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Abstract

The mean of an unknown variance-o2 distribution f can be estimated from n samples with vari-

ance %2 and nearly corresponding subgaussian rate. When f is known up to translation, this can
be improved asymptotically to %, where 7 is the Fisher information of the distribution. Such an
improvement is not possible for general unknown f, but Stone (1975) showed that this asymptotic
convergence is possible if f is symmetric about its mean. Stone’s bound is asymptotic, however: the
n required for convergence depends in an unspecified way on the distribution f and failure proba-
bility d. In this paper we give finite-sample guarantees for symmetric mean estimation in terms of
Fisher information. For every f,n,d with n > log %, we get convergence close to a subgaussian
with variance T%,n where Z, is the r-smoothed Fisher information with smoothing radius r that
decays polynomially in n. Such a bound essentially matches the finite-sample guarantees in the
known- f setting.

Keywords: Cramér-Rao; Fisher Information; Kernel Density Estimation

1. Introduction

Mean estimation is a fundamental problem in statistics. For a distribution with variance o2, the
empirical mean over n samples has variance 7~ and enjoys central limit behavior, asymptotically

yielding error o4/2log %/ n with failure probability §. Substantial work Catoni (2012); Devroye
et al. (2016); Lee and Valiant (2022b) has led to an estimator with a corresponding finite-sample
guarantee, achieving the same error up to a 1 + o(1) factor.

On the other hand, consider the related problem of location estimation: if we know the exact
shape of the distribution, except for an unknown translation parameter, the (asymptotic) estimation
accuracy is characterized by the Fisher information. More formally, suppose = ~ f*(x) = f(z—\)
for some known f but some unknown parameter A\. The Fisher information of f is defined as
T := E,~s[s(x)?) where s(x) is the “score” s(z) := f'(z)/ f(x). The maximum likelihood estimate
(MLE) is asymptotically normal with variance %, which is at most %2; and asymptotically, the
standard Cramér-Rao bound Cramér et al. (1946); Rao (1945) shows that this is optimal.

For example, the Laplace distribution has Fisher information %, and the MLE for the Laplace is
the empirical median. Thus, for the Laplace, the empirical median has half the asymptotic variance
of the empirical mean, so it needs half as many samples to achieve the same accuracy. The Fisher
information can sometimes be much larger than 1/0%: consider Figure 2(b), a 50-50 mixture of two
Gaussians 1N (u1,07) + 2 N(u2,03) with means ji1, o € [—1,1] and variances 03 > 1 > o7.
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Figure 1: Example distributions
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(a) The Laplace distribution has twice the  (b) When estimating a mixture of a wide and

Fisher information of a Gaussian with the narrow Gaussian, it is easier to estimate the
same variance, so it can be estimated with mean of the narrow Gaussian. When the
asymptotically half the variance. distribution is known up to location, esti-

mating this mean suffices.

This has variance ©(c3) and Fisher information @(%) Thus, the empirical mean has accuracy pro-

portional to the larger standard deviation, while the MLE has accuracy proportional to the smaller
standard deviation. In summary, for a known f at an unknown offset y, one can achieve an accuracy
based on Fisher information, which is never worse than the generic o>-dependence but can be much
better.

This poses a natural question: can we get Fisher-information—style improvements for unknown
f? Unfortunately, the answer is no. In the mixture of Gaussians example of Figure 2(b), in the
known-distribution case we are given ps — py so it suffices to estimate ;. This can be done

2
with variance @(%) In the unknown-distribution case we need both p; and po, and estimating pio

2
induces variance @(%) In fact, recent work has shown (Anonymous, 2023) that the variance-based
subgaussian error bounds are essentially instance-optimal: for every distribution p of variance o2,

and any n,§ with n > log %, there exists a distribution ¢ of variance ©(c?) where |p, — jiq|=

Q(o4/log % /n), yet p and q are not distinguishable using n samples with probability 1 — ¢.

In this paper, we consider a restriction that allows for the Fisher information benefit in mean
estimation: symmetry. We give an estimator that, for every symmetric distribution f, estimates its
mean with an accuracy related to Fisher information.

Smoothed Fisher information. To state our results, we need the notion of smoothed Fisher infor-
mation. One issue with the aforementioned Fisher information results is that they are asymptotic:
the n required for convergence depends on the distribution in a possibly arbitrary way. As one sim-
ple example, if f(x) = (1 —e)N(0,1) + €dp, the Fisher information is infinite (if we see the same
real-valued sample twice, that is the exact mean) but with fewer than 1/& samples we probably only
see the N (0, 1) samples; here the best estimator is the empirical mean, with error N'(0, 1). Thus, for
finite n, one cannot hope for accuracy approaching the true inverse Fisher information of a general
distribution.
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Figure 2: Gaussian + Sawtooth
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(a) In the “Gaussian+sawtooth” example, we  (b) The smoothed Fisher information has a

add tall but narrow “teeth” to a standard phase transition, from a large value when r
Gaussian. Smoothing by radius larger than is small, to the standard Gaussian’s 1 when
the width returns the distribution to nearly r is larger than the tooth width.

Gaussian.

Recent work by Gupta et al. (2022, 2023) has given finite-n bounds for the known-distribution
case in terms of the “smoothed Fisher information.” For a distribution f, the r-smoothed Fisher
information Z,. is the Fisher information of f convolved with a Gaussian of variance r2. In these
results, 7 — 0 as n — oo, capturing the asymptotic behavior but giving bounds that still apply when
f and n vary together.

Figure 2 shows an example based on adding tall but narrow “teeth” to a standard Gaussian.
These teeth are useful for alignment within the the correct tooth, but not very useful for alignment
errors that are integer multiples of the tooth width. As a result, if the tooth width is w, the optimal
estimator exhibits a phase transition in its variance, with about % variance for n < ﬁ and %
variance for n > ﬁ (see Gupta et al. (2022)). Such a phase transition is captured by the smoothed
Fisher information, which transitions at r ~ w.

Our result. Our main theorem is the following:

1
Theorem 1 Letn = (bﬁ)fls < 1, and let log% < n/C for sufficiently large constant C' > 1. Let

n
[* be an arbitrary symmetric distribution with variance o and mean 1. For no < r < o, we have

with probability 1 — 6.

For “nice” distributions like the Laplace, 1/Z, ~ 1/Z + O(r?), so Theorem 1 gives an error

- log % . . L I
bound within (1 + O((%)l/ 13)) of the instance-optimal Cramér-Rao bound. For other distribu-
tions, like the Gaussian+sawtooth example of Figure 2, 7, exhibits a phase transition and the error
does not approach Z until n grows larger than some distribution-dependent quantity; in the sawtooth
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example, n/log + must be at least O(1/w'3). As discussed above, this is qualitatively correct but
with a suboptimal polynomial.

This theorem has the same form as Gupta et al. (2023), except our theorem applies to unknown
symmetric f* while theirs applies to known, possibly asymmetric f*. The differences are (I) their &

. . log 1 . . . .
is a better polynomial, C' (%)1/ 10 and (1) their theorem sets 7 in terms of the interquartile range
instead of standard deviation, and so applies to infinite-variance distributions.

Since I% < o2 +r2, for appropriately chosen r our bound is never more than a (1+O(e))-factor
worse than the subgaussian tail with variance %2 This is comparable to the results of Catoni (2012),

. . . log + .
although with a (slightly) weaker convergence rate (Catoni has rate ¢ = %). However, since

Theorem 1 depends on the Fisher information, it can be much better: for example, it gives a factor
min(o?,02) )

of 2 — O(e) improvement when estimating a Laplace distribution, and variance © ( -

rather than © (M) when f is a Gaussian mixture %(N(,u, 0%) + N(pu, a%)).

Theorem 1 assumes that we are given 7; to choose r in general, we would want a (constant-
factor) estimate of o, which can be done if f* has bounded kurtosis. Avoiding this dependence is
an interesting open question.

Our estimator is based on using a small fraction of samples to construct a kernel density estimate
(KDE) of f, then finding a variant of the maximum likelihood estimate (MLE). A similar approach
was used in Stone (1975) to get an asymptotic bound in terms of Z; our contribution is an effective
bound for finite n that applies to any distribution,as well as high-probability bounds.

2. Related Work

One dimensional mean estimation is one of the most fundamental problems in statistics. Under the
assumption of finite variance, the celebrated Central Limit Theorem states that the distribution of
the sample mean asymptotically convergences to a Gaussian with variance o2 /n. For finite-sample
performance, Nemirovsky and Yudin (1983); Jerrum et al. (1986); Alon et al. (1999) independently
invented the Median-of-Means estimator, which achieves the same subgaussian concentration up to
a constant factor. A decade ago, the seminal work of Catoni (2012) initiated the search for a finite-
sample subgaussian estimator with a tight multiplicative constant. Subsequent improvements by
Devroye et al. (2016) and Lee and Valiant (2022b) showed how to construct a subgaussian estimator
tight up to a 1 + o(1) multiplicative factor.

This work, by contrast, assumes symmetry of the distribution about its mean. Stone (1975)
showed that asymptotically, the performance of mean estimation for symmetric distributions is con-
trolled by the Fisher information instead of the variance. Our approach is inspired by that of Stone:
construct a kernel density estimate (KDE) of the underlying distribution, and perform maximum
likelihood estimation (MLE) based on the KDE. On the other hand, our bounds are explicit finite-
sample bounds, and characterize the performance in terms of smoothed Fisher information, with a
smoothing radius r that vanishes as n/log % — 00.

Fisher information also characterizes the asymptotic error in the closely-related problem of
location estimation—a parametric variant of mean estimation—under the much stronger assumption
that we know the shape of the entire distribution up to some unknown translation van der Vaart
(2000). The recent works by Gupta et al. (2022; 2023) developed a finite-sample theory of location
estimation with error in terms of the smoothed Fisher information, up to a 1 + o(1) factor. Our
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algorithm also draws from the techniques in this line of work. In particular, instead of finding
the maximum of the empirical log-likelihood function, they perform a single step of Newton’s
method to approximate a root of the derivative. This modification both simplifies the algorithmic
implementation and yields analysis advantages. Our algorithm and analysis crucially leverage the
same simplified view of the MLE.

The statistics and computer science communities have also been actively studying the high-
dimensional mean estimation problem. Lugosi and Mendelson (2019) proposed the first subgaus-
sian high-dimensional mean estimator up to a multiplicative constant, but with exponential time.
Hopkins (2020) and Cherapanamjeri et al. (2019) later improved the result to take quadratic time.
A tight constant factor was achieved by Lee and Valiant (2022a) in the “very high-dimensional”
regime, but it remains an open problem to achieve a subgaussian estimator with tight constants in
general.

Recent years have seen a surge of interest in using maximum likelihood in theoretical computer
science, as a generic algorithm that can give efficient guarantees. Such papers include, for example,
profile maximum likelihood for distribution testing and functional estimation Acharya et al. (2011,
2017); Hao and Orlitsky (2019); Pavlichin et al. (2019); Charikar et al. (2019); Anari et al. (2020);
space-efficient streaming algorithms Pettie and Wang (2021); and other statistical estimation prob-
lems Daskalakis et al. (2018); Vinayak et al. (2019); Awasthi et al. (2022).

