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Abstract
The mean of an unknown variance-σ2 distribution f can be estimated from n samples with vari-
ance σ2

n and nearly corresponding subgaussian rate. When f is known up to translation, this can
be improved asymptotically to 1

nI , where I is the Fisher information of the distribution. Such an
improvement is not possible for general unknown f , but Stone (1975) showed that this asymptotic
convergence is possible if f is symmetric about its mean. Stone’s bound is asymptotic, however: the
n required for convergence depends in an unspecified way on the distribution f and failure proba-
bility δ. In this paper we give finite-sample guarantees for symmetric mean estimation in terms of
Fisher information. For every f, n, δ with n > log 1

δ , we get convergence close to a subgaussian
with variance 1

nIr
, where Ir is the r-smoothed Fisher information with smoothing radius r that

decays polynomially in n. Such a bound essentially matches the finite-sample guarantees in the
known-f setting.
Keywords: Cramér-Rao; Fisher Information; Kernel Density Estimation

1. Introduction

Mean estimation is a fundamental problem in statistics. For a distribution with variance σ2, the
empirical mean over n samples has variance σ2

n and enjoys central limit behavior, asymptotically

yielding error σ
√

2 log 1
δ/n with failure probability δ. Substantial work Catoni (2012); Devroye

et al. (2016); Lee and Valiant (2022b) has led to an estimator with a corresponding finite-sample
guarantee, achieving the same error up to a 1 + o(1) factor.

On the other hand, consider the related problem of location estimation: if we know the exact
shape of the distribution, except for an unknown translation parameter, the (asymptotic) estimation
accuracy is characterized by the Fisher information. More formally, suppose x ∼ fλ(x) = f(x−λ)
for some known f but some unknown parameter λ. The Fisher information of f is defined as
I := Ex∼f [s(x)2] where s(x) is the “score” s(x) := f ′(x)/f(x). The maximum likelihood estimate
(MLE) is asymptotically normal with variance 1

nI , which is at most σ2

n ; and asymptotically, the
standard Cramér-Rao bound Cramér et al. (1946); Rao (1945) shows that this is optimal.

For example, the Laplace distribution has Fisher information 2
σ2 , and the MLE for the Laplace is

the empirical median. Thus, for the Laplace, the empirical median has half the asymptotic variance
of the empirical mean, so it needs half as many samples to achieve the same accuracy. The Fisher
information can sometimes be much larger than 1/σ2: consider Figure 2(b), a 50-50 mixture of two
Gaussians 1

2N(µ1, σ
2
1) + 1

2N(µ2, σ
2
2) with means µ1, µ2 ∈ [−1, 1] and variances σ2

2 � 1 � σ2
1 .
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Figure 1: Example distributions
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(a) The Laplace distribution has twice the
Fisher information of a Gaussian with the
same variance, so it can be estimated with
asymptotically half the variance.
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(b) When estimating a mixture of a wide and
narrow Gaussian, it is easier to estimate the
mean of the narrow Gaussian. When the
distribution is known up to location, esti-
mating this mean suffices.

This has variance Θ(σ2
2) and Fisher information Θ( 1

σ2
1
). Thus, the empirical mean has accuracy pro-

portional to the larger standard deviation, while the MLE has accuracy proportional to the smaller
standard deviation. In summary, for a known f at an unknown offset µ, one can achieve an accuracy
based on Fisher information, which is never worse than the generic σ2-dependence but can be much
better.

This poses a natural question: can we get Fisher-information–style improvements for unknown
f? Unfortunately, the answer is no. In the mixture of Gaussians example of Figure 2(b), in the
known-distribution case we are given µ2 − µ1 so it suffices to estimate µ1. This can be done
with variance Θ(

σ2
1
n ). In the unknown-distribution case we need both µ1 and µ2, and estimating µ2

induces variance Θ(
σ2
2
n ). In fact, recent work has shown (Anonymous, 2023) that the variance-based

subgaussian error bounds are essentially instance-optimal: for every distribution p of variance σ2,
and any n, δ with n � log 1

δ , there exists a distribution q of variance Θ(σ2) where |µp − µq|=
Ω(σ

√
log 1

δ/n), yet p and q are not distinguishable using n samples with probability 1− δ.
In this paper, we consider a restriction that allows for the Fisher information benefit in mean

estimation: symmetry. We give an estimator that, for every symmetric distribution f , estimates its
mean with an accuracy related to Fisher information.

Smoothed Fisher information. To state our results, we need the notion of smoothed Fisher infor-
mation. One issue with the aforementioned Fisher information results is that they are asymptotic:
the n required for convergence depends on the distribution in a possibly arbitrary way. As one sim-
ple example, if f(x) = (1− ε)N(0, 1) + εδ0, the Fisher information is infinite (if we see the same
real-valued sample twice, that is the exact mean) but with fewer than 1/ε samples we probably only
see theN(0, 1) samples; here the best estimator is the empirical mean, with errorN(0, 1

n). Thus, for
finite n, one cannot hope for accuracy approaching the true inverse Fisher information of a general
distribution.
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Figure 2: Gaussian + Sawtooth
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(a) In the “Gaussian+sawtooth” example, we
add tall but narrow “teeth” to a standard
Gaussian. Smoothing by radius larger than
the width returns the distribution to nearly
Gaussian.
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(b) The smoothed Fisher information has a
phase transition, from a large value when r
is small, to the standard Gaussian’s 1 when
r is larger than the tooth width.

Recent work by Gupta et al. (2022, 2023) has given finite-n bounds for the known-distribution
case in terms of the “smoothed Fisher information.” For a distribution f , the r-smoothed Fisher
information Ir is the Fisher information of f convolved with a Gaussian of variance r2. In these
results, r → 0 as n→∞, capturing the asymptotic behavior but giving bounds that still apply when
f and n vary together.

Figure 2 shows an example based on adding tall but narrow “teeth” to a standard Gaussian.
These teeth are useful for alignment within the the correct tooth, but not very useful for alignment
errors that are integer multiples of the tooth width. As a result, if the tooth width is w, the optimal
estimator exhibits a phase transition in its variance, with about 1

n variance for n � 1
w2 and 1

nI
variance for n� 1

w2 (see Gupta et al. (2022)). Such a phase transition is captured by the smoothed
Fisher information, which transitions at r ≈ w.

Our result. Our main theorem is the following:

Theorem 1 Let η = (
log 1

δ
n )

1
13 < 1, and let log 1

δ ≤ n/C for sufficiently large constant C > 1. Let
f∗ be an arbitrary symmetric distribution with variance σ2 and mean µ. For ησ ≤ r ≤ σ, we have

|µ̂− µ|≤ (1 + η)

√
2 log 2

δ

nIr

with probability 1− δ.

For “nice” distributions like the Laplace, 1/Ir ≈ 1/I + O(r2), so Theorem 1 gives an error

bound within (1 + O((
log 1

δ
n )1/13)) of the instance-optimal Cramér-Rao bound. For other distribu-

tions, like the Gaussian+sawtooth example of Figure 2, Ir exhibits a phase transition and the error
does not approach I until n grows larger than some distribution-dependent quantity; in the sawtooth
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example, n/log 1
δ must be at least O(1/w13). As discussed above, this is qualitatively correct but

with a suboptimal polynomial.
This theorem has the same form as Gupta et al. (2023), except our theorem applies to unknown

symmetric f∗ while theirs applies to known, possibly asymmetric f∗. The differences are (I) their ε

is a better polynomial, C(
log 1

δ
n )1/10; and (II) their theorem sets r in terms of the interquartile range

instead of standard deviation, and so applies to infinite-variance distributions.
Since 1

Ir ≤ σ
2 +r2, for appropriately chosen r our bound is never more than a (1+O(ε))-factor

worse than the subgaussian tail with variance σ2

n . This is comparable to the results of Catoni (2012),

although with a (slightly) weaker convergence rate (Catoni has rate ε =
log 1

δ
n ). However, since

Theorem 1 depends on the Fisher information, it can be much better: for example, it gives a factor
of 2 − O(ε) improvement when estimating a Laplace distribution, and variance Θ

(
min(σ2

1 ,σ
2
2)

n

)
rather than Θ

(
max(σ2

1 ,σ
2
2)

n

)
when f is a Gaussian mixture 1

2(N(µ, σ2
1) +N(µ, σ2

2)).
Theorem 1 assumes that we are given r; to choose r in general, we would want a (constant-

factor) estimate of σ, which can be done if f∗ has bounded kurtosis. Avoiding this dependence is
an interesting open question.

Our estimator is based on using a small fraction of samples to construct a kernel density estimate
(KDE) of f , then finding a variant of the maximum likelihood estimate (MLE). A similar approach
was used in Stone (1975) to get an asymptotic bound in terms of I; our contribution is an effective
bound for finite n that applies to any distribution,as well as high-probability bounds.

2. Related Work

One dimensional mean estimation is one of the most fundamental problems in statistics. Under the
assumption of finite variance, the celebrated Central Limit Theorem states that the distribution of
the sample mean asymptotically convergences to a Gaussian with variance σ2/n. For finite-sample
performance, Nemirovsky and Yudin (1983); Jerrum et al. (1986); Alon et al. (1999) independently
invented the Median-of-Means estimator, which achieves the same subgaussian concentration up to
a constant factor. A decade ago, the seminal work of Catoni (2012) initiated the search for a finite-
sample subgaussian estimator with a tight multiplicative constant. Subsequent improvements by
Devroye et al. (2016) and Lee and Valiant (2022b) showed how to construct a subgaussian estimator
tight up to a 1 + o(1) multiplicative factor.

This work, by contrast, assumes symmetry of the distribution about its mean. Stone (1975)
showed that asymptotically, the performance of mean estimation for symmetric distributions is con-
trolled by the Fisher information instead of the variance. Our approach is inspired by that of Stone:
construct a kernel density estimate (KDE) of the underlying distribution, and perform maximum
likelihood estimation (MLE) based on the KDE. On the other hand, our bounds are explicit finite-
sample bounds, and characterize the performance in terms of smoothed Fisher information, with a
smoothing radius r that vanishes as n/log 1

δ →∞.
Fisher information also characterizes the asymptotic error in the closely-related problem of

location estimation—a parametric variant of mean estimation—under the much stronger assumption
that we know the shape of the entire distribution up to some unknown translation van der Vaart
(2000). The recent works by Gupta et al. (2022; 2023) developed a finite-sample theory of location
estimation with error in terms of the smoothed Fisher information, up to a 1 + o(1) factor. Our
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algorithm also draws from the techniques in this line of work. In particular, instead of finding
the maximum of the empirical log-likelihood function, they perform a single step of Newton’s
method to approximate a root of the derivative. This modification both simplifies the algorithmic
implementation and yields analysis advantages. Our algorithm and analysis crucially leverage the
same simplified view of the MLE.

The statistics and computer science communities have also been actively studying the high-
dimensional mean estimation problem. Lugosi and Mendelson (2019) proposed the first subgaus-
sian high-dimensional mean estimator up to a multiplicative constant, but with exponential time.
Hopkins (2020) and Cherapanamjeri et al. (2019) later improved the result to take quadratic time.
A tight constant factor was achieved by Lee and Valiant (2022a) in the “very high-dimensional”
regime, but it remains an open problem to achieve a subgaussian estimator with tight constants in
general.

Recent years have seen a surge of interest in using maximum likelihood in theoretical computer
science, as a generic algorithm that can give efficient guarantees. Such papers include, for example,
profile maximum likelihood for distribution testing and functional estimation Acharya et al. (2011,
2017); Hao and Orlitsky (2019); Pavlichin et al. (2019); Charikar et al. (2019); Anari et al. (2020);
space-efficient streaming algorithms Pettie and Wang (2021); and other statistical estimation prob-
lems Daskalakis et al. (2018); Vinayak et al. (2019); Awasthi et al. (2022).

The result of this work has an “instance optimal” flavor: for each distribution, the error bounds
are phrased in terms of the (smoothed) Fisher information. The Cramér-Rao bound shows that,
even if we knew the distribution shape, we cannot hope to do better than the Fisher information
bounds. Instance optimality and related notions have also been studied in the context of other
statistical problems, for example, identity testing Valiant and Valiant (2017), learning discrete dis-
tributions Valiant and Valiant (2016), mean estimation without symmetry Anonymous (2023) and
differentially-private mean estimation Asi and Duchi (2020a,b); Huang et al. (2021).

3. Proof Sketch

In this section we give a very high-level overview of our proof approach; for a more detailed quan-
titative overview, see Section 4. Here, we will describe how to use (1 + O(η))n samples to get

accuracy (1 + O(η))

√
2 log 2

δ
n with probability 1 − δ, for η = (log 1

δ/n)1/13; rescaling parameters
gives the result.

Our algorithm proceeds in two phases. In the first phase, we use a small number of samples
(namely ηn) to produce an initial estimate µ1 of µ, and an approximation f̂r to fr. Since f is
symmetric, we can use the median of pairwise means estimator Minton and Price (2014): µ1 =
mediani∈[ηn/2]

x2i−1+x2i
2 . This has subgaussian tails corresponding to the variance of f :

ε := µ1 − µ satisfies |ε|.
√
σ2 log 2

δ

ηn

with probability 1 − δ, for every δ > 0. In the second stage, we want to refine this estimate to

(1 +O(η))

√
log 2

δ
nIr error, which is a small polynomial factor better (by at least

√
η, but perhaps even

better, like ( n
log 1

δ

)0.1). We do so with, essentially, one step of Newton’s method.
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Background: known distribution case. Suppose we knew the distribution of fr, except for the
location shift. We consider centering the distribution at µ1 = µ+ ε, i.e. define f̃r(x) = fr(x− ε),
in order to estimate ε. To do so, take the score function

s̃r(x) :=
f̃ ′r(x)

f̃r(x)

which satisfies s̃r(x + ε) = sr(x), where sr is the score function of f . Therefore, by standard
properties of the score function,

E
x∼fr

[s̃r(x+ ε)] = 0

E
x∼fr

[−s̃′r(x+ ε)] = E
x∼fr

[s̃2
r(x+ ε)] = Ir.

Since we know s̃r, we can take our n samples xi, add fresh independent noise wi ∼ N(0, r2) to get
xi + wi ∼ fr, and compute the empirical average

Ê[s̃r(xi + wi)] :=
1

n

n∑
i=1

s̃r(xi + wi)

One can show that this concentrates, so by a Taylor approximation

Ê[s̃r(xi + wi)] ≈ E
x∼fr

[s̃r(x)] ≈ E
x∼fr

[s̃r(x+ ε)− εs̃′r(x+ ε)] = −ε E
x∼fr

[s̃′r(x+ ε)] = εIr (1)

Thus we can estimate µ as

µ̂ := µ1 − I−1
r Ê[s̃r(xi + wi)] ≈ µ1 − ε = µ.

