denote the projection onto B(0, Ry). We want to prove
that Wa((I1g,)#pr—1t, q) < . We use the decomposition

Wao((Iry ) gpr—t,q) < Wal(Ry)gpr—t, (ro)#ar) + Wa((Hr, ) #qt, ) -

For the first term, since (Ilg,)xpr—¢ and (IIg,)xq: both have support contained in B(0, Ry), we can upper
bound the Wasserstein distance by the total variation distance. Namely, [Rol22, Lemma 9] implies that

Wo(Tro )41, (TR ) 44:) < Ro \/TV((HRO)#prt, (Iro ) #q:) + Ro exp(—Ro) -
By the data-processing inequality,

TV((Iry)#pr—t, MRy )4q:) < TV(pr—t,4:) < €1V,

where epy is from Corollary 3, yielding

Wa(IIry )#pr—t, MRy )#q) S Rov/erv + Roexp(—Ro) .
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Next, we take Ry > R so that (Ilg,)xq = ¢. Since IIg, is 1-Lipschitz, we have
Wa (Mg )#at, a) = Wa((Wry ) e, (re ) #0) < Walae, q) < ews
where ey, is from Corollary 3. Combining these bounds,
Wa((IIry )epr—1,9) S Rov/eEry + Roexp(—Ro) + ew, -

We now take ey, = ¢/3, Ry = é(R), and ey = é(52/R2) to obtain the desired result. The iteration
complexity follows from Corollary 3. O

6 Proofs for CLD

6.1 Background on the CLD process

More generally, for the forward process we can introduce a friction parameter v > 0 and consider
dX, =V, dt,
AV, = =X, dt —~ V; dt + /27y dB, .

If we write 8; := (X, V}), then the forward process satisfies the linear SDE

de, = A,Yét dt + 3, dB;, where A, = [_01 _17} and X, = [\/(;—7] .

The solution to the SDE is given by

t
0, = exp(tA,) Oy + / exp{(t —s) A,} 3, dB;, (6.1)
0

which means that by the It6 isometry,

law (0;) = exp(tA,) , law (8) * normaI(O, /0 exp{(t —s) A,} EWEI exp{(t — s) AI} ds) .

Since det A, = 1, A, is always invertible. Moreover, from tr A, = —, one can work out that the spectrum
of A, is

spec(A,) = {—g + %2 - 1}.

However, A, is not diagonalizable. The case of v = 2 is special, as it corresponds to the case when the
spectrum is {—1}, and it corresponds to the critically damped case. Following [DVK22], which advocated
for setting v = 2, we will also only consider the critically damped case. This also has the advantage of
substantially simplifying the calculations.

6.2 Girsanov discretization argument
In order to apply Girsanov’s theorem, we introduce the path measures P% and Q7 , under which

AX, = —V, dt,
dV, ={X; + 2V, + 4 sp—in(Xin, Virn)} dt + 2d By,

for ¢ € [kh, (k + 1)h], and

dX, = —V,dt,
AV, = {X, + 2V, + 4V, Inqp_,(X;, Vi) } dt + 2dB;,

respectively.
Applying Girsanov’s theorem, we have the following theorem.
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Corollary 14. Suppose that Novikov’s condition holds:

(k+1)h
EQe exp Z/ HST kh th,th) VU 1an_t(Xt,Vt)||2dt) < 0.
kh

Then,

dQ7

KL(Q7 | PT) =Eq: In P

(k+1)h
=2 Z Bor [ lsrom(Xin, Via) = Vo lngr (X0 V)P

Similarly to Appendix 5.2, even if Novikov’s condition does not hold, one can use an approximation to
argue that the KL divergence is still upper bounded by the last expression. Since the argument follows along
the same lines, we omit it for brevity.

Using this, we now aim to prove the following theorem.

