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Abstract

In learning theory, a standard assumption is that the data is generated from a finite
mixture model. But what happens when the number of components is not known
in advance? The problem of estimating the number of components, also called
model selection, is important in its own right but there are essentially no known
efficient algorithms with provable guarantees let alone ones that can tolerate adver-
sarial corruptions. In this work, we study the problem of robust model selection
for univariate Gaussian mixture models (GMMs). Given poly (k/¢€) samples from
a distribution that is e-close in TV distance to a GMM with k components, we

can construct a GMM with 6(I€) components that approximates the distribution

to within O(e) in poly(k/e€) time. Thus we are able to approximately determine
the minimum number of components needed to fit the distribution within a log-
arithmic factor. Prior to our work, the only known algorithms for learning arbi-
trary univariate GMMs either output significantly more than k£ components (e.g.
k/e*> components for kernel density estimates) or run in time exponential in k.
Moreover, by adapting our techniques we obtain similar results for reconstructing
Fourier-sparse signals.

1 Introduction

Many works in learning theory operate under the assumption that the data is generated from a finite
mixture model, and furthermore that the number of components is known in advance. But what
happens when the number of components is not known in advance? The problem of estimating the
number of components is called model selection and has been intensively studied in statistics for over
fifty years [Neyman and Scott, 1966]. Indeed, in many scientific applications, it is the central issue.
Consider the motivation given by Chen et al. [2004]: In genetics, we might have a continuous-valued
trait, like height, that can be measured across a population and we want to understand its genetic
basis. But is the underlying genetic mechanism simple or complex? Is it controlled by just a few
genes or are there many more genes waiting to be discovered that each have a small effect on it?

From a statistical perspective, what makes model selection challenging is that the standard anal-
ysis of the likelihood ratio test breaks down because of lack of regularity and non-identifiability
[Hartigan, 1985]. Despite many attempts [Ghosh and Sen, 1984, Lo et al., 2001, Huang et al., 2017]
and rejoinders [Jeffries, 2003], even understanding the asymptotic distribution of the likelihood ratio
statistics has remained a long-standing challenge in the field [Kasahara and Shimotsu, 2015]. From
an algorithmic standpoint, the problem is even more difficult.

In this work, we study the problem of robust model selection for one-dimensional Gaussian mix-
ture models with &k components (k-GMMs for short). A natural approach for this problem is via
agnostic proper learning, where the task is to, given samples from an unknown distribution, output
the best k-GMM approximation to this distribution in TV distance. An efficient agnostic proper
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learning algorithm, combined with standard tools from hypothesis testing, would immediately yield
an algorithm for model selection.

Unfortunately, while there are many efficient algorithms for learning one-dimensional GMMs, they
all fall into one of several categories: (1) They assume some strong separation conditions on the
components so that the samples can be clustered based on which component they were generated
from. (2) They solve the harder problem of learning the parameters of the components, which
information-theoretically requires the number of samples to be exponential in k [Moitra and Valiant,
2010]. (3) They employ brute-force search [Daskalakis and Kamath, 2014, Acharya et al., 2014] or
solve a system of polynomial inequalities [Li and Schmidt, 2017], and run in time exponential in .
(4) They learn an approximation that is either not a GMM, e.g. a piece-wise polynomial approxima-
tion [Chan et al., 2013, Acharya et al., 2017] or output a GMM where the number of components is
much larger than k£ [Wu and Xie, 2018, Devroye and Lugosi, 2012, Bhaskara et al., 2015]. (5) They
assume that the components in the GMM have the same or similar variances and means not too far
apart so that there is a good approximation to the density with just a logarithmic number of compo-
nents [Wu and Yang, 2018, Polyanskiy and Wu, 2020]. In all cases, these guarantees are insufficient
for efficient model selection, and/or yield a trivial approximation to the number of components in a
GMM except in restricted settings. In this work, we ask: Are there efficient algorithms for learning
arbitrary one-dimensional GMMs that output an approximation with O(k) components? Relatedly:
Are there efficient algorithms for approximating the number of components in a GMM? We give ef-
ficient algorithms whose running time and sample complexity are polynomial in &k for both of these
problems, and also the related problem of reconstructing Fourier-sparse signals with an unknown
number of frequencies.

1.1 Learning and model selection for GMMs

Our main result is a new robust learning algorithm for one-dimensional GMMs. We show:

Theorem 1.1. Ler k, ¢ > 0 be parameters and let f be a distribution such that dry(M, f) < e for

some unknown mixture of Gaussians M = w1G1 + - - - + wi Gg. Assume that we are given O(k/ez)
samples from f. Then there is an algorithm that runs in poly(k/e) time and with probability 0.9

(over the random samples), outputs a mixture of O(k) Gaussians, M, such that
drv(M, f) < O(e) .

In contrast to other known learning algorithms (discussed earlier), our learning algorithm works for
arbitrary GMMs, runs in polynomial time and uses a polynomial number of samples, and while it
does not output a GMM with exactly k£ components, it does the next best thing: it outputs a GMM
with at most a polylogarithmic factor more components.

As a corollary, we also give an algorithm for robust approximate model selection for GMMs. The

connection to model selection is that when our algorithm fails to find a GMM with O(k) components
that fits the data we can be assured that there must more than k£ components to begin with. Notice
in particular that improper approximations by themselves do not suffice for the model selection
problem, as a good improper approximation could exist even if the distribution is far from any

GMM with O(k) components.

Theorem 1.2. Let k, e > 0 be parameters we are given. Let F be the family of distributions that are
e-close to a k-GMM with k components (in TV distance). Let F be the family of distributions that

are not O(e)-close to any GMM with O(k) components. There is an algorithm that given poly (k)
samples from a known distribution D, runs in poly(k/€) time, and outputs 1 if D € Fy and outputs
2 if D € F3 both with failure probability at most 0.2.

Remark. Even if the distribution D is completely unknown and we are only given samples from it,
the above result still holds as long as D is somewhat well behaved (note that such an assumption is
necessary as hypothesis testing with respect to total variation distance without any assumptions on
D is impossible). In particular we can use piecewise polynomial approximation [Chan et al., 2013]
or kernel density estimates [Terrell and Scott, 1992] to learn a distribution D' that is close to D that
we have an explicit form for and then run the hypothesis test using D’.



1.2 Fourier sparse interpolation

Our techniques also immediately apply to the problem of Fourier sparse interpolation, where the
goal is to interpolate a signal based on noisy measurements of it at a few points [Chen et al., 2016].
We say that a function M is (k, C') simple if it can be written in the form

k

M(t) — Zaljezﬂ'iejt ,

j=1

where additionally 3 |a;| < C. In other words, a function is (k, C') simple if it is k-sparse in the
Fourier domain, and its Fourier coefficients are bounded in ¢ by C.

We consider the following problem. We get query access to a function f(t) = M(t) + n(t) at
any point in the interval [—1, 1], where M is (k, C) simple and has all frequencies in the interval
[-F, F], and 7(t) is noise that we will assume is bounded in Lo norm. The goal is to compute a

Fourier-sparse approximation M (t) that is close to f(t), in the sense that its error is comparable
to that of M(¢). Recently Chen et al. [2016] showed how to construct an approximation M (¢) that

satisfies ~
1) = MBll2 < [In@)l2 + el M@)]l2
where the Lo norm is taken over the interval [—1,1]. Their algorithm works for any ¢ > 0 and

uses poly(k, log 1/¢) log F measurements. Moreover the M (t) that they output is poly(k,log 1/¢)-
Fourier sparse. Similarly to the GMM setting, a natural goal is to perform robust interpolation but
with tighter bounds on the number of frequencies. We show:

Theorem 1.3. Let f, M be as above where M is (k,1)-simple. Then for any desired accuracy
€ > 0 and constant ¢ > 0, in poly(k,log 1/€) log F' queries and poly(k/c,log 1/€)log® F time, we
can output a function M such that with probability 1 — 2—2),

1. M is O(k)-Fourier sparse with | M|y < O(k)

2 [N M= g <O (E+ L 1f = MP)

14c

Remark. Note the constraints | M ||1 and || M||1 translate into bounds on the sizes of the coefficients
of the exponentials in M and M respectively.

The natural open question left by our work is to improve the sparsity bounds, both for interpola-
tion/learning and model selection. In principle it could be possible that there are efficient algorithms
for these problems, however it now seems somewhat unlikely. Even without noise, learning a Gaus-
sian mixture model with & components without a separation condition in time poly(k, 1/¢) is open.
From our work (see Section 2), we see that even in the well-conditioned case this is equivalent to
finding a non-trivially sparse solution to a system of polynomial equations where there seems to be
no structure that makes algorithmic search better than brute-force possible. Moreover, this question
has already been open for many years, but there hasn’t been any progress on proper learning. Thus,
we conjecture that both the learning and model selection problems are computationally hard if we
are not allowed to relax the number of components.

1.3 Related work

There is a vast literature on the three problems we consider. Here we will give a more detailed review
of related work.

Learning Mixtures of Gaussians and Model Selection Since the pioneering work of Pearson
[1894], mixtures of Gaussians have become one of the most ubiquitous and well-studied gener-
ative models in both theory and practice. Numerous problems have been studied on the con-
text of learning mixtures of Gaussians, including clustering [Dasgupta, 1999, Vempala and Wang,
2004, Achlioptas and McSherry, 2005, Dasgupta and Schulman, 2007, Arora and Kale, 2007,
Kumar and Kannan, 2010, Awasthi and Sheffet, 2012, Mixon et al., 2017, Hopkins and Li, 2018,
Kothari et al., 2018, Diakonikolas et al., 2018], learning in the presence of adversarial noise in



high dimensional settings [Diakonikolas et al., 2018, Hopkins and Li, 2018, Kothari et al., 2018,
Bakshi et al., 2020, Diakonikolas et al., 2020, Kane, 2021, Liu and Moitra, 2020, 2021], parameter
estimation [Kalai et al., 2010, Belkin and Sinha, 2015, Moitra and Valiant, 2010, Hardt and Price,
2015], learning in smoothed settings [Hsu and Kakade, 2013, Anderson et al., 2014, Bhaskara et al.,
2014, Geetal.,, 2015], and density estimation [Devroye and Lugosi, 2012, Chan et al., 2014,
Acharyaet al., 2017].

Of particular interest to us is the line of work on proper learning [Feldman et al., 2006, Acharya et al.,
2014, Li and Schmidt, 2017, Ashtiani et al., 2018], where the goal is to output a mixture of k-
Gaussians which is close in total variation to the underlying ground truth. Unfortunately, while
the sample complexity of these algorithms is usually polynomial, the runtime for all known ap-
proaches is exponential in k. In contrast, our runtimes are polynomial, albeit for a relaxed version
of the problem, where the output is allowed to be a mixture of ¥’ Gaussians, for k' > k.

For this “semi-proper” regime, efficient algorithms are known, albeit either only for restricted set-
tings, or with significantly worse quantitative results than we achieve. In the “well-conditioned”
case, where the means are close together, and the variances of all the components are compara-
ble, the aforementioned work of [Wu and Yang, 2018, Polyanskiy and Wu, 2020] demonstrates that
the nonparametric MLE can efficiently obtain an estimate using only logarithmically many pieces.
However, the nonparametric MLE is not suited for the general setting, where the means could be far
apart, and variances could be very different, and will not converge in general. Moreover, while non-
parametric MLE is robust to perturbations in KL, it is not robust to perturbations in total variation
distance, as we consider here.

For the general case, by using kernel density estimates, one can achieve e approximation using
k" = O(k/e®) for some constant C' [Devroye and Lugosi, 2012]. Similarly Bhaskara et al. [2015]
achieves ¢ error using k' = O(k/e?) pieces. That is, for both of these approaches, they require a
number of pieces which scales polynomially with 1/e. In comparison, our dependence on € in terms
of the number of pieces is logarithmic.

As discussed previously, there are strong connections between proper learning and model selec-
tion [Neyman and Scott, 1966, Hartigan, 1985, Ghosh and Sen, 1984, Lo et al., 2001, Jeffries, 2003,
Kasahara and Shimotsu, 2015, Huang et al., 2017]. Related notions have been considered in dis-
tribution testing [Parnas et al., 2006, Valiant and Valiant, 2010a,b, 2011, Jiao et al., 2016, 2017,
Han et al., 2016] and testing properties of boolean functions [Diakonikolas et al., 2007, Iyer et al.,
2021].

Continuous Time Sparse Fourier Transforms Sparse Fourier transforms in the contin-
uous setting, also known as sparse Fourier transforms off the grid, has been the sub-
ject of intensive study. Indeed, the first algorithm for this problem dates back to Prony
[1795]. Modern algorithms include MUSIC [Schmidt, 1982], ESPRIT [Roy et al., 1986], max-
imum likelihood estimators [Bresler and Macovski, 1986], convex programming based methods
[Candes and Fernandez-Granda, 2014] and the matrix pencil method [Moitra, 2015].

Most of these works, especially those that work in a noisy setting, require a frequency gap. Moreover
they require more than k£ samples (their bound usually depends on the frequency gap), even if the
underlying signal is k-sparse in the Fourier domain. A recent line of work has focused on the
problem of improving the sample complexity — in particular getting bounds which only depend on
k with runtimes that are polynomial in k [Fannjiang and Liao, 2012, Duarte and Baraniuk, 2013,
Tang et al., 2013, 2014, Boufounos et al., 2015, Huang and Kakade, 2015, Price and Song, 2015].
The setting where there is no gap and there is noise is particularly challenging. One approach is
to relax the definition of a frequency gap, and require it only between “clusters" of frequencies
[Batenkov et al., 2020]. Another line of work [Avron et al., 2019, Chen and Price, 2019] shows how
to output a hypothesis which is k-sparse without any gap assumptions and with sample complexity
which is polynomial in k. However these methods run in exponential time. As we previously
discussed, the most relevant works to us are Chen et al. [2016] and Chen and Price [2019], which
give an algorithm whose running time and sample complexity are polynomial in k that works without

any gap assumptions, but for a relaxation where we are allowed to output a 5(k2)-Fourier sparse
signal.