The new estimate µ̂ has error only from the two approximations in (1): (I) how well the empirical
average score concentrates to the true average, and (II) the Taylor approximation.

At ε = 0, error (II) is zero and error (I) has variance 1
nVar(sr(x)) = Ir

n . Since µ̂ rescales by
I−1
r , this means µ̂ has variance 1

nIr at ε = 0—precisely the Cramér-Rao bound we want to achieve.
It was shown by Gupta et al. (2022) that the same bound holds to within a 1 + o(1) factor as long as
ε is small relative to r (namely, |ε|� r2

√Ir), and that the error satisfies a subgaussian tail bound
matching this variance.

Our setting: unknown distribution case. The above algorithm for the known-distribution case
uses knowledge of the distribution in two ways: to compute s̃, and to estimate Ir to rescale it. But
what happens if we use some function g(x) other than the score? If g is antisymmetric about µ1,
we still have Ex∼fr [g(x+ ε)] = 0, and so

Ê[g(xi + wi)] ≈ E
x∼fr

[g(x)] ≈ E
x∼fr

[g(x+ ε)− εg′(x)] = −ε E
x∼fr

[g′(x)] (2)

If g is reasonably smooth and ε is small relative to r, the Taylor approximation will be quite good,
in which case

ε̂ := − Ê[g(xi + wi)]

Ex∼fr [g′(x)]
(3)
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is a low-bias estimator of ε. For small ε, we expect this estimator to have variance close to the
variance at ε = 0, which is

Var(µ̂) ≈ 1

n

Efr [g2(y)]

Efr [g′(y)]2
. (4)

One can show that this variance is at least 1
nIr , with minimum achieved when g is the score

function sr(x) = f ′r(x)
fr(x) , matching the Cramér-Rao bound; see Proposition 2 at the end of the sec-

tion. But this argument is fairly robust: we just need g(x) to be an antisymmetric function that
approximates sr well under these two expectations, and that is robust to perturbations ε� r.

Our algorithm then is: using our initial set of ηn samples in the first stage, we compute the
kernel density estimate (KDE)

f̂r(x) :=
1

n

n∑
i=1

φ

(
x− xi
r

)
where φ(t) is the Gaussian density φ(t) = 1√

2π
e−t

2/2. This has corresponding score function

ŝr(x) = f̂ ′r(x)

f̂r(x)
. We first clip the score function to have magnitude at most T ≈

√
logn
r , and then

antisymmetrize this score function about µ1 by just copying the right side over: setting ŝsymr (x) =

ŝclipr (2µ1− x) for x ≤ µ1. This produces the antisymmetric function ŝsymr we use as g in the above
proof outline.

The final step in our algorithm is that, in order to estimate our target via (3), we need to ap-
proximate Ex∼fr [ŝsym

′
(x)]. Since ŝsym is close to the true score sr(x), this value is close (within

1 +O(η)) to Ir. Thus, we can just make an estimate Îr of Ir using the distribution f̂r.
Our sources of error are the following: (I) the empirical concentration to the expectation of

ŝsym(x); (II) the Taylor approximation in (2); (III) the increase in variance (4) due to ŝsym not
being the exact score; and (IV) error from approximating Ex∼fr [ŝsym

′
(x)] by Îr in (3).

Unlike in the known-distribution case, clipping is necessary for bounding error (I). The true
score concentrates in expectation because sr(x) is subgamma over x ∼ fr. However, ŝr(x) may
not be so concentrated. Consider the example f(x) = (1 − 2

n)N(0, 1) + 1
nδ−

√
n + 1

nδ
√
n. In

this example, x ∼ f is usually constant but has a Θ( 1
n) chance of being quite large; in this case,

it is likely that the large points will not appear for the KDE but will appear exactly once for the
second stage. The KDE then gives them large scores (about

√
n/r), leading to excessive final error

(Θ( 1
r
√
n

) not Θ( 1√
n

)). Once the scores are clipped, however, we can bound the error (I) with high
probability via Bernstein’s inequality. The clipping threshold T is large enough to have negligible
effect on the expectations (III-IV); since the true score is subgaussian, with high probability it is not
clipped. Specifically, in the Gaussian + Symmetric Dirac Deltas example above , the “excess error”
in the above constant probability event is now O(

√
log ηn/(rn)). Recalling that r ≈ 1/n1/13 in

Theorem 1, the excess error after clipping is� O(1/
√
n).

Error (II) is bounded when ε is small in a similar manner to previous work in the known dis-
tribution case. For errors (III) and (IV), we just need to show that, with high probability, our KDE
f̂r ≈ fr and ŝsymr ≈ sr, in different metrics but all in expectation over f̂ .

Comparison to Stone (1975). Our approach, of taking an initial estimate and KDE and refining it
with one Newton step, is similar to Stone (1975). The main difference is that our work needs more
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careful bounds: Stone (1975) shows convergence in probability to N(0, 1
nI ), which requires fixing

the distribution f and failure probability δ before sending n → ∞. By separating the distribution
dependence into Ir, we can express and prove bounds for any f, n, δ.

We end this section with a short proof relating (4) to the score and Fisher information.

Proposition 2 For every antisymmetric function g that is continuously differentiable and whose
derivative g′ is integrable under fr, we have

Efr [g2(y)]

Efr [g′(y)]2
≥ 1

Ir

with equality achieved when g(y) = sr(y) = f ′r(y)/fr(y).

Proof First, observe that by integration by parts, we have

E
fr

[g′(y)] =

∫
R
fr(y)g′(y) dy = [fr(y)g(y)]∞−∞ −

∫
R
f ′r(y)g(y) dy = −

∫
R
f ′r(y)g(y) dy

where the last equality is by the symmetry of f and antisymmetry of g. Furthermore,∫
R
f ′r(y)g(y) dy =

∫
R

f ′r(y)

fr(y)
g(y)fr(y) dy = E

fr
[sr(y)g(y)]

which means

E
fr

[g′(y)]2 = E
fr

[sr(y)g(y)]2 ≤ E
fr

[sr(y)2] E
fr

[g(y)]2 = Ir E
fr

[g(y)]2

by Cauchy-Schwarz, with equality achieved when g(y) = sr(y).

4. Key Steps in Proof

Here, we highlight the key steps of our proof. For the full proofs, see the Appendix.

Notation. Let f∗ be an arbitrary symmetric distribution with mean µ and variance σ2, and let fr
be the r-smoothed version of f∗. Let sr be the score function of fr, so that sr(x) = f ′r(x)

fr(x) . Let
Ir = Ex∼fr

[
sr(x)2

]
= −Ex∼fr [s′r(x)] be the Fisher information of fr.

Let wr be the density function of N (0, r2). Then, the Kernel Density Estimate (KDE) f̂r from
N samples Y1, . . . YN ∼ f∗ is given by

f̂r(x) =
1

N

N∑
i=1

wr(x− Yi) (5)

It has score function ŝr with ŝr(x) = f̂ ′r(x)

f̂r(x)
. Let ŝclip

r be the clipped KDE score from N samples
with associated failure probability δ, given by

ŝclip
r (x) = sign(ŝr(x)) ·min

(
|ŝr(x)|, 2

r

√
log

N

log 1
δ

)
(6)
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Define the symmetrized clipped KDE score ŝsym
r from N samples, symmetrized around y, as

ŝsym
r (x) =

{
ŝ

clip
r (x) x ≥ y
−ŝclip

r (2y − x) x < y
(7)

In what follows, we first analyze the clipped KDE score (Section 4.1), before showing that
symmetrizing it at a µ + ε for small |ε| does not add too much error (Section 4.2). Using similar
techniques, we prove that Ir can be computed directly from the KDE (Section 4.3). Section 4.4 then
analyzes the Newton step of the estimation, and finally Section 4.5 assembles all the guarantees into
Lemma 10, from which our main result Theorem 1 follows as a corollary.

4.1. Clipped KDE Score

We first show that the clipped KDE score ŝclip
r approximates the true score sr in an `2 sense:

Lemma 3 (Clipped KDE score error) Let ŝclip
r be the clipped Kernel Density estimate from N

samples, defined in (9). Let γ > C be a parameter, for large enough constant C ≥ 1. Then for any

r ≤ σ and N
log 1

δ

≥
(
γ5/12σ
r

)6+β
for β > 0, with probability 1− δ, we have that,

E
x∼fr

[
(ŝclip
r (x)− sr(x))2

]
.
Ir
γ

This holds even for asymmetric f∗ and fr.

Proof Sketch We refer to the radius tσr region around the true mean of f∗ as the “typical region”,
and to the region with density at least α = 1

t3σr
as the “large density region”. We break up the expec-

tation above into 3 parts: (I) the typical, large density region, (II) the typical, small density region,
and (III) the atypical region. We then bound the expectation in each of these regions individually.

To bound the expectation in regions (II) and (III), observe that both regions (II) and (III) have
total probability at mostO

(
1
t2

)
. For our clipping threshold, we show that the expectation of ŝclip

r (x)2

and sr on a region with this probability is bounded by O
(
Ir
γ

)
.

For region (I), we employ a binning argument. We first show that if we fix x with fr(x) ≥ α,
then, for small enough ε and for all |ζ|≤ |ε|, with probability 1−δ, ŝr(x+ζ) approximates sr(x+ζ)
up to error depending on ε, δ, α and N . That is, our KDE score approximates the true score well
within bins of size ε with probability 1 − δ. Then, by union bounding over O

(
tσr
ε

)
bins, for

appropriately chosen ε, we show that, with probability 1−δ for all x in region (I), |ŝclip
r (x)−sr(x)|.√

Ir
γ so that the expectation of (ŝ

clip
r (x)− sr(x))2 in region (I) is bounded by O

(
Ir
γ

)
.

Putting our bounds together then gives the claim.

4.2. Symmetrization

This section shows that ŝsym
r symmetrized at µ+ ε for small ε has mean ≈ εIr and variance ≈ Ir.

Lemma 4 (Symmetrized Clipped KDE score variance) Let ŝsym
r be the symmetrized clipped Ker-

nel Density Estimate score from N samples, symmetrized around µ + ε for |ε|≤ r/60, as defined

9
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in (12). Let γ > C be a parameter for large enough constant C. Then for any r ≤ σ and
N

log 1
δ

≥
(
γ5/12σ
r

)6+β
for β > 0, if |ε|≤ r2

√
Ir
γ , with probability 1− δ,

| E
x∼fr

[
ŝsym
r (x)2

]
− Ir|.

Ir√
γ

Proof Sketch First, we show that

E
x∼fr

[
(ŝsym
r (x)− sr(x))2

]
. E

x∼fr
[(ŝclip

r (x)− sr(x))2]

so that by the previous Lemma 3, it’s bounded by O
(
Ir
γ

)
. Then, we can show the claim using the

triangle inequality in `2.

The Taylor approximation (2) leads to:

Lemma 5 (Symmetrized Clipped KDE score mean) Let ŝsym
r be the symmetrized clipped Kernel

Density Estimate score from N samples, symmetrized around µ + ε for |ε|≤ r/60, as defined
in (12). Let γ > C be a parameter for large enough constant C. Then for any r ≤ σ and
N

log 1
δ

≥
(
γ5/12σ
r

)6+β
for β > 0, if |ε|≤ r2

√
Ir
γ , with probability 1− δ,

∣∣∣∣ E
x∼fr

[ŝsym
r (x)]− εIr

∣∣∣∣ . εIr√
γ

4.3. Estimating Ir
To perform a step of Newton’s method, we need an estimate of the Fisher information Ir. We show
that Îr = E

x∼f̂r

[
ŝ

sym
r (x)2

]
is a good estimate whenever ŝsym

r satisfies the conditions above.

Lemma 6 (Smoothed Fisher information Estimation) Let γ ≥ C for large constant C ≥ 1 be a
parameter. Suppose we have a function s̃r that satisfies for r ≤ σ∣∣∣∣ E

x∼fr
[s̃r(x)2]− Ir

∣∣∣∣ . Ir√
γ

and that |s̃r(x)|≤ 2
r

√
log N

log 1
δ

for all x. Let f̂r be the kernel density estimate for fr from N

samples, as defined in (8). Then, for N
log 1

δ

≥
(
γ5/12 σ

r

)6+β
for some small constant β > 0, with

probability 1− δ, we have ∣∣∣∣∣ E
x∼f̂r

[s̃r(x)2]− Ir
∣∣∣∣∣ . Ir√

γ

Proof Sketch We have

E
x∼f̂r

[
s̃r(x)2

]
= E

x∼fr
[s̃r(x)2] +

∫ ∞
−∞

(
f̂r(x)− fr(x)

)
s̃r(x)2dx

10
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As in the proof of Lemma 3, we again break up the integral above into 3 parts and bound each part
separately byO

(
Ir√
γ

)
. Finally, we make use of our assumption that Ex∼fr [s̃r(x)2] ≈ Ir along with

our bound on the integral to show the claim.

To conclude, we have with high probability (1− δ
ξ ) that our KDE satisfies the following:

Property 7 (KDE Estimation Properties) Let fr be the r-smoothed version of symmetric distri-
bution f∗ in Algorithm 1, with Fisher information Ir. For parameters γ > C for some sufficiently
large constant C and ξ, ŝsym

r satisfies that for symmetrization point µ1 = µ+ ε,∣∣∣∣ E
x∼fr

[ŝsym
r (x)]− εIr

∣∣∣∣ . εIr√
γ

and
∣∣∣∣ E
x∼fr

[
ŝsym
r (x)2

]
− Ir

∣∣∣∣ . Ir√
γ

and |ŝsym
r (x)|≤ 2

r

√
log n

ξ log ξ
δ

for all x. Furthermore, the Fisher information estimate Îr satisfies∣∣∣Îr − Ir∣∣∣ . Ir√
γ

4.4. Local Estimation

We then show that Property 7 implies that Algorithm 1, which does one approximate Newton step,
gets high accuracy.

Algorithm 1 Local Estimation

Input Parameters:

• n samples x1, . . . , xn ∼ f∗, the symmetrized and clipped KDE score function ŝsym
r , sym-

metrization point µ1, Fisher information estimate Îr

1. For each sample xi, compute a perturbed sample x′i = xi +N (0, r2) where all the Gaussian
noise are drawn independently across all the samples.

2. Compute ε̂ = 1

Îrn

∑n
i=1 ŝ

sym
r (x′i). Return µ̂ = µ1 − ε̂.

Lemma 8 (Local Estimation) In Algorithm 1, let fr be the r-smoothed version of symmetric dis-
tribution f∗, with score function sr and Fisher information Ir. Suppose for parameters γ, ξ, and
symmetrized clipped KDE score ŝsym symmetrized around µ1, Property 7 is satisfied. Then, with
probability 1− δ, the output µ̂ of Algorithm 1 satisfies

|µ̂− µ| ≤
(

1 +O

(
1√
γ

))√
2 log 2

δ

nIr
+O


√

log n

ξ log ξ
δ

rIr
· log 2

δ

n

+O

(
ε√
γ

)
Proof Sketch We bound µ̂ − µ using (2) for g(x) = ŝ

sym
r (x). We apply Bernstein’s inequality to

concentrate Êx∼fr [ŝ
sym
r (x)]. The first term in our bound is the variance term and the second is the

exponential term. The final term in our error bound comes from the difference between E[ŝ
sym
r (x)]

and εIr bounded by Property 7.