The result of this work has an “instance optimal” flavor: for each distribution, the error bounds
are phrased in terms of the (smoothed) Fisher information. The Cramér-Rao bound shows that,
even if we knew the distribution shape, we cannot hope to do better than the Fisher information
bounds. Instance optimality and related notions have also been studied in the context of other
statistical problems, for example, identity testing Valiant and Valiant (2017), learning discrete dis-
tributions Valiant and Valiant (2016), mean estimation without symmetry Anonymous (2023) and
differentially-private mean estimation Asi and Duchi (2020a,b); Huang et al. (2021).

3. Proof Sketch

In this section we give a very high-level overview of our proof approach; for a more detailed quan-
titative overview, see Section 4. Here, we will describe how to use (1 + O(n))n samples to get

accuracy (1 + O(n))\/ 21(:?% with probability 1 — 4, for n = (log %/ n)/13; rescaling parameters
gives the result.

Our algorithm proceeds in two phases. In the first phase, we use a small number of samples
(namely nn) to produce an initial estimate pq of u, and an approximation f, to f.. Since f is
symmetric, we can use the median of pairwise means estimator Minton and Price (2014): p; =
median;e,, /2] m%m This has subgaussian tails corresponding to the variance of f:

2
o2log %
nn

e:=p1 — p satisfies |g]<

with probability 1 — 4, for every 6 > 0. In the second stage, we want to refine this estimate to

2
(L+0(n))y/ lzizf error, which is a small polynomial factor better (by at least /7, but perhaps even

better, like (—21)%!). We do so with, essentially, one step of Newton’s method.
log 5
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Background: known distribution case. Suppose we knew the distribution of f,., except for the
location shift. We consider centering the distribution at 1y = p + €, i.e. define f,(z) = f.(z — ¢),
in order to estimate €. To do so, take the score function

Sp(x) := M

which satisfies s,(z + ¢) = s,(z), where s, is the score function of f. Therefore, by standard
properties of the score function,

E [5-(z+¢)]=0

x~ fr
E [-5(z+¢e)]= E [5(z+e)=1.
z~ fr z~ fr

Since we know 3., we can take our n samples z;, add fresh independent noise w; ~ N (0, 7?) to get
x; + w; ~ fr, and compute the empirical average

" 1 <&
E[sy(z; +w;)] = — Z Sr(i + w;)
=1

3

One can show that this concentrates, so by a Taylor approximation

B (e +wi)l~ E [5:(2)]~ E [B(e+e)—ed(e+e)]=—¢ E [f(e+e)]=cL (1)

z~ fr z~ fr z~ fr

Thus we can estimate y as
= — LR[S (2 4 wi)] & — e = p.

The new estimate /1 has error only from the two approximations in (1): (I) how well the empirical
average score concentrates to the true average, and (II) the Taylor approximation.

At e = 0, error (II) is zero and error (I) has variance 1 Var(s,(z)) = Z=. Since Ji rescales by
Z.7%, this means 71 has variance I at e = O—precisely the Cramér-Rao bound we want to achieve.
It was shown by Gupta et al. (2022) that the same bound holds to within a 1 + o(1) factor as long as
¢ is small relative to r (namely, |e|< r21/Z,), and that the error satisfies a subgaussian tail bound
matching this variance.

Our setting: unknown distribution case. The above algorithm for the known-distribution case
uses knowledge of the distribution in two ways: to compute s, and to estimate Z, to rescale it. But
what happens if we use some function g(z) other than the score? If g is antisymmetric about y1,
we still have E, ¢, [g(z 4 €)] = 0, and so

A

Elg(zi +wi)] = E [g(z)]~ E [g(z+¢)—eg'(z)] =—¢ E [¢'(2)] 2
foT !L‘Nfr INfr

If g is reasonably smooth and ¢ is small relative to r, the Taylor approximation will be quite good,

in which case

= Eenplg) v
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is a low-bias estimator of . For small €, we expect this estimator to have variance close to the
variance at € = 0, which is

~ L EL [P (y)]
V) S W)

One can show that this variance is at least %, with minimum achieved when g is the score
T

function s, (z) = ;ﬁ Ei;, matching the Cramér-Rao bound; see Proposition 2 at the end of the sec-

“

tion. But this argument is fairly robust: we just need g(x) to be an antisymmetric function that
approximates s, well under these two expectations, and that is robust to perturbations € < r.

Our algorithm then is: using our initial set of nn samples in the first stage, we compute the
kernel density estimate (KDE)

fo@) =;g¢(“”>

where ¢(t) is the Gaussian density ¢(t) = \/%e_tz/ 2. This has corresponding score function
7 e

sr(x) = % We first clip the score function to have magnitude at most 7' ~ lig", and then
r(x

antisymmetrize this score function about z; by just copying the right side over: setting 5, (z) =

58P 244y — ) for & < yuy. This produces the antisymmetric function ;Y™ we use as ¢ in the above

proof outline.

The final step in our algorithm is that, in order to estimate our target via (3), we need to ap-
proximate .z [ (z)]. Since 8°¥™ is close to the true score s, (z), this value is close (within
1+ O(n)) to Z,. Thus, we can just make an estimate fr of Z,. using the distribution ﬁ

Our sources of error are the following: (I) the empirical concentration to the expectation of
$%Y™ (z); (II) the Taylor approximation in (2); (IIT) the increase in variance (4) due to s°Y™ not
being the exact score; and (IV) error from approximating ...y, [§Sym/ (x)] by 7. in (3).

Unlike in the known-distribution case, clipping is necessary for bounding error (I). The true
score concentrates in expectation because s,(x) is subgamma over = ~ f,. However, 5,(z) may
not be so concentrated. Consider the example f(z) = (1 — 2)N(0,1) + %5_\/5 + %5\/5. In

1
it is likely that the large points will not appear for thg KDE but will appear exactly once for the
second stage. The KDE then gives them large scores (about y/n/r), leading to excessive final error
(@(ﬁ) not @(%)). Once the scores are clipped, however, we can bound the error (I) with high

this example, x ~ f is usually constant but has a ©(=) chance of being quite large; in this case,

probability via Bernstein’s inequality. The clipping threshold T is large enough to have negligible
effect on the expectations (III-IV); since the true score is subgaussian, with high probability it is not
clipped. Specifically, in the Gaussian + Symmetric Dirac Deltas example above , the “excess error”
in the above constant probability event is now O(y/lognn/(rn)). Recalling that r ~ 1/n/'3 in
Theorem 1, the excess error after clipping is < O(1/+/n).

Error (II) is bounded when ¢ is small in a similar manner to previous work in the known dis-
tribution case. For errors (III) and (IV), we just need to show that, with high probability, our KDE
fr =~ f and 5, =~ s, in different metrics but all in expectation over f.

Comparison to Stone (1975). Our approach, of taking an initial estimate and KDE and refining it
with one Newton step, is similar to Stone (1975). The main difference is that our work needs more
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careful bounds: Stone (1975) shows convergence in probability to N (0, nI) which requires fixing
the distribution f and failure probability § before sending n — oo. By separating the distribution
dependence into Z,., we can express and prove bounds for any f,n, d.

We end this section with a short proof relating (4) to the score and Fisher information.

Proposition 2 For every antisymmetric function g that is continuously differentiable and whose
derivative g’ is integrable under f,, we have

Enl@)] _ 1
Epld)P = T,

with equality achieved when g(y) = s.(y) = f1(v)/ fr(y)

Proof First, observe that by integration by parts, we have

/ 1 )6 W) dy = [f:(y / 1 w)aly) dy = — /R £ w)a(y) dy

where the last equality is by the symmetry of f and antisymmetry of g. Furthermore,

[ #wat)dy - }”8 () 2(0) dy = Els (0)g )]

which means

}L'Er[g’(y)]2 = ;1:3;[sr(y)9(y)]2 < ;Er[sr(yf] Iﬁ[g(y)]2 =7, JE%[g(y)]2

by Cauchy-Schwarz, with equality achieved when g(y) = s,(y). [

4. Key Steps in Proof
Here, we highlight the key steps of our proof. For the full proofs, see the Appendix.

Notation. Let f* be an arbitrary symmetric distribution with mean y and variance o2, and let f,

be the r-smoothed version of f*. Let s, be the score function of f,, so that s,(z) = }c’: E;g Let
I, = Eyny, [sr(2)?] = — Eqgny, [s).(2)] be the Fisher information of f;..

Let w, be the density function of A/(0,72). Then, the Kernel Density Estimate (KDE) fr from
N samples Y7, ... Yy ~ f*is given by

1 N
=+ D wr(z —Yi) )

i=1
It has score function s, with 5,.(z) = }ig ; Let 5 be the clipped KDE score from N samples

with associated failure probability J, given by
. 2 N
5P (1) = sign(5,(x)) - min (]fs}(w)], —,|log 1) (6)
r log 5

8
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Define the symmetrized clipped KDE score 57" from N samples, symmetrized around 7, as

li
~sym _ gﬁlp(w) x>y 7
57" (:Z:) - Acllp ( )
-5 "2y —x) <y

In what follows, we first analyze the clipped KDE score (Section 4.1), before showing that
symmetrizing it at a u + ¢ for small |e| does not add too much error (Section 4.2). Using similar
techniques, we prove that Z, can be computed directly from the KDE (Section 4.3). Section 4.4 then
analyzes the Newton step of the estimation, and finally Section 4.5 assembles all the guarantees into
Lemma 10, from which our main result Theorem 1 follows as a corollary.

4.1. Clipped KDE Score

We first show that the clipped KDE score ST P approximates the true score s,. in an /5 sense:

Lemma 3 (Clipped KDE score error) Let 55 be the clipped Kernel Density estimate from N
samples, defined in (9). Let v > C' be a parameter, for large enough constant C' > 1. Then for any

5/12,

6+5
r < o and % > (7 ) for B > 0, with probability 1 — 9, we have that,
B

r

E [ (2) = s:(2)*] £

x~ fr

Z
Y

This holds even for asymmetric f* and f,.

Proof Sketch We refer to the radius to, region around the true mean of f * as the “typical region”,
and to the region with density at least « = t% as the “large density region”. We break up the expec-
tation above into 3 parts: (I) the typical, large density region, (II) the typical, small density region,
and (III) the atypical region. We then bound the expectation in each of these regions individually.
To bound the expectatlon in regions (II) and (III), observe that both regions (II) and (III) have

total probability at most O ( ) For our clipping threshold, we show that the expectation of ;. & P(x)?
and s, on a region with this probability is bounded by O <7)

For region (I), we employ a binning argument. We first show that if we fix x with f,.(z) > «,
then, for small enough ¢ and for all |(|< ||, with probability 1 —4, 5, (z+() approximates s, (x+()
up to error depending on ¢, d, « and N. That is, our KDE score approximates the true score well
within bins of size ¢ with probability 1 — §. Then, by union bounding over O (t‘”) bins, for

appropriately chosen ¢, we show that, with probability 1—4 for all z in region (I), |’c 1p( )—sr(2)|S
\/ IW’ so that the expectation of (AC 1p(alt) — 5,())? in region (I) is bounded by O (%)
Putting our bounds together then gives the claim.