2 Technical overview

We now give an overview of our approach. We will focus on just the GMM case in this overview.
Our approach for sparse Fourier interpolation follows a very similar outline. We first present our
techniques assuming that we have explicit access to f. In Section 2.3 we show how to reduce to this
case when we are only given samples. In other words, the problem is as follows: we are given a
function f, and we want to find a sparse approximation to f as a nonnegative sum of Gaussians, i.e.
we want to write

fNalG1+"'+anGn

with n small, where each GG; is a Gaussian.

2.1 Well-conditioned case

We first solve the “well-conditioned" case. Roughly, we say that a GMM is well-conditioned if
the variances of the components are all constant scale and the means are all not too far from zero.
Formally, we have the following definition:

Definition 2.1. We say a Gaussian G = N (u, 0?) is 5-well-conditioned if | ;1] < § and |0 — 1| < 6.
Furthermore we say a mixture of Gaussians M = w1G1 + - - - + wi Gy, is §-well-conditioned if all
of the components G1, . . . , Gy, are §-well-conditioned.

Naturally, our techniques also apply to a shared scaling and/or translation of the components, but
we will ignore this for now. Earlier work of [Wu and Yang, 2018, Polyanskiy and Wu, 2020] proved
an important structural result that a well-conditioned GMM can be e-approximated by a mixture
with O(log 1/¢) components. However we will want a robust and algorithmic version: In particular,
instead of requiring the distribution to be exactly a well-conditioned GMM, we will only require that
it be close in total variation distance. Even in this setting, with some level of model misspecification,
we want an efficient algorithm for constructing an approximating GMM with few components. To
this end, a key result, proved in Section A, is:

Lemma 2.2. Let € > 0 be a parameter. Assume we are given access to a distribution f such that
drv(f, M) < e where M = w1G1 + - - - + wip Gy, is a 0.5-well-conditioned mixture of Gaussians.

Then we can compute, in poly(1/€) time, a mixture M of at most O(log 1/¢) Gaussians such that
dry(M, M) < Ofe).

Our approach departs from the moment matching framework of Wu and Yang [2018],
Polyanskiy and Wu [2020]. Instead we take the probability density function of any well-conditioned
Gaussian GG;. We can expand it as a Taylor series around 0 of the form

Dy Dy

— 0 i
for some coefficients c(éi We can then associate it with the vector cg; = (c(cg?, ce cggl)) of

length £ = O(log 1/€). Then, for any well-conditioned mixture M = a1G1 + - - - + axG,,, we can
associate it with the corresponding convex combination of the vectors of its components, i.e., we
define cpq = aicq, +...+...arcg, € RE.

The point of this is the following implication: if two well-conditioned mixtures get mapped to vec-
tors which are close, then these two mixtures must be close in total variation distance. The intuition
is that when we write down the L, distance between the two mixtures, because the Taylor coeffi-
cients of Gaussians decay exponentially fast, the contribution of terms with degree I > O(log1/¢)
to the integral becomes negligible.

Now, we can associate the set of well-conditioned mixtures with a convex body in O(log1/e)-
dimensions, where the vertices of the convex body are given by single Gaussians. Consequently
we can use Caratheodory’s theorem to argue that any point within this body can be approximated
as an O(log 1/¢)-sparse convex combination of the vertices, or equivalently, any well-conditioned
mixture can we approximated by a mixture of O(log 1/¢) well-conditioned Gaussians.

It remains to demonstrate how to actually find this sparse mixture of Gaussians. Naively, the number
of vertices is infinite, as there are infinitely many well-conditioned Gaussians. However, it is not too



hard to show that if we consider a slight coarsening of this body by only taking the vertices to be
the vectors associated to the well-conditioned Gaussians which belong in some poly(1/¢)-sized net,
then the quality of our solution only degrades by constant multiplicative factors. At this point we
can appeal to standard results in convex optimization to find the desired sparse approximation. We
defer the details of this argument to Section A.

2.2 Localization

After solving the well-conditioned case, the next step is to reduce the general case to the well-
conditioned case via localization. We begin with an important definition.

Definition 2.3 (Gaussian Multiplier). For parameters i1, 0, we define

(w—m)?
(7)) = e o

M,

i.e. it is a Gaussian scaled so that its maximum value is 1.

Gaussian multipliers will be crucial in the localization step. Now assume that f can be written as
some unknown k-sparse combination, say

f=a1Gi+ -+ apGi

We can then modify f, e.g. by multiplying by a Gaussian multiplier M,, ,=. Heuristically, this
operation changes the coefficients aq,...,ax in a predictable way. Namely, the coefficients a;
of Gaussians G that are far from N(u,0?) are exponentially attenuated based on the distance to
N (u,c?). This effectively "localizes” the mixture. More formally,

Claim 2.4. We have the identity

1 ~ uo? + po? o202
2y T 402 1 1 1
Mﬂ,dz(x)N(ﬂlvol)_ e TN 0'%"‘0’2 ’0'%"‘0’2

0.2
T+ %
Proof. We prove the above through direct computation.
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The hope is that this will leave us with only components that are not too far from each other —
exactly the well-conditioned case which we already know how to solve. If the variances of all of the
components are comparable, then this is indeed the case. However, additional complications arise
when one of the components G; = N(u,0?) has variance 0; < o because this component will
still have much smaller variance than the others after localizing. Nevertheless, we show that we can
carefully localize at different scales, using smaller variance Gaussian multipliers to localize around
smaller variance components so that all of the localized mixtures are well-conditioned.

The main remaining question is to select a good family of localizations so that we can then fully
reconstruct the original mixture from the localized mixtures. Each localized mixture will cost us
O(log 1/€) components, and therefore we must use at most O(k) different localizations. When all
of the variances of the Gaussians are not too dissimilar, we can do so by leveraging the following
structural result, which states that one can e-approximate the constant function using a sum of evenly
spaced Gaussians with variance 1 and spacing (log 1/¢)~'/? (or smaller). The intuition behind this
observation is that the Fourier transform of a Gaussian is also a Gaussian, which has exponential tail
decay.



Lemma 2.5. Let 0 < ¢ < 0.1 be a parameter. Let c be a real number such that 0 < ¢ <
(log 1/€)~/2. Define

Z \/— cado2( )

j=—00

Then1l — e < f(z) <1+ €forall x.

Proof. WLOG o = 1. Now the function f is c-periodic and even, so we may consider its Fourier
expansion

2 4
f(z) = ag + 2a; cos (ﬂ> + 2a4 cos (ﬂ) +
& &
and we will now compute the Fourier coefficients. First note that

1/c 1 = [9
= fxdx:— / MQJ{L’d.’L':l.
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J=—00

Next, for any j > 1,
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jx 2mjx
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where in the above we use the notation i = v/—1. Using the assumption that ¢ < (log1/e)~ /2, it
is clear that
o0
DICaEaEE
e ¢ -
‘ -2
j=1
so we deduce that for any x,
> on22
F(@) = 1] < 2(lar| + [as] +--) =2) ™7 <
j=1
In other words, the function f is between 1 — € and 1 4 ¢ everywhere and we are done. [ |

In light of the above lemma, we can use a set of evenly spaced Gaussian multipliers and simply

sum the different localized mixtures. Note that it suffices to use O(k) different localizations because
we only need to sum over the Gaussian multipliers that have some nontrivial overlap with one of
the k true components (since for Gaussian multipliers that are far from all of the components, the
localized mixture will be approximately 0).

To handle the fully general case, when the variances of the Gaussians are unbounded, we need a
generalization of the previous lemma that allows us to e-approximate the indicator function of an

interval with a sum of O(log® 1/¢) Gaussians. The proof of this generalization is in Section B.

Definition 2.6 (Significant Interval). For a Gaussian multiplier M, .2, we say the C-significant
interval of M is [ — Co, i + Co). We will use the same terminology for a Gaussian N (1, 0%).

Theorem 2.7. Let | be a positive real number and 0 < € < 0.1 be a parameter. There is a function
f with the following properties

1. f can be written a linear combination of Gaussian multipliers
f( ) = wlMpu ‘71( ) + 4+ wnM,un,ai(x)
wheren = O(log®1/€) and 0 < wy, ..., w, < 1

2. The 10+/log1/e-significant intervals of all of the M, ,» are contained in the interval
[—(1+4+e)l, (1+€)]



3.0< f(z)<1l+eforalzx
4. 1—e < f(x) <1+ eforall x in the interval [—1,1]
50<f(z)<eforx>(1+e)landx < —(1+e€)l

We combine this structural result with a dynamic program which allows us to efficiently choose the
scales at which to localize. Putting all of these pieces together yields our full algorithm, assuming
we have access to the pdf of the unknown function. We show how to eliminate the need for pdf
access below and present our full algorithm in complete detail in Section C.

2.3 Abstracting away the samples

In the previous sections, we have assumed that we have access to the underlying pdf function f.
Typically, however, we only have sample access to the unknown distribution. To rectify this, we
will use the improper learner in [Chan et al., 2013] (see Theorem 37) whose output is a piecewise
polynomial. We can then only work with this piecewise polynomial, which is an explicit function
that we can then perform explicit computations with.

Definition 2.8. A function f is t-piecewise degree d if there is a partition of the real line into
intervals I, . .., Iy and polynomials ¢, (), . .., q(x) of degree at most d such that for all i € [t],
f(z) = ¢;(x) on the interval I,.

The work in [Chan et al., 2013] guarantees to learn a piecewise polynomial f” that is close to M

in L' distance when given 6(k/ €2) samples (and they also show that this sample complexity is
essentially optimal).

Theorem 2.9 (Chanetal. [2013]). Let M = wi1G1 + -+ + wi Gy be an unknown mixture of
Gaussians and f a distribution such that dry(f, M) < e. There is an algorithm that, given O(k/€?)
samples from f, runs in poly(k/e) time and returns an O(k)-piecewise degree O(log 1/¢) function
f' such that with 0.9 probability (over the random samples),

If" = fll. < O(e).

For technical reasons, we will need a few simple post-processing steps after using Theorem 2.9. We
can ensure that the output hypothesis f’ is always nonnegative by splitting each polynomial into pos-
itive and negative parts and zeroing out the negative parts (since this will not increase the L! error).
Finally, we can re-normalize so that the output f’ is actually a distribution. This renormalization at
most doubles the L! error. Thus we have:

Corollary 2.10. Let M = wi1Gy + -+ + wx Gy be an unknown mixture of Gaussians and f a

distribution such that dry(f, M) < e. There is an algorithm that, given O(k/e2) samples from D,
runs in poly(k/e) time and returns an O(klog1/€)-piecewise degree O(log 1/€) function f' such
that f’ is a distribution and with 0.9 probability (over the random samples),

drv(f, f') < O(e).

2.4 Hypothesis testing for model selection

We now show how our result for model order selection, Theorem 1.2, follows immediately from
combining Theorem 1.1 with a standard procedure for testing the TV-distance between two distribu-
tions from samples (see Yatracos [1985]).

Claim 2.11. Let D1, Dy be two distributions for which we have explicitly computable density func-
tions. Let e, 7 > 0 be parameters. Assume that we are given O(1/¢? -log 1/71) samples from D1 and
can efficiently sample from Dy. Then in poly(1/elog1/7) time, we can compute d such that with
probability 1 — T,

|d — drv(D1, D2)| < e.

Proof of Theorem 1.2. We can run the algorlthm in Theorem 1.1 with parameters k, € to obtain an
output distribution M that is a mixture of O( ) Gaussians. We can then use Claim 2.11 with
parameters ¢, 0.01 to measure the TV-distance between M and D (note that we have explicit access



to the pdf of D) and output 1 or 2 depending on if our estimate of the TV distance is less than

O(e€). Combining the guarantees of Theorem 1.1 and Claim 2.11 ensures that our output satisfies the
desired properties. |

2.5 Sparse Fourier

We now briefly describe how our techniques can be used for sparse Fourier reconstruction. Recall
that the problem is to, given query access to a function f on [—1, 1] which is approximately k-Fourier

sparse, approximate it with an 6(k)-F0urier sparse function. As before, we first abstract away the
query access, by leveraging the following result from Chen et al. [2016]:

Theorem 2.12 (Theorem 1.1 in Chen et al. [2016]). Let f be a function defined on [—1,1] and
assume we are given query access to f. Let M be a function that is (k, 1)-simple and has frequencies
in the interval [—F, F]. Then for any desired accuracy ¢, in poly(k,log1/e)log F' samples and
poly(k,log1/€) log? F' time, we can output a function f’ such that with probability 1 — 22,

1. f'is (poly(k,log1/e), exp(poly(k,log1/€)))- simple

2.
1 1
<o VLA
[ur-sp<o(es [ 1r-mp)

Remark. While the bound on the coefficients of [’ is not explicitly stated in Theorem 1.1 in
Chen et al. [2016], it immediately follows from the proof.

Our algorithm for postprocessing this into a O(k)-Fourier sparse signal follows roughly the same
steps as in the Gaussian case. First, we show that in a certain “well-conditioned” regime, namely,
when the frequencies are not too dissimilar, there is a signal using O(log 1/¢) frequencies which
approximates the function. To handle the general case, we use localizations based on carefully
chosen kernels to reduce every signal to a sum of well-conditioned signals (at least, approximately).