11
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4.5. Global Estimation

In order to perform our final estimation, we compute an initial estimate µ1 of µ, and our KDE
f̂r with associated symmetrized clipped score ŝsym

r around µ1, along with our Fisher information
estimate Îr. We combine these with our Local Estimation algorithm to obtain our final estimate µ̂.
Lemma 10 shows our formal guarantee on the performance of our final estimate µ̂. Then,

For our initial estimate µ1, we make use of the median of pairwise means estimator for sym-
metric distributions, implied by Minton and Price (2014).

Lemma 9 (Median of pairwise means estimator) Let X1, X2, . . . , Xn be drawn from a symmet-
ric distribution with mean µ and variance σ2. For every constant C1 > 0 there exists a constant C2

such that µ̂ := mediani∈[n/2]
X2i−1+X2i

2 satisfies

|µ̂− µ|≤ C2σ ·

√
log 2

δ

n

with probability 1− δ, for all δ with log 1
δ ≤ C1n.

Algorithm 2 Global Estimation

Input parameters:

• Failure probability δ, Samples x1, . . . , xn ∼ f∗, smoothing parameter r, approximation pa-
rameter ξ > 0.

1. First, use the first n/ξ samples to compute an initial estimate µ1 of the mean µ by using the
Median-of-pairwise-means estimator in Lemma 9.

2. Use the next n/ξ samples to compute the kernel density estimate f̂r of fr (as defined in
(8)), along with the associated symmeterized, clipped KDE score ŝsym

r (as defined in (12)),
clipped at 2

r

√
log n

ξ log ξ
δ

and symmetrized around the initial estimate µ1. Compute the Fisher

information estimate Îr = E
x∼f̂r

[
ŝ

sym
r (x)2

]
.

3. Run Algorithm 1 using the remaining n− 2n
ξ samples, and return the final estimate µ̂.

Lemma 10 (Global Estimation) Let ξ > C for large enough constant C > 3 be a parameter, and

suppose ξ ≤ γ ≤
(

n
ξ log 1

δ

)2/5−α
for constant α > 0. For any r ≤ σ and n

log 1
δ

≥ ξ
(
γ5/12σ
r

)6+α
,

with probability 1− δ, Algorithm 2 outputs an estimate µ̂ with

|µ̂− µ|≤
(

1 +O

(
1√
γ

)
+O

(
1

ξ

))√
2 log 2

δ

nIr
+O

 σ

r
√
γ

√
ξ log ξ

δ

nIr


Proof Sketch Combining Lemmas 9, 5, 4, 6, we know that ŝsym

r (x) and Îr computed in Steps 1 and
2 satisfy Property 7 with high probability. Invoking Lemma 8 on Step 3 yields the result.

Theorem 1 follows by setting γ = 1
η2

, ξ = 1
η , and calculation.
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Appendix A. Definitions

Let f∗ be an arbitrary symmetric distribution with mean µ and variance σ2, and let fr be the r-
smoothed version of f∗ with variance σ2

r = σ2 + r2. Let sr be the score function of fr, so that
sr(x) = f ′r(x)

fr(x) . Let Ir = Ex∼fr
[
sr(x)2

]
= −Ex∼fr [s′r(x)] be the Fisher information of fr.

Let wr be the density function of N (0, r2). We recall the definition of the Kernel Density
Estimate (KDE) f̂r from N samples Y1, . . . YN ∼ f∗, from (5).

f̂r(x) =
1

N

N∑
i=1

wr(x− Yi) (8)

It has score function ŝr with ŝr(x) = f̂ ′r(x)

f̂r(x)
. We recall the definition of ŝclip

r , the clipped KDE score
from N samples with associated failure probability δ, from (6).

ŝclip
r (x) = sign(ŝr(x)) ·min

(
|ŝr(x)|, 2

r

√
log

N

log 1
δ

)
(9)

We also recall the definition of ŝsym
r , the symmetrized clipped KDE score from N samples, sym-

metrized around y, from (7).

ŝsym
r (x) =

{
ŝ

clip
r (x) x ≥ y
−ŝclip

r (2y − x) x < y
(10)

Appendix B. Clipped Kernel Density Estimate

In this section, we will analyze the clipped Kernel Density Estimate score function ŝclip
r of a distri-

bution. Our main result in this section is Lemma 3, which says that ŝclip
r is a good approximation to

the true score function sr of the r-smoothed distribution in a specific sense.
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B.1. Pointwise guarantees

In this section, we show that for any individual point x, the KDE score ŝr(x) approximates sr(x)
well, where sr is the true score function of our r-smoothed distribution fr. We begin by showing
that the KDE f̂r approximates the true density fr pointwise.

Lemma 11 (Pointwise density estimate guarantee) Let f̂r be the kernel density estimate of fr
from N samples Y1, . . . , YN ∼ f∗, given by

f̂r(x) =
1

N

N∑
i=1

wr(x− Yi)

where wr is the pdf of N (0, r2). For any fixed x, when N ≥ 3 log 2
δ

fr(x)r we have that with probability
1− δ ∣∣∣f̂r(x)− fr(x)

∣∣∣ ≤
√

3fr(x) log 2
δ

Nr

This holds even for asymmetric f∗, fr.

Proof For every x, we have

|wr(x)|≤ 1

r

So, by multiplicative Chernoff, we have for 0 ≤ ε ≤ 1

Pr
Yi∼f∗

[∣∣∣∣∣ 1

N

N∑
i=1

wr(x− Yi)− E
Y∼f∗

[wr(x− Y )]

∣∣∣∣∣ ≥ ε E
Y∼f∗

[wr(x− Y )]

]
≤ 2 exp

(
−ε

2rNfr(x)

3

)

The claim follows.

The next Lemma shows that the derivative of the KDE f̂ ′r approximates the true derivative of
the density function f ′r pointwise.

Lemma 12 (Pointwise density derivative estimate guarantee) Let f̂r be the kernel density esti-

mate of fr from N samples Y1, . . . , YN ∼ f∗. For a fixed x, letting N ≥ log 1
δ

rfr(x) , we have that with
probability 1− δ, ∣∣∣f̂ ′r(x)− f ′r(x)

∣∣∣ .
√
fr(x) log 1

δ

Nr3

This holds even for asymmetric f∗, fr.

Proof

16
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E
Y∼f∗

[w′r(x− Yi)2] = E
Y∼f∗

[(
−wr(x− Y )

(x− Y )

r2

)2
]

=
1

r4
E

Y∼f∗

[
wr(x− Y )2(x− Y )2

]
.

1

r3
E

Y∼f∗
[wr(x− Y )] since wr(x− Y )(x− Y )2 ≤ r√

2πe

=
fr(x)

r3

Also, w′r(x−Yi) = − (x−Yi)√
2πr3

e−
(x−Yi)

2

2r2 is bounded in [−1/r2, 1/r2]. So, by Bernstein’s inequal-
ity,

Pr
Yi∼f∗

[∣∣∣∣∣ 1

N

N∑
i=1

w′r(x− Yi)− E
Y∼f∗

[w′r(x− Y )]

∣∣∣∣∣ ≥ ε
]
≤ 2 exp

(
−Ω

(
ε2

fr(x)
Nr3

+ ε
Nr2

))

So,

|f̂ ′r(x)− f ′r(x)|.

√
fr(x) log 1

δ

Nr3
+

log 1
δ

Nr2

Since N ≥ log 1
δ

fr(x)r , the claim follows.

Finally, we have the main result of this section, which shows that the KDE score ŝr approximates
the true score sr pointwise.

Lemma 13 (Pointwise Score Estimate Guarantee) Let f̂r be the kernel density estimate of fr
from N samples Y1, . . . , YN ∼ f∗. For fixed x, N ≥ 6 log 4

δ
rfr(x) , and the KDE score ŝr defined in (8),

given by

ŝr(x) =
f̂ ′r(x)

f̂r(x)

we have that with probability 1− δ,

|ŝr(x)− sr(x)| .

√
log 1

δ log 1
rfr(x)

Nr3fr(x)

This holds even for asymmetric f∗, fr.

Proof We have, by Lemmas 11 and 12, by a union bound, with probability 1− δ,

f̂ ′r(x)

f̂r(x)
≤
f ′r(x) +O

(√
fr(x) log 1

δ
Nr3

)
fr(x)

(
1−

√
3 log 4

δ
fr(x)rN

)

17
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Since N ≥ 6 log 4
δ

rfr(x) we have that

√
3 log 4

δ
fr(x)rN ≤ 1/

√
2. So,

ŝr(x)− sr(x) .

√
log 1

δ

fr(x)Nr3
+ sr(x)

√
log 1

δ

f(x)rN

.

√
log 1

δ log 1
rfr(x)

Nr3fr(x)
by Lemma 33

Similarly,

ŝr(x)− sr(x) &

√
log 1

δ log 1
rfr(x)

Nr3fr(x)

B.2. Close-by scores are close

In this section, we show that for small enough ε, sr(x+ ε) and sr(x) are close to each other for the
score function sr. We begin with the following utility lemma.

Lemma 14 Let (X,Y, Zr) be the joint distribution such that Y ∼ f∗, Zr ∼ N (0, r2) are indepen-
dent, and X = Y + Zr ∼ fr. For any x, and t > 0, we have

Pr
Zr

[|Zr|> rt|X = x] ≤ e−t
2/2

√
2πrfr(x)

This holds even for asymmetric f∗, fr.

Proof Recall that
fr(x) = E

Y∼f∗
[wr(x− Y )]

where wr is the pdf of N (0, r2). So, we have

Pr
X,Zr

({X = x} ∩ {|Zr|> rt}) = E
Y∼f∗

[
wr(x− Y )1|x−Y |>rt

]
≤ 1√

2πr
e−t

2/2

Since wr(x− Y ) = 1√
2πr

e−
(x−Y )2

2r2 . Thus

Pr
Zr

[|Zr|> rt|X = x] =
PrX,Zr [{X = x} ∩ {|Zr|> rt}]

PrX∼fr(X = x)
≤ e−t

2/2

fr(x)
√

2πr
.

The next lemma shows that fr(x+ ε) is close to fr(x) for small ε.
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Lemma 15 Let ε, x be such that 8|ε|
r

√
log 1

rfr(x) ≤ 1. We have,

fr(x+ ε)

fr(x)
≤ 1 +

10|ε|
r

√
log

1

fr(x)r

This holds even for asymmetric f∗, fr.

Proof Let (X,Y, Zr) be the joint distribution such that Y ∼ f∗, Zr ∼ N (0, r2) are independent,
and X = Y + Zr ∼ fr. For every x, by Lemma 36, we have

fr(x+ ε)

fr(x)
= E

Zr|x

[
e

2εZr−ε2
2r2

]
≤ E

Zr|x

[
e
εZr
r2

]
Without loss of generality, we assume that ε > 0. Now, since 8|ε|

r

√
log 1

rfr(x) ≤ 1,

E
Zr|x

[
eεZr/r

2
]
≤
(

1 +
8ε

r

√
log

1

fr(x)r

)
+

∫ ∞
1+ 8ε

r

√
log 1

fr(x)r

Pr
Zr|x

[eεz/r
2 ≥ u]du

= 1 +
8ε

r

√
log

1

fr(x)r
+

∫ ∞
1+ 8ε

r

√
log 1

fr(x)r

Pr
Zr|x

[
Zr ≥

r2 log u

ε

]
du

= 1 +
8ε

r

√
log

1

rfr(x)
+

∫ ∞
log
(

1+ 8ε
r

√
log 1

rfr(x)

) Pr
Zr|x

[Zr ≥ rv]
ε

r
eεv/rdv(

Substituting v =
r log u

ε

)
≤ 1 +

8ε

r

√
log

1

fr(x)r
+

∫ ∞
4
√

log 1
fr(x)r

Pr
Zr|x

[Zr ≥ rv]
|ε|
r
eεv/rdv

≤ 1 +
8ε

r

√
log

1

fr(x)r
+
|ε|√
2π

∫ ∞
4
√

log 1
fr(x)r

e−v
2/2+εv/r

r2fr(x)
dv by Lemma 14

≤ 1 +
8ε

r

√
log

1

fr(x)r
+
|ε|e

2ε2

r2

r2fr(x)

∫ ∞
4
√

log 1
fr(x)r

e−
(v− 2ε

r )
2

2√
2π

dv

≤ 1 +
8ε

r

√
log

1

fr(x)r
+
|ε|e

2ε2

r2

r2fr(x)
Pr

W∼N (0,1)

[
W ≥ 4

√
log

1

fr(x)r
− 2ε

r

]

≤ 1 +
8ε

r

√
log

1

fr(x)r
+

11|ε|
10r2fr(x)

Pr
W∼N (0,1)

[
W ≥

√
2 log

1

rfr(x)

]

since fr(x) ≤ 1√
2πr

, so that
2|ε|
r
≤ 1

4
√

log 1
rfr(x)

≤ 1

4 log
√

2π

√
log

1

rfr(x)

and since |ε|/r ≤ 1

8
√

log 1
rfr(x)

≤ 1

8
√

log
√

2π
so that e2 ε

2

r2 ≤ 11/10
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≤ 1 +
8ε

r

√
log

1

rfr(x)
+

11|ε|
10r

≤ 1 +
10|ε|
r

√
log

1

rfr(x)
since

11|ε|
10
≤ 2|ε|

r

√
log
√

2π ≤ 2|ε|
r

√
log

1

rfr(x)

giving the result.

The next lemma shows that f ′r(x+ ε) is close to f ′r(x) for small ε.

Lemma 16 (Close-by density derivatives are close) Let ε, x be such that 20|ε|
r

√
log 1

fr(x)r < 1.
We have

|f ′r(x+ ε)− f ′r(x)|. |ε|
r2
fr(x) log

(
1

rfr(x)

)
This holds even for asymmetric f∗, fr.