Theorem 15 (discretization error for CLD). Suppose that Assumptions 2, 4, and 5 hold. Let Qy and P
denote the measures on path space corresponding to the reverse process (2.10) and the SGM algorithm with
L2-accurate score estimate initialized at qp. Assume that L > 1 and h < 1/L. Then,

Proof. For ¢ € [kh, (k + 1)h], we can decompose
Eqs [Ist—kn(Xin, Vin) — Vo lngr_(Xe, Vi) |?]
S EQs [lIsr—kn(Xen, Van) — Vo In@r_ g (Xen, Van) ]
+ EQs IV In gk, (Xin, Van) — Vo In gy (Xin, Vi) |1%]
+ Eq: [IVo Ingr_y (Xn, Vin) — Vo Ingr_ (X, Vi) |1?]

q 2
N scorc+EQH|:Hv In qT =L (X, Vien) }+L2EQ¥[||(th7th)_(Xtuv;f)||2]- (6.2)

T—t

The change in the score function is bounded by Lemma 16, which generalizes [LLT22, Lemma C.12]. From
the representation (6.1) of the solution to the CLD, we note that

ar_n = (Mo) 4qr— * normal(0, M)
with
MO = exp((t — kh) Ag) N
t—kh
M, :/ exp{(t — kh — s) Ay} LoXT exp{(t — kh —s) AJ} ds.
0

In particular, since ||[Asllop < 1, |45 op < 1, and [[Zalop < 1 it follows that |[Mollep = 1 + O(h) and
[|M1]|op = O(R). Substituting this into Lemma 16, we deduce that if h < 1/L, then

q q
Hv n Ik (X Vi) H < Hv1 9Tk (X Vin) H
qdr—y qdr—y

< LPdh + LPh? (| Xpnll” + IVinI?) + (1 + L?) h? [V Ingp_(Xgn, Ven) ||
< LPdh + L2 (| Xen|? + (Vi I?) + L2B? [V In g (Xen, Vin)|1?

where in the last step we used L > 1.
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For the last term,
IV In gy (Xin, Vi) I? S IV Ingr (Xe, VOI? + L2 [ (Xn, Vin) = (Xe, Vi)l
where the second term above is absorbed into the third term of the decomposition (6.2). Hence,

Eqs [Ist—kn(Xin, Vin) — Vo Ingr_(Xe, V3)|?]
< 2o + LPdh + L20? Eqe || Xin |* + Vi |1?]

+ L’R* Eqs [V Ingr (X, Vi)|I?]
+ L*Eqs [||( Xk, Vin) — (X, Vi)II7].-

By applying the moment bounds in Lemma 17 together with Lemma 18 on the movement of the CLD
process, we obtain

EqQs [lIs7—kn(Xin, Vin) = Vo Ingr_y(Xe, Vi) |7]
S eliore + LPdh + L?h? (d 4+ m3) + L3dh?* + L* (dh + m3h?)

< €2 e + L2dh + L?m3h? .

~ score
The proof is concluded via an approximation argument as in Section 5.2. O

Remark. We now pause to discuss why the discretization bound above does not improve upon the result
for DDPM (Theorem 9). In the context of log-concave sampling, one instead considers the underdamped
Langevin process

dX; = Vi,

which is discretized to yield the algorithm

dX: = Vi,
dV, = —=VU(Xpp) dt — y Vi dt + /2y dBy,

for t € [kh,(k 4+ 1)h]. Let Pp denote the path measure for the algorithm, and let Q; denote the path
measure for the continuous-time process. After applying Girsanov’s theorem, we obtain

(k+1)h

N—-1

1

KL(Q || Pr) = S > Eq, /kh VU (X,) — VU (Xg)||? dt .
k=0

In this expression, note that VU depends only on the position coordinate. Since the X process is smoother
(as we do not add Brownian motion directly to X), the error ||VU(X;) — VU (Xgp)||? is of size O(dh?), which
allows us to take step size h < 1/v/d. This explains why the use of the underdamped Langevin diffusion
leads to improved dimension dependence for log-concave sampling.

In contrast, consider the reverse process, in which

(k+1)h

N—-1
KLQ | PE) =2 Eq; / 57— (Xins Vin) — Vi In g (X0, V)2 dt.
k=0 kh

Since discretization of the reverse process involves the score function, which depends on both X and V', the
error now involves controlling ||V; — Vi ||?, which is of size O(dh) (the process V is not very smooth because
it includes a Brownian motion component). Therefore, from the form of the reverse process, we may expect
that SGMs based on the CLD do not improve upon the dimension dependence of DDPM.

In Section 6.5, we use this observation in order to prove a rigorous lower bound against discretization of
SGMs based on the CLD.
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6.3 Proof of Theorem 6
Proof. [Proof of Theorem 6] By the data processing inequality,

TV(pTa qO) S TV(PTa P%T) + TV(P%Tv Q’}T) S TV(qT772d) + TV(P%Tv Q’}T) .