One important distinction between the GMM and sparse Fourier reconstruction setting we highlight
is that in the latter, the goal is usually to have runtimes which scale logarithmically with 1 /¢, whereas
in the GMM setting, poly(1/€) sample complexity and thus runtime is unavoidable. However, our
naive method of solving the well-conditioned case required constructing a net of poly(1/¢) many
Gaussians, and thus required poly(1/e) runtime. To circumvent this difficulty, we demonstrate that
in fact this can be improved, and that by being more careful, and choosing the (much smaller) set
of vertices based on the Chebyshev points, we can in fact improve this runtime significantly. See
Sections D and E for a full treatment of our algorithm.

2.6 Paper organization

The remainder of the paper will be devoted to proving Theorem 1.1, our main result for GMMs
and Theorem 1.3, our main result for sparse Fourier reconstruction. Due to space constraints, the
remaining parts are deferred to the appendix. We first present the proof of our result for GMM:s.
In Section A, we deal with the well-conditioned case. In Section B, we present some tools for
localization which we will then use in Section C to prove our full result for GMMs. We then
present the proof of our main result for sparse Fourier reconstruction which follows a very similar
outline. We deal with the well-conditioned case in Section D and then the general case in Section E.
Appendix F contains several basic tools that will be used throughout the paper.
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Supplementary Materials

A Well-Conditioned Case: Learning GMMs

We now deal with learning well-conditioned GMMs. We begin by formally specifying the properties
that we want the components of the mixture to have. Roughly, we want the components to have
comparable variances and the separation between their means cannot be too large compared to the
variances. This means that after applying a suitable linear transformation, the components are all
not too far from the standard Gaussian N (0, 1).

Definition A.1. We say a Gaussian where G = N (u, 0?) is §-well-conditioned if
©ful<d
«lo? -1/ <9

We say a mixture of Gaussians M = w1 Gy + - - - + wi Gy, is -well-conditioned if all of the compo-
nents G, . . ., Gy are §-well-conditioned.

We now state our learning result for well-conditioned mixtures.

Lemma A.2. Let € > 0 be a parameter. Assume we are given access to a distribution f such that
drv(f, M) < e where M = w1G1 + - - - + wi Gy, is a 0.5-well-conditioned mixture of Gaussians.
Then we can compute, in poly(1/¢) time, a mixture M of at most O(log 1/¢) Gaussians such that
dry(M, M) < O(e).

Remark. Note that in the well-conditioned case, the number of components in the mixture that we
compute does not depend on k.

Our algorithm for proving Lemma A.2 can be broken down into two parts. In the first part, we
find a mixture of poly(1/€) Gaussians that approximates f. We then show how to reduce this
mixture of poly(1/¢) Gaussians to O(log 1/¢) Gaussians by using the Taylor series approximation
to a Gaussian.

Lemma A.3. Let € > 0 be a parameter. Assume we are given access to a distribution f such that
drv(f, M) < e where M = w1G1 + - -+ + wi Gy, is a 0.5-well-conditioned mixture of Gaussians.

Then we can compute, in poly(1/¢) time, a mixture of at most O(1/€2) Gaussians that is O(¢)-close
to M in TV distance.

Proof. First, let T be the set of all 0.5-well-conditioned Gaussians such that 1 and o2 are integer
multiples of 0.1¢. Note [7T] = O(1/€?).

By rounding all of the Gaussians G, ..., G to the nearest element of 7 (this increases our
L' error by at most €), we may assume that all of the components G4, ..., G}, are actually in 7.
Now note that since || f — w1 Gy — - -+ — wiGgl|1 < 2¢, we have for all z,

(@) = w1 G () — - — wiGr(x)] < 2e ey

where é; denotes taking the Fourier transform of the pdf of the Gaussian G;. Let [ = [log1/e].
‘We now have,

!
[ 7@~ wGia) -~ wnGio) Pds < 01€).
-1
Now let all of the Gaussians in 7 be G, ..., G, where m = |T|. By Lemma F.10 (and splitting
into real and imaginary parts), we can compute in poly(1/¢) time, nonnegative weights w1, . . . , Wy,

with w1 + - -+ + w,, < 1 such that
l
[ 17@) = TGi@) - TG o) < O1)
—1
which by Cauchy Schwarz implies that

N — —
/_l [f(x) —wiGi(z) — -+ — W G () |[d < O(le) .
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Now note that since all of the Gaussians G, ..., G,, are 0.5-well-conditioned, their Fourier trans-
forms G also decay rapidly away from [, ] so combining the above with (1), we deduce that

/|@G@%~~mﬁam—m@m—m—w@mmow.
From the Fourier transform of the above we then get for all x
[w1G1(z) + - + W G () — w1 G () — - -+ — Wy G ()] < O(le)

and since all of the Gaussians involved are 0.5-well-conditioned, they all decay rapidly outside the
interval [—{, [] and we conclude

/ |1 G1(2) + -+ 4 Wy G () — w1 G () — -+ - — W G (2) [z < O(1%€) .
Finally, note that by the above, we must have 1 —O(1%¢) < w1+ - - +w,, < 1+0(I%€) so rescaling
to an actual mixture i.e. so that the weights w1 + - - - + w,, = 1, will affect the above error by at
most O(I%¢). Thus, we can output this mixture and we are done. |

Next, as an immediate consequence of Lemma F.8, a 0.5-well-conditioned Gaussian can be well
approximated by its Taylor expansion.
Corollary A4. Let G = N(p,0?) be a 0.5-well-conditioned Gaussian. Let ¢ > 0 be some param-
eter and let | = [log 1/€]. Then we can compute a polynomial Pg(x) of degree (101)? such that for
all z € [-1,1],

|G(z) = P (x)| < O(e).

Proof. This follows immediately from using Lemma F.8 and applying the appropriate linear trans-
formation to the polynomial. |

We can now complete the proof of Lemma A.2 by using Lemma A.3 and then using Corollary A.4
and Caratheodory to reduce the number of components.

Proof of Lemma A.2. By Lemma A.3, we can compute a mixture

such that m = O(1/€?) and
M =Ml < O(e).
For each Gaussian G/, let P@; (z) be the polynomial computed in Lemma F.8. Write
Pg, (x) =ajo0+aj1x+--+ aj)(lol)zzzr(wl)z .
Define the vector
Uj = (aj)o, aj71, ey aj_’(lol)z) .

Now the point wi vy + - - - + Wy, Uy, is in the convex hull of vq, . . ., v,,. By Caratheodory (since the
space is (101)? + 1-dimensional), it must be in the convex hull of some (107)? + 1 of the vertices.
Thus, we can compute indices o, . . ., (107)2 and nonnegative weights wh,y - - - ,wElOl)g summing to
1 such that

W11+ F Wil = Wi+ + + W02 Vi 02 -
The above implies that for all z,

W1 Pg, (@) + -+ W P (¢) = wh P (@) + -+ 0l Py ().
Y(101)2
Now by Corollary A.4 and the fact that all of the Gaussians are 0.5-well-conditioned, meaning that
they decay rapidly outside of [, {], we conclude that if we set
M/ — wéGio _|_ e + wlel)zGi(lm)z
then N _
M =M1 < Oe)

and then we have N N _

[M = M|y < M = Mlly + M = M'[|ly < O(e)

as desired. [ |
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We can slightly improve Lemma A.2 to work even when we do not have a precise estimate of
drv(f, M) since we can just repeatedly decrease our target accuracy until we cannot improve our
accuracy further. Recall that we can use Claim 2.11 to test the L' distance between two distributions.
We now have the following (slight) improvement of Lemma A.2.

Corollary A.5. Let ¢ > 0 be a parameter. Let M = w1 G1 + - -+ + wi Gy be an unknown 0.5-
well-conditioned mixture of Gaussians. Assume we are given access to a distribution f. Then we

can compute, in poly(1/e) time, a mixture M of at most O(log 1/€) Gaussians such that with high
probability,

dry(f, M) < € + poly(log 1 /e)drv(f, M) .

Proof. We can simply start from ¢’ = 1 and run the algorithm in Lemma A.2 with parameter ¢’ and

then estimate dyy(f, M) using Claim 2.11. If dry(f, M) < €'poly(log 1/¢) then we can decrease
¢’ by a factor of 0.9 and repeat. Repeating this process and taking the smallest accuracy ¢’ > € for
which the above check succeeds, we get (from the guarantee of Lemma A.2) that

drv(f, M) < €2 + poly(log 1/e)dry(f, M)

and we are done. [ |

B Function Approximations Using Gaussians

In this section, we present several results about approximating functions as a sum of Gaussians.
These results will be key building blocks in the localization steps of both of our algorithms. The
main result of this section, Theorem B.3, allows us to e-approximate the indicator function of an
interval as a sum of poly(log 1/¢)-Gaussians.

First, it will be convenient to renormalize Gaussians so that their maximum value is 1. After renor-
malization, we call them Gaussian multipliers.

Definition B.1 (Gaussian Multiplier). For parameters 1, o, we define

_(e=w)?

M, o2 (x) =€ 207

i.e. it is a Gaussian scaled so that its maximum value is 1.

We also introduce the some additional terminology.

Definition B.2 (Significant Interval). For a Gaussian multiplier M,, ,2, we say the C-significant
interval of M is [u — Co, i + Ca). We will use the same terminology for a Gaussian N (., 02).

It will be used repeatedly that for a Gaussian (or Gaussian multiplier), 1 — e-fraction of its mass is

contained in its O(/log 1/¢)-significant interval. We now state the main result of this section about
approximating the indicator function of an interval as a weighted sum of Gaussian multipliers.

Theorem B.3. Let [ be a positive real number and 0 < € < 0.1 be a parameter. There is a function
f with the following properties

1. f can be written a linear combination of Gaussian multipliers
f(fl?) = w1M#170% (:C) + T + wnMHn)a'% (:C)
where n = O((log1/€)?) and 0 < wy, ..., w, <1

2. The 10+/log1/e-significant intervals of all of the MH'L;U? are contained in the interval
[—(1+4+e)l, (1+€)l]

30< f(z)<1l+eforalzx
4. 1—e < f(x) <1+ eforall x in the interval [—1,1]
50< f(z)<eforx>(1+¢€)landx < —(1+e€)l
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B.1 Approximating a Constant Function

Recall Lemma 2.5 (restated below) that allows us to approximate a constant function using an infinite
sum of evenly spaced Gaussian multipliers.

Lemma B.4 (Restated from Lemma 2.5). Let 0 < € < 0.1 be a parameter. Let c be a real number
such that 0 < ¢ < (log 1/€)~'/2. Define

Z \/— cadoz( )

]_—OO

Thenl —e < f(z) <1+ €forall x.

B.2 Approximating an Interval

The next step in the proof of Theorem B.3 is to show how to approximate an interval using a
finite number of Gaussian multipliers i.e. we need to show how to create the sharp transitions
at the ends of the interval. In light of Lemma B.4, we can create a function satisfying the last
four properties by taking O((1/¢)?) evenly spaced Gaussians multipliers with standard deviation
€2l. However, this is too many components and we must reduce the number of components
to O(log2 1/€). The way we do this is by merging most of these components (all but the
ones on the ends) into fewer components with larger standard deviation. We keep iterating this
merging process and prove that we can eventually reduce the number of components to O(log2 1/e).

First, the following result is an immediate consequence of Lemma B.4. It allows us to ap-
proximate a Gaussian with standard deviation 20 as a weighted sum of Gaussians with standard
deviation o.

Corollary B.5. Let ¢ be a parameter. Let c be a real number such that 0 < ¢ < 0.5(log1/e)~%/2.

Let Y
— V2 22
glx) = Z \/%e ¢ Mo o2 ().

j=—c0
Then for all x,
(1 — €)My 452(z) < g(x) < (1 + €)My 452() .

Proof. Lemma B.4 (with ¢ < fc o+ fcr) implies that the function

Z cya, 152 (I)

j—fOO

isbetween1l —eand 1 + € everywhere. Now consider

N V2 _#rsefei)?
f( ) MO 402 Z ngégz(fﬂ)MoAa-Z(l’): Z 8023

Jj=—o0 Jj=—o0

V2% 22 @-cio)? > 2¢ 252
= —e T = Yy €™ 0 M p2(2).

j=—o0 j=—o0

In the next lemma, we show when given a sum of evenly spaced Gaussians with standard deviation
o, we can replace almost all of them (except for ones on the ends) with a sum of fewer evenly spaced
Gaussians with standard deviation 2o.

Lemma B.6. Let ¢ be a parameter. Let ¢ be a real number such that 0 < ¢ < 0.01(log1/¢)~1/2,
Let b be a positive integer. Consider the function

b
C
= Z Mcja',a2 (.CC) .
= V2T
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Let C = [10%¢= log(1/€)'/?]. There is a function g of the form

[(b—C)/2]
Z cga’ 02 Z CJU o2 (JJ) + Z \/—MQCJU 40’2( )
Jj=b— 2C Jj=1C/2]
where the 0 < wq, ..., W0, Wp—20, - - . , Wi, < 1 are weights and

1f = gllos < €.
Proof. Lete' = €% By Corollary B.5, for any real numbers j, z,

_Ci

C(kﬂ)d o2(7)| < EIMchAo? (x).

cga’ 40’2

Now we use the above inequality on each term of the last sum in the expression for g(z).