Proof Let wr be the pdf of N (0, r2). We have that

w′′r (x) =
−r2 + x2

√
2πr5

e−
x2

2r2 =
−r2 + x2

r4
wr(x) =

−1 + 2 log
(

1√
2πr·wr(x)

)
r2

wr(x)

since x2 = 2r2 log
(

1√
2πr·wr(x)

)
. So, since g(z) = z log

(
1√

2πr·z

)
is concave on [0, 1], we have

E
Y∼f∗

[w′′r (x− Y )]

=
1

r2
E

Y∼f∗

[
wr(x− Y )

(
−1 + 2 log

(
1√

2πr · wr(x− Y )

))]
≤ 1

r2
E

Y∼f∗
[wr(x− Y )]

(
−1 + 2 log

(
1√

2πrEY∼f∗ [wr(x− Y )]

))
by Jensen’s inequality

.
fr(x) log

(
1

fr(x)
√

2πr

)
r2

So, by Taylor’s theorem, for some |ζ|< |ε|

w′r(x+ ε− Y ) = w′r(x− Y ) + εw′′r (x+ ζ − Y )

Now, by the above

E
Y∼f∗

[
w′′r (x+ ζ − Y )

]
.
fr(x+ ζ) log

(
1

fr(x+ζ)
√

2πr

)
r2

.
fr(x) log

(
O
(

1
fr(x)r

))
r2

Using Lemma 15

.
fr(x) log 1

rfr(x)

r2
since rfr(x) ≤ 1√

2π
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So, by the above,

f ′r(x+ ε)− f ′r(x) . ε E
Y∼f∗

[
w′′r (x+ ζ − Y )

]
.

ε

r2
fr(x) log

(
1

rfr(x)

)
Similarly, by Taylor’s theorem, for some |ζ|< |ε|,

w′r(x− Y ) = w′r(x+ ε− Y )− εw′′r (x+ ζ − Y )

so that

f ′r(x)− f ′r(x+ ε) . − ε

r2
fr(x) log

(
1

rfr(x)

)
The claim follows.

Finally, the main result of this section shows that sr(x+ ε) is close to sr(x) for small ε.

Lemma 17 (Close-by scores are close) Let ε, x be such that 20|ε|
r

√
log 1

rfr(x) < 1. We have

|sr(x+ ε)− sr(x)| . |ε|
r2

log

(
1

rfr(x)

)
This holds even for asymmetric f∗, fr.

Proof By Lemma 15 and 16, we have

f ′r(x+ ε)

fr(x+ ε)
≤
f ′r(x) +O

(
|ε|
r2
fr(x) log

(
1

rfr(x)

))
fr(x)

(
1− 10|ε|

r

√
log 1

rfr(x)

)
Since 10|ε|

r

√
log 1

rα < 1/2, we have

f ′r(x+ ε)

fr(x+ ε)
≤ f ′r(x)

fr(x)
+O

( |ε|
r2

log

(
1

rfr(x)

))
+O

(
f ′r(x)

fr(x)

|ε|
r

√
log

1

rfr(x)

)

So,

sr(x+ ε)− sr(x) . +
|ε|
r2

log

(
1

rfr(x)

)
+ sr(x)

|ε|
r

√
log

1

rfr(x)

.
|ε|
r2

log

(
1

rfr(x)

)
by Lemma 33

We can get the lower bound in the same way.
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B.3. Bounding the clipped KDE error

In this section, we show that the clipped KDE score function ŝ
clip
r approximates the true score

function ŝsym
r in a specific sense. We begin by showing that sets that have small density under fr

have small expected score.

Lemma 18 Let S be any set with Prfr [S] ≤ β. Let |ε|≤ r/2 and |ε|≤ r√
log 1

r2Ir

. Then, for the

score function sr of fr, we have

E
x∼fr

[sr(x+ ε)21x∈S ] .
β

r2
log

1

β

This holds even for asymmetric f∗, fr.

Proof

E
x∼fr

[s2
r(x+ ε)1x∈S ] =

∫ ∞
0

Pr
x∼fr

[s2
r(x+ ε)1x∈S ≥ t]dt

≤
∫ ∞

0
min( Pr

x∼fr
[x ∈ S], Pr

x∼fr
[s2
r(x+ ε) ≥ t])dt

≤
∫ ∞

0
min(β, Pr

x∼fr
[|sr(x+ ε)|≥

√
t])dt

So, by Lemma 35, for some explicit constant C > 0, we have:

E
x∼fr

[s2
r(x+ ε)1x∈S ] .

∫ ∞
0

min(β, e−Ctr
2
)dt

. βB +

∫ ∞
B

e−Ctr
2
dt

. βB +
e−CBr

2

Cr2

Thus, setting B =
log 1

β

Cr2
gives

E[s2
r(x+ ε)1x∈S ] .

β

r2
log

1

β

The next lemma shows that for every small width region, the KDE score ŝ approximates the true
score well, as long as the density of that region is large.

Lemma 19 (Generic Error estimate within bin) Let f∗ be an arbitrary distribution and let fr
be the r-smoothed version of f∗. Let f̂r be the kernel density estimate of fr from N samples

Y1, . . . , YN ∼ f∗. Let x, ε,N be such that N ≥ 6 log 4
δ

rfr(x) , and 20|ε|
r

√
log 1

rfr(x) < 1. Then, for the

KDE score ŝr defined in (8), with probability 1− δ, we have that for all |ζ|≤ |ε| (simultaneously),

|ŝr(x+ ζ)− sr(x+ ζ)|.

√
log 1

δ log 1
rfr(x)

Nr3fr(x)
+
|ε|
r2

log

(
1

rfr(x)

)
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Proof First, by Lemma 13, we have that with probability 1− δ,

|ŝr(x)− sr(x)|.

√
log 1

δ log 1
rfr(x)

Nr3fr(x)

Now, by Lemma 17, since |ζ|≤ |ε|,

|sr(x+ ζ)− sr(x)|. |ε|
r2

log

(
1

rfr(x)

)
and

|ŝr(x+ ζ)− ŝr(x)| . |ε|
r2

log

(
1

rf̂r(x)

)

=
|ε|
r2

(
log

(
1

rfr(x)

)
+ log

(
fr(x)

f̂r(x)

))

≤ |ε|
r2

(
log

(
1

rfr(x)

)
+ log

(
1 +

1√
2

))
by Lemma 11 and since N ≥ 6 log 4

δ

rfr(x)

.
|ε|
r2

log

(
1

rfr(x)

)
since rfr(x) ≤ 1√

2π
, so log

1

rfr(x)
= Ω(1)

Putting everything together, with probability 1− δ, for all |ζ|≤ |ε|,

|ŝr(x+ ζ)− sr(x+ ζ)| ≤ |ŝr(x+ ζ)− ŝr(x)|+|ŝr(x)− sr(x)|+|sr(x)− sr(x+ ζ)|

.

√
log 1

δ log 1
rfr(x)

Nr3fr(x)
+
|ε|
r2

log

(
1

rfr(x)

)

The next lemma shows that for all points with density larger than α within a tσ radius around
the true mean, the KDE score approximates the true score well.

Lemma 20 (Generic Error estimate over large density region) Let f∗ be an arbitrary distri-
bution with mean µ and variance σ2, and let fr be the r-smoothed version of f∗, with vari-
ance σ2

r = σ2 + r2. Let ŝr be the score of the kernel density estimate of fr from N samples

Y1, . . . , YN ∼ f∗, as defined in (8). Let α > 0 and let N ≥
6 log

(
4
δ

(
2
√
αNtσr√
r

+1
))

+400 log 1
αr

αr . Then
with probability 1− δ, we have that,

E
x∼fr

[
(ŝr(x)− sr(x))2

1{|x−µ|≤tσr and fr(x)≥α}
]
.

log
(

1
δ

(
2tσr
√
αN√
r

+ 1
))

αNr3
log2 1

αr

Proof Consider contiguous intervals of length ε starting from µ− tσr so that the last interval covers
µ + tσr, and let S be the set of the smallest y such that f(y) ≥ α in each of these intervals, if one
exists. Note that |S|≤ 2tσr

ε + 1. Then, we have that

{x : |x− µ|≤ tσr and fr(x) ≥ α} ⊆ {[y − ε, y + ε]|y ∈ S}
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Now, for ε =
√

r
αN and y ∈ S, sinceN ≥

6 log
(

4
δ

(
2
√
αNtσr√
r

+1
))

αr ≥ 6 log
4|S|
δ

rfr(y) and 20|ε|
r

√
log 1

rfr(y) ≤
20√
αrN

√
log 1

αr ≤ 1, by Lemma 19, we have that with probability 1− δ
|S| , for all |ζ|≤ ε (simultane-

ously),

|ŝr(y + ζ)− sr(y + ζ)| .

√√√√ log |S|δ log 1
rfr(y)

Nr3fr(y)
+

√
1

αNr3
log

1

rfr(y)

.

√√√√ log
(

1
δ

(
2tσr
√
αN√
r

+ 1
))

αNr3
log

1

αr

So by a union bound, with probability 1 − δ, for all x such that |x − µ|≤ tσr and f(x) ≥ α
simultaneously,

|ŝr(x)− sr(x)|.

√√√√ log
(

1
δ

(
2tσr
√
αN√
r

+ 1
))

αNr3
log

1

αr

So,

E
x∼fr

[(ŝr(x)− sr(x))2
1|x−µ|≤tσr and fr(x)≥α] .

log
(

1
δ

(
2tσr
√
αN√
r

+ 1
))

αNr3
log2 1

αr

The next lemma instantiates the previous one with a particular value of t and α based on our
desired failure probability and the number of samples.

Lemma 21 (Error estimate over large density region (instantiated)) Let f∗ be an arbitrary dis-
tribution with mean µ and variance σ2, and let fr be the r-smoothed version of f∗, with variance
σ2
r = σ2 + r2 and Fisher information Ir. Let ŝr be the score of the kernel density estimate of fr

from N samples Y1, . . . , YN ∼ f∗, as defined in (9). Let γ ≥ C for large enough constant C > 1

be a parameter. Let t =

√
γ log N

Irr2 log 1
δ

Irr2 , α = 1
t3σr

. Then for any r ≤ σ and N
log 1

δ

≥
(
γ5/12 σ

r

)6+β

for any constant β > 0, with probability 1− δ, we have that,

E
x∼fr

[
(ŝr(x)− sr(x))2

1{|x−µ|≤tσr and fr(x)≥α}
]
.
Ir
γ

Proof First, note that since r ≤ σ,

σ2
r = σ2 + r2 ≤ 2σ2

Also, our setting of N implies that WLOG

N

log 1
δ

≥

γ5/12σ log N
log 1

δ

r

6
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since N ≥ C log 1
δ . So,

σ

r
≤
(

N

log 1
δ

)1/6

· 1

γ5/12 log N
log 1

δ

≤
(

N

log 1
δ

)1/6

(11)

We will first check that this N satisfies the condition required to invoke Lemma 20 that N ≥
6 log

(
4
δ

(
2
√
αNtσr√
r

+1
))

+400 log 1
αr

αr . To do this, we will individually upper bound 1
αr and 2tσr

√
αN√
r

.

We have,

1

αr
=
σr
r

γ log N
Irr2 log 1

δ

Irr2

3/2

since α =
1

t3σr
and t =

√√√√γ log N
Irr2 log 1

δ

Irr2

≤
(σr
r

)4
γ3/2 log3/2 Nσ2

r

r2 log 1
δ

since Ir ≥
1

σ2
r

≤
(

2σ

r

)4

γ3/2 log3/2

(
2Nσ2

r2 log 1
δ

)
since σ2

r ≤ 2σ2

≤ 16
N4/6

γ5/3 log4( N
log 1

δ

) log4/6 1
δ

γ3/2 log3/2

2

(
N

log 1
δ

)4/3
 by (11)

≤ N

γ1/10 log(1
δ ) log2

(
N

log 1
δ

) since γ ≥ C for C large enough constant, and
log 1

δ

N
≤ 1

To further justify the last line above, observe that γ3/2

γ5/3
≤ 1

γ1/6
= 1

γ1/10·γ1/15 , and that for large

enough constant C, since γ > C, γ1/15 can be made larger than any fixed constant. Also note
that log3/2(2( N

log 1
δ

)4/3) ≤ log2 N
log 1

δ

for large enough C since N
log 1

δ

≥ γ ≥ C. So, the inequality

follows.
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Next, we bound 2tσr
√
αN√
r

.

2tσr
√
αN√
r

= 2

√
Nσr
tr

since α =
1

t3σr

= 2

√√√√√ Nσr√
γ log N

Irr2 log 1
δ

Irr2 r

since t =

√√√√γ log N
Irr2 log 1

δ

Irr2

≤ 4

√√√√ Nσ

r
√
γ log N

log 1
δ

since Ir ≤
1

r2
and σ2

r ≤ 2σ2

≤ 4

√√√√√ N√
γ log N

log 1
δ

·
(

N

log 1
δ

)1/6

by (11)

≤ 4N ·
(

N

log 1
δ

)1/12

since γ ≥ 1,
N

log 1
δ

≥ 1

So, we can now check the condition required to invoke Lemma 20. We have,

6 log
(

4
δ

(
2
√
αNtσr√
r

+ 1
))

+ 400 log 1
αr

αr

≤

6 log

4

δ

4N ·
(

N

log 1
δ

)1/12

+ 1

+ 400 log
N

log 1
δ


 N

γ1/10 log2
(

N
log 1

δ

)
log 1

δ


≤ N since γ ≥ C

So, by Lemma 20, we have

E
x∼fr

[
(ŝr(x)− sr(x))2

1{|x−µ|≤tσr and fr(x)≥α}
]
.

log
(

1
δ

(
2σr
√
αN√
r

+ 1
))

αNr3
log2 1

αr
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To bound the RHS above by O (Ir/γ) as required, we will first bound 1
αNr3

.

1

αNr3
=

σr
Nr3

γ log N
Irr2 log 1

δ

Irr2

3/2

since α =
1

t3σr
and t =

√√√√γ log N
Irr2 log 1

δ

Irr2

=
Ir
γ

(
σr
Nr6

γ5/2

I5/2
r

log3/2 N

Irr2 log 1
δ

)

≤ Ir
γ

σ6
rγ

5/2 log3/2 Nσ2
r

r2 log 1
δ

Nr6

 since Ir ≥
1

σ2
r

.
Ir
γ

σ6γ5/2 log3/2 4Nσ2

r2 log 1
δ

Nr6

 since σ2
r ≤ 2σ2

≤ Ir
γ

 log3/2(4
(

N
log 1

δ

)4/3
)

log6
(

N
log 1

δ

)
log 1

δ

 by (11)

.
Ir

γ log4
(

N
log 1

δ

)
log 1

δ

So, plugging in everything,

E
x∼fr

[
(ŝr(x)− sr(x))2

1{|x−µ|≤tσr and fr(x)≥α}
]

.
log
(

1
δ

(
2σr
√
αN√
r

+ 1
))

αNr3
log2 1

αr

.
Ir

γ log4
(

N
log 1

δ

)
log 1

δ

log

4N ·
(

N
log 1

δ

)1/12
+ 1

δ

 log2

( N

log 1
δ

)4/6


.
Ir
γ

The lemmas so far have shown that the KDE score ŝr approximates the true score sr well in large
denstiy regions in the typical tσ radius around the true mean. The next lemma shows that the same
guarantee holds for the clipped KDE score ŝclip

r .