4.2. Symmetrization

This section shows that 5, symmetrized at i 4 ¢ for small € has mean ~ ¢Z, and variance ~ Z,.

~sym

Lemma 4 (Symmetrized Clipped KDE score variance) Lets;  be the symmetrized clipped Ker-
nel Density Estimate score from N samples, symmetrized around p + € for |e|< r/60, as defined
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in (12). Let v > C be a parameter for large enough constant C. Then for any r < o and
5 6+
N> (ﬁ) for B> 0, if |g|< r? %, with probability 1 — 6,

T

x~ fr

so that by the previous Lemma 3, it’s bounded by O (%) Then, we can show the claim using the
triangle inequality in /. |

The Taylor approximation (2) leads to:

Lemma 5 (Symmetrized Clipped KDE score mean) Let 5" be the symmetrized clipped Kernel
Density Estimate score from N samples, symmetrized around | + ¢ for |e|< r/60, as defined

in (12). Let v > C be a parameter for large enough constant C. Then for any r < o and
6+3
N> (&) for B >0, if |e|< r? % with probability 1 — 6,

log 5 r

T,

™

E [8"(z)] — €Z,

r
T~ fr

S

3

4.3. Estimating 7,

To perform a step of Newton’s method, we need an estimate of the Fisher information Z,.. We show

that Z, = E,..7 [57™ (x)?] is a good estimate whenever 5" satisfies the conditions above.

Lemma 6 (Smoothed Fisher information Estimation) Let v > C for large constant C > 1 be a
parameter. Suppose we have a function s, that satisfies forr < o

~ 21
B s -1 5

and that |5, (z)|< % log N+ for all x. Let fr be the kernel density estimate for f, from N

log%
samples, as defined in (8). Then, for 10271 > (75/12%)6—1—/5 for some small constant 8 > 0, with
B
probability 1 — §, we have
7,
E [5.(x)%] —Z,| S =
xNﬁ[ =% NG

Proof Sketch We have
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As in the proof of Lemma 3, we again break up the integral above into 3 parts and bound each part
separately by O (%) . Finally, we make use of our assumption that E,. s, [5,(x)?] =~ Z, along with
our bound on the integral to show the claim. |

To conclude, we have with high probability (1 — g) that our KDE satisfies the following:

Property 7 (KDE Estimation Properties) Let f, be the r-smoothed version of symmetric distri-

bution f* in Algorithm 1, with Fisher information L. For parameters v > C' for some sufficiently
large constant C and &, 37" satisfies that for symmetrization point ji1 = ji + €,

7z 7
E @)L <Z wa | B e -z]s T
-INfT W fo’r" \/’7

and |57 (z)|< 2 [log Elc?g : for all x. Furthermore, the Fisher information estimate I, satisfies

Iy
Vel

7. -1,

S

4.4. Local Estimation

We then show that Property 7 implies that Algorithm 1, which does one approximate Newton step,
gets high accuracy.

Algorithm 1 Local Estimation

Input Parameters:

* n samples x1,...,x, ~ f*, the symmetrized and clipped KDE score function 5", sym-

metrization point p1, Fisher information estimate Z,

1. For each sample z;, compute a perturbed sample z = x; + N (0, r2) where all the Gaussian
noise are drawn independently across all the samples.

2. Compute é = Tln S 8 (2h). Return i = py — &,

Lemma 8 (Local Estimation) In Algorithm 1, let f, be the r-smoothed version of symmetric dis-
tribution f*, with score function s, and Fisher information .. Suppose for parameters v, &, and
symmetrized clipped KDE score $™ symmetrized around 1, Property 7 is satisfied. Then, with
probability 1 — 6, the output [i of Algorithm 1 satisfies

R 1 ZIOg% \/ log ¢log % 10g% €
lp—pl < (14+0|— +0 . +0 | —
Nai nZ, rZ, n Nai

Proof Sketch We bound i — 11 using (2) for g(x) = 5" (x). We apply Bernstein’s inequality to
concentrate E,.f, [ (x)]. The first term in our bound is the variance term and the second is the
exponential term. The final term in our error bound comes from the difference between E[3;"™" (z)]

and €Z, bounded by Property 7. |

11



GUPTA LEE PRICE

4.5. Global Estimation

In order to perform our final estimation, we compute an initial estimate p; of u, and our KDE
. with associated symmetrized clipped score 3™ around 41, along with our Fisher information
estimate z«. We combine these with our Local Estimation algorithm to obtain our final estimate 7.
Lemma 10 shows our formal guarantee on the performance of our final estimate /i. Then,

For our initial estimate w1, we make use of the median of pairwise means estimator for sym-

metric distributions, implied by Minton and Price (2014).

Lemma 9 (Median of pairwise means estimator) Let X1, Xo, ..., X, be drawn from a symmet-
ric distribution with mean . and variance o. For every constant C1 > 0 there exists a constant Co
such that [i := median;cf, /) M satisfies

log 2
1 — pl< Coo - \/%

with probability 1 — 6, for all § with log% < Cin.

Algorithm 2 Global Estimation

Input parameters:

* Failure probability §, Samples z1,...,x, ~ f*, smoothing parameter r, approximation pa-
rameter £ > 0.

1. First, use the first n/{ samples to compute an initial estimate ;1 of the mean p by using the
Median-of-pairwise-means estimator in Lemma 9.

2. Use the next n/{ samples to compute the kernel density estimate ﬁ of f. (as defined in
(8)), along with the associated symmeterized, clipped KDE score 5" (as defined in (12)),
clipped at = m and symmetrized around the initial estimate ;. Compute the Fisher

s

information estimate Z, = E__ + [ (2)?].

3. Run Algorithm 1 using the remaining n — 2?" samples, and return the final estimate /i.

Lemma 10 (Global Estimation) Ler & > C for large enough constant C > 3 be a parameter, and
2/5—« 6+«
suppose £ < v < <£107;§l) for constant o > 0. Foranyr < o and T > ¢ ( 112 ) ,
B
with probability 1 — §, Algorithm 2 outputs an estimate [i with

1 1 2log 2 o tlog &
i — < 1+O<>+O<)> S +Oo|—— 5
i ( v ¢))\ . e
Proof Sketch Combining Lemmas 9, 5, 4, 6, we know that 3" () and fr computed in Steps 1 and
2 satisfy Property 7 with high probability. Invoking Lemma 8 on Step 3 yields the result. |

Theorem 1 follows by setting v = % &= and calculation.

12
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Appendix A. Definitions

Let f* be an arbitrary symmetric distribution with mean y and variance o2, and let f,. be the r-
smoothed version of f* with variance 02 = o2 + r2. Let s, be the score function of f,, so that

sp(x) = % LetZ, = By g, [s(2)?] = — Eyny, [s).(2)] be the Fisher information of f;..

Let w, be the density function of N(0,72). We recall the definition of the Kernel Density
Estimate (KDE) f, from N samples Y7, ... Yy ~ f*, from (5).

N
~ 1
frz) = & > we(z —Y5) (®)
i=1
It has score function s, with s, () = ff#j;) We recall the definition of 5P, the clipped KDE score

from N samples with associated failure probability d, from (6).
i ~ . ~ 2 N
55 () = sign(3, («)) - min ( [5,(2)], =, log — ©)
r log 5

We also recall the definition of 5,°™", the symmetrized clipped KDE score from N samples, sym-
metrized around vy, from (7).

spmia) = {0 i (10)
' 52y —=) <y
Appendix B. Clipped Kernel Density Estimate

In this section, we will analyze the clipped Kernel Density Estimate score function ’sfhp of a distri-
bution. Our main result in this section is Lemma 3, which says that 5P is a good approximation to
the true score function s, of the r-smoothed distribution in a specific sense.

15
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B.1. Pointwise guarantees

In this section, we show that for any individual point x, the KDE score S, (z) approximates s, (x)
well, where s, is the true score function of our r-smoothed distribution f,. We begin by showing
that the KDE f,. approximates the true density f, pointwise.

Lemma 11 (Pointwise density estimate guarantee) Let fr be the kernel density estimate of f,
from N samples Y1,..., YN ~ f*, given by

. 1 X
fr(x) = N ZwT(x -Y;)
=1

SIOg%

where w, is the pdf of N'(0,r?). For any fixed x, when N > )

1-6

we have that with probability

2
Fow) — fy(a)| < 208 S

This holds even for asymmetric f*, f;.

Proof For every =, we have
1
)< —
wp(@)|<

So, by multiplicative Chernoff, we have for0 <e¢ <1

Pr

Yi~ f* Y f* Y f 3

e’rN fr(x)>

N
‘]bzwr(x—yi)— E fw(e—Y))|2c B [w(z—Y)]
=1

< 2exp <—

The claim follows.
[ |

The next Lemma shows that the derivative of the KDE f?{ approximates the true derivative of
the density function f;. pointwise.

Lemma 12 (Pointwise density derivative estimate guarantee) Let ﬁ be the kernel density esti-
1

mate of fr from N samples Y1,...,Yn ~ f*. For a fixed x, letting N > :;i;), we have that with

probability 1 — 9§,

fr() log%

@) = fl@)| $4| 53

This holds even for asymmetric f*, f,.

Proof

16
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Yo f* Y fr r
1
= 5B [wnle = VP - YY)
1 r
<= E -Y —YV)(z-Y)?<
~ 7"3 Yo [wT(aj )] simce wr(x )(LII ) — \/ﬁ
_ fr()
3
: (z=Y;)?
Also, w).(z—Y;) = — (\;2_7};13) e~ 22 isboundedin [~1/72,1/r%]. So, by Bernstein’s inequal-
ity,
1 N 2
_ (v — V) — (o — > < _ - -
i=1 Nr3 Nr2
So,
e : fr(z)log s  log g
F) ~ @I et + 2o
Since N > f‘)s the claim follows. |

Finally, we have the main result of this section, which shows that the KDE score s, approximates
the true score s, pointwise.

Lemma 13 (Pointwise Score Estimate Guarantee) Let ﬁ be the kernel density estimate of f,

from N samples Y1,...,Yn ~ f*. For fixed x, N > ? L and the KDE score s, defined in (8),
given by

s.(x) = Ji;(x)
o Fr(2)

we have that with probability 1 — 6,

log % log Trl(z)
Nr3f.(z)

‘ ~

Sr(@) = s (@)| S

This holds even for asymmetric f*, f;.

Proof We have, by Lemmas 11 and 12, by a union bound, with probability 1 — 9,

N / o) fr(r)lgg§>
fr(x)
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Since N > 6log § we have that 3log § < 1/v2. So,

rfr(z) fr@)yrN =
50(0) = 50(0) § | B + sy B2
Sp(T Sy fr( )Nr?’ Sp(T f(:]j)’r’N
log % log
Tfr(m)
_ L
N3, () by Lemma 33

Similarly,

log 3 log 77 )

)=o) AN (o)

B.2. Close-by scores are close

In this section, we show that for small enough ¢, s, (x + ¢) and s, () are close to each other for the
score function s,. We begin with the following utility lemma.

Lemma 14 Let (X,Y, Z,) be the joint distribution such that Y ~ f*, Z,. ~ N(0,7?) are indepen-
dent,and X =Y + Z, ~ f,. For any x, and t > 0, we have

e—t°/2
I;r[|ZT|> rt| X =] <

- \/ﬂrfr(:r)

This holds even for asymmetric f*, f,.