[(6-C)/2] [(6-C)/2] oo 2

CM2C jo,402 (1’) ¢ —
S ) S S

j=1C/2] j=1C/2] k=-o0

[(b—C)/2]
S 6/ Z C]\420_]’0,402 (I) < 26/

j=1C/2] vz
where the last step follows from Lemma B.4. Now we rewrite the second sum in the LHS above.
Let
[(6-C)/2] oo 2 2,2

C _
S = 2, 2 e Metkszieor @
21072 Koo

i c? ((b—zc:)/ﬂ 2(1—2j)?
= —]\4cla,a'2 (I) e 5.
LT3 j=1C/2]
Define

[(b—C)/2] 2y

j=1C/2]

First, by applying Lemma B.4 with parameters ¢ + \%c, o < /3c™!, we have that for all real
numbers [,

V3T i _e20-25)?2 3

_ e 6 .

V2e V2¢e

By the way we chose C, we deduce that for all integers [ with 2C <1 < b — 2C,
V3m V3T

V2e V2e

for all integers 0 <[ < 2C,orb—2C <[ < b,

3T

c

< (2¢)

—a

)

ﬁ

a; <

(1+2€) 3)

S

and finally for all integers { < 0 or [ > b,

Van
V2e

To obtain these inequalities, we simply use the fact that the terms in the sum

ap < (2€) . “)

o0

_2a—25)?
>

— 00
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decay exponentially when j is far from [ /2 so their total contribution is small.

Now we can set wo, . . . , Wac, Wp—2C, - - - , Wi, in the expresion for g(x) as follows:
0.1 VX
w; =max | 0,1 — aj | -
J \/3_71' y)
It is clear that all of these weights are between 0 and 1. We now have that
Hf g”oo §2€ +||f( +Z cga’cr2 Z cgcra’z(x) ”oo
j=b— 2C

The expression inside the norm on the RHS can be rewritten as

£ (s st £ (gt - g et

c? c
+ —wy) — ——=a; | Mo o2 (x) + — aiM 5 52 (T
lbzzc<r ! ml) eetle) 2, T ggitans )

+ Mo, 02 (2
> M)

I=b+1

and combining (2,3, 4), we deduce that the above has L>° norm at most

I10e) > \/%Mdg,gz(:v)lloo < 20¢ .
l=—00

where we used Lemma B.4. Thus, || f — ¢||cc < 22€¢’ and we are done. |
We can now prove Theorem B.3 by repeatedly applying Lemma B.6.

Proof of Theorem B.3. Let ¢ = 0.01(log1/¢)~"/2. Let K = (%1

K
c
xT) = —— M2 22 () .
) j;}( \/ﬁ je2l, l2( )
Let ¢ = €', Using Lemma B.4, (and basic tail decay properties of a Gaussian) we get that

* 0< fo(z) <1+4¢€ forallx
e 1—¢€ < fo(x) <1+ € forall z in the interval [—I, (]

e 0< folz) <éforx>(1+elandz < —(1+€)l

Now we can apply Lemma B.6 to fo(z) to obtain

7K+QC
Z cye2l e4l2 Z cge2l€4l2( )
- =K 2o V27
[(K-C)/2] c
+ EMQCjezlAe“F(x)

i=—[(K-C)/2]
where C' = [10%¢™ ! log(1/¢)'/?], the w; are weights between 0 and 1, and

[ fi = foll <€

Now we can apply Lemma B.6 again on the last sum in the expression for f;. We have to do this
at most 101og 1/¢ times before there are at most O((log 1/¢)?) components remaining. It is clear
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that in this procedure, the 104/log 1/e-significant intervals of all of the Gaussian multipliers always
remains in [—(1 + €)l, (1 + €)l]. Also, the total L> error incurred over all of the applications of
Lemma B.6 is at most 10€’log 1/e < €. Itis clear that all of the weights are always nonnegative
and in the interval [0, 1]. Thus, the final function f satisfies

* 0< f(x) <1l+eforallx
* 1—€< f(z) <1+ eforall z in the interval [—{, (]

* 0< f(z) <eforx>(1+e€)landz < —(1+¢)l
and we are done. [ |

In light of Theorem B.3, we may make the following definition.
Definition B.7. For parameters €,1, let I ; denote the function computed in Theorem B.3 for pa-
rameters €,1/(1 + €) . We will also use IE(';) to denote the function I j(x — a).

Remark. We define I.; as above because it will be convenient later to be able to say that the
significant part of L | is contained in the interval [—1,1].

C Nearly-Properly Learning GMMs: Full Version

In this section, we complete the proof of our main result for learning GMMs, Theorem 1.1. We
localize the distribution by multiplying by a Gaussian multiplier M, 2. Note that the product of two
Gaussians is still a Gaussian so multiplying a GMM by a Gaussian multiplier results in a re-weighted
mixture of Gaussians. Roughly, we argue that the new weights on components of the mixture that
are far away from the multiplier M, ;= are negligible so the resulting mixture is well-conditioned
and we can then use Corollary A.5 to reconstruct the localized distribution. To reconstruct the entire

distribution, we show that it suffices to sum together 5(/€) different localized reconstructions.

C.1 Localizing with Gaussian Multipliers

Recall Claim 2.4 (restated below) which gives an explicit formula for what happens when we have
a Gaussian G1 = N (1, 01) and we multiply it by a Gaussian multiplier M, ,2(x).

Claim C.1 (Restated from Claim 2.4). We have the identity

1 _-w? po? + pio?  olo?
M )N 02 = ———¢ 2095+ N L L .
u,a2( )N (p1,07) 1+U% U%+02 ’U%+02

o2

C.2 Building Blocks

We first consider reconstructing a GMM M = w1 G + ... wi Gy, after multiplying by a Gaussian
multiplier M, ,2. As a corollary of Claim C.1, we know that when the C-significant intervals (recall
Definition B.2) of a Gaussian G; and the multiplier M, ,»(x) are disjoint for large C, then the L!

norm of their product is e ~2(¢ ) In particular this means that after multiplying by M, ;2, the only

components that remain relevant are those that have nontrivial overlap with the multiplier M, 2
The only way these components will not form a well-conditioned mixture is if there is some G; that
is very thin (i.e. 0; << o) and overlaps with M, ;2. As long as this doesn’t happen, we can apply
Corollary A.5. We formalize this below.

Corollary C.2. Let M = w1 Gy + - - - + wi Gy, be an arbitrary mixture of Gaussians where G; =
N(pi,02). Let € > 0 be some parameter and let | = [\/log(1/¢)]. Assume we are given access to
a distribution f. Let M, ,> be a Gaussian multiplier. Assume that for all i € [k], either o; > 4lo
or the 10l-significant intervals of Gi and M, ,> do not intersect. Then in poly(1/e) time and with

high probability, we can compute a weighted sum M of at most O(log(1/€)) Gaussians such that

IM = My, 2 f|l1 < e+ poly(log(1/€))|| M52 (M — f)]1 -
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Proof. We compute M,, > f and let C' = |[M,, ,2f[|1. If C' < € then we may simple output 0.
Otherwise, we will apply Corollary A.5 on M, > f/C and multiply the result by C. We must first
verify the conditions of Corollary A.5. Let S C [k] be the indices such that the 10!-significant
intervals of G; and M, .= intersect. First for i ¢ S, by Claim C.1,

(i —m)?

HGiMu,a2Hl < 8_ 2(02+02) < e—lOl2 < 10

€S

Let

Then we know

/ —
Ragrd _ Muct My, o WMt = MOl
C C C
Next, fori € S,

2 2 2 2
SRR (S

0?2 +0%2 o2+ 02

for some weight w; and since we must have o; > 4lo, then

0_2 < o2a? 5
2 ~o2+02
po? o | |- p)o?| Mot ods® _o
o2 + o2 o24+02 |7 oi+0%2 ~ 2
Let / 2 2 2 2
M = w; N </Lo'i + o 99 >
= Yies W of +0% of + o2

Then we deduce, since || M, ,2 f/C||1 = 1, that

M, o f ” ” M#_Uz./\/l' M,s2f M, g2 M’
ot < _ ) , _ )
1 Maerl gy < gy - Mag 2y MaerS Mugr
M,s2f M, M
< Mo _ 50
<o Muer Mo,
MU~ Ml
- C

and further, after applying a suitable linear transformation (taking (1, %) — (0, 1)) that the mixture
M’ is 0.5-well-conditioned. Thus, we can apply Corollary A.5 and compute a weighted sum of

O(log(1/€)) Gaussians, M such that

| Mt
C

— M|y < poly(log(1/e)) <68 1Mo (f = M)II1> |

C

Now we can simply output CM (which is still a weighted sum of O(log(1/¢)) Gaussians) and we
are done. |

Recall that Theorem B.3 shows how to express an interval as a sum of Gaussian multipliers. Com-
bining Theorem B.3 with Corollary C.2, we show that we can approximate a GMM over an interval
as long as the interval does not overlap with a component that is much thinner than it.

Lemma C.3. Let M = w1Gy + - -+ + wi Gy be an arbitrary mixture of Gaussians where G; =

N(pi,02). Let € > 0 be some parameter and let | = [\/log(1/€)]. Assume we are given access to
a distribution f. Let I = [a, b] be an interval. Assume that for all i € [k], either o; > (b — a) or the
101-significant interval of G; does not intersect 1. Then in poly(1/e) time and with high probability,

we can compute a weighted sum M of at most poly (log(1/€)) Gaussians such that

IM — f-17]l1 < poly(log(1/e)) (e + [ 1r(M — f)]}1)

where 11 denotes the indicator function of I.
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Proof. Consider the function Z = I(a(zrb)/ 2 (recall Definition B.7). Now note that by Theorem B.3,

7 can be written in the form
I = w1Mm76_‘I2 + -+ wnM

—~—2
Hn,On

where n = O(log® 1/¢). Furthermore, for all i € [n], we have 0 < w; < 1 and 6; < (b — a)/(4l)
and the 10/-significant intervals of M. 5 are all contained in the interval [a,b]. Thus we can

apply Corollary C.2 on My 5.2 f for all i€ [r]. Adding the results with the corresponding weights

w1, ..., Wy, We obtain a functlon M that is a weighted sum of at most poly(log(1/¢)) Gaussians
such that

IM — fZ|lx < poly(log(1/e)) <€+szll e (M= f)ll)

= poly(log(1/€)) (€ + [|IZ(M — f)l1) -
Thus, .
| M = M|, < poly(log(L/e)) (¢ + IZ(M — f)]1) - s)
Next, by the properties in Theorem B.3,

0o a+e(b—a) b
IIM(I—lf)Illge/ M+/ M+/ M
—00 a b—e(b—a)

k a+e(b—a) b
<e+ ij/ Gj—i—wj/ Gj
=1 a b—e(b—a)

Consider one of the component Gaussians G; where j € [k]. If the 10l-significant interval of G
does not intersect [a, b] then it is clear that the total mass of G; on the interval [a, b] is at most €.
Otherwise, we know that the standard deviation of G is at least b — a which means that its mass on
the set [a,a + €(b — a)] U [b — €(b — a), b] is at most O(¢). Thus we conclude that

[IM(Z =17l < O(e). (©)
Also note that by the properties in Theorem B.3
- pl<e [ e Mg <o uae- o,

Putting together (5, 6, 7) , we conclude

IM = 1]y < |[17(M = )|l + [M = M1 < poly(log(1/e)) (e + |17(M — £)]]1)
and we are done. |

C.3 Structural Properties

Lemma C.3 allows us to reconstruct the unknown GMM M over certain intervals. However, it can-
not be applied to an arbitrary interval (because an interval may overlap with a component that is too
thin). We will now prove several structural results that will imply that there exist O(k) intervals for
which the conditions of Lemma C.3 are satisfied (i.e. these intervals do not overlap with components
that are much thinner than themselves) and such that the union of these intervals contains most of
the mass of M. Then, to complete the proof of Theorem 1.1, we show how to find such a set of

O(k) intervals using a dynamic program.

First, we define a modified density function fora GMM M = w1 G1 +- - - +w, G, where we modify
each component Gaussian by restricting it to its 10/-significant interval (and making it 0 outside). It
is clear that this modified function is close to M in L!-distance but it will be convenient to use in
the analysis later on.

Definition C.4. For a mixture of Gaussians M = w1G1 + - - - + wi Gy, where Gj = N (u;, ojz) and
a parameter |, define the function M, () to be, at each point x € R, equal to the weighted sum
of the components G; of M such that x is in the 10l-significant interval of G;. Formally,

Miga(x) = > w;Gy(x).
J such that
|z—p;|<10lo;
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The following claim is immediate from the definition.

Claim C.5. Let € > 0 be some parameter and let | = [/log 1/¢|. Then
”M - Msig.,l”l <e€

Proof. The inequality holds because the total mass of a Gaussian outside of its 10-significant inter-
val is at most €. |

We now present our first structural result.

Claim C.6. Let M = w1Gy + - - + wi Gy be an arbitrary mixture of Gaussians where G; =

(uz, 2). Let € > 0 be some parameter and let | = [+/log(1/€)]. There exist disjoint intervals
Iy, ..., I, with lengths, say ti, ... ,t,, where n < b0kl with the following property:

* For each interval I;, for all j € [k] either the the 10l-significant interval of G; is disjoint
fromI;oro; > t;

e We have
M=+ + 1, )M[1 <€

Proof. Sort the Gaussians by their standard deviations, WLOG o7 < - - < 0. Now we will create
several intervals Aq, As,... and we will also associate each interval with one of the Gaussians
G1, ..., Gy which we will call its parent.