Lemma 22 (Error estimate over large density region for clipped KDE) Let f∗ be an arbitrary
distribution with mean µ and variance σ2, and let fr be the r-smoothed version of f∗, with variance
σ2
r = σ2 + r2. Let ŝclip

r be the clipped kernel density estimate score from N samples, as defined

in (8). Let γ ≥ C for large enough constant C > 1 be a parameter. Let t =

√
γ log N

Irr2 log 1
δ

Irr2 ,
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α = 1
t3σr

.Then for any r ≤ σ and N
log 1

δ

≥
(
γ5/12σ
r

)6+β
for β > 0, with probability 1− δ, we have

that,

E
x∼fr

[
(ŝclip
r (x)− sr(x))2

1{|x−µ|≤tσr and fr(x)≥α}
]
.
Ir
γ

Proof Note that our condition that N
log 1

δ

≥
(
γ5/12σ
r

)6+β
implies

σ

r
≤
(

N

log 1
δ

)1/6

Also, since r ≤ σ, N
log 1

δ

≥ (γ5/12)6+β ≥ γ5/2.

So, by Lemma 33, for x such that fr(x) ≥ α,

|sr(x)| ≤ 1

r

√
2 log

1√
2πrα

=
1

r

√√√√√√2 log

 σr√
2πr

γ log N
Irr2 log 1

δ

Irr2

3/2
 since α =

1

t3σr
and t =

√√√√γ log N
Irr2 log 1

δ

Irr2

≤ 1

r

√√√√√2 log

 σ4
r√

2πr4

(
γ log

σ2
rN

r2 log 1
δ

)3/2
 since Ir ≥

1

σ2
r

≤ 1

r

√√√√√√2 log

 16√
2π

(
N

log 1
δ

)4/6
γ log

4

(
N

log 1
δ

)4/3
3/2


since σ2

r ≤ 2σ2 and using σ/r ≤
(

N

log 1
δ

)1/6

≤ 2

r

√
log

N

log 1
δ

since
N

log 1
δ

≥ γ5/2 ≥ C5/2 for a sufficiently large constant C

Then, since ŝclip
r is clipped at 2

r

√
log N

log 1
δ

by definition in (9), by Lemma 21, we have the claim.

The next lemma shows that for small density sets, for any function that is clipped appropriately,
the error incurred relative to the true score function is small.

Lemma 23 Let f∗ be an arbitrary distribution, and let fr be the r-smoothed version of f∗. Let
sr be the score function of fr, and let Ir be the Fisher information. Let γ ≥ C for large enough
constant C, N

log 1
δ

≥ γ, and let s̃ be any function with |s̃r(x)|≤ 2
r

√
log N

log 1
δ

for all x. Let S be a set
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with Pr[S] ≤ 1
t2

for t =

√
γ log N

Irr2 log 1
δ

Irr2 . Then, we have

E
x∼fr

[(s̃r(x)− sr(x))2
1x∈S ] .

Ir
γ

Proof First, by Lemma 18,

E
x∼fr

[
sr(x)2

1x∈S
]
.

1

t2r2
log t2

≤ Ir
γ log N

Irr2 log 1
δ

log

(
γ

Irr2
log

N

Irr2 log 1
δ

)

.
Ir
γ

since γ ≥ 1, γ ≤ N

log 1
δ

and Ir ≤
1

r2

Now, by assumption,

|s̃r(x)|≤ 2

r

√
log

N

log 1
δ

So,

E
x∼fr

[
s̃r(x)2

1x∈S
]
≤ 4

t2r2
log

N

log 1
δ

=
Ir

γ log N
Irr2 log 1

δ

log

(
N

log 1
δ

)

.
Ir

γ log N
Irr2 log 1

δ

log

(
N

Irr2 log 1
δ

)
since Ir ≤

1

r2

.
Ir
γ

Thus, we have

E
x∼fr

[
(s̃r(x)− sr(x))2

1x∈S
]
. E

x∼fr

[
s̃r(x)2

1x∈S
]

+ E
x∼fr

[
sr(x)2

1x∈S
]

.
Ir
γ

The next lemma shows that within the typical tσ radius around the mean, for the set of points with
small density, the clipped KDE score ŝclip

r approximates the true score sr well.

Lemma 24 (Error estimate over small density regions within typical region) Let f∗ be an ar-
bitrary distribution with mean µ and variance σ2, and let fr be the r-smoothed version of f∗, with
variance σ2

r = σ2 + r2. Let sr be the score function of fr, and let Ir be the Fisher information. Let
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s̃r be any score function with |s̃r(x)|≤ 2
r

√
log N

log 1
δ

for all x. Let t =

√
γ log N

Irr2 log 1
δ

Irr2 for γ ≥ 1,

and let α = 1
t3σr

. Then,

E
x∼fr

[(s̃r(x)− sr(x))2
1{|x−µ|≤tσr and f(x)<α}] .

Ir
γ

Proof By our choice of α,

Pr
x∼fr

[|x− µ|≤ tσr and f(x) < α] ≤ αtσr =
1

t2

So, by Lemma 23, the claim follows

The next lemma shows that in the region outside the typical region of radius tσ around the true
mean, the clipped KDE score ŝclip

r approximates the true score well.

Lemma 25 (Error estimate over atypical region) Let f∗ be an arbitrary distribution with mean
µ and variance σ2, and let fr be the r-smoothed version of f∗, with variance σ2

r = σ2 + r2. Let sr
be the score function of fr, and let Ir be the Fisher information. Let s̃r be any score function with

|s̃r(x)|≤ 2
r

√
log N

log 1
δ

for all x. Let t =

√
γ log N

Irr2 log 1
δ

Irr2 for γ ≥ 1, and let α = 1
t3σ

. Then,

E
x∼fr

[(s̃r(x)− sr(x))2
1|x−µ|>tσr ] .

Ir
γ

Proof By Chebyshev’s inequality,

Pr[|x− µ|> tσr] ≤
1

t2

So, by Lemma 23, the claim follows.

The main result of this section as follows shows that the clipped KDE score approximates the true
score well.

Lemma 3 (Clipped KDE score error) Let ŝclip
r be the clipped Kernel Density estimate from N

samples, defined in (9). Let γ > C be a parameter, for large enough constant C ≥ 1. Then for any

r ≤ σ and N
log 1

δ

≥
(
γ5/12σ
r

)6+β
for β > 0, with probability 1− δ, we have that,

E
x∼fr

[
(ŝclip
r (x)− sr(x))2

]
.
Ir
γ

This holds even for asymmetric f∗ and fr.

Proof Let µ, σ2
r be the mean and variance of fr. Let t =

√
γ log N

Irr2 log 1
δ

Irr2 , α = 1
t3σr

. Now,

E
x∼fr

[
(ŝclip
r (x)− sr(x))2

]
= E

x∼fr

[
(ŝclip
r (x)− sr(x))2

1{|x−µ|≤tσr and fr(x)≥α}
]

+ E
x∼fr

[
(ŝclip
r (x)− sr(x))2

1{|x−µ|≤tσr and fr(x)<α}
]

+ E
x∼fr

[(ŝclip
r (x)− sr(x))2

1|x−µ|>tσr ]

So, by Lemmas 22, 24 and 25, we have the claim.

30



FINITE-SAMPLE SYMMETRIC MEAN ESTIMATION WITH FISHER INFORMATION RATE

Appendix C. Symmetrization

In this section we show that the expectation of our symmetrized, clipped KDE score function ŝsym
r ,

symmetrized around a point µ + ε for small ε has expectation close to εIr, where Ir is the Fisher
information of the r-smoothed distribution. We also show that the second moment of ŝsym

r is close
to Ir. We begin by recalling the definition of ŝsym

r from (7).

Definition Let the symmetrized, clipped KDE score, symmetrized around a point y from N sam-
ples be given by

ŝsym
r (x) =

{
ŝ

clip
r (x) x ≥ y
−ŝclip

r (2y − x) x < y
(12)

where ŝclip
r is the clipped KDE score from N samples, as defined in (9).

First we show that the true score function centered at −ε is close to the true score centered at 0
in `2 distance.

Lemma 26 Let fr be an r-smoothed distribution with score function sr and Fisher information Ir.
Then, for |ε|≤ r/60,

E
x∼fr

[
(sr(x+ ε)− sr(x))2

]
.
ε2

r4

Proof By Lemma 36,

sr(x+ ε)− sr(x) =
EZr|x

[
e
εZr
r2

Zr−ε
r2

]
EZr|x

[
e
εZr
r2

] − E
Zr|x

[
Zr
r2

]

= − ε

r2
+

EZr|x
[
e
εZr
r2 (Zr − EZr|x[Zr])

]
r2 EZr|x

[
e
εZr
r2

]
(13)

Now,

E
Zr|x

[
e
εZr
r2 (Zr − E

Zr|x
[Zr])

]
= E

Zr|x

[
(e

εZr
r2 − 1)Zr

]
− E
Zr|x

[
e
εZr
r2 − 1

]
E
Zr|x

[Zr]

So,

E
Zr|x

[
e
εZr
r2 (Zr − E

Zr|x
[Zr])

]4

. E
Zr|x

[
(e

εZr
r2 − 1)Zr

]4
+ E
Zr|x

[
e
εZr
r2 − 1

]4
E
Zr|x

[Zr]
4

. E
Zr|x

[
(e

εZr
r2 − 1)4

]
E
Zr|x

[Z4
r ] by Cauchy-Schwarz and Jensen’s inequalities

So, we have, by Cauchy-Schwarz and Jensen’s inequalities,

E
x

[
E
Zr|x

[
e
εZr
r2 (Zr − E

Zr|x
[Zr])

]4
]
.

√
E
Zr

[
(e

εZr
r2 − 1)8

]
E
Zr

[Z8
r ] (14)
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We will now bound EZr
[
(e

εZr
r2 − 1)8

]
. By a Taylor expansion, when |εz|≤ r2

e
εz
r2 − 1 =

εz

r2
+O

((εz
r2

)2
)

so that

E
Zr∼N (0,r2)

[
(e

εZr
r2 − 1)8

1|εZr|≤r2
]
.

ε8

r16
E
Zr

[
Z8
r

]
.
ε8

r8

On the other hand, when |εz|≥ r2, we have (e
εz
r2 − 1)8 . e

8|εz|
r2 , meaning that

E
Zr∼N (0,r2)

[
(e

εZr
r2 − 1)8

1|εZr|>r2
]
.
∫ ∞
|r2/ε|

1√
2πr

e
8|εz|
r2 e−

z2

2r2 dz

= e
32ε2

r2

∫ ∞
|r2/ε|

1√
2πr

e−
(z−8|ε|)2

2r2 dz

. Pr
Zr∼N (0,r2)

[
Zr ≥ r2/|ε|−8|ε|

]
. e−

(|r2/ε|−8|ε|)2

2r2

.
ε8

r8

Also, EZr [Z8
r ] . r8 So, we have shown in (14),

E
x

[
E
Zr|x

[
e
εZr
r2 (Zr − E

Zr|x
[Zr])

]4
]
.
ε4

r4

√
E
Zr

[Z8
r ] . ε4

Also, using Jensen’s inequality

E
x

 1

EZr|x
[
e
εZr
r2

]4

 ≤ E
x

[
e−4εEZr |x[Zr/r2]

]
= E

x

[
e−4εsr(x)

]
since sr(x) = E

Zr|x
[Zr]/r

2 by Lemma 36

≤ e8ε2/r2 . 1 by Lemma 35 and since |ε|≤ r/60

Then, using (13),

E
x∼fr

[
(sr(x+ ε)− sr(x))2

]
.
ε2

r4
+

1

r4
E
x

EZr|x
[
e
εZr
r2 (Zr − EZr|x[Zr])

]2

EZr|x[e
εZr
r2 ]2



≤ ε2

r4
+

1

r4

√√√√√√E
x

[
E
Zr|x

[
e
εZr
r2 (Zr − E

Zr|x
[Zr])

]4
]
E
x

 1

EZr|x
[
e
εZr
r2

]4


.
ε2

r4

32



FINITE-SAMPLE SYMMETRIC MEAN ESTIMATION WITH FISHER INFORMATION RATE

The next lemma shows that ŝsym
r approximates sr in a certain sense. Using this, we obtain that the

second moment of ŝsym
r is close the Ir.

Lemma 27 Let f∗ be an arbitrary symmetric distribution with mean µ, and let fr be the r-
smoothed version of f∗. Let sr be the score function of fr, and let Ir be the Fisher information.
Let ŝsym

r be the symmetrized clipped Kernel Density Estimate score from N samples, symmetrized
around µ+ε for |ε|≤ r/60, as defined in (12). Let γ > C be a parameter for large enough constant

C. Then for any r ≤ σ and N
log 1

δ

≥
(
γ5/12σ
r

)6+β
for β > 0, if |ε|≤ r2

√
Ir
γ , with probability 1− δ,

E
x∼fr

[
(ŝsym
r (x)− sr(x))2

]
.
Ir
γ

Proof By definition of ŝsym
r , and using Lemma 3,

E
x∼fr

[
(ŝsym
r (x)− sr(x))2

1x≥µ+ε

]
= E

x∼fr

[
(ŝclip
r (x)− sr(x))2

1x≥µ+ε

]
.
Ir
γ

On the other hand, by Lemmas 3 and 26

E
x∼fr

[
(ŝsym
r (x)− sr(x))2

1x<µ+ε

]
= E

x∼fr

[
(−ŝclip

r (2(µ+ ε)− x) + sr(2µ− x))2
1x<µ+ε

]
≤ E

x∼fr

[
(−ŝclip

r (2(µ+ ε)− x) + sr(2(µ+ ε)− x))2
1x<µ+ε

]
+ E
x∼fr

[
(sr((2µ− x) + 2ε)− sr(2µ− x))2

]
.
Ir
γ

+
ε2

r4

The claim follows since ε2

r4
≤ Irγ .

Lemma 4 (Symmetrized Clipped KDE score variance) Let ŝsym
r be the symmetrized clipped Ker-

nel Density Estimate score from N samples, symmetrized around µ + ε for |ε|≤ r/60, as defined
in (12). Let γ > C be a parameter for large enough constant C. Then for any r ≤ σ and
N

log 1
δ

≥
(
γ5/12σ
r

)6+β
for β > 0, if |ε|≤ r2

√
Ir
γ , with probability 1− δ,

| E
x∼fr

[
ŝsym
r (x)2

]
− Ir|.

Ir√
γ

Proof We have

E
x∼fr

[
ŝsym
r (x)2

]
= E

x∼fr

[
(sr(x) + ŝsym

r (x)− sr(x))2
]

= E
x∼fr

[
sr(x)2

]
+ 2 E

x∼fr
[sr(x)(ŝsym

r (x)− sr(x))] + E
x∼fr

[
(ŝsym
r (x)− sr(x))2

]
≤ E

x∼fr
[sr(x)2] + 2

√
E

x∼fr
[sr(x)2] E

x∼fr
[(ŝsym(x)− sr(x))2] + E

x∼fr
[(ŝsym

r (x)− sr(x))2]
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So, by Lemma 27,

E
x∼fr

[
ŝsym
r (x)2

]
− Ir .