Proof Recall that

where w; is the pdf of (0, 72). So, we have

1
ng (X =z} {|Z:|> rt}) = f* [wr(z = Y) 1oy ] < o—t2/2

(z=Y)?

Since wy(x —Y) = \/;—Me 22 . Thus

Pryz (X =a}0{|Z,]>rt)] _ e "/

Pr||Z.|> rt| X =z| = < .
Z’“H = | Pryx.s (X = z) fr(z)V2mr

The next lemma shows that f,.(x + ) is close to f,.(z) for small e.

18
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Lemma 15 Let €, x be such that |6|

log Tfrl(x) < 1. We have,

fr(x +¢) 10]e| 1
<1+ log
fr(@) r fr(@)r
This holds even for asymmetric f*, f;.

Proof Let (X,Y, Z,) be the joint distribution such that Y ~ f*, Z, ~ N(0,7?) are independent,
and X =Y + Z, ~ f,. For every x, by Lemma 36, we have

fr (x + 5) - |:e 2522:2752 :| < B {@ 57-ZQT }
f’f‘ (f]:) Zr'-'z Zw‘ﬁ
Without loss of generality, we assume that € > 0. Now, since M log - 7 ( ) <1,

E [eEZT/TQ} 1+ 8—5 log / Pr[e e2/r? > uldu
Zylx 1/10gf @ Zrlx
2
-1 + — log / [ r r logu} du
T8 e T|x c
—1—|——1/ / r [Z, >7“U] =/ du
log log T ( )) Zr|55 r

1
<Subst1tut1ng v=" ogu)

<1 + — log / Pr(Z, > rv]@e“’/rdv
4,/log - ( o ZT|$ r
|8| —v2/2+av/r
<1+— lg / —————dv byLemma 14
N =

@—E)?
2% 0o _ T
<1+8{5 log ! + Ele - / c = 4

- - v
N r fr(l')T‘ ’I“er(l‘) 4,/logﬁ V2T

1 -z 1 2
< 1+8—5 log + Ele Pr W >4, [log _ =
r felx)r r

8e 1 11]e] 1
<1+ —4/lo P W > /21
+ o8 fr(x)r + 1072 f,.(x) W~Nr(0 1) [ \/ 8
. 1 2le \ o
since f; , so that —
frl@) < 2 r log 7 ( 4log V2T Tfr

1 9e?
and since [e|/r < < < so that e“r? < 11/10

log T(:v) 8V 1log /27
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<1+8£ lo = +11‘6|
- r grfr(x) 107

10]¢| 1 . 11le]  2)e] 2|e| 1
<1 1 < —\/logv2r < — /1
<1+ . Ogrfr(ac) since 0 = r 0g VAT = = Ogrfr(a:)
|

giving the result.

The next lemma shows that f/(x + ) is close to f/(x) for small ¢.

20| 1

Lemma 16 (Close-by density derivatives are close) Let €,z be such that =~ /log o < 1.

We have
o+ e) = IS 5 ptog

This holds even for asymmetric f*, f;.

70)

Proof Let w, be the pdf of (0, 72). We have that

2.2 2 2 2 —1+210g<+>
wff(m) — %e_ﬁ — %wT(w) _ T2\/ﬂr~wr(:v) w,.(x)

since 22 = 272 log (m) So, since g(z) = zlog (\/%m) is concave on [0, 1], we have

E [wW/(z-Y
JE [z =)
_ 1 E [w (x—Y)(—l—i—Qlo ( ! >>]
r2y~pe | & V217 - we(z —Y)
1
— E |Jw.(z-Y —1+4+2lo by Jensen’s inequalit
=02 YNf*[ ( )] ( g ( 27r By oo e [w, (2 — Y)})) y quality

< fr(z)log (W)

~ ,rz

So, by Taylor’s theorem, for some |(|< |¢]
wp(z+e-Y)=w(z-Y)+ewi(z+(-Y)

Now, by the above

e+ Q) log (o)

E [wi(z+(-Y)] S

Yo f r2
fr(z)log (O (ﬁ))
< 5 Using Lemma 15
r
fr(z)log o L - 1
< —er() since 7 f(z) < ——
r V2T
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So, by the above,

fila+e) - fi@) S B [wla+¢-Y)]

< 5 fula)log ( f:(x))

Similarly, by Taylor’s theorem, for some |{|< |e

wi(z—Y)=w.(z+e-Y)—cw/(z+(-Y)

so that

/ / 1
o) = o +0) S - S hao ()

The claim follows.

Finally, the main result of this section shows that s,.(x + ¢) is close to s,.(x) for small .

20|e|
T

1

Lemma 17 (Close-by scores are close) Let ¢, x be such that log - @) < 1. We have

[sr(x+e) = s(2)] S ‘2| tog (rfrl(x)>

This holds even for asymmetric f*, f;.

Proof By Lemma 15 and 16, we have

fi(z)+0 ('%fr(.%') log (rfrl(x)>>
i) (1= 25 flog 775)

<

10]e]
r

ot £, (L () f e [
fr(z+¢€) = fr(z) o <7“2 og <rfr(x)>> o (fT<m) r m>
sp(z+e)—sp(z) < +T7 log <rf7n1(x)> =+ Sr(ﬁ)gm

el 1
< =1 by L 33
S 2 log o) y Lemma

We can get the lower bound in the same way.

Since log % < 1/2, we have

So,
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B.3. Bounding the clipped KDE error

In this section, we show that the clipped KDE score function 3, sr P approximates the true score
function 5" in a specific sense. We begin by showing that sets that have small density under f,

have small expected score.

Lemma 18 Let S be any set with Pry, [S] < B. Let |e|< /2 and |e|< % Then, for the
O,

7‘217‘

score function s, of f,, we have

2 g, 1
E [57“(‘7: + E) 11‘65] S; ﬁlog E

x~ fr
This holds even for asymmetric f*, f;.

Proof

E [s2(x + €)lpes] = /00 Pr [s2(z 4 &) l4es > t]dt

T~ fr x~ fr

min( Pr [z €8], Pr [s](x +e)>t])dt

x~ fr :c~T

< / min(g, P [ls-(x +2)|= Vil)dt

So, by Lemma 35, for some explicit constant C' > 0, we have:

B (sH(o+2)Les] S [ min(de O )
0

x~fr

o0 2
< 8B +/ e Ot dt
B
—CBr?
Cr2

(&

< BB+

1

. log 5
Thus, setting B = =%

gives
E[S?(ﬂf +&)lzes] S
|
The next lemma shows that for every small width region, the KDE score § approximates the true

score well, as long as the density of that region is large.

Lemma 19 (Generic Error estimate within bin) Ler f* be an arbitrary distribution and let f,
be the r-smoothed version of f*. Let f, be the kernel density estimate of fr from N samples

Yi,..., YN ~ f* Let x,e, N be such that N > fO%“) and 20|a| log f() < 1. Then, for the

KDE score s, defined in (8), with probability 1 — 6, we have that for all |C|< || (simultaneously),

- log 5 log 777 e !
[Sr(z+¢) = sr(z + QIS TNf(n) o <TfT(x)>

22
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Proof First, by Lemma 13, we have that with probability 1 — 6,

lOg l log #
5r(@) = 50 (2)[S | g

N ()
Now, by Lemma 17, since [¢|< |e],
oo+ Q) = sr (ol e (1)
and
Sr@+¢) — 5(@)] S ’i’log( = )
r rfr(x)

_ Ll 1 fr(@)
o <10g (rfr(w)> s (ﬁm))

4
< |:2’ (log <T’fr1($)> + log <1 + \}§>> by Lemma 11 and since N > f}ji}‘;

< ’:2’ log <rfT1(m)> since 7 f(z) < \/12? 50 logrfj(@ — Q1)

Putting everything together, with probability 1 — ¢, for all |(|< |e

’

[Sr(z + Q) = sr(@ + O < [5r(2 + Q) = 5 (0)[+[5r(2) — sr(@)[+]sr(2) — 50 (2 + ()]
1

?“fr($)

log % log
Nr3f.(z) r2 rfr(z)

The next lemma shows that for all points with density larger than « within a to radius around
the true mean, the KDE score approximates the true score well.

Lemma 20 (Generic Error estimate over large density region) Ler f* be an arbitrary distri-
bution with mean | and variance o2, and let fr be the r-smoothed version of f*, with vari-
ance 02 = 0% + r% Let 5, be the score of the kernel density estimate of f. from N samples
6log (4 (2/20tex 11) ) 4400 1og

ar

Yi,..., YN ~ f* as defined in (8). Let « > 0 and let N >
with probability 1 — 6§, we have that,

. Then

o (1 (255 1)

aN7r3

2 1
ar

E [(/‘S\T(gj) - ST(x))21{\x—u|§tor andfr(ﬂC)Za}] 5 log

x~ fr

Proof Consider contiguous intervals of length ¢ starting from p — o, so that the last interval covers
i+ to,, and let S be the set of the smallest y such that f(y) > « in each of these intervals, if one
exists. Note that [S|< 2/2= + 1. Then, we have that

{z: |z —p|<torand f.(z) > a} C{ly—¢c,y+e]ly e S}

23



GUPTA LEE PRICE

. 6log( 4 ( Rfaltor g 6log 451
Now, fore = /-y andy € S, since N > (6( Mﬁ )) > ;}g(y‘a and%é‘l log Tfl(y) <

\/% log é < 1, by Lemma 19, we have that with probability 1 — %, for all |(|< e (simultane-

ously),

log 3 log 774 F 1

~ rfr(y)

— <

‘87“ (y + C) Sr (y + C)‘ ~ 7\7,’,_3][‘7, (y) + O[N’r3 ]‘Og Tfr (y)

g (3 (2 +1)) 4
aNr3 8 ar

S

So by a union bound, with probability 1 — d, for all = such that |z — u|< to, and f(z) > «

simultaneously,
: (i ()
e(2) — se(2)IS e log -
So, -
1 (2toy/aN
E [(5r(2) — $0(2))* Lo pi<ton and fr(x)>a] S o8 (S <\/F3 i 1)) log? L
o~ fr aNr ar

The next lemma instantiates the previous one with a particular value of ¢ and « based on our
desired failure probability and the number of samples.