First, set Ay to be the 10/-significant interval of G;. Next, we will process the Gaussians Go, . .., G
in order. For G, assume that the intervals we have created so far are Ay,..., A, (which will
be disjoint by construction). Now consider the 10I-significant interval of G, say L;. Note that
removing the union of the intervals Ay, ..., A,, from L; divides L; into several (at most m+ 1)
disjoint intervals. We label these intervals Am+1, Am+2, ... and set all of their parents to be G.
We then move onto G4, and repeat the above process. The following properties are 1mmed1ate
from the construction:

1. If the parent of A; is G; then the length of A; is at most 20l0;

2. The union of all of the A; whose parent is among G, . .. , G; contains the 10/-significant
intervals of all of G1, ..., G;

3. If the parent of A; is G, then A; is disjoint from the 10[-significant intervals of
Gl, - ,Gj_l

Now we claim that at the end of the algorithm, the total number of intervals is at most 2k. To see
this, say that after processing G;_1, the intervals we have created are Ay, ... A,,. Now consider the
potential that is the number of intervals m plus the number of connected components in A1 U- - -UA,,
This potential can increase by at most 2 when processing G; so thus the total number of mtervals
at the end of the execution is at most 2k. We will now assume that the intervals at the end of the
execution are Aq, ..., Aoy (if there are less than 2k intervals then add a bunch of dummy intervals
of length 0).

We now describe a post-processing step. For each of Ay, ..., Agy, if its parent is G; then divide it
into intervals of length at most o; and assign G; as the parent of all of these mtervals By property
1, we can ensure that this creates a total of at most 50kl intervals, say Iy, ..., I, where n < 50kl.
We use tq, ..., t, to denote their lengths. We now prove that this set of 1nterva1s satisfies the desired
properties. First, note that the following properties are immediate from the construction:

1. If the parent of I; is G; then I; is contained in the 10/-significant interval of G; and t; < o

2. The union of all of I, ..., I,, contains the 10/-significant intervals of all of GGy, . .., G

3. If the parent of I; is G, then I; is disjoint from the 10l-significant intervals of
Gl, ceey Gj,1

24



The first of the desired properties is clear since by construction if the parent of I; is GG, then ¢; <

o; and it must be disjoint from the 10!-significant intervals of all of Gy, ..., G;_; (where recall
G1,...,Gy are sorted in increasing order of their standard deviation). Now it remains to verify the
second property. Consider the function M, ;(x). Recall by Claim C.5,

||M - Msig,l”l S € (8)

Next observe that
Mgy = (1, + -+ 17, ) Mg, -
Combining the above, we have

[M— Q7+ +17,) Mgl < €.
However, note that we have
(1[1 + -+ 1In)Msig,l < (1]1 + -+ 1]n)M <M

everywhere along the real line. Thus, we immediately get the desired inequality. |

The next structural result shows that the intervals I, ..., I,, obtained in Claim C.6 are “findable"
in the sense that if we draw many samples from M (or from a distribution f that is close to M),
then with high probability, there will be samples close to the endpoints of each of Iy, ..., I,. This
will mean that algorithmically, it suffices to draw sufficiently many samples and then only consider
intervals whose endpoints are given by a pair of samples.

Claim C.7. Let M = w1Gy + - -- + wi Gy be an arbitrary mixture of Gaussians where G; =

N (pi,02). Let € > 0 be some parameter and let | = [/log(1/€)]. Let f be a distribution. Assume
we are given samples from f, say x1, ..., xq for some sufficiently large () = poly(k/e€). Then with

high probability, there exists pairs {Zq,, b, },- .- {Za, , Ts, } such that
* The intervals J; = [Zay, Tty ]y - - In = [Ta, , Tb, | are disjoint
e n < 50kl

* For each interval J;, for all j € [k] either the the 10l-significant interval of G; is disjoint
Sfrom J; or o > |xp;, — Ta,

M= (15 + -+ 1 )M <4(e+ M= fll1).

Proof. Let I, ..., I, be the intervals computed in Claim C.6 applied to the mixture M and assume
that their lengths are ¢4, . . . , t,,. Let C = [(k/€)?]. For each interval I;, divide it into C subintervals
Il,... I€ oflength t;/C and assume that these subintervals are sorted in order. We say one of these
subintervals is good if

f > (e/R)Y.
1

For an index 1, let ¢;, d; be the smallest and largest index such that I;*, I fi are good respectively.

Then with high probability for all ¢, there will be samples, say zq,, zp, in I;* and I;ii. Now we will
form the intervals J; = [zq,, Ts,]. The first two of the desired properties are clear. The third follows
from the statement of Claim C.6. It remains to verify the last. Similar to the proof of Claim C.6, we
consider the function M, ;. Note that

Msig,l < / Msig,l +---+ Msig,l + /d Msig,l + -+ / Msig,l
iz o I 1g

Ii\J; It

§|\1Ii(MSig,z—f)||1+/ f+...+/_7lf+/d_+lf+...+ f
Il I I e
+/ Mg+ [ Mg
I I

< s (Mg = D+ €0+ [ Mg+ [ M
I It
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where the last step follows by the minimality and maximality of ¢;,d;. Now by construction, the

only Gaussians among (1, .. ., G, whose 10[-significant intervals intersect I; must have standard
deviation at least t;. Since I, I each have length (¢/k)?t;, we conclude

Mg < 3(e/k)* + 111, (Maigs — )1
L_’\Ji

Thus, we have
[(Lr, 4+ 15, ) Maer — (L + -+ + Ly, )Miigall1 < e4[[(Miiga — f)ll1 < 2e+[[(M = f)]]1
where we used Claim C.5 in the last step. Now, using the statement of Claim C.6, we deduce
M= Ly +- 4 15 ) Miigalls < de+ [[(M = [l
Since
(g + o+ 1 )M < (1, +-- + 17 )M <M
everywhere along the real line, we immediately get the desired inequality. |

C4 Finishing the Proof

We can now prove the key lemma and then Theorem 1.1 will follow as an immediate consequence
since we can use the improper learner in Corollary 2.10. The lemma states that given explicit access

to a distribution f that is e-close to a GMM, M, with k& components, we can output a GMM, M,
with O (k) components that is O(e)-close to f. At a high-level, the proof involves attempting to
reconstruct f over various intervals using Lemma C.3 and then using a dynamic program to find a
union of 6(I€) such intervals that approximates the entire function. We use Claim C.7 to argue that
such a solution exists so our dynamic program must find it.

Lemma C.8. Let M = w1Gy + - -+ + wi Gy, be an arbitrary mixture of Gaussians where G; =
N(pi,02). Let € > 0 be some parameter. Assume we are given access to a distribution f. Then in

poly(k/€) time and with high probability, we can compute a mixture M of at most kpoly (log(k /€))
Gaussians such that _
[M = fllx < poly(log(k/e)) (€ + M = fll1) -

Proof. Note that it suffices to compute a weighted sum of Gaussians that satisfies the desired in-
equality since rescaling such a weighted sum to a mixture will at most increase the L' error by a
factor of 2. Thus, from now on, we will not worry about ensuring the mixing weights sum to 1.

Let v = ¢/k and [ = [y/log1/~]. First draw @) = poly(k/e) samples x1,...,zq from f for
sufficiently large () that we can apply Claim C.7 with € <— 7. While we do not know what the
intervals Ji, ..., J, are, we will set up a dynamic program to find a set of at most 50k intervals
that we can reconstruct f over each one using Lemma C.3 and such that these intervals contain
essentially all of the mass of f.

For each pair z,, 2, with a,b € {1,2,...,Q}, apply Lemma C.3 with parameter ¢ + -~ to

attempt to approximate f on the interval [x4,xp]. Let the output obtained be M., ,,. Note that
sometimes the algorithm will fail to output a good approximation to f (because the assumptions
of Lemma C.3 fail) but we can ensure that the output is a weighted sum of at most poly(log 1/v)
Gaussians. In the proof we will only use the fact that when the assumptions of Lemma C.3 hold,
then our approximation to f restricted to the interval will be accurate.

Now we show how to set up the dynamic program. WLOG the points z1,...,x¢q are sorted
in nondecreasing order. We also use the convention that zg = —00, £g+1 = co. Now, we maintain
the following state for each index 0 < j < @ + 1, and integer ¢ < 50kl: the best approximation to

f from (—o0, x;] using a sum of M, ,, over at most c intervals. Formally,

Dynamic Program: Let DP;. be the minimum over all sets S of c¢ pairs
(@M, 6M), ... (a9, b)) € [j] x [4] such that a™) < b™) < a® < ... < ) of

£+ Ymooa) = (1[%<1)x%m]Mza(l%%(l) +oeet 1[%@))%@]/\/1%(@ v”w))”l

+ ”M%uw%(l) - 1[%@) v%(l)]M%uw%m it ”M%m»%(c) - l[mc)wamJM%m»%(c) [P
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Note that the first term represents the approximation error compared to f. We must truncate each
function M%(lwb(l) to its corresponding interval [z,a),Zym ] in order for the problem to be

solvable via dynamic programming because otherwise previous choices would affect later ones.
Thus, we also need to add the additonal terms that represent the error from truncation. Note that the
L' distance can be estimated using Claim 2.11. We can solve the dynamic program in polynomial
time because from each state DP;., we simply consider adding all possible intervals among
Zj,Zj+1,---,%Q as the next one.

Now we prove that there is a good solution to the dynamic program for which the objective
(for j = @Q + 1) is small. Let aq, by, ..., ay, b, be the indices obtained in Claim C.7. We claim that
setting

(@D, bMWY = (ay,b1), ..., (@™, ™) = (a,, by)

results in the objective function being small. Let J; = [a;, b;] for all 4. Let

~ ood —
MEPE = 1[za1=zb1]M‘Ea17‘Eb1 +ot 1[1an=zbn]M1anx1bn :

The guarantee from Lemma C.3 implies that for all ¢,

Mo, o0, = U, ) M o0, 1 < DOy (log 1/7)( + |1, (M = f)]]1) ©)

and thus, using the guarantee from Lemma C.3 again, we have

[MEE — (1, + -+ 1) S My, = L i+ + My, o, =15, flh
+|‘Mwa17mb1 - 1[xa1,xb1]Mﬂaa1,wb1 Hl +o HMwan,wbn - 1[zan,zbn]M1an,wbn Hl

< nypoly(log 1/7) + poly(log 1/7) (11, (M = f)llx + -+ + [[15, (M = f)ll1)
< poly(log1/7) (e + M = f]l1) -

However also recall that by Claim C.7,
M=y 4+ L )M <4y + M= Fl) -

Combining the above two inequalities, we get

|ME% — flly < poly(log 1/7) (e + M~ f]1) -

Finally, combining the above with (9) implies that the objective value of the dynamic program is at
most poly(log 1/v) (¢ + ||M — f]|1). Finally it remains to note that the objective of the dynamic
program (for j = @ + 1) is an upper bound on

I1f = (M%mx%u) +o +M%<c> v%(@)”l

so thus, we can simply output the solution M = M, (1)&4(1) 4+ -+ M, (@) 1T4(e) and we are
guaranteed to have

If = Mllx < poly(log1/7) (e + [|M = fll) -

It is clear that M is a weighted sum of at most kpoly(log 1/-) Gaussians (since for each interval
there are poly(log 1/v) Gaussians and there are at most 50! total intervals). It is clear that all of
the steps run in poly(k/¢) time and we are done. [

Now we can complete the proof of our main theorem, Theorem 1.1.

Proof of Theorem 1.1. We can apply Corollary 2.10 to learn a distribution f such that dry(M, f) <
O(e). We can then apply Lemma C.8 using f. Note that since f is a piecewise polynomial, we
can perform all of the explicit computations with the density function that are used in the proof of
Lemma C.8. It is immediate that the output of Lemma C.8 must satisfy

drv(M, M) < O(e)

so we are done. [ |
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D Well-Conditioned Case: Sparse Fourier Reconstruction

We now move onto our results on sparse Fourier reconstruction. As with GMMs, we will first
consider the well-conditioned case. Here, this means a function that has its Fourier support contained
in one interval that is not too long i.e., all of its Fourier mass is not too spread out. Note that WLOG,
we may assume that this interval is centered at O since otherwise we can multiply by a suitable
exponential to shift the Fourier support to be around 0. We prove the following statement:

Lemma D.1. Ler 0 < € < 0.1 be a parameter and let | > [log 1/¢€| be some parameter. Let M be

a function such that M is supported on [—1,1] and such that || M||1 < 1. Also assume that we have
access to a function f such that

1
[ 1@ - M) < .

-1

There is an algorithm that runs in poly(l) time and outputs a function M such that M is
(O(), O(1))-simple, has Fourier support contained in [—1,1], and

/1 IM(z) — f(2)|2dx < 16€2.
—1

Remark. Note that in this case, we do not need any constraint on the Fourier sparsity of M to
guarantee that the output of our algorithm is O(log 1/¢)-Fourier sparse. Also, unlike our full result,
Theorem 1.3, our output in this case is guaranteed to be a good approximation over the entire
interval (instead of a subinterval).

Our proof will be separated into two parts. The first step will be proving the existence of a function
M of the desired form. The second step will be developing an algorithm to actually compute it.

D.0.1 Existence of a Sparse Approximation

First, we will prove that under the assumptions of Lemma D.1, an approximation M satisfying the
desired properties exists. We will also prove that independent of the problem instance, it suffices to
only consider a fixed set of O(l) distinct frequencies given by the Chebyshev points (with suitable
rescaling).

The proof relies on first taking the Taylor series of an exponential e27¢* and arguing that we only

need to keep the first O(log 1/¢) terms. This essentially lets us represent such an exponential with
the coefficients of its Taylor series, which are (up to rescaling) (1,¢,¢?,...). We then use Corol-
lary F.7 to argue that an arbitary linear combination of such vectors can be replaced with a sparse
combination with similarly sized coefficients.

