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Abstract—The slowing down of Moore’s Law has created an
exciting new era of electronics, leading to the emergence of
various types of CMOS+X devices and architectures. Here, we
present the first experimental demonstration of a probabilistic
computer where a stochastic magnetic tunnel junction (sMTJ)
drives a powerful CMOS-based field programmable gate array
(FPGA) in a heterogeneous compute fabric. We use our machine
to experimentally evaluate the simulated quantum annealing
(SQA) algorithm, known to closely mimic the behavior of D-
Wave’s quantum annealers which implement the transverse field
Ising model (TFIM). Our machine matches the exact solution of
the TFIM where p-bits in the FPGA are asynchronously driven
by the stochastic dynamics of a magnetic tunnel junction. To
compare the performance of SQA against classical annealing
(CA) in hard combinatorial optimization at large scale, we also
design a fully digital emulator of our asynchronous architecture
in the FPGA. Our digital system uses 7,085 p-bits to factor
up to 26-bit integers and is about 10X faster than optimized
Tensor (TPU) and Graphics Processing Units (GPU) at lower
power. Surprisingly, we find that the additional replica networks
necessary for SQA do not lead to appreciably better performance
over an optimized CA that is using the same computational
resources. The systematic evaluation of the SQA algorithm we
present will be relevant for other types of accelerators, such as
photonic or electronic Ising machines and the integrated scaling
of our CMOS + sMTJ architecture could lead to orders of
magnitude further improvements over TPU and GPUs, according
to experimentally-validated projections.

I. INTRODUCTION

The slowing down of the Moore’s Law has been marked
by the rise of domain-specific hardware and architectures. A
notable example of this approach is probabilistic computation
with p-bits with a wide applications space from accelerating
optimization, sampling and Monte Carlo algorithms. p-bits
have previously been demonstrated in small-scale prototypes
using magnetic nanodevices [1] or in large-scale using all
digital CMOS [2]. In this work, we demonstrate a novel
heterogeneous architecture combining stochastic magnetic tun-
nel junctions (sMTJ) asynchronously driving digital p-bits
implemented in a powerful CMOS-based field programmable
gate array (FPGA) (FIG. 1). Here, the sMTJ is used as an
asynchronous and randomized clock to drive digital p-bits
for optimization and sampling problems however the same
heterogeneous integration architecture could be used for other
purposes, for example, to turn low-quality digital random
numbers to high-quality true random numbers at massive
scale. We start with a perpendicular MTJ whose free layer
is designed to have a low energy barrier (≈ 15-20 kBT ) such

that the resistance of the MTJ shows telegraphic fluctuations
(FIG. 2). Due to the dipolar coupling between the fixed layer
and the free layer the MTJ does not show fluctuations at
zero current. Typically around ≈ 5-15 µA the spin torque
effect cancels the dipolar coupling and the sMTJ shows 50/50
fluctuations (FIG. 2a). We then design a circuit where the
sMTJ is attached to an NMOS transistor and a source resistor
where the NMOS controls the current through the sMTJ by
an input voltage (FIG. 2b). The fluctuations at the drain
are converted to rail-to-rail voltages using two comparators.
Typically one comparator (or inverter) is enough [1], here we
use a double comparator setup to drive the peripheral module
(PMOD) pins of a Kintex FPGA board. FIG. 2c shows the
stochastic fluctuations of the overall p-bit circuit as a function
of the input voltage of the NMOS.

II. HETEROGENEOUS ARCHITECTURE

For our heterogeneous architecture, we bias the sMTJ-
based p-bit at its midpoint such that the output is a 50/50
fluctuating, rail-to-rail signal used as a stochastic clock to drive
digital p-bits in the FPGA. Inside the FPGA, we construct a
programmable architecture representing an Ising model:

E = − (
∑

Jijmimj +
∑

himi) (1)
where Jij are the weights and hi are the biases whereas the mi

are the p-bit states that are +1 or −1, which are converted to
binary states, s, to be represented in the FPGA using m = 2s−
1 [2]. Our main benchmark is a 1D transverse field Ising model
problem (TFIM) which translates to a 2D nearest-neighbor
classical Ising graph by a Suzuki-Trotter decomposition. The
2D grid has a chessboard pattern and can be colored using
2-colors. This allows p-bits in each color block to be updated
in parallel, a trick often used in parallelizing the 2D classical
Ising model in GPU and TPUs. We use similar architecture
in the FPGA where a graph representing the Jij is colored
and each color is updated by a separate clock [2]. We use a
single magnetic p-bit where the rising edge triggers an update
of one color block and the falling edge triggers the other block
(FIG. 2d). These triggers activate low quality pseudorandom
number generators, labeled PRNG in the FPGA block view
(FIG. 1). The equations of p-computing for optimization (i.e.,
minimizing E) and sampling (i.e., from ∝ exp[−βE]) are:

mi = sgn(tanh(βIi)− rU ) Ii =
∑

Jijmj + hi (2)
where mi are the p-bit states (±1), rU is a uniform random
number between (-1,+1) and [J ], {h} define the Ising model



of Eq. 1 and β is the inverse pseudo-temperature. Typically
a single network describing weights and biases is needed for
either optimization or sampling. To mimic quantum anneal-
ing through simulated quantum annealing (SQA), however,
interacting replicas of the original network is necessary (FIG.
3b). The need for replicas makes SQA computationally more
expensive for classical hardware, the graph size for an N -
node problem becomes NR, R being the number of replicas.
With the same hardware effort, however, classical annealing
(CA) algorithm can be run in R parallel replicas [3] (FIG.
3a). We first demonstrate how our sMTJ + FPGA p-computer
reproduces the exact quantum average obtained from a 1D-
TFIM by its 2D classical Ising model mapping. The TFIM
model serves the basis of SQA which is later compared
with CA using the computationally hard factorization problem
(FIG. 4a,b).