Ir√
γ

+
Ir
γ

.
Ir√
γ

Similarly,

E
x∼fr

[
sr(x)2

]
≤ E

x∼fr

[
ŝsym
r (x)2

]
+ 2
√

E
x∼fr

[ŝ
sym
r (x)2] E

x∼fr

[
(ŝ

sym
r (x)− sr(x))2

]
+ E
x∼fr

[
(ŝsym
r (x)− sr(x))2

]

So, since we showed Ex∼fr [ŝ
sym
r (x)2] . Ir, we have

E
x∼fr

[sr(x)2] ≤ E
x∼fr

[
ŝsym
r (x)2

]
+O

( Ir√
γ

)

so that

E
x∼fr

[
ŝsym
r (x)2

]
− Ir &

Ir√
γ

The claim follows.

Finally, we show that the expectation of the symmetrized, clipped KDE score function ŝsym
r

symmetrized around µ+ ε for small ε is close to εIr.

Lemma 5 (Symmetrized Clipped KDE score mean) Let ŝsym
r be the symmetrized clipped Kernel

Density Estimate score from N samples, symmetrized around µ + ε for |ε|≤ r/60, as defined
in (12). Let γ > C be a parameter for large enough constant C. Then for any r ≤ σ and
N

log 1
δ

≥
(
γ5/12σ
r

)6+β
for β > 0, if |ε|≤ r2

√
Ir
γ , with probability 1− δ,

∣∣∣∣ E
x∼fr

[ŝsym
r (x)]− εIr

∣∣∣∣ . εIr√
γ

Proof Since fr is symmetric around µ, fr(x) = fr(2µ − x). So using the definition of ŝsym
r , we

have∫ µ+ε

−∞
fr(x− ε)ŝsym

r (x)dx = −
∫ µ+ε

−∞
fr(2µ− x+ ε)sclip

r (2(µ+ ε)− x)dx

=

∫ µ+ε

∞
fr(y − ε)sclip

r (y)dy Substituting y = 2(µ+ ε)− x

= −
∫ ∞
µ+ε

fr(y − ε)ssym
r (y)dy since ssym

r (x) = sclip
r (x) for x ≥ µ+ ε
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So, we have

E
x∼fr

[
fr(x− ε)
fr(x)

ŝsym
r (x)

]
=

∫ µ+ε

−∞
fr(x− ε)ŝsym

r (x)dx+

∫ ∞
µ+ε

fr(x− ε)ssym
r (x)dx = 0

So,

E
x∼fr

[ŝsym
r (x)] = E

x∼fr

[
fr(x)− fr(x− ε)

fr(x)
ŝsym
r (x)

]
Thus,(

E
x∼fr

[ŝsym
r (x)]− ε E

x∼fr

[
ŝsym
r (x)2

])2

= E
x∼fr

[(
fr(x)− fr(x− ε)

fr(x)
− εŝsym

r (x)

)
ŝsym
r (x)

]2

= E
x∼fr

[(
fr(x)− fr(x− ε)− εf ′r(x)

fr(x)
+ ε(sr(x)− ŝsym

r (x))

)
ŝsym
r (x)

]2

since sr(x) =
f ′r(x)

fr(x)

≤ E
x∼fr

[(
fr(x)− fr(x− ε)− εf ′r(x)

fr(x)
+ ε(sr(x)− ŝsym

r (x))

)2
]

E
x∼fr

[
ŝsym
r (x)2

]
.

(
E

x∼fr

[(
fr(x)− fr(x− ε)− εf ′r(x)

fr(x)

)2
]

+ ε2 E
x∼fr

[
(sr(x)− ŝsym

r (x))2
])

E
x∼fr

[ŝsym
r (x)2]

=

(
E

x∼fr

[
∆−ε(x)2

]
+ ε2 E

x∼fr

[
(sr(x)− ŝsym

r (x))2
])

E
x∼fr

[ŝsym
r (x)2]

where ∆ε(x) = fr(x+ε)−fr(x)−εf ′r(x)
fr(x) . But by Lemma 40, Ex∼fr

[
∆−ε(x)2

]
. ε4

r4
. ε2 Ir

γ (since

|ε|≤ r2
√
Ir
γ ). So, by Lemma 27 and Lemma 4, we have∣∣∣∣ E

x∼fr
[ŝsym
r (x)]− ε E

x∼fr
[ŝsym
r (x)2]

∣∣∣∣ .
√(

ε2
Ir
γ

+ ε2
Ir
γ

)
Ir

.
εIr√
γ

Then, using Lemma 4 once again on Ex∼fr [s
sym
r (x)2] on the LHS, the claim follows.

Appendix D. Estimating Ir
In this section, we show that Îr = E

x∼f̂r [ŝ
sym
r (x)2] provides a good estimate of Ir.

Lemma 28 Let f̂r be the kernel density estimate of fr fromN samples Y1, . . . , YN ∼ f∗ as defined

in (8). Let x, ε,N be such thatN ≥ 12 log 2
δ

fr(x)r and 16|ε|
r

√
log 1

rfr(x) ≤ 1. We have that with probability

1− δ, for all |ζ|≤ |ε| simultaneously,

|f̂r(x+ ζ)− fr(x+ ζ)|.

√
fr(x+ ζ) log 2

δ

Nr
+
|ε|fr(x+ ζ)

r

√
log

2

fr(x+ ζ)r
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Proof By Lemma 11, with probability 1− δ,

|f̂r(x)− fr(x)|≤

√
3fr(x) log 2

δ

Nr

Note that since N ≥ 12 log 2
δ

fr(x)r , the RHS above is at most fr(x)
2 .

Also, by Lemma 15,

|fr(x+ ζ)− fr(x)|≤ 10|ε|fr(x)

r

√
log

1

fr(x)r

Now, since 8|ε|
r

√
log 1

rf̂r(x)
≤ 8|ε|

r

√
log 2

rfr(x) ≤
16|ε|
r

√
log 1

rfr(x) < 1, by Lemma 15,

|f̂r(x+ ζ)− f̂r(x)| ≤ 10|ε|f̂r(x)

r

√
log

1

f̂r(x)r

≤ 15|ε|fr(x)

r

√
log

2

fr(x)r

So, putting everything together

|f̂r(x+ ζ)− fr(x+ ζ)| ≤ |f̂r(x+ ζ)− f̂r(x)|+|f̂r(x)− fr(x)|+|fr(x)− fr(x+ ζ)|

≤

√
3fr(x) log 2

δ

Nr
+

30|ε|fr(x)

r

√
log

2

fr(x)r

Now, since 16|ε|
r

√
log 1

rfr(x) ≤ 1 so that by Lemma 15

|fr(x+ ζ)− fr(x)|≤ 5

8
fr(x)

The claim follows.

Lemma 29 Let f∗ be an arbitrary distribution with mean µ and variance σ2 and let fr be the
r-smoothed version of f∗, with variance σ2

r = σ2 + r2. Let f̂r be the kernel density estimate
of fr from N samples Y1, . . . , YN ∼ f∗ as defined in (8). Let 0 < α ≤ 1√

2πr
and let N ≥

12 log
(

2
δ

(
2tσr

√
αN√
r

+1
))

+400 log 1
αr

αr . Then, with probability 1− δ, for all x such that |x− µ|≤ tσr and
fr(x) ≥ α simultaneously,

|f̂r(x)− fr(x)|. fr(x)

√√√√ 1

αrN
log

(
2

δ

(
2tσr
√
αN√
r

+ 1

))
log

2

αr
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Proof Consider contiguous intervals of length ε starting from µ− tσr so that the last interval covers
µ+ tσr, and let S be the set of the smallest y such that fr(y) ≥ α in each of these intervals, if one
exists. Note that |S|≤ 2tσr

ε + 1. Then, we have that

{x : |x− µ|≤ tσr and fr(x) ≥ α} ⊆ {[y − ε, y + ε]|y ∈ S}

Now for ε =
√

r
αN and y ∈ S, sinceN ≥

12 log
(

2
δ

(
2tσr

√
αN√
r

+1
))

αr ≥ 12 log
2|S|
δ

fr(y)r and 16|ε|
r

√
log 1

rfr(y) =

16√
αrN

√
log 1

fr(y)r ≤ 16√
αrN

√
log 1

αr ≤ 1, we have by Lemma 28 that with probability 1 − δ
|S| , for

all |ζ|≤ |ε| simultaneously,

∣∣∣f̂r(y + ζ)− fr(y + ζ)
∣∣∣ .

√
fr(y + ζ) log 2|S|

δ

Nr
+ fr(y + ζ)

√
1

αNr
log

2

αr

. fr(y + ζ)

√√√√ 1

αNr
log

(
2

δ

(
2tσr
√
αN√
r

+ 1

))
log

2

αr

since fr(y + ζ) & α and α ≤ 1√
2πr

so that log
2

αr
> 1

So by a union bound, with probability 1 − δ, for all x such that |x − µ|≤ tσr and fr(x) ≥ α
simultaneously,

|f̂r(x)− fr(x)|. fr(x)

√√√√ 1

αNr
log

(
2

δ

(
2tσr
√
αN√
r

+ 1

))
log

2

αr

Lemma 30 Let S be a set and let f̂r be the kernel density estimate of fr fromN samples Y1, . . . , YN ∼
f∗. Then, with probability 1− δ, ∣∣∣∣∣Pr

f̂r

[S]− Pr
fr

[S]

∣∣∣∣∣ .
√

log 2
δ

N

Proof

E
Yi

[[
Pr
f̂r

[S]

]]
= E

Yi

[∫
S
f̂r(x)dx

]
=

∫
S
E
Yi

[
f̂r(x)

]
dx =

∫
S
fr(x)dx = Pr

fr
[S]

Furthermore 0 ≤ Pr
f̂r

[S] ≤ 1. So, by Hoeffding’s inequality, with probability 1− δ,∣∣∣∣∣Pr
f̂r

[S]− Pr
fr

[S]

∣∣∣∣∣ .
√

log 2
δ

N
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Lemma 31 Let γ ≥ C for large enough constant C, and let N
log 1

δ

≥
(

γ
r4I2r

)1+α
for small constant

α > 0. Let s̃ be any function with |s̃r(x)|≤ 2
r

√
log N

log 1
δ

for all x. Let S be a set with Prfr [S] . 1
t2

for t = γ1/4

√
log N

Irr2 log 1
δ

Irr2 . Let f̂r be the Kernel density estimate of fr as defined in (8) from N
samples. Then, we have ∫

S

(
f̂r(x)− fr(x)

)
s̃r(x)2dx .

Ir√
γ

Proof Since |s̃r(x)|≤ 2
r

√
log N

log 1
δ

and Prfr [S] ≤ 1
t2

, we have

∫
S

(
f̂r(x)− fr(x)

)
s̃r(x)2dx ≤

∫
S
f̂r(x)s̃r(x)2dx

≤ 4

r2
log

(
N

log 1
δ

)
Pr
f̂r

[S]

.
4

r2
log

(
N

log 1
δ

)Pr
fr

[S] +

√
log 2

δ

N

 by Lemma 30

.
1

t2r2
log

(
N

log 1
δ

)
+

1

r2

√
log 1

δ

N
log

(
N

log 1
δ

)

Now,

1

t2r2
log

N

log 1
δ

=
Ir√

γ log N
Irr2 log 1

δ

log

(
N

log 1
δ

)
by our setting of t

.
Ir√

γ log N
Irr2 log 1

δ

log

(
N

Irr2 log 1
δ

)
since Ir ≤

1

r2

.
Ir√
γ

Also,

1

r2

√
log 2

δ

N
log

(
N

log 1
δ

)
≤ 1

r2

(
log 2

δ

N

) 1
2
−α

4

.
Ir√
γ

since
N

log 2
δ

≥
(

γ

r4I2
r

)1+α

So, the claim follows.

38



FINITE-SAMPLE SYMMETRIC MEAN ESTIMATION WITH FISHER INFORMATION RATE

Lemma 32 Let f̂r be the kernel density estimate of fr fromN samples, as defined in (8). Let γ ≥ C
for large constant C ≥ 1 be a parameter. Suppose s̃r is a function such that Ex∼fr [s̃r(x)] . Ir. Let

t = γ1/4

√
log N

Irr2 log 1
δ

Irr2 , α = 1
t3σr

. Then for any r ≤ σ and N
log 1

δ

≥
(
γ5/12 σ

r

)6+β
for some small

constant β > 0, with probability 1− δ, we have∫ ∞
−∞

∣∣∣f̂r(x)− fr(x)
∣∣∣ s̃r(x)2

1{|x−µ|≤tσr and fr(x)≥α}dx .
Ir√
γ

Proof This proof is similar to the proof of Lemma 21. First note that since r ≤ σ,

σ2
r = σ2 + r2 ≤ 2σ2

Note also that N
log 1

δ

≥ 1 since γ ≥ 1 and r ≤ σ. So our setting of N implies WLOG

N

log 1
δ

≥

γ5/12σ log N
log 1

δ

r

6

or

σ

r
≤
(

N

log 1
δ

)1/6

· 1

γ5/12 log N
log 1

δ

≤
(

N

log 1
δ

)1/6

(15)

We will first check that this N satisfies the condition required to invoke Lemma 29 that N ≥
12 log

(
2
δ

(
2tσr

√
αN√
r

+1
))

+400 log 1
αr

αr . To do this, we individually upper bound 1
αr and 2tσr

√
αN√
r

. We
have,

1

αr
=
σrγ

3/4

r

 log N
Irr2 log 1

δ

Irr2

3/2

since α =
1

t3σr
and t = γ1/4

√√√√ log N
Irr2 log 1

δ

Irr2

≤
(σr
r

)4
γ3/4 log3/2 Nσ2

r

r2 log 1
δ

since Ir ≥
1

σ2
r

≤
(

2σ

r

)4

γ3/4 log3/2 2Nσ2

r2 log 1
δ

since σ2
r ≤ 2σ2

≤ 16
N4/6

γ5/3 log4 N
log 1

δ

log4/6 1
δ

· γ3/4 log3/2

2

(
N

log 1
δ

)4/3
 by (15)

≤ 16N

γ5/2 log4 N
log 1

δ

log 1
δ

γ3/4 log3/2

2

(
N

log 1
δ

)4/3
 since

N

log 1
δ

≥ γ5/2

≤ N

γ3/2 log2 N
log 1

δ

log 1
δ

since γ ≥ C for large enough constant C
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To further justify the last line above, observe that γ3/4

γ5/2
≤ 1

γ3/2·γ1/4 , and that for large enough

constant C, since γ ≥ C, γ1/4 can be made larger than any fixed constant. Also note that

log3/2

(
2
(

N
log 1

δ

)4/3
)
≤ log2 N

log 1
δ

for large enough constant C since N
log 1

δ

≥ γ ≥ C. So the

inequality follows. Next we bound 2tσr
√
αN√
r

.