Lemma D.2. Ler 0 < € < 0.1 be a parameter and let | > [log1/€| be some parameter. Let
to,...,t1p2; be the degree-10%l Chebyshev points. Let M be a function such that M is supported
n [—1,1] and such that || M||1 < 1. Then there is a function

1021
h(I) _ ch€2ﬂi(ltj)z
i=0
where cq, . . ., c192; are complex numbers such that Zlo ! le;| <2001 and

/1 (h(z) — M(:C))2d:v < €2,

-1

Proof. Note that M can be written as M (x f ./\/l )e?™Cd¢. Now consider the Taylor
expansion of

2#11{ Z 27TZ.’,E<

=0
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Note that since —] < ¢ <[, we have

(27i¢)7

> | < e,
j=1021+1 J:
In particular, if we define
(2mix()
g¢(x) = T
4!
7=0
then over the interval z € [—1, 1]
€275 — ge(@)] < (/1) (10)

Next, for each ¢ € [—1,1], by Corollary F.7, we can write the vector
Vip2(€) = wo(C)Vio2i(tol) + - -+ + w102:(C) Va2 (tro2il)
for some real numbers (depending on ¢) wo(¢), . . ., w10,(¢) with Y Jw,;(¢)] < 200!. Thus,
ge(w) = wo () gror () + - + w1021(C) gt o1 (T)

for the same weights. Now note that by (10), for all z € [—1, 1],

102 I
M) = 3 g ( [ Fuic d<) = ‘M(z) - [ FiQaclaac] <21 e/’
Note that
102
/ /\/l Qw; (¢)d¢| < 2001
so by (10), for all z € [-1,1],
1021 ‘ T
> (gea) = e2mietian) ( / M(Qw; <<>d<> < 2000(e/1)”
=0 L
so therefore for all € [—1, 1], we have
10%1
)= el ( / M(Q)w; <)dg> <2021 - (¢/1)?
7=0
and setting
1021
ZeQWz;E(tjl) </ M U}7 dC)
immediately leads to the desired conclusion. ]

D.0.2 Completing the Proof of Lemma D.1

By combining Lemma D.2 and Lemma F.10, we can complete the proof of Lemma D.1.

Proof of Lemma D.1. We can separate f into its real and imaginary parts, say fre, fim and we can
separate M into its real and imaginary parts Mye, Mim. Now consider the Chebyshev points of
degree 1021, say t, . . ., t192;. We will now apply Lemma F.10 where we consider the set of functions

{f1,-- -, fn} = {£cos(2ntox), £sin(2ntox), ..., L cos(2mtig2;x), £ sin(2mt192;2) } .
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The distribution D is the uniform distribution on [—1, 1] and by Lemma D.2, there are coefficients
ay,...,a, > 0withay + -+ a, < O(l) (note we can split the complex coefficients c; into their
real and imaginary parts and then split into positive and negative parts) such that

1

1
[ (al@) = @A) 4+ nfula)?dr <2 [ (Muoo) = (@fale) 4+ anfu(a) P

—1 -1 )
+2/ (fre(x) — Mye(x))?dx < 4é*
-1

and similar for the imaginary part of f. Applying Lemma F.10 to both the real and imaginary part
(after rescaling by 1/(O(1))), adding the results, and rewriting the trigonometric functions using
complex exponentials (note the set {tg,...,t102;} is symmetric around 0 so we can do this) com-
pletes the proof. |

We can slightly extend Lemma D.1 to work even if we do not know the desired accuracy € but only a
lower bound on it. It suffices to run the algorithm for Lemma D.1 and repeatedly decrease the target
accuracy until our algorithm fails to find the optimal accuracy within a constant factor.

Corollary D.3. Let , € be parameters given to us such thatl > [log 1/¢|. Let M be a function such
that M is supported on [—1,1] and || M||1 < 1. Assume that we have access to a function g defined

on [—1,1]. There is an algorithm that runs in poly(l) time and outputs a function M such that M
is (O(1), O(1))-simple, has Fourier support contained in [—1,1], and

/]M@%Jqusm(£+/ﬂﬂm—M@WM)

-1

Proof. For a target accuracy v > € we run the algorithm in Lemma D.1 to get a function /T/l/V ().
We then check whether

/ 1 (M, (@) = f(z)Pdz < 1697
-1

Note that the above can be explicitly computed. If the above check passes, we then take v <— 0.99~.
Taking the smallest v for which the above succeeds, the guarantee from Lemma D.1 ensures that we

have a function ﬂ such that

/Uﬂﬁ%ﬁwwméﬂ%3+/”ﬂ@—M@WM>

-1

It is clear that we run the routine from Lemma D.1 at most O(1) times so we are done. |

E Sparse Fourier Reconstruction: Full Version

In this section, we complete the proof of our main result on sparse Fourier reconstruction, Theorem
1.3. The high-level outline of the proof is similar to the proof of Theorem 1.1. The key lemma that
goes into the proof is stated below. At a high level, the lemma states that if we know roughly where
the Fourier support of the unknown Fourier-sparse signal M is located, then we can successfully
reconstruct it.

Lemma E.1. Assume we are given N, k,e,c with 0 < € < 0.1. Let | = [logkN/(ec)] be some
parameter. Let M be a function that is (k, 1)-simple. Also, assume that we are given a set T C R
of size N such that all of the support of M is within distance 1 of N. Further, assume we are given
access to a function f such that

1
/ If(z) — M(z)|2dx < €.
-1

There is an algorithm that runs in poly(N,k,l,1/c) time and outputs a function M that is
(kpoly(l/c), kpoly(l/c))-simple and

[ 1@ - @R < poly@).

—1+c¢
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The proof of Lemma E.1 will involve localizing the frequencies and then using Corollary D.3 to
reconstruct after localizing. We will do this for poly (V, k, log 1/¢) different localizations (based on

the set T that we are given). We will then select at most O(k) of these localized reconstructions

to add together and output. The intuition behind why we can find such a set of 5(k:) localized
reconstructions and ignore the rest is that M is k-Fourier sparse so localizations that are far away
from the frequencies of M can essentially be ignored.

The localization procedure will involve convolving f by a Gaussian times an exponential (technically
we will convolve by a function that approximates a Gaussian times an exponential). Note that this
is equivalent to multiplying the Fourier transform by a Gaussian multiplier. This will ensure that
frequencies too far away from a certain target frequency will only contribute negligibly and we only
need to worry about reconstructing the frequencies that are close to the target frequency.

E.1 Properties of Localization

In this section, we formalize the localization step and prove several inequalities that will be used
in the proof of Lemma E.1. The way we would like to localize the frequencies is by multiplying
by a Gaussian multiplier in Fourier space since afterwards, we would be able to essentially neglect
any frequencies that are far away from the center of the Gaussian multiplier. This is equivalent
to convolving by a Gaussian times an exponential, i.e. a function of the form G(x)e?™** in real
space. For technical reasons, we will actually define two types of functions, which we call kernels,
that approximate functions of the form G (z)e2™**. The reason that we will need to work with both
is that the first type can be computed efficiently while the second is easier to use in the analysis of
our algorithm.

We begin with a few definitions.

Definition E.2. For a function f : R — C and any | > 0, define f™°") 1o be the function that is
equal to f on [—1,1] and 0 otherwise.

Definition E.3. For parameters p,l, c. we define the function
Kute = (1) (w/c) - e

where Py is as defined in Definition F.9.

Remark. We call functions of the above form truncated polynomial kernels. The fact that such
functions are truncated polynomials will make it easy to explicitly compute convolutions.

Definition E.4. For parameters 1,1, a, we define the function T, ; o as follows. First define
Sia = Mgy (/a)
(recall Definition B.1) and then define
Tt a(®) = S a(@)e™ e

Remark. We call functions of the above form truncated Gaussian kernels. Note that truncated
Gaussian kernels are compactly supported in Fourier space, which will be a convenient property in
the analysis of our algorithm later on.

Note that both Ko ;. and Tg ;2 /. are meant to approximate the Gaussian N (0, c?). The fact that

Ko,1,c approximates N (0, c?) is clear from the definition (and Lemma F.8). To see why Toi,27/c
approximates the Gaussian, note that if in the definition of 7, we did not truncate before taking the
Fourier transform, then we would get exactly N (0, ¢?).

We will now prove several inequalities relating to how convolving with the kernels X and 7T
affect a function. The first set of bounds are an immediate consequence of Lemma E.8.

Claim E.5. Let l,e¢ > 0 be parameters such that | > [log1/e]. Let 0 < ¢ < 1 be some constant.
Then

1Ko.1.c(x) = N(0,¢*)(@)ll < O(el)
1Ko.1.c(x) = N(0,¢*)(@)]I5 < O(le*/c).
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Proof. We know by Lemma F.§ that
[(1/e)Pi(z/c) = N(0,¢*) ()| < €/c

for all x € [—lc,lc]. Thus, since G decays rapidly outside the interval [—Ic, [c] we have
1Ko,1,e(x) = N(0,¢%)(x)]l1 < O(el).

The second inequality follows by a similar argument. |

The next claim formalizes the intuition that K, ; . and 7, ; 2r /. must be close because they both
approximate the same function (the function N (0, c?)e?™ o),

Claim E.6. Let [ be some parameter and let ¢ > 0 be such that | > [log1/€]. Let g be a function
such that ||g||1 < 1. Then for any p, ¢,
||K:,uyl-,0 *g— 7;L,l,27r/c * g”OO < O(Gl) )

where * denotes convolution.

Proof. First, note that it suffices to prove the above for ;1 = 0. Now let G = N (0, c?). By Claim
E.5, we have
[Ko.1.e(z) = G(x)[L < O(el) -

Since ||g]|1 < 1, we know that ||g||cc < 1 and thus for all z,
IKo,1c % g(x) — G xg(x)] < O(el). (11)
Finally, observe that the Fourier transform of G * g is equal to @ﬁ. Note that

G(x) = Mo (an /02 (z) = Mo 1(cz/(27)) .
By construction,
Totansex g = Moy (ca/(27))g

which is equal to G restricted to the interval [—27/c, 271 /c]. Using the fact that G = Mo, (27 /)
decays rapidly outside [—2l /¢, 27l /c], we have that

H%,Z,Qﬂ’/(; *g — G/g\Hl <e.

Thus, |7o,1,2x/c * 9(x) — G * g(x)| < € for all z and combining with (11), we are done. |

E.2 Decoupling

In our full algorithm, we will reconstruct frequency-localized versions of a function independently
for different frequencies 6 that we localize around. We will then combine our localized reconstruc-
tions by adding them. In this section, we prove several inequalities that will allow us to analyze what
happens to our estimation error when we add different localized reconstructions together. Recall that
convolving by a truncated polynomial kernel /C,, ; . or truncated Gaussian kernel 7,,; , is approxi-
mately equivalent to multiplying the Fourier transform by a Gaussian multiplier centered around .
Lemma B.4 implies that adding up evenly spaced Gaussian multipliers approximates the constant
function. Thus, we expect that convolving by an expression of the form > i Kyii,e or > u Til,a
where the sum is over evenly spaced p should roughly recover the original function. The first two
claims here formalize this intuition.

In the first claim, we analyze what happens when we add several localizations obtained by convolv-
ing with various truncated polynomial kernels.

Claim E.7. Let | be some parameter and let 0 < € < 0.1 be such that | > [log1/e€]. Let g be a
function. Let ¢ be some constant. Let S be a set of integer multiples of 2r /(cl). Then

2

o
[ i X K| <@owsh? [ o

nes —(1+lc)
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Proof. Note that I, ; . is supported on the interval [—lc, Ic] so we can restrict g to be supported on
[ (1 +l¢), 1+ lc] and O outside the interval. Define the function

1
Vi) = —— Kile-
(.CC) l\/ﬂ Z .l

pneS

Then

~

1 _
V@)= ——= 3 Korele —p).
(l‘) l\/ﬂ =~ 0,1, (LL' /J')

Next, let G denote the Gaussian G = N (0, ¢?). Recall by Claim E.5, [|Ko1,c(2) — G(z)[[1 < O(el)
50 [ Ko, — Glloo < OC(el). Let

1 N
U(I)—W%G(:r—,u).

Note that since G = My, (27 /c)2, for any z,

|U(2)| = ﬁ %Moxzw/c)z(w —p) < ﬁ #6(2%;@)2 Mo, 2n/e)2(x — ) < 1+e
where the last inequality follows from Lemma B.4. Also Hm — Glloe < O(el) so for all z,
V(@) <14 0(elS)) .
We conclude

1
/1 Vs g(@)Pde < [V * glI3 = [V3l5 < (1+ O(lS)?[[9]13 = (1 + O(elS)*llg13

To complete the proof recall that we restricted g to be supported on [—(1 + l¢), 1 + Ic] and we are
done. |

The next claim is similar to the previous one except we analyze what happens when we add several
localizations obtained by convolving with various truncated Gaussian kernels.

Claim E.8. Let a.l, e be parameters such that 0 < € < 0.1 and | > [log1/€]. Let g be a function
whose Fourier support is contained in a set Sy C R and such that ||g||1 < 1. Let S be a set of
integer multiples of a/l that contains all multiples within a distance | - a of Sy. Then

1
- — Tita* 9llee < 2€.
Hg lm% w,l, g”

Proof. Consider the function

A)=>" ! M, .2 ().

cs 21
For all x € Sy, we claim that
|A(z) — 1| <e.