Lemma 21 (Error estimate over large density region (instantiated)) Let f* be an arbitrary dis-
tribution with mean u and variance o, and let f, be the r-smoothed version of f*, with variance
02 = o® + 12 and Fisher information T,. Let s, be the score of the kernel density estimate of f,

from N samples Y1,..., YN ~ f*, as defined in (9). Let v > C for large enough constant C' > 1

log Ir7-2]\l]og21§ 1 N 5/120\6+8
be a parameter. Let t = \| ———o—", & = . Then for any r < o and log T > (v°/122)

for any constant B > 0, with probability 1 — 6§, we have that,

a:E:f- [(E\T(‘r) - ST(x))2]l{|xf,u|§tUT andfr(x)ZQ}} ~

<L
Y
Proof First, note that since r < o,
J? =0 4+12 <252
Also, our setting of NV implies that WLOG

6

N 7*/ o log

v

r

—
o
09

=
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since N > C'log %. So,

1/6 1/6
7 (N ! < (X (11)
r log% ~5/12 logﬁ - log%
6

We will first check that this NV satisfies the condition required to invoke Lemma 20 that N >

6log(4(2YeNtor 4 1)) 140010g L
Og(é ( i )) *®5 Todo this, we will individually upper bound 5 and %Tf VTO‘N

ar

We have,

N 3/2
1 oy 7 log Z,r2log % . dt
_ = — _— SIince o = an -
oar 7 Z.r? 3o,
4 No? 1
< (ﬁ) 7312 1og®/? Or T since I, > —
r r?log 5 o?
20 \* 2No?
< il 73/2 logg/2 701 since of < 202
r r?log 5
4/3
N4/6 . N
6 73/210g%/? | 2 by (11)
7°/3log! (157) log™* § log 5
N . log %
< since v > C for C' large enough constant, and —2% < 1
71/1910g(}) log? () N
5

.. . 3/2
To further justify the last line above, observe that % < 71—1/6 = W, and that for large

enough constant C, since v > C, v'/® can be made larger than any fixed constant. Also note

that 1og3/2(2(é)4/3) < log? 1027% for large enough C' since 102[% >~ > C. So, the inequality

follows.
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Next, we bound 2torvaN
ﬁ

2to v aN No, . 1
—_— =2 since o =
N tr t3o,
_ No,
’leg ITTQ log%
Trr2
N 1
<4 7UN since Z, < - and af < 202
r
r,/vlog log 1
N N 1/6
<4 _ -(1 1) by (11)
lo 0g3
fy g log% o

1/12 N
<4N - T sincey > 1, — >1
log 5 1

5

So, we can now check the condition required to invoke Lemma 20. We have,

6log (% (W% + 1)) +40010g$

ar

N
log 5 | | 41/1010g2 ( N ) log §

log %

N 1/12
< |6log| < [4N | —7 +1 + 400 log
1 log 5

<N sincey > C

So, by Lemma 20, we have

] log (§ (22727 + 1))
:cLEfT [(ST‘ (fL‘) - Sr(x))2]l{|z—,u|§tm and fr(a:)za}] S aNr3 ar
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To bound the RHS above by O (Z, /) as required, we will first bound ﬁ

N 3/2
1 lors 7 log Z-r? log% .
= since o« =
aNr3  Np3 Z,r?
- & 9r i/z 10g3/2 L
vy \ Nr675/2 Z.r?log %
N 2
T 097%/21og?/? T 1
<X s since Z, > —
= 6 L)
¥ Nr ot
2
I 0.6,75/2 10g3/2 TléL]l\(f)crl
< 5 since 02 < 202
~ N6 "=
~
4/3
7 (10?24 (X))
< — > by (11)
y 1 6 N 1 1 y
08 log% 085
< IT
~ 4( N 1
vlog (log %> log 5

So, plugging in everything,

E [(gr(m) - Sr(x))2]l{|x7u\§tar and fr(x)Za}]

z~ fr
1 (20-vVaN
(=)
~ aN7rs ar
1/12
(N 4/6
< Ir 1 AN <log%> +1 1 2 N /
o) o)

~ ogt (X Viopl 5 &1 | 1og?

7 log Tog T og 5 J
<L
~ oy

The lemmas so far have shown that the KDE score s, approximates the true score s, well in large
denstiy regions in the typical to radius around the true mean. The next lemma shows that the same
guarantee holds for the clipped KDE score selie,

Lemma 22 (Error estimate over large density region for clipped KDE) Let f* be an arbitrary
distribution with mean 1, and variance o2, and let f, be the r-smoothed version of f*, with variance

02 = o?+ 12 Let 55 be the clipped kernel density estimate score from N samples, as defined

[los 72T
in (8). Let v > C for large enough constant C' > 1 be a parameter. Let t = %
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1 N 43/125\ 615 . ..
a = H.Thenfar anyr < o and Tog T > = for B > 0, with probability 1 — §, we have
B
that,
1,

x}?f [(gilip(x) - sr(m))2l{\xﬁu|§tor and fr(:p)Za}] S ?

N
log

6+5
(¥572)" implies

1
N /o
<
~ \log %

Also, since r < o, % > (,),5/12)6+ﬁ > ~5/2,
5

So, by Lemma 33, for « such that f,(z) > «,

Proof Note that our condition that

v

1
S

=<9

1
V2Tro

1
|sp(@)] < - 2log

3/2 N
7 log Z,r2log %

Z,r2

1 N
lors 7108 Z,r?2log % . 1
sincea = —— and t =

- 121
r\ 8 (\/ﬂr Z,r? t3o,

3/2
o} oZN / ) 1
v log i since Z, > —
T

<= 12Io
o s V2mrd r?log 5 o
4/6 4/3\ \ 3/2
< 1 91 16 N 1 4 N
- og| ——=|— o
- r & V2r \ log % 7708 log %

N\ V6
since 02 < 202 and using o /1 < (1 : )
og s

2 N N
< —,/log — since — > 75/ 2> C®2 for a sufficiently large constant C
r log 5 log 5
Then, since §fnhp is clipped at % log 1o]gv T by definition in (9), by Lemma 21, we have the claim. Bl
5

The next lemma shows that for small density sets, for any function that is clipped appropriately,
the error incurred relative to the true score function is small.

Lemma 23 Let f* be an arbitrary distribution, and let f, be the r-smoothed version of f*. Let
sy be the score function of f,, and let I, be the Fisher information. Let v > C for large enough

constant C, % > v, and let § be any function with |5, (x)|< 2, /log lojg forall x. Let S be a set
5

1
8
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7 log

—N
2102 L
with Pr[S] < 1t%fort = % Then, we have

_ 2 r
xINEfT[(ST(x) — sp(2))*1zes] S 5

Proof First, by Lemma 18,

1
E *loes] S 5 logt®
s [ST(:E) IES] ~ t27"2 0og

< L 1 T N
o o
~ ~log % & Tr? & Z,r2log }

21og%

1
and Z, < -
r

s
<= osincey > 1,7 < —
Y g3

Now, by assumption,

So,

A

| N nce T. < 1
——————log| ———— | since —
vlog ﬁ s Z.r?log } "2

Thus, we have

x~ fr x~ fr T~ Jr

The next lemma shows that within the typical ¢o radius around the mean, for the set of points with

small density, the clipped KDE score éﬁhp approximates the true score s, well.

Lemma 24 (Error estimate over small density regions within typical region) Letr f* be an ar-
bitrary distribution with mean 1 and variance o2, and let f, be the r-smoothed version of f*, with

variance 0% = o +r2. Let s, be the score function of f,, and let I, be the Fisher information. Let
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vlog —5—
8 be any score function with |3,(z)|< 2, [log 1027% forall x. Lett = ;::; 85 fory > 1,
and let o« = % Then,
i ) _I
E [(Sr(l') - ST(:E)) ]]-{|;r—,u,|§tar andf(x)<a}] ~
x~fr ¥
Proof By our choice of a,
1
Pr [|x — p|< toy and f(x) < o] < ato, = —
x~fr t2
So, by Lemma 23, the claim follows [ ]

The next lemma shows that in the region outside the typical region of radius o around the true
mean, the clipped KDE score gelip approximates the true score well.

Lemma 25 (Error estimate over atypical region) Let f* be an arbitrary distribution with mean

w and variance o2, and let f, be the r-smoothed version of f*, with variance 02 = 0 + 12, Let s,

be the score function of f,., and let I, be the Fisher information. Let S, be any score function with
vlog —5¥

|5, (2)|< 2, [log lojg% forall x. Let t = ;:;z log 3 fory > 1, and let a = % Then,
E,[(5:(2) — 50(@) Vo ioin] S
z~ fr Y
Proof By Chebyshev’s inequality,
Pr{lx — p|> to,] < %2
So, by Lemma 23, the claim follows. |

The main result of this section as follows shows that the clipped KDE score approximates the true
score well.

Lemma 3 (Clipped KDE score error) Let fsfli” be the clipped Kernel Density estimate from N
samples, defined in (9). Let v > C' be a parameter, for large enough constant C' > 1. Then for any

< oand N> (222\*F 0, with probability 1 — 6, we have th
r<oan 2> |\ for B > 0, with probability 1 — §, we have that,

log
E [(57(x) —s(@)?] £ 2
-'ENfr T ~ /_y
This holds even for asymmetric f* and f,.
| 7108 7 B T )
Proof Let 1, o2 be the mean and variance of f,. Lett = T2 S o= For Now,
o (5% (2) = s,(2))*] = 5 (57 (2) = 50(2))* L{jz—pi<tor and fr(x)>0}]
+ :ciEf [(/S\f"lip(x) - Sr(m))21{|z—y|§tor and fr(m)<oz}]
+ lej:f [(gilip(x) - Sr(x))2]l\mfu\>tor]
So, by Lemmas 22, 24 and 25, we have the claim. |
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Appendix C. Symmetrization

In this section we show that the expectation of our symmetrized, clipped KDE score function 5",

symmetrized around a point y + € for small € has expectation close to €Z,, where Z, is the Fisher
information of the r-smoothed distribution. We also show that the second moment of 3;°™" is close
to Z,. We begin by recalling the definition of 5™ from (7).

Definition Let the symmetrized, clipped KDE score, symmetrized around a point y from /N sam-
ples be given by

~clip
. Sy (CC) x>y
S (x) = : 12)

where éﬁhp is the clipped KDE score from N samples, as defined in (9).
First we show that the true score function centered at —e is close to the true score centered at 0
in ¢5 distance.

Lemma 26 Let f, be an r-smoothed distribution with score function s, and Fisher information T,.

Then, for |e|< r /60,

52

B, [l +9) @) £

Proof By Lemma 36,

sp(x+¢€) —sp(x) =

Zr 5
e il B [Z]
eZy B 72
EZTI:c [e 2 } Zplz | T

(13)

Now,

Zr|x

So,

eZp 4 eZr 4 £Zyp 4 4
E e (Z - E[2))| < E [(e = 1)Zr] + E [e = 1] E (2]
Zr|x Zr|x Zr|x Zy|z Zy|z

elr
< E [(67 - 1)4} E [Z] by Cauchy-Schwarz and Jensen’s inequalities

~ Zr|x rlx

So, we have, by Cauchy-Schwarz and Jensen’s inequalities,

E

xT

elr 4
E 2 (4. — E |Z
E [ - k| TD]

< \/ E [ - 17| E (2] (14)
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ey
We will now bound E, [(67 — 1)8] . By a Taylor expansion, when |¢z|< 72

ez ez €2\ 2
” _1:7 O <7>
€ 7"2+ < r2 >

so that g g
eZr £ £
E [er2—18]l ]<—E 78 < &
Zp~N(0,r2) ( ) leZp|<r? | ~ rié z. [ 7’} ~ o
8lez|

On the other hand, when |e2|> 72, we have (er2 — 1)8 < e 2 , meaning that

eZyp 8 oo 1 8lez| _i
(6 r2 — ]_) l\aZT|>T2:| S e 2 e 2r2(dz
[r2/e| V2T

E ol
Zr~N(0,72)
32¢2 /°° 1 _%
= e r e 2r
Ir2/e| V27T

< Pr Z.>1r?/|e|—8le
S, B 122 e8]
_ (72 /e|=8]e])?