2tσr
√
αN√
r

= 2

√
Nσr
tr

since α =
1

t3σr

= 2

√√√√√ Nσr

rγ1/4

√
log N

Irr2 log 1
δ

Irr2

since t = γ1/4

√√√√ log N
Irr2 log 1

δ

Irr2

≤ 4

√√√√ Nσ

rγ1/4
√

log N
log 1

δ

since Ir ≤
1

r2
and σ2

r ≤ 2σ2

≤ 4

√√√√√ N

γ1/4
√

log N
log 1

δ

·
(

N

log 1
δ

)1/6

by (15)

≤ 4N ·
(

N

log 1
δ

)1/12

since γ ≥ 1,
N

log 1
δ

≥ 1

So, we can now check the condition required to invoke Lemma 29. We have

12 log
(

2
δ

(
2tσr
√
αN√
r

+ 1
))

+ 400 log 1
αr

αr

≤

12 log

2

δ

4N ·
(

N

log 1
δ

)1/12

+ 1

+ 400 log
N

log 1
δ

 N

γ3/2 log2 N
log 1

δ

log 1
δ


≤ N since γ ≥ C

So, by Lemma 29, we have

|f̂r(x)− fr(x)|. fr(x)

√√√√ 1

αrN
log

(
2

δ

(
2tσr
√
αN√
r

+ 1

))
log

2

αr

We will show that the RHS above is bounded byO
(
fr(x)√
γ

)
. Since we showed that 1

αr ≤ N
γ3/2 log2 N

log 1
δ

log 1
δ

,

we have that
1

rN
≤ α

γ3/2 log2 N
log 1

δ

log 1
δ
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So, plugging this into the RHS above, along with our bounds for 2tσr
√
αN√
r

and 1
αr , we have,

|f̂r(x)− fr(x)|

.
fr(x)√
γ
·

√√√√√ 1

γ1/2 log2 N
log 1

δ

log 1
δ

log

2

δ

4N ·
(

N

log 1
δ

)1/12
+ 1

 log

 N

γ3/2 log2 N
log 1

δ

log 1
δ


.
fr(x)√
γ

So finally, ∫ ∞
−∞

∣∣∣f̂r(x)− fr(x)
∣∣∣ s̃r(x)2

1{|x−µ|≤tσr and fr(x)≥α}dx

.
1√
γ

∫ ∞
−∞

fr(x)s̃r(x)2
1{|x−µ|≤tσr and fr(x)≥α}dx

≤ 1√
γ

E
x∼fr

[s̃r(x)2]

.
Ir√
γ

since E
x∼fr

[s̃r(x)2] . Ir by assumption

Lemma 6 (Smoothed Fisher information Estimation) Let γ ≥ C for large constant C ≥ 1 be a
parameter. Suppose we have a function s̃r that satisfies for r ≤ σ∣∣∣∣ E

x∼fr
[s̃r(x)2]− Ir

∣∣∣∣ . Ir√
γ

and that |s̃r(x)|≤ 2
r

√
log N

log 1
δ

for all x. Let f̂r be the kernel density estimate for fr from N

samples, as defined in (8). Then, for N
log 1

δ

≥
(
γ5/12 σ

r

)6+β
for some small constant β > 0, with

probability 1− δ, we have ∣∣∣∣∣ E
x∼f̂r

[s̃r(x)2]− Ir
∣∣∣∣∣ . Ir√

γ

Proof We have

E
x∼f̂r

[
s̃r(x)2

]
= E

x∼fr

[
s̃r(x)2

]
+

∫ ∞
−∞

(
f̂r(x)− fr(x)

)
s̃r(x)2dx

So, by our assumption,∣∣∣∣∣ E
x∼f̂r

[s̃r(x)2]− Ir
∣∣∣∣∣ . Ir√

γ
+

∫ ∞
−∞

(
f̂r(x)− fr(x)

)
s̃r(x)2dx
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It remains to bound the integral in the RHS above by O
(
Ir√
γ

)
. Let t = γ1/4

√
log N

Irr2 log 1
δ

Irr2 , α =
1

t3σr
. We have

∫ ∞
−∞

(
f̂r(x)− fr(x)

)
s̃r(x)2dx =

∫ ∞
−∞

(
f̂r(x)− fr(x)

)
sr(x)2

1{|x−µ|≤tσr and fr(x)≥α}dx

+

∫ ∞
−∞

(
f̂r(x)− fr(x)

)
s̃r(x)2

1{|x−µ|≤tσr and fr(x)<α}dx

+

∫ ∞
−∞

(
f̂r(x)− fr(x)

)
s̃r(x)2

1{|x−µ|>tσr}dx

By Lemma 32, the first term in the RHS above is bounded by Ir√
γ . To bound the other two terms,

note that

Pr
x∼fr

[|x− µ|≤ tσr and fr(x) < α] ≤ αtσr .
1

t2

and by Chebyshev’s inequality,

Pr
x∼fr

[|x− µ|> tσr] ≤
1

t2

Also, for small constant β > 0,

(
γ

r4I2
r

)1+β

≤
(
γσ4

r

r4

)1+β

since Ir ≥
1

σ2
r

≤
(

4γσ4

r4

)1+β

since σ2
r = σ2 + r2 ≤ 2σ2

≤
(
γ5/12σ

r

)6+β
since γ ≥ C for large enough constant C, and r ≤ σ

≤ N

log 1
δ

So, the conditions of Lemma 31 hold, and applying it to the second and third term in the RHS above
gives the claim.

Appendix E. Local Estimation

In this section, we describe our local estimation procedure, which takes a symmetrized and clipped
KDE score function along with symmetrization point µ1 = µ + ε, and produces a refined estimate
µ̂ of the mean.
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Algorithm 1 Local Estimation

Input Parameters:

• n samples x1, . . . , xn ∼ f∗, the symmetrized and clipped KDE score function ŝsym
r , sym-

metrization point µ1, Fisher information estimate Îr

1. For each sample xi, compute a perturbed sample x′i = xi +N (0, r2) where all the Gaussian
noise are drawn independently across all the samples.

2. Compute ε̂ = 1

Îrn

∑n
i=1 ŝ

sym
r (x′i). Return µ̂ = µ1 − ε̂.

Property 7 (KDE Estimation Properties) Let fr be the r-smoothed version of symmetric distri-
bution f∗ in Algorithm 1, with Fisher information Ir. For parameters γ > C for some sufficiently
large constant C and ξ, ŝsym

r satisfies that for symmetrization point µ1 = µ+ ε,∣∣∣∣ E
x∼fr

[ŝsym
r (x)]− εIr

∣∣∣∣ . εIr√
γ

and
∣∣∣∣ E
x∼fr

[
ŝsym
r (x)2

]
− Ir

∣∣∣∣ . Ir√
γ

and |ŝsym
r (x)|≤ 2

r

√
log n

ξ log ξ
δ

for all x. Furthermore, the Fisher information estimate Îr satisfies

∣∣∣Îr − Ir∣∣∣ . Ir√
γ

Lemma 8 (Local Estimation) In Algorithm 1, let fr be the r-smoothed version of symmetric dis-
tribution f∗, with score function sr and Fisher information Ir. Suppose for parameters γ, ξ, and
symmetrized clipped KDE score ŝsym symmetrized around µ1, Property 7 is satisfied. Then, with
probability 1− δ, the output µ̂ of Algorithm 1 satisfies

|µ̂− µ| ≤
(

1 +O

(
1√
γ

))√
2 log 2

δ

nIr
+O


√

log n

ξ log ξ
δ

rIr
· log 2

δ

n

+O

(
ε√
γ

)
Proof Let µ1 = µ+ ε. First, since by Property 7,

1

Îr
|ŝsym
r (x)|≤ 2

rÎr

√
log

n

ξ log ξ
δ

≤
(

1 +O

(
1√
γ

))
2

rIr

√
log

n

ξ log ξ
δ

for all x, by Bernstein’s inequality, the estimate ε̂ satisfies that with probability 1− δ,

∣∣∣∣ε̂− 1

Îr
E

x∼fr
[ŝsym
r (x)]

∣∣∣∣ ≤ 1

Îr

√
E

x∼fr

[
ŝ

sym
r (x)2

]√2 log 2
δ

n
+O


√

log n

ξ log ξ
δ

rIr
· log 2

δ

n


Since |Îr − Ir|. Ir√

γ , for γ > C for sufficiently large constant C, we have∣∣∣∣ 1

Ir
E

x∼fr
[ŝsym
r (x)]− 1

Îr
E

x∼fr
[ŝsym
r (x)]

∣∣∣∣ . 1

Ir√γ

∣∣∣∣ E
x∼fr

[ŝsym
r (x)]

∣∣∣∣ . ε√
γ
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Combining this with the above and the fact that |Îr − Ir|. Ir√
γ yields∣∣∣∣ε̂− 1

Ir
E

x∼fr
[ŝsym
r (x)]

∣∣∣∣
≤
(

1 +O

(
1√
γ

))
1

Ir

√
E

x∼fr

[
ŝ

sym
r (x)2

]√2 log 2
δ

n
+O


√

log n

ξ log ξ
δ

rIr
· log 2

δ

n

+O

(
ε√
γ

)

Then, combined with Property 7 and the triangle inequality, this implies that with probability 1− δ,

|ε̂− ε| ≤
(

1 +O

(
1√
γ

))√
2 log 2

δ

nIr
+O


√

log n

ξ log ξ
δ

rIr
· log 2

δ

n

+O

(
ε√
γ

)

So, since µ1 = µ+ ε and µ̂ = µ+ ε̂, we have the claim.

Appendix F. Global Estimation

In this section, we describe our global estimation procedure and show that it provides a good esti-
mate of the mean. It uses a small number of samples to compute an initial estimate µ1 of µ, and
uses another small set of samples to compute the symmetrized, clipped KDE score function ŝsym

r

symmetrized around µ1. It then uses our local estimation procedure to produce the final estimate
µ̂.

Algorithm 2 Global Estimation

Input parameters:

• Failure probability δ, Samples x1, . . . , xn ∼ f∗, smoothing parameter r, approximation pa-
rameter ξ > 0.

1. First, use the first n/ξ samples to compute an initial estimate µ1 of the mean µ by using the
Median-of-pairwise-means estimator in Lemma 9.

2. Use the next n/ξ samples to compute the kernel density estimate f̂r of fr (as defined in
(8)), along with the associated symmeterized, clipped KDE score ŝsym

r (as defined in (12)),
clipped at 2

r

√
log n

ξ log ξ
δ

and symmetrized around the initial estimate µ1. Compute the Fisher

information estimate Îr = E
x∼f̂r

[
ŝ

sym
r (x)2

]
.

3. Run Algorithm 1 using the remaining n− 2n
ξ samples, and return the final estimate µ̂.

Lemma 10 (Global Estimation) Let ξ > C for large enough constant C > 3 be a parameter, and

suppose ξ ≤ γ ≤
(

n
ξ log 1

δ

)2/5−α
for constant α > 0. For any r ≤ σ and n

log 1
δ

≥ ξ
(
γ5/12σ
r

)6+α
,
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with probability 1− δ, Algorithm 2 outputs an estimate µ̂ with

|µ̂− µ|≤
(

1 +O

(
1√
γ

)
+O

(
1

ξ

))√
2 log 2

δ

nIr
+O

 σ

r
√
γ

√
ξ log ξ

δ

nIr


Proof Let ε = µ1 − µ where µ1 is our median of means estimate in Step 1. First, note that by
Lemma 9, ε satisfies that with probability 1− δ/ξ,

|ε| . σ ·

√
ξ log ξ

δ

n

We condition on Step 1 succeeding so that the above holds. To obtain bounds on the expectation
and variance of ŝsym, we will now check that the following conditions required to invoke Lemma 4
and Lemma 5 hold:

• |ε|≤ r/60

• |ε|≤ r2
√
Ir
γ

Note that log 1
δ

n ≤ 1 and γ ≥ 1. Note also that ξ ≤ γ. So, by our setting of n,

r ≥ σγ5/12ξ1/6

(
log 1

δ

n

)1/6

� O

σ ·
√
ξ log ξ

δ

n

 ≥ |ε|
so that |ε|≤ r/60. Similarly

r2

√
Ir
γ
≥ σ2γ5/6ξ1/3

(
log 1

δ

n

)1/3√
Ir
γ

≥ σ2γ5/6ξ1/3

√
σ2 + r2

(
log 1

δ

n

)1/3

since Ir ≥
1

σ2 + r2

≥ σ

2
γ5/6ξ1/3

(
log 1

δ

n

)1/3

since r ≤ σ

� O

σ ·
√
ξ log ξ

δ

n

 since
log 1

δ

n
≤ 1, and ξ ≥ γ ≥ 1

≥ |ε|

Also, our choice of n implies that

n

ξ
≥
(
γ5/12σ

r

)6+α/2

log
ξ

δ
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So, we can invoke Lemma 4 and Lemma 5 to obtain the following bounds on the mean and second
moment of ŝsym in Step 2, which hold with probability 1− δ

ξ .∣∣∣∣ E
x∼fr

[ŝsym
r (x)]− εIr

∣∣∣∣ . εIr√
γ

and
∣∣∣∣ E
x∼fr

[
ŝsym
r (x)2

]
− Ir

∣∣∣∣ . Ir√
γ

Also, for ŝsym
r that satisfies the above, since ŝsym

r is clipped at 2
r

√
log n

ξ log ξ
δ

, and n
ξ ≥

(
γ5/12σ
r

)6+α/2
log ξ

δ ,

the assumptions of Lemma 6 are satisfied for N = n
ξ and failure probability δ

ξ . So conditioned on
the success of Step 1, by a union bound, with probability 1− 2δ

ξ , Property 7 is satisfied, and simul-

taneously, by Lemma 6, the Fisher information estimate Îr in Step 2 satisfies∣∣∣Îr − Ir∣∣∣ . Ir√
γ

Conditioned on the above, since Property 7 is satisfied, by Lemma 8, our final estimate µ̂ satisfies
that for n′ = n

(
1− 2

ξ

)
and δ′ = δ

(
1− 3

ξ

)
, with probability 1− δ′,

|µ̂− µ| ≤
(

1 +O

(
1√
γ

))√
2 log 2

δ′

n′Ir
+O


√

log n′

ξ log ξ
δ′

rIr
· log 2

δ′

n′

+O

(
ε√
γ

)

≤
(

1 +O

(
1√
γ

)
+O

(
1

ξ

))√
2 log 2

δ

nIr
+O


√

log n

ξ log ξ
δ

rIr
· log 2

δ

n

+O

(
ε√
γ

)

Now, we bound ε√
γ . We have,

ε√
γ
.
σ
√Ir√
γ

√
ξ log ξ

δ

nIr

≤ σ

r
√
γ

√
ξ log ξ

δ

nIr
since Ir ≤

1

r2

Finally, we bound

√
log n

ξ log
ξ
δ

log 1
δ

nrIr . First note that

r2 ≥ σ2γ5/6ξ1/3

(
log 1

δ

n

)1/3

&
1

Ir
γ5/6ξ1/3

(
log 1

δ

n

)1/3

since Ir ≥
1

σ2 + r2
&

1

σ2
since r ≤ σ
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So, we have√
log n

ξ log ξ
δ

log 1
δ

rIrn
≤ 1

rIr

(
log 1

δ

n

)1−α

since
n

log 1
δ

≥ 1

.
1√Irγ5/12ξ1/3

(
log 1

δ

n

)5/6−α

=
γ1/12

√Irγξ1/3

(
log 1

δ

n

)5/6−α

.
1√Irγξ1/3

(
log 1

δ

n

)4/5−α

since γ ≤
(

n

ξ log 1
δ

)2/5−α

≤
(

n

log 1
δ

)2/5

.
1√
γ

√
log 1

δ

nIr

So we have shown that

|µ̂− µ|≤
(

1 +O

(
1√
γ

)
+O

(
1

ξ

))√
2 log 2

δ

nIr
+

σ

r
√
γ

√
ξ log ξ

δ

nIr

Thus, by a union bound, with probability 1− δ in total, the claim follows.