To see this, note that by Lemma B .4,

1
Y =M, ()~ 1| <0.1e
,LLG(a/l)ZlV 2

for all z. By assumption, the set S contains all integers that are within [a of the set Sy so for any
T e So,

1
Y =M, () <0.1e
poa = )
ue(a/l)Z\S Iv2r
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and we conclude that we must have |A(z) — 1| < e. Next, we claim that if we define

ZCEDY Z}M‘“‘““ (& — p)/a),

then we have for all x,
|B(z) — A(x)] <e.

To see this, first note that My 1 ((x — u)/a) = M,

11,02 (). Next, using Gaussian tail decay, we have
for all x,

B) —A@I < Y =M, <e,
pe(a/l)Z l\/_
|z—p|>la

Thus, we have
B(x) — 1] < 2¢
for x € Sy. Note that by definition,

) = 7= 3 T v 0l@) = 3(e) = 3() Y- =MV (@ = )/a) = (1 = B@)i(w)
pnes

HES

so therefore

Z la*g|\1<2e

and we conclude

1
lg9— =Y Tutaxglloo < 2¢
27 cs

as desired. [ |

The last result in this section will allow us to decouple errors from summing over different localiza-
tions. Note that naively, if we add together n estimates with L2 errors €y, . . . , €y, then the resulting
L? error of the sum could be as large as €; + - - - + ¢,,. If the estimates were “independent" on the
other hand, we would expect the L? error of the sum to only be /€2 + - - + €2. We prove that
when adding together functions that are frequency-localized at different locations, the error essen-
tially matches the latter bound (up to logarithmic factors). This tighter bound will be necessary in
the proof of Lemma E.1.

Note that if we have functions g1, . . ., g, whose Fourier supports are disjoint, then it is immediate
that
2 2 2
lgr +--- +gnllz = llgallz + -+ llgnll2-

However, in our setting, we need to restrict the functions to the interval [—1, 1] first, which causes
the Fourier supports to no longer be disjoint. Through a few additional arguments we are able to
prove an analogous statement for bounding f_ll lg1 + - - - + gn|?. We do pay some additional losses
both in the inequality itself and the bounds of the integral i.e. we need to integrate the individual
functions over a slightly larger interval.

Claim E.9. Let «,l, ¢ be parameters such that « > 1 and I > [logan/e|. Let Ir,...,I, be
intervals of length at least o and assume that for any x € R, at most l of the intervals contain x. Let
g1, ..., gn be functions such that for all j € [n], ||g;||1 < 1 and g is supported on I;. Then

1 ) (14+a™1h) ) (1+a™h) )
/ lg1 + -+ gn]® < poly(l) 65+/ g1 +---+/ lgnl” ] -
-1 “(14a-1) “(14+a-1)

Proof. Consider the Gaussian multiplier M = M, ,-2;-100 for some p € [—1,1]. Now first, we
bound

| M@+ o),
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Define the functions h; = ]\/45] for all 5. Then by Plancherel,

/ M(:c)2|gl(:c)+---+gn(:1c)|2dx:/ |y + - 4 hy|?dx (12)

— 00

On the other hand, note that h; = M % g;. Let J; denote the interval containing all points within
distance at most 10al%° of the interval [;. Let h;» be the function h; restricted to J; (and equal to 0
outside). Recall that the support of g; is contained within ;. Then we claim that

[ = < eftany.

This follows because | M| = N (0, (2ra15°)2) and ||}||; < 1 so for a point z that is distance d away
from the interval I;, we have

(@) < max [M(z — y)| < N(0, (2mal*)*)(d)

Also note that||g;]|1 < 1, implies ||g;j]|cc < 1 s0
17113 = lMg;l15 < M]3 < 1.
Combining the previous two inequalities over all 7, we have
[l1ha -+ hnlla = Iy + - + B ll2] < (e/(an))®
|hai+ -+ hull2+|h)+-+hl |2 <3n
which implies

/ |hi 4 -+ hy|?de < 0.1(6/(an))10+/ |hy + -+ hl|?da. (13)

— 00 — 00
Now note that since not too many of the intervals I; may contain the same point x € R, not too
many of the extended intervals .J; can contain the same point z € R. In particular, at most O(I"°)
of the extended intervals can contain the same point z € R. In other words, each point x € R is in
the support of at most O(I"°) of the A}, ..., h',. Thus, by Cauchy Schwarz,

/ Ih’1+---+h;|230<l70>(/ Ih’1|2+---+/ Ih;|2). (14)

Now we bound
1+a™ 1

/ R < / |2 :/ M ()?|g; (x)*dz < 0-1(6/(an))10+/ M ()?|g; () dx
—00 —00 —00 —(1+a~1)
5)

where the last step holds because ||g;[lcc < 1 and the multiplier M (z) is always at most 1 and
decays rapidly outside the interval [—(1 + a~!),1 + '] since u € [—1,1]. Putting everything
together (12, 13, 14, 15), we get

n 1-‘-0[7l

| M@Pn e gat)ae < poy@) | (e/tan)? + Y | oy M@y (@)
—o00 j=17~ a~

Now summing the above over different multipliers M = M, ,—2;-100 i.e. with p uniformly spaced
on [—1, 1] with spacing a~11=°°, we conclude

1 1
/ |g1(2) + -+ + gn(2)[Pdz < 102/ My o-21-100(2)?]g1 (%) + - - + gn(2)Pda
1 w —1

(14a™h)
< poly(1)e® + poly(1) (Z / My a2i-100(2)?(Jga > + - + |gn|2>>

o J—(1+a-1)
. (1+a™h) ) (1+a™h) )
< poly(l)e” + poly(l) / 91 +---+/ lgnl®) | -
—(14a-1) —(14+a-1)
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E.2.1 Completing the Proof of Lemma E.1

In this section, we will complete the proof of Lemma E.1. First, we need to introduce some notation.
We will carry over all of the notation from the statement of Lemma E.1. We also use the following
conventions:

e Let Sop = {01,...,0;} be the frequencies in the Fourier support of M

* Let v > 0 be parameter to be chosen later and let I’ = [log1/v] (we will ensure 7 is
sufficiently small i.e. v < (ec/(kN))¥ for some sufficiently large absolute constant K )

* Let the function r(x) be defined as r(z) = f(z) — M(x) on the interval [—1,1] and
r(z) = 0 outside the interval.

Recall that the way we will reconstruct the function is by attempting to localize around each of the
points in the given set 7" and reconstructing the localized function using Corollary D.3. We then
find kpoly(I’/c) of these localized reconstructions that we can combine to approximate the entire
function.

In the first claim, we bound the error of our reconstruction using Corollary D.3 for a given localiza-
tion. Recall the two types of kernels, the truncated polynomial kernel and the truncated Gaussian
kernel, defined in Section E.1. Consider the kernels KC,, ;s /> and T, i 2x1/c (Which, recall, are
approximately the same). In the next lemma, we will bound the distance between K, i/ ./ * f and
T 2xt e * M in terms of r(z). The reason we care about these two functions is that the first
is something that we can compute since we are given explicit access to f. On the other hand, the
second is Fourier sparse and has bounded Fourier support so it can be plugged into Corollary D.3
(as the unknown function M).

Claim E.10. For any real number u,

l1—c 00
/ |’Cu,l’,c/l’ * f - 7;&,[',271’['/0 * ~/\/l|2 S pOIY(ZI/C)’YQ + 4/ |]\40,(271'l//c)2 (.I - ﬂ)?($)|2d17 .
+c oo

Proof. Note that since K, ;s ./, is supported on [—c, c],

1—c 1
((Kprepir % £) (@) = (Kpuir ey M) (@) P da < | |(Kpr g % 7) (2)Pda
1

—1+4+c¢

Now the Fourier transform of IC, r ¢y * 718 Koy /v (x — p)7(z) so

1 00
/ |(IC[I,,l,,C/l, * r) (z)]2dx < / 1Ko epur (0 — w)r(x)|?da
-1

‘We deduce that
1—c 1—c
2
/ |K:,u.,l’,c/l’ *f_7:L.,l’,27'rl’/¢:*~/\/l|2 < 2/ ‘IC,u,l’,c/l’ * M _7;,,[/,271'[//0*'/\/1’
—1+4c —14c
w2 [ Koraete - et
< poly(l’/ch2 + 2/ 1Ko ,epv(x — u)?(x)|2d;v

where the last inequality follows from Claim E.6.

Note since r is supported on [—1,1] and ||7]|3 < € < 0.1, we must have ||r|]; < 1 which
then implies ||7]|o < 1. Together with Claim E.5, if we let G = N (0, (c/I’)?) then we have

/ Ko, e/ (@ = p)7(x) Pde < 2/ |G (@ — p)F()*de + 2712 1 Ko cpv — Gll3

— —o0

< poly(l'/e)y* + 2/ | Mo, (2m1jy2 (x — p)7(z) *dec

and combining with the previous inequality, we get the desired result. |
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We are now ready to complete the proof of Lemma E.1.

Proof of Lemma E.1. First, let T’ be the set of integer multiples of 27r/c that are within distance
(100")?/c of the set T'. For all p € T”, do the following. We compute the function f*) = KC,, s ./ *

f. Next we apply Corollary D.3 (with appropriate rescaling) to compute a function A" in poly (I’ /c)
time that has Fourier support in [ — 27l"?/c, pu + 2712 /], is (poly (I /c), poly (I’ /c))-simple and
such that

l1—c 1—c
/ |f(“) _ h(u)|2 <20 <72 +/ |f(“) — T 2m7 jc * ./\/l|2) . (16)

—1+¢ —1+c¢

To see why we can do this, note that
Tyt amtr o * M = My (e — )/ 2l M

is supported on [11 — 2712 /¢, i + 271" /¢]. Also it is clear that ||7Lz';//\c* M1 < M|y < 1.

Now we choose a set U C 7" with |U| < k(10!’)? such that the following quantity is mini-
mized:

1—c
|f(u)|2,

EU:z/l_c Ty /

peu Y —ite per\uU Y 1te

Note that this can be done using a simple greedy procedure. First, we obtain a bound on the value
Ey that we compute. Let Uy be the set of all integer multiples of 27 /c that are within distance
1012 /¢ of Sy (recall that Sy is the Fourier support of M which consist of k points). By assumption,
we know that Uy C T” and it is clear that |Up| < k(101')%. Note that by definition, for any ;1 ¢ U,
the function 7, s 271 /o * M is identically 0. Now using (16), then Claim E.10,

1—c 1—c
EU0§2OZ(72+/ |f<“>—’r#_,l.w/c*M|2>+ > / |fP2

ue€lo —lte pET\U, ¥ ~1te

<80 > <P01Y(l//0)72 +/ | Mo, (2r1r /)2 (2 — u)?(x)IQdfr>
neT! —o0

< [T'[poly(l'/e)* + 80 / F@P S Moo - n)ds
e ue(2m/c)Z

< v+ poly()|r]3.

Note that we used the fact that y is sufficiently small and the tail decay properties of the Gaussian
multipliers in the last step. Thus, we can ensure that the error that we compute satisfies Eyy <
7 + poly(!')||r||3. Now we output the function

—~ 1
M= ——n¥,
Z '\ 2w

pel

It remains to bound the error between M and f. First we apply Claim E.9 to decouple over all
u € T'. Note that R and T 2717 e ¥ M both have Fourier support contained in the inter-
val [u — 2wl /e, + 271" /¢]. For distinct p that are integer multiples of 27 /c, there are at
most O(I’?) intervals that contain any point. Also, note that for all y, ||h(*)||; < poly(/’/c) and

17, l/)g/ﬂ//\c* M|l < 1. Thus, by Claim E.9 (with appropriate rescaling of the functions and the
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interval),

1-2c
/ M — Z l/ l 27rl//c*M

—1+4+2c¢ LET!

< poly(' /)y + poly@) | / Tyt mtge M + Z/ Tovtrmt jo % M2

peU ’—1te pernu e
< poly(t'/e) -+ poly(1) | 3 / s> [
peu / —1te peT\U ¥ ~1te
+poly(l') Y / Tt 2mtr e * M|?
LET! 1+4+c

< poly(I'/e)y + poly(l') | Ev + ) (poly(l’/ Y’ + / | Mo, (2 jey2 (= u)?(af)lzdx)
peT! B
< poly(l'/e)y + poly (I') (Eu + [|r[|3)
< poly(l')€’
where we used that v = (ec/(kN))°™) is sufficiently small and Claim E.10 and the last two in-

equalities follow from the same argument as in the bound for Ey;,. Next, by Claim E.8 (and the
definition of T"), we have that

||M Z ll l’ 27l Jc * MHOO S O( )

per’
so overall, we conclude
1—2¢
/ |IM — M|? < poly(l')e?
—1+4+2¢
from which we immediately deduce

1—2c¢ .
/ IM — f|* < poly(l')e?

—142¢

It is also clear that M is (kpoly(I’/c), kpoly(l’/c))-simple (since it is a sum of at most k(101')?
functions that are (poly(I’/c), poly(I’/c))-simple). Now we are done because I" = O(1). [

Similar to obtaining Corollary D.3 from Lemma D.1, we can extend Lemma E.1 to work even when
we do not know the target accuracy but only a lower bound on it.