In [Ma+21], following the entropic hypocoercivity approach of [Vil09], Ma et al. consider a Lyapunov func-
tional £ which is equivalent to the sum of the KL divergence and the Fisher information,

L(p || ) =< KL | v*4) + Fl(p || %),

which decays exponentially fast in time: there exists a universal constant ¢ > 0 such that for all ¢ > 0,

L(a, 7% < exp(—ct) L(gq | ¥*9) -

Since g, = ¢ ® v and v2¢ = 44 ® 44, then L(q, || v*?) < KL(q || v%) + Fl(q || v¥). By Pinsker’s inequality
and Theorem 15, we deduce that

TV(pr.45) < \/KL(g || %) + F(q | 1) exp(—€T) + (cscore + LV + Lmah) VT,

which completes the proof. o

6.4 Auxiliary lemmas
We begin with the perturbation lemma for the score function.

Lemma 16 (score perturbation lemma). Let 0 < { < 1. Suppose that Mo, M; € R?*¥X2 qre two matrices,
where My is symmetric. Also, assume that | Mo — I2qlop < ¢, so that My is invertible. Let ¢ = exp(—H)

be a probability density on R*? such that VH is L-Lipschitz with L < W. Then, it holds that
op

(M) g * normal(0, M)
Vin 0”51: M|lopd + LC||0]| + (C + L | M1]lop) [ VEL(6)] -
| - (0)|] £ L\/IMllop d + LENIB] + (€ + L [ M ]lop) | V()]
Proof. The proof follows along the lines of [LLT22, Lemma C.12]. First, we show that when My = Iy, if
L <L then
2[[M1]lop
q * normal(0, M)
|Vin (0)|| < Ly/I1Millop d+ L [ Mi|op [VE ()] (6.3)

q
Let S denote the subspace S := range M ;. Then, since

(g * normal(0, M 1)) (8) = /9+$ exp(—% 0—6,M;'(0-6))q(dd),

where M ! is well-defined on S, we have
1, 9% normal(0, M) (O)H 3 H Jors VH (0 ) exp(—5 (0 — 6/, M1 (6 - 6'))) q(df')
q fg.,.s exp(_% <0 - 0/7 ‘1\4'1_1 (0 - 0l)>) q(del)
= |[Eq, VH — VH(8)]|.

|v - VH(O)|

Here, g4 is the measure on 8 + S such that

q9(d0’) x exp(—= (0 — 0", M7' (6 —0"))) q(d8’).

1
2

Note that since L < 5 HIV}lHop’ then if we write go(0") o exp(—Hg(0')), we have

1

V2Hg = - —— I onf+S.
( ™

1
M1 lop
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Let 6, € argmin Hg denote a mode. We bound
|Eq, VH — VH(O)| < LEgq, |0 — 0]l < LEgrq, |6 — 0. + L 6. — 0]

For the first term, [DKR22, Proposition 2| yields

EO’MIQHGI - 0*” < \/ 2 ||M1||0p d.

For the second term, since the mode satisfies VH (0,) + M ' (8, — ) = 0, we have
165 = 6] < [ Millop [[VH(0.)[| < L | Mllop 16+ = 0[] + [ M |lop [V H(0)]]
which is rearranged to yield
165 = 6] < 2|[M:llop [[VH(O)]| -

After combining the bounds, we obtain the claimed estimate (6.3).
Next, we consider the case of general M. We have

M), q * normal(0, M
q

M), q * normal(0, M)
(MO)#‘]

)] + [vin H1e?

71 L)) < v all
We can apply (6.3) with (Mg)xq in place of g, noting that (My)4q o exp(—H'") for H' := H o M which
is L'-smooth for L' := L||My|?, < L, to get

op ~J

M) q * normal(0, M
(MO)#Q

)
(0)|| S L/I1M1llop d + L | M lop | MoV H (Mo8)]
S L\/ ||M1H0pd+ L ||M1||0p HVH(MOB)H :

IVH(Mo0)|| < [[VH(0)| + L [[(Mo — I24) 0] S [VH(0)|| + LL]|6]] -

va(

Note that

We also have

M)

o M ) ngywrvs0) - v O)]

< | MoVH(Mo8) — MoVH(6)|| + | MoVH(8) — VH(9)|
< LI(Mo — Loa) 8] + C [VH(O)|| < LC||6]) + ¢ [VE(9)]].