(&4 27‘2

Also, Ez [Z8] < r8 So, we have shown in (14),

eZr 4
E|E |72 (Z - E [Z
T | Zy|x |:€ ( Zr\x[ ]):|

Also, using Jensen’s inequality

El— Lt | <& [eteBantze/ ]
T EZQT 41 — 7%
EZHCC |:€ T :|

T Zrlz
< B/ <1 by Lemma 35 and since |¢|< /60

Then, using (13),

dz

=E |:6_4€ST(Z)} since s,.(z) = E [Z,]/r? by Lemma 36

eZr 2
2 < 82 1 ]EZT|$ [6 r2 (ZT _EZT|CC[ZT']):|
zlEf [(Sr(x+5) — 5r(7)) ] N oA + 77415’ Zr
" IEZT|3[:[€ " ]
2 ]_ ELr 4 1
<<+ |E|E [eﬁ(zr— E[ZT])] E .
r r T | Zp|z Zr|x T E [ EZQT:|
Zr|x er
<&
S
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The next lemma shows that 5,°"" approximates s, in a certain sense. Using this, we obtain that the
second moment of 5, is close the Z,.

Lemma 27 Let f* be an arbitrary symmetric distribution with mean p, and let f, be the r-
smoothed version of f*. Let s, be the score function of f., and let T, be the Fisher information.
Let 57" be the symmetrized clipped Kernel Density Estimate score from N samples, symmetrized
around p+ ¢ for |e|< r /60, as defined in (12). Let vy > C be a parameter for large enough constant

6+8
C. Then for any r < o and 102[1 > (@) for B> 0, if |e|< 12 %’ with probability 1 — 6,
4

E [E"() - 5] < 2=

z~ fr Y

Proof By definition of Y™ and using Lemma 3,

; 7,
E [GY™(2) = 5r(2)) Lozpre] = E [BP(2) = 50(2)) Lozpse] S =
x~ fr x~ fr Y
On the other hand, by Lemmas 3 and 26
2 (Y™ (@) = 5r(2))* Tocyure]
= B (=52 +2) = o) + 5,20 — ) Tocure]
<. E (=5 (2(n+e) =) + 5,(2(n + ) = 2))* Locpure] + JE [(sr((2p — 2) + 2¢) = 5,(2p — 2))?]
2
< & + i
The claim follows since i—i < % |

Lemma 4 (Symmetrized Clipped KDE score variance) Let 3" be the symmetrized clipped Ker-
nel Density Estimate score from N samples, symmetrized around p + € for |e|< r/60, as defined

in (12). Let v > C be a parameter for large enough constant C. Then for any v < o and

6+5
1ogl > (75/%20) for B >0, if |g|< r? % with probability 1 — 6,
5

T,

| E [5"(@)?] - Ll

z~ fr VY
Proof We have
& B = B (@) + 5@ = o @)7]
= E [5@)? +2 E [5@E"@) - s@) + E [G™@) - ()
< E @42 B [n@)] E (07 - @)+ E, (@) -5 ()]
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So, by Lemma 27,

Similarly,

E [s:(2)?] <

x~ fr x~ fr

@)+ 2, B BB, (677 - )] + B

~fr x~ fr

So, since we showed E, s, [57"(2)?] < Z,, we have

so that

The claim follows. |
Finally, we show that the expectation of the symmetrized, clipped KDE score function 5,°"

symmetrized around p + ¢ for small € is close to €Z,.

Lemma 5 (Symmetrized Clipped KDE score mean) Let 5" be the symmetrized clipped Kernel

Density Estimate score from N samples, symmetrized around i + € for |e|< r/60, as defined

in (12). Let v > C be a parameter for large enough constant C. Then for any r < o and

5 6+
N> (ﬁ) for B> 0, if |g|< r? %, with probability 1 — 6,

log 5 r

T,

™

E [89"(z)] — €T,

r
szr

S

3

Proof Since f, is symmetric around p, f.(z) = f-(2u — x). So using the definition of 5", we
have

pte Hte .
/ frlw = )E™ (@) da = — / Fr(2n =z +2)sSP (2 + €) — w)da

pte _
= / frly — E)sﬁhp(y)dy Substituting y = 2(p +¢) —

o0

o
—— | Jly—o)sy™(y)dy since sP™(x) = sP(2) forz > i+ e
pte
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So, we have
M’Sym } — e _ \asym > _ ) Sym _
xLEfT [ AR () /_OO fr(z — )8} ($)dz+//i+€ fr(x —€)s¥™(z)dx = 0
So,
~sym f'r(x)_fr(.f—E)/\sm
erVEfr Sry (l’)] x~ fr |: fr(l') Ty (.Z'):|
Thus,

x~ fr T~ fr
- E (fr(x) ;T{;gx —g) 53“(@) éjym(m):| 2
-k (f’“(x) i oo r0) 4 (s, (@) - ’stymm)) @iymm] " Since s, () = ;Eg
< E <fr(x) - fr(;;(;;) —efil@) | e(s0(z) — Qym(x)))z E 5™ (2)?]
< (Eﬂ <fr(x) - fr(fa;(;)a) — ef%(a?)>2 + &2 E [(sr(z) — @ym(x))2]> E M (1)2]
— (LB, [0 +2° B [(sa) - 52"w)"] ) B, (52" (o)"

where A, (z) = fT(”E)*fT((?)*Ef’/“(@. But by Lemma 40, E, s, [A_.(z)?] < £ < 52% (since

fr(z r

le|< r? %). So, by Lemma 27 and Lemma 4, we have

E [5PM(@)—e E [5™ ()]

T~ fr

Then, using Lemma 4 once again on E, s, [s7"" ()?] on the LHS, the claim follows. [

Appendix D. Estimating 7,

In this section, we show that Z, = E,.7 [ (x)?] provides a good estimate of Z,..

Lemma 28 Let J?T be the kernel density estimate of f, from N samples Y1, ..., YN ~ f* as defined
2
in (8). Letz,e, N be suchthat N > 255 and **EL, flog L < 1. We have that with probability

r

1 =9, for all |C|< |e| simultaneously,

fr(z +¢)log 3 4 lelfrle +0) log ——

|fr(z+C) = fr(z + QIS Nr r fr(z+O)r
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Proof By Lemma 11, with probability 1 — 6,

3fr(x) log%

Fo@) = o)l | 25

121
Note that since N > o8 3
fr(z)r >

Also, by Lemma 15,
10elfr(x) | 1
|f7"(x+<-)_f’f'($)|§ r 10g fr($)r

the RHS above is at most f""(x)

Now, since 8|€‘ log rﬁl(q;) < % logrf%(x) < 16‘5‘ log ( ; < 1,by Lemma 15,
Fe+0 - hi) < R os =
< 15|f:‘|f7~ ) 1o o8 ;
So, putting everything together
Fo(@+¢) = frle + O <1 Fe(@ 4 ) = Fo(@)H o (@) = fr(@) |+ (@) = frle + )|

3f7“( )10g5 30‘5|fr l g
\/ fy«

16T|€| log < 1 so that by Lemma 15

1
rfr(x)

2 f(x)

[fr(@+Q) = fr(@)l= 3

The claim follows. |

Lemma 29 Ler f* be an arbitrary distribution with mean . and variance o? and let f, be the
r-smoothed version of f*, with variance 02 = o* + r%. Let f. be the kernel density estimate
of fr from N samples Yi,..., YN ~ f* as defined in (8). Let 0 < a < \/217r and let N >
121og( 2 (2ol 1)) 4400log L

Og<5( /T )) ®ar, Then, with probability 1 — 6, for all x such that |z — p|< to, and

ar
fr(x) > a simultaneously,

7o0) = F @IS fola) | - log (j (W T 1>> log —
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Proof Consider contiguous intervals of length ¢ starting from p — to, so that the last interval covers
u+ toy, and let S be the set of the smallest y such that f,(y) > « in each of these intervals, if one
exists. Note that |.S|< 2'5% + 1. Then, we have that

{z: |z —p|<torand f.(z) > a} C{ly—¢c,y+e]ly e S}

_ 121og (2 (2toraN g 2ls|
Now fore = \/ﬁ andy € S, since N > (5< M‘ﬁ )) > 12;f(gy)7§ and %l"c', /log rfrl(y) =

16 1 16 1 : e s
o log o) < NI log - < 1, we have by Lemma 28 that with probability 1 — Sk for

all |(|< |e| simultaneously,

. 2 log 22 1 2
fr<y+<>—fT<y+<>\s\/f WEOIBTS 4 oy + )y log —

1 2 ( 2to,/aN 2
S frly+0) W10g<5<w\/;a+l>>logm

1
\2mr

So by a union bound, with probability 1 — 4, for all = such that |z — u|< to, and f.(z) > «
simultaneously,

7o) = Fo@)S £o(0),| - log (2 (W + 1)) log —

since fr(y + () 2 cand a <

2
so that log — > 1
ar

aNr J N
|
Lemma 30 Let S be a set and let ]/C; be the kernel density estimate of f, from N samples Y1,..., YN ~
f*. Then, with probability 1 — §,
log 2
Pr[S] — Pr[S]| < 0
Pr{s] ~Piis) £ |y
Proof
E||p —E| [ J@)de| = | E|fi(@)] dz = dr =D
B [ pis)| | = & | [ Fwe| = [ [F@]de= [ gt =it
Furthermore 0 < Pr 3 [S] < 1. So, by Hoeffding’s inequality, with probability 1 — J,
log 2
Pr[S] — Pr[S]| < i
Pris] — Pris]| 5 4/
|
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1+a
Lemma 31 Let~y > C for large enough constant C, and let 1o]gv T > (ﬁ) for small constant
5 s

a > 0. Let § be any function with |3,(z)|< 2, /log 102;71 forall z. Let S be a set with Pry, [S] < t%
o

log —5——~
Typr2 log %

g ~
fort = 71/4 ——.z . Let [, be the Kernel density estimate of f, as defined in (8) from N
samples. Then, we have

N

[ (@)= @) 50w

N log 2
) Pr[S] + %835 by Lemma 30

1 N 1 [logi N
R S = 9]
~ 22 8 <log(15> + r2 N 8 <log(15>

2
ﬂw‘ N
—
o
o
VR
—_
o
o
(SO

Now,
1 N Z, N
log = log by our setting of ¢
t292 log % V7 log 17”2]\{%% (lo é)
7 N 1
< r ~— log T since Z, < —
V7 log T7log T Z,r?log 5 r
<L
val
Also,
1 o
1 log s N 1 IOg 5 2o
2N Bl ) =2 (W
&5
T N 1+o
< 7T since 5 ( 47 2)
\ﬁ og K r Ir
So, the claim follows. |
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Lemma 32 Let ﬁ be the kernel density estimate of f, from N samples, as defined in (8). Lety > C
for large constant C > 1 be a parameter. Suppose 5, is a function such that By, [5,(x)] S I,. Let

log —5——7~
g L«TQ log %

6
t = /A4 Tz = % Then for any r < o and é > (y5/122) +B Jor some small

constant 3 > 0, with probability 1 — §, we have
o]
I

Proof This proof is similar to the proof of Lemma 21. First note that since r < o,