Corollary E.11. Assume we are given N, k,e,cwith0 < € < 0.1. Let | = [log kN/(ec)] be some
parameter. Let M be a function that is (k, 1)-simple. Also, assume that we are given a set T C R

of size N such that all of the support of M is within distance 1 of N. Further, assume we are given
access to a function f. There is an algorithm that runs in poly(N, k,l,1/c) time and outputs a

function M that is (kpoly(l/c), kpoly(l/c))-simple and such that
1

l1—c
/ M(2) — f(2)de < € + poly(l)/ |f(z) = M(2)]da.
—1+¢ —1

Proof. This will be the exact same argument as the proof of Corollary D.3. For a target accuracy
€’ > e we run the algorithm in Lemma E.1 to get a function M (x). We then check whether

[ Mot@) = f@)Pds < polv (e

—1+¢

If the check passes, we take €’ < 0.99¢' and repeat the above until we find the smallest € (up to a
constant factor) for which the check passes. The guarantee of Lemma E.1 implies that for this €/, we

can just output M, «(2) and it is guaranteed to satisfy the desired inequality. |
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E.3 Proof of Main Theorem

Using Theorem 2.12 and Corollary E.11, we can prove our main theorem, Theorem 1.3. The main
thing that we need to prove is that the frequencies in the function f’ computed by Theorem 2.12
cover (within distance poly(k, log 1/¢)) all of the frequencies in M. This will then let us use the
frequencies in f’ to construct a set T' of size poly(k,log1/¢) that covers all frequencies in M to
within distance 1 that we can then plug into Corollary E.11. We will need the following technical
lemma from Chen et al. [2016].

Lemma E.12. [Lemma 5.1 in Chen et al. [2016]] For any k-Fourier sparse signal g : R — C,

1
max_|g(x)® < O(k*log® ) / lg(a)Pde.
z€[—1,1] -1

The above lemma roughly says that the mass of a k-Fourier sparse function cannot be too concen-
trated. We now finish the proof of Theorem 1.3.

Proof of Theorem 1.3. We first apply Theorem 2.12 to compute a function f’. such that

1. f'is (poly(k,log1/€), exp(poly(k,log1/€)))- simple

2.
1 1
/ |f’—f|2§0(62+/ |f—M|2) |
1 —1

Let L = (klog1/e)¥ for some sufficiently large absolute constant K. Let v = e~~. Now apply
Claim E.8 on the function f’ with parameters a <~ L,l < L,e < . Let S C LZ be the set of all
integer multiples of L that are within distance L? of the Fourier support of f’. We have

1

1f' = =" Thre * flloo < 21 P/l a7
LA/ 27 ey

Next, we apply Claim E.6 on the function (M — f’). We deduce that for any g,

1K z.2m/m % (M= ) = Typao# (M= [lle O (7L (1P + 1MI1)) - (18)

Finally, by Claim E.7 applied to the function (M — f’) (with parameters ¢ < ~,l < L,c «
(27)/L?), we have
2

! 1 ’ 2
/1 L—\/ﬁ%’CW?”/Lz*(M_” <1 +0("ISs)) /

—1—2n/L

1427 /L

1
M= f? s2/ M= P,
-1

Note that in the last step we use Lemma E.12 and the fact that M — f” is poly(k, log 1/¢)-Fourier
sparse so choosing L = (klog 1/¢)°() sufficiently large ensures that

1+27/L 1

/ |M—f’|2§1.1/ M= f?.
—1-2n/L -1

Define the functions

Z%’L’L2 *M

neSs

1
B = —— K o2 ¥ (M —f
() L\/E% w,L,27 /L * ( I

Alw) = ' = =

Note [|Al|sc, | Bl < |S] (||ff||1 + |\/\7||1). Combining (17, 18) we have

1 1 R P
[ 14@P = [ 1B@)? < poly (L.Is] 11 + 1441

-1 -1
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However, we proved that f_ll |B(z)]? < 2]_11 |M — f')? so choosing L = (klog1/¢)®™M) suffi-

L

ciently large and since v = e~ ~, we conclude

1 1 1
[ a@pses [ m-rpso(es [ wm-rp) (19)
-1 -1 -1
where we are using the guarantee from Theorem 2.12. Now note that the function

1
M = —=3 Tirw*M
Lv2m s

is k-Fourier sparse and has | M|y < 2||M]||; by Lemma B.4. Furthermore, all of its Fourier support
is within distance poly (L) of the Fourier support of f’ (by the construction of the set .S). Thus, we
can apply Corollary E.11 on f’ (where we treat the unknown function as M’) with N = poly(L) =
poly(k,log 1/€) and recover a function M such that

1

1—c . 1
/ M — /P < ¢ + poly(log k/(cc)) / 1= M| = & 4 poly(log /() / |A()?

“lfe -1
— poly(log /(ee) (< + [ 11 M- 1)

where the last step is from (19). Since fil lf'—f*><0O (62 + fil If — /\/l|2), the above implies

—1+c¢
and we are done. [ |

E.4 Implementation of Computations

In the proof of Theorem 1.3, we use the result from Chen et al. [2016] to obtain an approxima-
tion f’ that is written as a sum of poly(k,log1/€) exponentials and has coefficients bounded by
exp(poly(k,log1/¢)). We then perform explicit computations using this function in our algorithm
to eventually compute a sparser approximation with smaller coefficients. Here we briefly explain
why these explicit computations can all be implemented efficiently. Note that all of the functions
that we perform computations on can be written as sums of polynomials multiplied by exponentials
ie.

Pl (:L,)eQWiGlm RS Pn (:L,)e%rwnz (20)
where there are at most poly(k,log 1/¢) terms in the sum, all of the polynomials have degree at
most poly(k,log 1/€) and all of the coefficients are bounded by exp(poly(k,log1/€)). To see this,
note that convolving by a polynomial P(z) truncated to an interval (recall the truncated polynomial
kernel in Definition E.3 ) preserves a function of the form in (20) (only increasing the degrees of
the polynomials by deg(P)). All other computations that we need such as computing the exact
value, adding and multiplying and integrating over some interval can clearly be done explicitly in
poly(k,log 1/¢) time and to exp(poly(k,log1/¢))~! accuracy for functions of the form specified
in (20).

F Basic Tools

In this section, we have a few basic tools that are used repeatedly throughout the paper.

F.1 Chebyshev Polynomials

Here we will introduce several basic results about the Chebyshev polynomials, which have algorith-
mic applications in a wide variety of settings Rivlin [2020], Guruswami and Zuckerman [2016].

Definition F.1 (Chebyshev Polynomials). The Chebyshev Polynomials are a family of polynomials
defined as follows: To(x) = 1,T1(x) = z and forn > 2,

To(x) = 22Ty 1 (x) — Tra(z) .
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Fact F.2. The Chebyshev polynomials satisfy the following property:

T, (cos ) = cosnb.

As an immediate consequence of the above, we have a few additional properties.

Fact F.3. The Chebyshev polynomials satisfy the following properties:
1. T, (x) has degree n and leading coefficient 2"~!
2. Forx € [-1,1], Ty (z) € [-1,1]
3. T, (x) has n zeros all in the interval [—1, 1]

4. There are n + 1 values of x for which T,,(x) = £1, all in the interval [—1, 1]

In light of the previous properties, we make the following definition.

Definition F.4. For an integer n, we define the Chebyshev points of degree n, say to, ..., tn, as the
points in the interval [—1, 1] where the Chebyshev polynomial satisfies T),(t;) = £1. Note that the
Chebyshey points are exactly

(n—1)rw

0
{cos0, cos —,...cos ,COST}.
n

Next, we have a result saying that if we have a bound on the value of a degree-n polynomial at all of
the degree n Chebyshev points, then we can bound the value over the entire interval [—1, 1]. Similar
results are used in Rivlin [2020], Guruswami and Zuckerman [2016], but there does not appear to
be a directly usable reference.

Claim F.5. Let P(z) be a polynomial of degree at most n with real coefficients. Let to, . ..t be
the Chebyshev points of degree n. Assume that |P(t;)| < 1for j =0,1,...,n. Then |P(z)| < 2n
forallz € [-1,1].

Proof. By Lagrange interpolation, we may write

P(to)(,@ - tl) ce (LL' - tn) . P(tn)(,f - to) ce (:v - tn—l)
(tO_tl)"'(tO_tn) (tn_tO)"'(tn_tnfl) '

Thus, it suffices to upper bound the quantity

(x—t1)--(z —tn) (x —to) -+ (x — tn1)

(tO_tl)"'(tO_tn) (tn_tO)"'(tn_tnfl)

on the interval [—1, 1]. Note that by Lagrange interpolation on T, (x), we have

To(to)(x —t1) -+ (x —tp) Tn(tn) (@ —to) - (x — tp—1)
(to —t1)---(to — tn) (tn —to) - (tn —tn—1)

Also note that T,(t;) = (—1)""7 which has the same sign as (t; — to) - (t; — tj_1)(t; —
tj+1) s (tj — tn). Thus,

P(z) =

F(.’L‘)Z + 4

T.(z) =

1 1
(to —t1) -+ (to — tn) (tn —t0) -+ (tn — tn—1)
since the leading coefficient of T}, () is 2" 1. Now we will upper bound
M=max(|(x —t1) - (x—tn)|,-.., |(x —t0) - (x — tn_1)|)
and once we do this, we will have a bound on F'(x) since F'(z) < 2"~ 1 M. Define the polynomial

Qz)=(r—to)(x—t1) - (xz —tn) = % ((:E—l—\/:62—1)"—(96—\/962—1)") )

To see why the last equality is true, note that the RHS has roots at ¢y, . .., ¢,, and is a monic polyno-
mial of degree n + 1 so it must be equal to (z — tg) - - - (x — ¢5,). Now,

Q) %)) < sl

_ on—1
=2 ,

gee ey

xr —tg r—t,

Mzmax(
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where the last step holds by the mean value theorem (because Q(¢;) = 0 for all j). Now note that

sin 0 sin(nd
Q(cos0) = —Tl()

$0
ncosnd  cosBsin(nb)

/ —
Qcost) = o + @z

and from the above it is clear that

n n

n
|Q/(COSH)| < on—1 + on—1 = on—2"

Now we are done because

r?af(l] |P(z)] < F(z) <2"'M < 2n.
re|—1,

It turns out that we can restate the above result in terms of convex hulls of points on the moment
curve. This reformulation is the version that is useful in our algorithms.

Definition F.6. For a real number x, we define the moment vector V,,(z) = (1,z,...,z").
Corollary F.7. Lettg,t1,. .. ,t, be the Chebyshev points of degree n. Then for any x € [—1,1], the

point V,,(x) is contained in the convex hull of the points

{£2nV,(t0), . - ., £20 V0 (t0) } -

Proof. Assume for the sake of contradiction that the above is not true. Then there must be a separat-
ing hyperplane. Assume that this hyperplane is given by a - x = b where a is a vector and b is a real
number. Now WLOG b > 0 and we must have

a-Vp(z)>b

b
Vn(t)) <— Vj

@ Valty)] < 5= i
However, applying Claim E.5 with P(x) = w gives a contradiction. Thus, no separating
hyperplane can exist and we are done. |

F.2 Approximating a Gaussian with a Polynomial

We will also need to approximate Gaussians with polynomials. This is a somewhat standard result
which we state below.

Lemma F.8. Let G = N(0,1) be the standard Gaussian. Let | be some parameter. Then we can
compute a polynomial P(x) of degree (101)? such that for all x € [—2, 2],

|G(x) — P(x)| < e .

Proof. Write

e (e $ (e

e 2 =
| M|
) m! ) 2mm,
Now define
(101)® 9
P =
€ mZ:jO S



For x € [—21, 2], we have

0 (_1)mx2m x (2Z)Qm & (2[)2 m
G(z) — P(z)| < | < <
| (x) (I)| B m—(%%l-l 2mml B m:%l-l—l 2mml m:%l-l—l 2m/3
> 1
< D gmse

In light of the above, we use the following notation.

Definition F.9. We will use P;(x) to denote the polynomial computed in Lemma F.8 for parameter
l. Note that Py is a polynomial of degree (101)? and for G = N(0,1), we have

G(z) = Py(z)| < e
Sor x € [—21,2l].
F.3 Linear Regression

Recall that at the core of the problems we are studying, we are given some function f and want to

approximate it as a weighted sum a4 f1 + - - - + a,, f,, of some functions f1,..., f,, € F for some
family of functions F. The result below allows us to solve the problem of computing the coefficients
if we already know the components f1, ..., f, that we want to use. The precise technical statement
is slightly more complicated in order to incorporate the various types of additional constraints that
we may want to impose on the coefficients aq, . . ., an,.

Lemma F.10. Let D be a distribution on R that we are given. Also assume that we are given
Sfunctions f, fi,..., fn,9,91,--.,9n : R — R. Assume that there are nonnegative coefficients
a1, ...,Qn Suchthata, + - -+ a, <1 and

/ (f(x)_alfl(x)_" —anfn(ac))2D(x)dx+/ (g(‘r)_algl(x)_" -—angn(l'))Q'D(:E)d,’E < 62
Sfor some parameter ¢ > 0. Then there is an algorithm that runs in poly (n, log 1/¢) time and outputs
nonnegative coefficients by, . .., by, such thatby + --- + b, < 1 and

/ (f (@) =brfr(x)—-- ~—bnfn(x))29($)d$+/ (9(2)=b1g1(x) =+ -~bngn(2))*D(z)dzx < 2¢*.
Proof. Letv = (1,bq,...,b,). Note that we can write

/ (f (@) =brfi(x)— ~—bnfn(x))29($)d$+/ (9(2)=brg1(x)— - -~bugn(2))*D(z)dz = v" Mv

where M is a matrix whose entries are [~ (f(z)f;(z) + g(x)g;(x)) D(x)dz in the first row and

column and the other entries are [*_ (fi(z)f;(z) + gi(x)g;(x)) D(x)dx. Since all of these func-

tions are given to us, we can explicitly compute M. Also note that clearly M is positive semidefinite.
Thus, we can compute its positive semidefinite square root, say /N. Now

oI Mo = HNUH%

so it remains to solve min, || Nv||3 which is a convex optimization problem that we can solve effi-
ciently (the size of the problem is poly(n)). |
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