Combining the bounds,

(M) 4q * normal(0, M)
<
|Vin - ()| S L\/I Millop d+ L (14 L [ M) 101 + (¢ + L[ M1 ]op) IVH ()]
S L IMyopd+ LE 6] + (C+ L | My o) [V ()]
so the lemma follows. O

Next, we prove the moment and movement bounds for the CLD.

Lemma 17 (moment bounds for CLD). Suppose that Assumptions 2 and j hold. Let (X, ‘Zf)te[O,T] denote
the forward process (2.9).

1. (moment bound) For allt > 0,

E[[| (X0, Vi)IP] < d + m3 .
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2. (score function bound) For all t > 0,
E[|IVIngq,(X:, Vi)|*) < Ld.

Proof.

1. We can write
E[||(Xe, Vi) IIP] = W35 (g4, 60) S W5 (g v*) + W5 (v, 60) S d+ W3(g,,v*?).

Next, the coupling argument of [Che+18] shows that the CLD converges exponentially fast in the
Wasserstein metric associated to a twisted norm |[||-||| which is equivalent (up to universal constants) to
the Euclidean norm |[|-||. It implies the following result, see, e.g., [Che+18, Lemma 8]:

W3 (g, v*") < W3(q,v*") S W3(gq,d0) + W3 (d0,7*?) S d+m3.

2. The proof is the same as in Lemma 10.

O

Lemma 18 (movement bound for CLD). Suppose that Assumptions 2 holds. Let (X, ‘_/;f)te[o,T] denote the
forward process (2.9). For 0 < s <t withd:=t—s, if 6 <1,

E[[|(Xe, Vi) — (X, VO)|P] < 6%m3 + éd.

Proof. First,

B[ %, - %1% = E]|

t B 2 t B
[ var <o [EUTIPIar £ @+,

where we used the moment bound in Lemma 17. Next,

o o _ 2 ¢ _ _
)17 - Vil = E[| [ (-, — 20 dr+ 280 - B[] 6 [ BUK P+ 172 ar +

< 6% (d+m3) +4d,

where we used Lemma 17 again. O

6.5 Lower bound against CLD

When proving upper bounds on the KL divergence, we can use the approximation argument described in
Section 5.2 in order to invoke Girsanov’s theorem. However, when proving lower bounds on the KL divergence,
this approach no longer works, so we check Novikov’s condition directly for the setting of Theorem 7.

Lemma 19 (Novikov’s condition holds for CLD). Consider the setting of Theorem 7. Then, Novikov’s
condition 14 holds.

We defer the proof of Lemma 19 to the end of this section. Admitting Lemma 19, we now prove Theorem 7.

Proof. [Proof of Theorem 7] Since q, = 7¢ ® 7% = 427 is stationary for the forward process (2.9), we have
q, = v*¢ for all t > 0. In this proof, since the score estimate is perfect and q; = v2¢, we simply denote the
path measure for the algorithm as Py = PJ". From Girsanov’s theorem in the form of Corollary 14 and
from sp_gn(z,v) = VyInqp_pp(z,v) = —v, we have

N-1 (k+1)h
KLQS | Pr) =23 Eosr / Vin — V|2t (6.4)
k=0 kh
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To lower bound this quantity, we use the inequality ||z +y||> > 3 ||z[|* — ||ly||* to write, for ¢ € [kh, (k + 1)h]

Eqs [IVin — VilI?) = E[lVr—kn — Vo]’

]

T—kh -
_IE H/ {(~X.—2V.}ds +2(Br_gn — Br_s)

T—kh - 9
> 2| Br—n — Br—?] H/ (X -2V as| ]
T—kh B
22d(t—kh)—(t—kh)/ E[|| Xs + 2 V| *] ds
T—t
T—kh - -
22d(t—kh)—(t—kh)/ E[2 || X2 + 8 [|V]/?] ds
T—t

Using the fact that X, ~ 79 and Vi ~ v for all s € [0,T], we can then bound
Eqs [|Vin — Vell?] = 2d (t — kh) — 10d (t — kh)* > d (t — kh) ,
provided that h < %0' Substituting this into (6.4),

(k4+1)h
KL(Q% || Pr) >2dZ/ (t — kh)*dt = dh®N = dhT .