Theorem 1 Let η = (
log 1

δ
n )

1
13 < 1, and let log 1

δ ≤ n/C for sufficiently large constant C > 1. Let
f∗ be an arbitrary symmetric distribution with variance σ2 and mean µ. For ησ ≤ r ≤ σ, we have

|µ̂− µ|≤ (1 + η)

√
2 log 2

δ

nIr

with probability 1− δ.

Proof Set ξ = 1
η , and let γ = 1

η2
. First we check the conditions of Lemma 10 that

• ξ > C1 for sufficiently large constant C1

• ξ ≤ γ ≤
(

n
ξ log 1

δ

)2/5−α
for constant α > 0

• n
log 1

δ

≥ ξ
(
γ5/12σ
r

)6+α
for constant α > 0

We have,

ξ =
1

η
=

(
n

log 1
δ

) 1
13
−β

≥ C 1
13
−β ≥ C1
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for large enough constant C, by assumption. We also have,

γ =
1

η2
≥ 1

η
= ξ

and

γ =
1

η2
=

(
n

log 1
δ

) 2
13
−2β

= η
2
5
−β

(
n

log 1
δ

) 8
65
−Ω(β)

≤
(

n

ξ log 1
δ

)2/5−α

Finally, we have

ξ

(
γ5/12σ

r

)6+α

≤ 1

η

(
1

η11/6

)6+α

since ξ =
1

η
, γ =

1

η2
, and r ≥ ησ

=
1

η12+ 11
6
α

≤ n

log 1
δ

since η =

(
log 1

δ

n

)1/13

So we have verified the above conditions, which, along with the fact that r ≤ σ, allow us to invoke
Lemma 10. The Lemma gives that with probability 1− δ,

|µ̂− µ|≤
(

1 +O

(
1√
γ

)
+O

(
1

ξ

))√
2 log 2

δ

nIr
+

σ

r
√
γ

√
ξ log ξ

δ

nIr

We bound the last term above.

σ

r
√
γ

√
ξ log ξ

δ

nIr
≤ η√

γ

√
ξ log ξ

δ

nIr
since r ≥ ησ

= η2

√
ξ log ξ

δ

nIr
substituting γ

≤ η

√
log 1

δ

n
since ξ =

1

η

Along with the above and the setting of γ and ξ, we have

|µ̂− µ|≤ (1 +O(η))

√
2 log 2

δ

nIr

Reparametrizing η gives the claim.
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Appendix G. Properties of r-smoothed distributions

G.1. Score bound in terms of density

The next lemma shows that sr is bounded in terms of fr and r.

Lemma 33 Let f∗ be an arbitrary distribution, and let fr be the r-smoothed version of f∗. Let sr
be the score function of fr. We have

|sr(x)|≤ 1

r

√
2 log

1√
2πrfr(x)

Proof Let wr be the pdf of N (0, r2). By definition of r-smoothing, we have that when X ∼ fr,
X = Y + Zr where Y ∼ f∗ and Zr ∼ wr for independent Y,Zr. So,

fr(x) = Pr
X∼fr

[X = x] =

∫ ∞
−∞

Pr
Y∼f∗

[Y = y] Pr
Zr∼wr

[Z = Y − x]dy = E
Y∼f∗

[wr(x− Y )]

So, we have

Pr[X = x|Y = y] = E[wr(x− Y )|Y = y] = wr(x− y)

Now, since wr(x) = 1√
2πr

e−
−x2
2r2

(x− Y ) = r

√
2 log

1√
2πr · wr(x− Y )

So, by Lemma 36,

sr(x) = E
[
Zr
r2

∣∣∣X = x

]
=

1

r2
E [x− Y |X = x] since X = Y + Zr

=
1

r
E

[√
2 log

1√
2πr · wr(x− Y )

∣∣∣X = x

]

=
1

r

∫ ∞
−∞

√
2 log

1√
2πr · wr(x− y)

Pr[Y = y|X = x]dy

=
1

r

∫ ∞
−∞

√
2 log

1√
2πr · wr(x− y)

Pr[Y = y] Pr[X = x|Y = y]

Pr[X = x]
dy (by Bayes’ Theorem)

=
1

r

∫ ∞
−∞

wr(x− y)

fr(x)

√
2 log

1√
2πr · wr(x− y)

Pr[Y = y]dy

=
1

r
E

[
wr(x− Y )

fr(x)

√
2 log

1√
2πr · wr(x− Y )

]
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Now, g(z) = z
√

2 log 1√
2πr·z is concave on [0, 1]. So, by Jensen’s inequality,

sr(x) ≤ EY∼f∗ [wr(x− Y )]

rfr(x)

√
2 log

1√
2πr · E[wr(x− Y )]

=
1

r

√
2 log

1√
2πr · fr(x)

since fr(x) = E[wr(x− Y )]

G.2. r-smoothed score is O(1/r)-subgaussian

The next two lemmas together show that the score function of an r-smoothed distribution is O
(

1
r

)
-

subgaussian.

Lemma 34 Consider the distribution fr which is the r-smoothed version of distribution f . That

is, fr has density fr(x) = Ey←h[ 1√
2πr2

e−
(x−y)2

2r2 ]. Then, with probability at least 1 − (1 + τ)δ, we
sample a point x ∼ fr such that

E
y∼f

[
1

[
(x− y)2 > 2r2 log

1

δ

] |x− y|
r2

1√
2πr2

e−
(x−y)2

2r2

]
≤ 1

τ
E
y∼f

[
1

[
(x− y)2 ≤ 2r2 log

1

δ

] |x− y|
r2

1√
2πr2

e−
(x−y)2

2r2

]
Proof Observe that, at any point x violating the above inequality, we have

fr(x) = E
y←f

[
1

[
(x− y)2 ≤ 2r2 log

1

δ

] |x− y|
r2

1√
2πr2

e−
(x−y)2

2r2

]
+ E
y←f

[
1

[
(x− y)2 > 2r2 log

1

δ

] |x− y|
r2

1√
2πr2

e−
(x−y)2

2r2

]
≤ (1 + τ) E

y←f

[
1

[
(x− y)2 > 2r2 log

1

δ

] |x− y|
r2

1√
2πr2

e−
(x−y)2

2r2

]
We wish to bound the probability of sampling x violating the lemma inequality, which is bounded
by the integral of the above right hand side. We can further bound it using the following:∫

E
y←f

[
1

[
(x− y)2 > 2r2 log

1

δ

] |x− y|
r2

1√
2πr2

e−
(x−y)2

2r2

]
dx

= E
y←f

[∫
1

[
(x− y)2 > 2r2 log

1

δ

] |x− y|
r2

1√
2πr2

e−
(x−y)2

2r2 dx

]
≤ E
y←f

[δ] = δ

Thus the probability of sampling a point x violating the lemma inequality is upper bounded by
the integral of fr(x) over those points, which is in turn upper bounded by (1 + τ)δ.
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Lemma 35 (Score is O(1/r)-subgaussian) Let sr be the score function of an r-smoothed distri-

bution fr. We have that for x ∼ fr, with probability 1− δ, |sr(x)|. 1
r

√
log 2

δ .

Proof
By Lemma 34 using τ = 1, with probability 1 − 2δ over sampling a single point x ← fr, the

point x satisfies

E
y←f

[
1

[
(x− y)2 > 2r2 log

1

δ

] |x− y|
r2

1√
2πr2

e−
(x−y)2

2r2

]
≤ E

y←f

[
1

[
(x− y)2 ≤ 2r2 log

1

δ

] |x− y|
r2

1√
2πr2

e−
(x−y)2

2r2

]
And so,

sr(x) =
f ′r(x)

fr(x)
=

Ey←f
[
y−x
r2

1√
2πr2

e−
(x−y)2

2r2

]
fr(x)

≤
Ey←f

[
|x−y|
r2

1√
2πr2

e−
(x−y)2

2r2

]
fr(x)

=

Ey←f
[
1
[
(x− y)2 ≤ 2r2 log 1

δ

] |x−y|
r2

1√
2πr2

e−
(x−y)2

2r2

]
fr(x)

+

Ey←f
[
1
[
(x− y)2 > 2r2 log 1

δ

] |x−y|
r2

1√
2πr2

e−
(x−y)2

2r2

]
fr(x)

≤ 2 ·
Ey←f

[
1
[
(x− y)2 ≤ 2r2 log 1

δ

] |x−y|
r2

1√
2πr2

e−
(x−y)2

2r2

]
fr(x)

≤ 2
√

2

r

√
log

1

δ

Ey←f
[
1
[
(x− y)2 ≤ 2r2 log 1

δ

]
1√

2πr2
e−

(x−y)2

2r2

]
fr(x)

≤ 2
√

2

r

√
log

1

δ

Reparameterizing from 2δ to δ gives the lemma result.

G.3. Lemmas from Gupta et al. (2022)

Here, we recall some of the properties of r-smoothed distributions shown in Gupta et al. (2022)

Lemma 36 (From Gupta et al. (2022)) Let sr be the score function of r-smoothed distribution fr.
Then,

fr(x+ ε)

fr(x)
= E

Zr|x

[
e

2εZr−ε2
2r2

]
and in particular sr(x) =

1

r2
E
Zr|x

[Zr]
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and

sr(x+ ε) =
EZr|x

[
e
εZr
r2

Zr−ε
r2

]
EZr|x

[
e
εZr
r2

]
Lemma 37 (From Gupta et al. (2022)) Let sr be the score function of an r-smoothed distribution
fr with Fisher information Ir. Then for any |ε|≤ r/2,

E
x∼fr

[sr(x+ ε)] = −Irε+ Θ

(√
Ir
ε2

r2

)
Lemma 38 (From Gupta et al. (2022)) Let sr be the score function of an r-smoothed distribution
fr with Fisher information Ir. Then, for any |ε|≤ r/2,

E
x∼fr

[s2
r(x+ ε)] ≤ Ir +O

(
ε

r
Ir
√

log
1

r2Ir

)
Lemma 39 (From Gupta et al. (2022)) Let Ir be the Fisher information of an r-smoothed distri-
bution fr. Then Ir ≤ 1/r2.

Lemma 40 (From Gupta et al. (2022)) Let f∗ be an arbitrary distribution, and let fr be the r-
smoothed version of f∗. Define

∆ε(x) :=
fr(x+ ε)− fr(x)− εf ′r(x)

fr(x)

Then, for any |ε|≤ r/2,

E
x∼fr

[
∆ε(x)2

]
.
ε4

r4

Appendix H. Median of Pairwise Means Estimator

Using results in Minton and Price (2014), we show that the median of pairwise means is a good
estimator for symmetric random variables. In particular, it matches the convergence of the median-
of-means estimator for all (ε, δ) without needing to specify ε and δ.

Lemma 9 (Median of pairwise means estimator) Let X1, X2, . . . , Xn be drawn from a symmet-
ric distribution with mean µ and variance σ2. For every constant C1 > 0 there exists a constant C2

such that µ̂ := mediani∈[n/2]
X2i−1+X2i

2 satisfies

|µ̂− µ|≤ C2σ ·

√
log 2

δ

n

with probability 1− δ, for all δ with log 1
δ ≤ C1n.
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Proof Let Yi = 1
2(X2i−1 + X2i) for i ∈ [n/2]. Let p be the pdf of X − µ, and q be the pdf of

Y − µ. Since X − µ is symmetric about 0, the Fourier transform p̂ of p is real-valued. By the
Fourier convolution theorem, q has nonnegative Fourier transform. Then by Lemma 3.1 of Minton
and Price (2014), for any ε < 1,

Pr[|Yi|< εσ] ≥ C3ε

for a universal constant C3. Then it is easy to show (e.g., Lemma 3.3 of Minton and Price (2014)):

Pr[|µ̂− µ|> εσ] ≤ 2e−
C2
3
4
ε2n.

Setting ε = 2
C3

√
log 2

δ
n gives the result, as long as n > 4

C2
3

log 2
δ so this ε < 1.

There’s a remaining regime of C2
3

4 ≤
log 1

δ
n ≤ C1 for which we need to prove a Θ(σ) bound

on |µ̂ − µ|. Note that Yi has variance σ2/2, so for any a > 0, with probability 1 − a we have
|Yi − µ|≤ σ√

2a
. Let Ei denote the event that |Yi − µ|> σ√

2a
. Then

Pr[|µ̂− µ|> σ√
2a

] ≤ Pr[

n/2∑
i=1

Ei ≥
n

4
] ≤

(
n/2

n/4

)
an/4 ≤ (4a)n/4.

which is δ for a = 1
4e
− 4
n

log 1
δ ≥ 1

4e
−4C1 . Thus with probability 1− δ, |µ̂− µ|≤

√
2e2C1σ h σ.

53


	Introduction
	Related Work
	Proof Sketch
	Key Steps in Proof
	Clipped KDE Score
	Symmetrization
	Estimating I_r
	Local Estimation
	Global Estimation

	Definitions
	Clipped Kernel Density Estimate
	Pointwise guarantees
	Close-by scores are close
	Bounding the clipped KDE error

	Symmetrization
	Estimating I_r
	Local Estimation
	Global Estimation
	Properties of r-smoothed distributions
	Score bound in terms of density
	r-smoothed score is O(1/r)-subgaussian
	Lemmas from finite_sample_mle

	Median of Pairwise Means Estimator