-~ 7
~ 2 T
fr(x) - f?"(x) ST(Z') ]l{|x—u\§tar andfT(x)Za}dm S ﬁ

af:az+r2§202

6
N 75/12010gé
> N o <
log% - r
or
1/6 1/6
o N / 1 < N / (15)
r ~ \log } y5/12 1ogé ~ \log3

We will first check that this N satisfies the condition required to invoke Lemma 29 that N >
1210g( (2“’% V“+1))+4001og$

ar

1 2to, N
. To do this, we individually upper bound - and f"‘ . We

have,
N 3/2 N
1 O‘T’}/S/4 log Z,r? log % . log Zrr? log %
— = 3 since v = — —
ar T Imr t3o, Ir

2

4 N 1

< (ﬁ) 734 og®/? Url since Z, > —

r r?log 5 oF:

2 2N
< <U> 3/4 log?’/2 701 since Jf < 202

r r2log 5

4/3
N*/6 3 N
M10g3/2 | 2 by (15)
/3 log" Tl log*/s 1 log
16N N e N
A N 3/4 log 32| 9 T since —— > 75/2
~5/2log Tog I log log 5 log 5
N

since v > C for large enough constant C'

+3/2 log? 1N logé
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.. . 3/4
To further justify the last line above, observe that % < W, and that for large enough

constant C, since v > C, 4'/* can be made larger than any fixed constant. Also note that

4/3
log3/ 2(2 <%) < log? X T for large enough constant C' since N T > v > C. So the
log 5 log 5 log 5

inequality follows. Next we boun

2to v alN No, . 1
—_— =2 since o« =
NG V tr t3o,

d 2tor-vValN

log
N Z,r2log &
=2 o since t = 71/4 C o
log — N Zr?
1y | BT o] "
Ty Irr?
N 1
<4 1 g ~ since Z,, < - and af < 202
r
ry log Tog I
N N V6
<4 \=x] bvas
’)/1/4 log ] Nl log E)
og 5

1/12 N
< 4N - —T sincefyZl,—lZl
log 5 log 5

So, we can now check the condition required to invoke Lemma 29. We have

121og (% (225/2X 4+ 1)) + 4001og &

ar
2 N Vi N N
< | L2log| < 4N | —3 +1 -+ 400 log T VX R il
4] log 5 log 5 ~v3/2 log g T log 5
<N sincey>C
So, by Lemma 29, we have
~ 1 2 [ 2to.vaN 2
|fr(@) = fr(@)|S fr(2) o N log (5 (r\/?j + 1)) log o
We will show that the RHS above is bounded by O (f :’/(%) ) . Since we showed that $ < 372 10g2]\lf . =z - )
og 5 log 5
we have that
1 «

— <
rN ~ ~3/2]og? é log %
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So, plugging this into the RHS above, along with our bounds for 2“’# ”ro‘N and é, we have,

1/12
fr(x) 1 2 N N
S . log | = | 4N - [ — + 11 log
VI[P log? i log s T\ 9 log § 72 log? i log 5
< fr(x)
Vi
So finally,
e 2
(@) — fr(2)| 5 (2) ]l{|m,m§tw and fr(:r)Za}dx
—00
1 & 9
5 ﬁ . fr($)ST(x) 1{|x—u|§tor and fr(ac)ZOc}dl‘
1 Ry
< — sr(z
< 7 B
T
<= E 2| <I.b ti
S A since [ T[sr(x) ] £ Z, by assumption
|

Lemma 6 (Smoothed Fisher information Estimation) Let v > C for large constant C > 1 be a
parameter. Suppose we have a function s, that satisfies forr < o

5, (2)?] —
B 5] -T| 5

and that |5, (z)|< % log & T for all x. Let ]/‘; be the kernel density estimate for f, from N
o

log

samples, as defined in (8). Then, for é > (,),5/12 %)6+B for some small constant 8 > 0, with
probability 1 — §, we have

Proof We have

B 5] = & @2+ [ (F@- )52

e~ fr

So, by our assumption,
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log %
It remains to bound the integral in the RHS above by O (%) Lett = 'yl/ 4 \/ % o =

t%. We have
Opr

[ (@ - 5@) 5P = [ (Fe) = £0) 500 La sisio, mi w1210

o0
—00 —0o0

+ / (ﬁ(l’) - fr(‘r)) gr(x)Qﬂ{\x—mgtar and fr(l’)<oc}d$

—00

+ /_O; (J?r(l') — fr(m)) gT(x>2ﬂ{\w—u|>tor}dm

By Lemma 32, the first term in the RHS above is bounded by % To bound the other two terms,
note that
1
Pr Hx - :U"S to, and fv"(:v) < a] < atoy S ")
z~ fr t

and by Chebyshev’s inequality,

IN
Bl =

Pr [z — p|> to,]

x~ Jr

Also, for small constant 5 > 0,

1+8 4\ 148
g o . 1
<’I“4I2> < (r‘[) smceIrzg—z

:
4 4N\ 148
< < 1k ) since 02 = o2 + r? < 202

=

5/120\6+0
< (7 —) since «v > C for large enough constant C, and r < o

So, the conditions of Lemma 31 hold, and applying it to the second and third term in the RHS above
gives the claim. |

Appendix E. Local Estimation

In this section, we describe our local estimation procedure, which takes a symmetrized and clipped
KDE score function along with symmetrization point 13 = u + €, and produces a refined estimate
[ of the mean.
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Algorithm 1 Local Estimation

Input Parameters:

* n samples x1,...,2, ~ f*, the symmetrized and clipped KDE score function 5", sym-

metrization point p1, Fisher information estimate Z,

1. For each sample z;, compute a perturbed sample z = x; + N (0, r2) where all the Gaussian
noise are drawn independently across all the samples.

2. Compute é = i—ln S 8 (2h). Return i = py — &,

Property 7 (KDE Estimation Properties) Let f, be the r-smoothed version of symmetric distri-
bution f* in Algorithm 1, with Fisher information ZL.. For parameters v > C' for some sufficiently
large constant C and &, 87" satisfies that for symmetrization point j11 = |1 + €,

7,
e and

Z
~symy 2] < 2
a?@fT [ST ('CC) ] IT ~ \/’7

for all x. Furthermore, the Fisher information estimate I satisfies

E [8"(2)] - <T|

z~ fr

and |57 (z)|< %

7,
S

val
Lemma 8 (Local Estimation) In Algorithm 1, let f,. be the r-smoothed version of symmetric dis-
tribution f*, with score function s, and Fisher information .. Suppose for parameters v, &, and

symmetrized clipped KDE score s symmetrized around 1, Property 7 is satisfied. Then, with
probability 1 — 0, the output [i of Algorithm 1 satisfies

log "+ 2
2log 2 V %8 clog € log 2
|ﬂ—u|§(1+0<1>> %50 S ¥ +O<)

€
VY nZ, L, n Nai

Proof Let ;11 = p + €. First, since by Property 7,

1 ym 2 n < < 1 )) 2 n
=5, < —,J/lo <|(1+0(|— log ——
IT| (@l< L, g{log% Val Ly gﬁlog%

for all z, by Bernstein’s inequality, the estimate £ satisfies that with probability 1 — 9,

n
& — i [gsym ’ s /\sym \@ \/Tgé log %
fT a~ fr " _,/Z\. for 7‘ n

Since ]I -7, \N for ~ > C for sufficiently large constant C', we have

1 1
E [$P™(z)] — =
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Combining this with the above and the fact that \I -7, |< I = yields

1
~_ E
N

(O}

0|

n

(1—1—0( >) /—ASym /210g5 glogg
m“’fr 7”

log% <€>
+0(—
n \ﬁ

Then, combined with Property 7 and the triangle inequality, this implies that with probability 1 — 4,

log —— 2
2log 2 \/ g€ log 2
|é—€!S<”O<1>> %540 tlogs 085

nZ, L, n

\/7}’

So, since 1 = i+ € and i = p + €, we have the claim.

Appendix F. Global Estimation

(%)

In this section, we describe our global estimation procedure and show that it provides a good esti-
mate of the mean. It uses a small number of samples to compute an initial estimate p; of u, and

uses another small set of samples to compute the symmetrized, clipped KDE score function 3

ym

symmetrized around p1. It then uses our local estimation procedure to produce the final estimate

.

Algorithm 2 Global Estimation

Input parameters:

* Failure probability §, Samples z1,...,x, ~ f*, smoothing parameter r, approximation pa-

rameter £ > 0.

1. First, use the first n/{ samples to compute an initial estimate 7 of the mean p by using the

Median-of-pairwise-means estimator in Lemma 9.

2. Use the next n/& samples to compute the kernel density estimate ﬁ of f. (as defined in

(8)), along with the assomated symmeterized, clipped KDE score 5,

™ (as defined in (12)),

clipped at 72~ /log §log 3 ¢ and symmetrized around the initial estimate 1. Compute the Fisher

information estimate Z, = E,.7 (57" (2)?].

2n

3. Run Algorithm 1 using the remaining n — T samples, and return the final estimate /i.

Lemma 10 (Global Estimation) Let £ > C for large enough constant C > 3 be a parameter, and

n 2/5—a
sppose € <7 < ()
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with probability 1 — 6§, Algorithm 2 outputs an estimate fi with

R 1 1 2log% o Elog%
_ul< (1 = - v
& “"( +O<ﬁ>+0<5>> iz O\ nA\ ez

Proof Let ¢ = p1 — p where p; is our median of means estimate in Step 1. First, note that by
Lemma 9, ¢ satisfies that with probability 1 — §/¢

4
] <o §log
~ n

We condition on Step 1 succeeding so that the above holds. To obtain bounds on the expectation
and variance of s%Y™®, i

we will now check that the following conditions required to invoke Lemma 4
and Lemma 5 hold:

. |e]< /60
. 2 [Ir
el< 72/
1

Note that —=35 < 1 and ~v > 1. Note also that £ < ~. So, by our setting of n

log 2\ /° £log §
r > oyP/12¢1/0 (gé) >0 (o[> ] 2
n n
so that |¢|< r/60. Similarly
% L
~y

2 [T > o25/6¢1/3
\ ¥

5/6 1/3 l 1
§ &5 since Z, >
02 + 72

o2 4+ 12
5/6§1/3 <

l
5) sincer < o

log & l
>0 |o- 50 5) smce 83

> el

<l,andé>vy2>1

Also, our choice of n implies that

n ~A5/12 6+0t/210§
&~ r g5
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So, we can invoke Lemma 4 and Lemma 5 to obtain the following bounds on the mean and second
moment of $%¥™ in Step 2, which hold with probability 1 — g.

el v
E [¥(2)] —¢Z,| < —~ and | E [8¥™(2)?] - Z.| < =
Mr[sr (z)] — €L, S s L (2)°] - I, ~ A