This proves the result. O

This lower bound shows that the Girsanov discretization argument of Theorem 15 is essentially tight
(except possibly the dependence on L).
We now prove Lemma 19.

Proof. [Proof of Lemma 19] Similarly to the proof of Theorem 7 above, we note that

[s7—kh (Xkns Van) — Volngp_(Xe, V)| = [Ve—ikn — Vo—i?
2

T—kh B B
= H/ { XS—ZVS}dS—FQ(BT,kh—BT,t)

Sh? sup (| X1+ ([Vell?) + sup [ Br—n — Bsl|*-
$€[0,77] SE[T—(k+1)h,T—kh]

Hence, for a universal constant C' > 0 (which may change from line to line)

(k+1)h
Eq; cxp(2 Z /k i (Xi Vi) — Vo a0, Vo) di)

N—-1
<Eexp(CTH? sup (IX,[12 + Vsl +Ch > sup |Br-sn = Bill?) .
s€[0,T] h—o SEIT—(k+1)h,T—kh]

By the Cauchy—Schwarz inequality, to prove that this expectation is finite, it suffices to consider the two
terms in the exponential separately.
Next, we recall that

dX, =V, dt,
dV, = —(X; +2V,)dt + 2dB;.

Define Y; = X; + V;. Then, dY; = —Y; dt + 2dB;, which admits the explicit solution

Y; —exp(—t)Y0+2/0 exp{—(t — s)} dB;.
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Also, dX; = — X, dt + Y; d¢, which admits the solution

)_(t:exp(—t))_(o—i-/o exp{—(t —s)} Y, dt.

Hence,
I+ 17l < 215+ 1905 10l + sup 1]
and
s 56 5 1%l + 171+ sup {exa(-0) [ ets

= [ Xoll + Vol + sup exp(— )1 Bexp(ze)—1)2]l
t€[0,T)

where B is another standard Brownian motion and we use the interpretation of stochastic integrals as time
changes of Brownian motion [Ste01, Corollary 7.1]. Since (Xo, Vo) ~ v2¢ has independent entries, then

d
Eexp(CTR* {|| Xo||* + ||[Vo|I*}) = H Eexp(CTh? {e;, X0)?) Eexp(CTh? (e, Vp)?) < oo

J=1

provided that h < 1/v/T. Also, by the Cauchy-Schwarz inequality, we can give a crude bound: writing
7(t) = (exp(2t) — 1)/2,

Eexp(CTh2 sup exp(—2t)|\37<t>||2)
te[0,T]

. 1/2
[Eexp(wTh? sup exp(—2t) IIBr<t>||2)]
te[0,1]

- 1/2
X [Eexp(2C'Th2 sup exp(—2t) ||BT(,5)||2)}
te(1,T)

where, by standard estimates on the supremum of Brownian motion [see, e.g., Che+21b, Lemma 23], the
first factor is finite if & < 1/4/T (again using independence across the dimensions). For the second factor, if
we split the sum according to exp(—2t) < 2¥ and use Hélder’s inequality,

Eexp(CTh2 sup exp(—2t) ||BT(,5)||2)
te(1,T)
K ~ 1/K
< H[Eexp(C’KThQ sup eXp(—2t)HBT(t)H2)}

kel 2k <t<2k+1

where K = O(T). Then,

E exp (CT%2 sup exp(—2t) | Br H2>

2k St§2k+1

< ]Eexp(OTQhQT’“ sup IIBT(t)HQ) <o
1<t<2k+1

provided h < 1/T, where we again use [Che+21b, Lemma 23] and split across the coordinates. The Cauchy—
Schwarz inequality then implies

Eexp(CTh2 sup (|| X,||* + |H75||2)) < 00.

s€[0,T]
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For the second term, by independence of the increments,

N-1

Eexp(Ch Z sup |1Br—kn — BS||2)
o SEIT—(k+1)h,T—kh]
N—1 N
=[IEeso(Ch s |Brow—Bil?) = [Eexp(Ch sup ||B|*)]
k=0 s€[T—(k+1)h,T—kh] s€[0,h]
By [Che+21b, Lemma 23], this quantity is finite if A < 1, which completes the proof. O

7 Conclusion

In this work, we provided the first convergence guarantees for SGMs which hold under realistic assumptions
(namely, L2-accurate score estimation and arbitrarily non-log-concave data distributions) and which scale
polynomially in the problem parameters. Our results take a step towards explaining the remarkable empirical
success of SGMs, at least under the assumption that the score function is learned with small L? error.