~sym . . ~sym . . 9 = n 5/12 6+a/2
Also, fors;” " that satisfies the above, since s,”  is clipped at = /log g ©’ and 7 > (VT)
og

the assumptions of Lemma 6 are satisfied for N = % and failure probability % So conditioned on
the success of Step 1, by a union bound, with probability 1 — 25—6, Property 7 is satisfied, and simul-

taneously, by Lemma 6, the Fisher information estimate fr in Step 2 satisfies

I,
V4l

Conditioned on the above, since Property 7 is satisfied, by Lemma 8, our final estimate i satisfies
that forn’ = n (1 - %) and 0’ = ¢ (1 - %), with probability 1 — ¢/,

ir _Ir

S

n/

log 7
1 2log 2 log 57 log 2 €
L—pl<(1+0(— L 10 N O —
I u_< + <ﬁ)> oz T sl s <ﬁ>
< (1 1 1 2log% \/IOgglogg log% €
<(1+o0(—=)+0(: +0 : +0(—
VY & nl, rL, n VT

3]
Now, we bound Nk We have,

ovZI, |€log
V7 nZ

[€log & 1
< U Elog 5 since Z, < —
T/ nL, T

[log 51" 3 log%
. g s .
Finally, we bound Y————"——. First note that

nriy,

I\ 1/3
r2 > ¢25/6¢1/3 (log5>

n

AN

Yo

1/3
1 56,173 (108 5 . 1 I
Zz—r'y 13 . smceLzmz;smcerga
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So, we have

n

1 1—
Elog % log 9 1 log % “ ) n
< since >1
rZ.n rZ, n log %
5/6—«
< 1 log %
~ /Ir')’5/12£1/3

n
B 71/12 log% 5/6—a
VIAER \

log

So we have shown that

) 1 1 210g% o §log%
A G o R ) el

Thus, by a union bound, with probability 1 — § in total, the claim follows. |

lo

11
Theorem 1 Letn = (%)ﬁ < 1, and let log% < n/C for sufficiently large constant C' > 1. Let
f* be an arbitrary symmetric distribution with variance o and mean ji. For no < r < o, we have

QIOg%

- ul< (1
= p|< (1+1) o

with probability 1 — 6.

Proof Set £ = %, and let v = 77% First we check the conditions of Lemma 10 that

» ¢ > () for sufficiently large constant C

for constant v > 0

)2ﬁ—a

° n
fﬁvé(@%%

n 75/120_ 64-a
. r > £ ( ) for constant o > 0
log 5 r

We have,
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for large enough constant C', by assumption. We also have,

and

228 2-9(8) 2/5—a
1 n 2 g n < n
’y = —_— = = 77 ~ —_—
n? log log % ¢log }

/124 6+a _1(1 6+a
3 , < ; 77711/6 since £ =

1
12+%a

1\ 1/13
n . log 5
)
< T sincen =
log 5 < n )

So we have verified the above conditions, which, along with the fact that » < o, allow us to invoke
Lemma 10. The Lemma gives that with probability 1 — 4,

- 1 1 QIOg% o §log§
e (0(&) o () 22

‘We bound the last term above.

1
.Y = —,andr >no
n

d\r—‘

lo log &
5 g5 §log 5 since r > no
r\f nZ,
lo
=n? ¢ Ig 5 substituting y
niy
log &
<7 &5 since £ = —
n

Along with the above and the setting of v and &, we have

2log%

7= ul< (1 +0m) | =7

Reparametrizing n gives the claim.
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Appendix G. Properties of -smoothed distributions

G.1. Score bound in terms of density

The next lemma shows that s, is bounded in terms of f,. and r.

Lemma 33 Let f* be an arbitrary distribution, and let f, be the r-smoothed version of f*. Let s,
be the score function of f.. We have

1
[50(2)|< ~ [210g
T

Proof Let w, be the pdf of A(0,72). By definition of r-smoothing, we have that when X ~ f,,
X =Y+ Z.where Y ~ f*and Z, ~ w, for independent Y, Z,.. So,

fle) = Pr (X =al= [ oY=yl Pr (Z=Y—aldy= E (=)

So, we have

Pr[X = 2|V = y] = Elw,(z — Y)Y = y] = w.(z — y)

2
1 - _];2
e 2r
2mr

Now, since w,(z) =

(x—=Y)=r,/2log

V2w, (z —Y)

So, by Lemma 36,

Z,
sp(x) =E [r; X:x]

1

= SElz-Y[X=2] sinceX=Y+7
,
1 1

= 2E|,/2lo X =2
r 8 V2rr - wp(z —Y)

1 [ 1
= - 21o PrlY = y|X = z|d
r/oo\/ g\/ﬂr-wr(x—y) [ vl Iy

1 [ 1 Pr[Y = y] Pr[X = 2|V = y]
== 21o d by Bayes’ Theorem
7"/_00\/ g,/27rr.w7‘(x—y) PI'I:X:.%'] y ( Y y )

. 1 * w,-(l' — y) 1 r o

= 7«/_00 @ V2% o e —g) Y = vl
1 fw(z-Y) 1 '

B ;E fr(z) 2log V2rr - we(z —Y)
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Now, g(z) = z,/2log \/%T_Z is concave on [0, 1]. So, by Jensen’s inequality,
Ey ¢ -Y 1
or(w) < XY [wr(z = Y)] ], log
rfr(@) V2rr - Elw,(z — Y)]
1
2log ——— since f(z) = Elw,(z — Y)]

WT()

G.2. r-smoothed score is O(1/r)-subgaussian

The next two lemmas together show that the score function of an r-smoothed distribution is O (%) -
subgaussian.

Lemma 34 Consider the distribution f, which is the r-smoothed version of distribution f. That
(o= u)2

is, fr has density fr(z) = By p[———=e~ |- Then, with probability at least 1 — (1 4 7)0, we

V2mr?

sample a point x ~ f,. such that

y~f

1 2 2 1] |z —yl
<z —y)?< -
< yINEf []l [(a: y)° < 2r<log 5]

Proof Observe that, at any point = violating the above inequality, we have

v —y| 1 @—102}
3 é 2r2
e\ 2mr2

fr(x)= E []1 [(m— y)? < 2r?log 5]

yf

e —y| 1 (zy)Q]
+ E |1|(x— > 2r?lo e 22
yf [ {( v’ & 5] r2 /o2

lt —y| 1 _(zy)z]
<14+7) E |1]|(x— > 2r%1o e 22
=+ E, [ [( v* ® ] rt V2mr?

We wish to bound the probability of sampling x violating the lemma inequality, which is bounded
by the integral of the above right hand side. We can further bound it using the following:

e —y| 1 _la=y? y) ]
E |1|(zx— > 2r%1o e dx
/w—f[ [( ) g5] 2 \/2nr?

r—yl 1 Gy
= E 1 — 2721 d
y<—f[/ [“’” o> °g5] 2 e W
< E[§]=6

yf

Thus the probability of sampling a point x violating the lemma inequality is upper bounded by
the integral of f,(z) over those points, which is in turn upper bounded by (1 + 7)é. [ |
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Lemma 35 (Score is O(1/r)-subgaussian) Let s, be the score function of an r-smoothed distri-

sr(2)|S %\/log %.
Proof

By Lemma 34 using 7 = 1, with probability 1 — 24 over sampling a single point z < f;, the
point z satisfies

bution f,. We have that for x ~ f., with probability 1 — 9,

Ne—yl 1 _@w
E |1|(z—y)?>2r’lo ] e 2r?
y<—f[ [( 2 g5 2 \/2nr2
jz—yl 1 _ew?
< E |1|(z—y)?<2?lo ] e 2r?
And so,
[ (@=y)®
y—r 158
e B[ |
sp(z) = = -
' fr(x) fr(2)
[ e _(z=y)®
Eyer |$r2y| 21”“26 2r? ]
< L
N fr(@)
[ _ _(@=y)?
By L7 < 2t logd] e 5]
B fr()
[ _ _(@=y)?
Eyes |1 [(z —y)? > 2r?log §] |$r2y|\/21r76 22 }
i L
fr()
_ _(z—y)®
By [ -0 <2t tog 1] ¥
<2
fr(@)
(@—y)®
1 —
9\/3 T Eyers []1 [(z —y)? < 2r°log 5] =—e™ 2~ }
< ——/log
r 0 fr(x)
2v/2 1
< v2 log +
r 0
Reparameterizing from 29 to § gives the lemma result. |

G.3. Lemmas from Gupta et al. (2022)
Here, we recall some of the properties of r-smoothed distributions shown in Gupta et al. (2022)

Lemma 36 (From Gupta et al. (2022)) Let s, be the score function of r-smoothed distribution f,.
Then,

2

eZr—¢e
frj(tf(z)g) = ZIFix |:€2 2r? } and in particular s, (x) = 2 ZIE:;:[ZT]
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and

sp(x+¢) =

Lemma 37 (From Gupta et al. (2022)) Let s, be the score function of an r-smoothed distribution
fr with Fisher information Z,. Then for any |e|< r/2,

E [s;(z+e)]=-Te+0© <ﬁ52>

z~ fr r2

Lemma 38 (From Gupta et al. (2022)) Let s, be the score function of an r-smoothed distribution
fr with Fisher information Z,. Then, for any |e|< r/2,

€ 1
E [s2 <Z + 0| -Zr/log =
E (e < T 40 (ST flog )

Lemma 39 (From Gupta et al. (2022)) Let I, be the Fisher information of an r-smoothed distri-
bution f.. Then T, < 1/r2.

Lemma 40 (From Gupta et al. (2022)) Let f* be an arbitrary distribution, and let f, be the r-
smoothed version of f*. Define

frw+e) = fr(x) —efi(x)

A (x) =
() (@)
Then, for any |e|< r/2,
4
91 _ €
:(:fIvEfT [As(x) ] 5 771

Appendix H. Median of Pairwise Means Estimator

Using results in Minton and Price (2014), we show that the median of pairwise means is a good
estimator for symmetric random variables. In particular, it matches the convergence of the median-
of-means estimator for all (¢, §) without needing to specify € and 0.

Lemma 9 (Median of pairwise means estimator) Ler X1, X, ..., X, be drawn from a symmet-
ric distribution with mean | and variance o2. For every constant C1 > 0 there exists a constant Cy
such that [i := median;cf, /9] M satisfies

. log %

= pl< Coo- :

with probability 1 — 6, for all § with log% < Cin.
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Proof Let Y; = %(Xgi_l + Xo;) for i € [n/2]. Let p be the pdf of X — p, and ¢ be the pdf of
Y — p. Since X — p is symmetric about 0, the Fourier transform p of p is real-valued. By the
Fourier convolution theorem, ¢ has nonnegative Fourier transform. Then by Lemma 3.1 of Minton
and Price (2014), for any € < 1,

Pr[|Yi|< eo] > Cse

for a universal constant C's. Then it is easy to show (e.g., Lemma 3.3 of Minton and Price (2014)):

2
3e2p

C:
Pr{|f — p|> eo] <2e™ 4

Setting € = C%) gy glves the result, as long as n > = log 5 sothise < 1.

There’s a remaining regime of 73 < 10% <y for which we need to prove a O(o) bound
on | — u| Note that Y; has variance 02/2, so for any a > 0, with probability 1 — a we have
|Y; — u|< . Let F; denote the event that |Y; — u|> = Then

n/2
Pr(| — pl> <Prz g ( ; ) a™* < (4a)™/*.

4

which is ¢ for a = %e‘i > 1e74C1. Thus with probability 1 — 6, [l — u|< V2e*“'o < 0. R

Oq\»—l
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