The main limitation of this work is that we did not address the question of when the score function can
be learned well. In general, studying the non-convex training dynamics of learning the score function via
neural networks is challenging, but we believe that the resolution of this problem, even for simple learning
tasks, would shed considerable light on SGMs. Together with the results in this paper, it would yield the
first end-to-end guarantees for SGMs.

In another direction, and in light of the interpretation of our result as a reduction of the task of sampling
to the task of score function estimation, we ask whether there are situations of interest in which it is easier to
algorithmically learn the score function (not necessarily via a neural network) than it is to (directly) sample.
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A Derivation of the score matching objective

In this section, we present a self-contained derivation of the score matching objective (2.6) for the reader’s
convenience. See also [Hyv05; Vinll; SE19].
Recall that the problem is to solve

minimize  E,,[|s; — Vin g

This objective cannot be evaluated, even if we replace the expectation over ¢; with an empirical average over
samples from ¢;. The trick is to use an integration by parts identity to reformulate the objective. Here, C'
will denote any constant that does not depend on the optimization variable s;. Expanding the square,

Eq, [|lst — VInge||*] = Eg,[[[s¢ll* = 2 (s¢, VIng:)] + C.

We can rewrite the second term using integration by parts:
/<St7V1H q) dgr = /<5t7VQt> == /(diV s¢) dqy
= — //(div st)(exp(—t) xo + /1 — exp(—2t) zt) dg(zo) d’yd(zt) ,

where v¢ = normal(0, I;) and we used the explicit form of the law of the OU process at time ¢. Recall the
Gaussian integration by parts identity: for any vector field v : R* — R?,

/(div v)dyd = /(x,v(:v)) dy?(z).

Applying this identity,

/ (50, VI g) dgs — / (20 s1(21)) dg(0) dy(z1)

1
/I exp(—2t)

where x; = exp(—t) g + /1 — exp(—2t) z;. Substituting this in,

Eqllse = Vina|?] = E[[ls: (X)) + %p(_%) (Zo,si(X0)| +C
—E[ S(Xt)+—1_exp(_2t) Zy } +C,

where X ~ q and Z; ~ ¢ are independent, and X; := exp(—t) Xo + /1 — exp(—2t) Z;.

B Regularization

Lemma 20. Suppose that suppq C B(0, R) where R > 1, and let q; denote the law of the OU process at
time t, started at q. Let € > 0 be such that ¢ < V/d and set t < €2/(v/d(RV V/d)). Then,

1. Wal(qt,q) <e.

2. q; satisfies

3
KL(qr || 1) < YAEV V)

€
3. For every t' > t, qp satisfies Assumption 1 with
_ dR*(Rv Vd)’

L < =
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Proof.
1. For the OU process (2.1), we have X; := exp(—t) Xo + /1 — exp(—2t) Z, where Z ~ normal(0, I3) is
independent of Xy. Hence, for ¢ < 1,
. 2
W3 (g, 9¢) < E[||(1 — exp(—t)) Xo + /1 — exp(=2t) Z|']
— (1 —exp(—1)) E[|| Xo[|?] + (1 — exp(=2t)) d < R*? + dt .
We now take t < min{e/R,e?/d} to ensure that W#(q,q;) < €2. Since ¢ < V/d, it suffices to take
t=e2/(Vd(RVVd)).
2. For this, we use the short-time regularization result in [OV01, Corollary 2], which implies that

Wi(a,v?) - Wig,00) + Wiy, 00) _ VARV Vd)

3
4t ~ t ~ g2 '

KL(g || Vd) <

3. Using [MS22, Lemma 4], along the OU process,

1 —2t) R? 1
Lo SRR < — 1,
1 — exp(—2t) (1 — exp(—2t))? 1 — exp(—2t)
With our choice of ¢, it implies
1 ~2YR? _ 1 R? _dR*(RVVd)
19 g o % M) L B ARERY V)
1—exp(—2t') (1 —exp(—=2t')2 "~ t et
O
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