III. QUANTUM PROBLEMS WITH MTJ-BASED P-BITS

FIG. 5 shows an experimental measurement of a sampling
problem for the 1D nearest neighbor TFIM of an 8-qubit
system. The mapping between the TFIM and classical net-
work is done through: Jij = JQ

ij /R, hi = hQ
i /R, JT =

1/(2β) ln[tanh(βΓx/R)], where the (J , h) and JT represent
local and transverse terms, respectively. Each are obtained
from the quantum Hamiltonian, denoted by the superscript Q
(FIG. 3b). We choose R = 10 to simulate this system using
80 p-bits divided into two color blocks which are driven by
the external sMTJ. FIG. 5a shows two experiments with a lon-
gitudinal magnetic field, Γz = ±1. We take 100 independent
measurements for each Γz value where the average magnetiza-
tion, ⟨mz⟩ is initialized to 0 over 100 runs. For each magnetic
field, the probability distribution defined by 100 separate runs
evolve to the exact quantum average (FIG. 5b) computed from
the density matrix, ρ = 1/Z tr.[exp(−βHQ)] (FIG. 4a). A
final histogram obtained after the system has saturated shows
excellent agreement with the quantum distribution (FIG. 5c).
The relaxation timescales are in hundreds of seconds in these
measurements however this is due to the slow sMTJs we used,
> GHz frequencies of sMTJs have been demonstrated [4].
This result establishes how our CMOS + sMTJ architecture
can solve a truly quantum problem and if scaled in integrated
circuits could lead to the faithful simulation of hundreds of
thousands of qubits.

IV. HARD OPTIMIZATION: CA OR SQA?

Given the additional costs of building replicas, we system-
atically investigate the performance of SQA and compare it
with CA. To do this, we construct a fully digital emulator
of our heterogeneous computer in the FPGA, similar to our
earlier result [2], replacing the sMTJ driven clocks by multiple
colored digital ones, allowing us to reach up to 7,085 p-bit
circuits which can solve up to 26-bit integer factorization prob-
lems, far greater than alternative approaches. First, we perform
a careful parameter optimization of SQA, finding the best
possible combination of β/R at several bit-lengths (with 100
semiprimes/bit). We find that around β/R ≈ 2.5 the time to

solution is minimal (FIG. 6a). In the remaining comparisons,
we use the same β/R = 2.5 for all examples. FIG. 6b shows
the annealing schedules we used for CA and QA and FIG.
6c-f represent our main algorithmic findings: we show that
in fast or slow annealing for solving the integer factorization
problem, the time to solution for SQA is much better than
a single CA network, in line with earlier observations [3].
When we perform a replicated CA (RCA) algorithm where
the best among all parallel runs of the simulated annealing is
chosen, the advantage of SQA vanishes, and in some cases,
becomes inferior to RCA. Given the stringent requirements
of finding an optimum (β,R) and the necessity of additional
transverse weights, our conclusion is the added difficulty of
SQA may not justify its use over a much simpler RCA
algorithm using parallel replicas, particularly for classical
domain-specific hardware such as Ising machines. Simulating
quantum systems may still be a useful application of SQA.

V. PROJECTIONS AND OUTLOOK

In FIG. 7 and Table I, we show a summary of our results
and provide experimentally-validated projections. Compared
to optimized GPU/TPU implementations [5]–[10], the fully
digital FPGA system is already competitive in the main metric
of probabilistic flips/second. Given recent experimental break-
throughs in fast sMTJs [4] and the demonstrated integration of
millions of sMTJs in embedded CMOS raises the intriguing
possibility of orders of magnitude improvement in sampling
throughput and energy-efficiency for probabilistic computing
applications.
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Fig.  1.  (a) The sMTJ-based p-bit feeds a stochastic and asynchronous clock to 
the FPGA.  Digital p-bit architecture including a lookup table, comparator, 
weights and a pseudorandom number generator (PRNG) activated by the sMTJ. 
(b) Photo of the experimental setup. (Left) Vector board of the mixed-signal 
p-bit circuit combining sMTJs with NMOS transistors and comparators. (Right) 
Kintex FPGA board receives the sMTJ clock through the PMOD pin to solve 
optimization and sampling problems by probabilistic computation. 
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Fig.  3. (a) Replicated classical annealing.  Several replicas of the system are 
working independently and [J] takes the form of a block matrix. All couplings 
are local. (b) Simulated quantum annealing (SQA). All p-bits are connected to 
their counterparts in the neighboring replicas with the JT (transverse) coupling. 
Periodic boundary conditions are used for transverse couplings.  (c) Basic 
equations for p-bits. (Left) Synaptic equation to calculate the input signal 
received by a p-bit. (Right) Stochastic activation of a p-bit. β is the inverse 
pseudo-temperature.
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Fig.  2.  (a) (Left) Wirebonded sMTJs. (Right) Resistance of sMTJ as a function 
of current. (b) (Left) sMTJ-based p-bit design with NMOS (2N7000), source 
resistance (RS = 10 kΩ) and two comparators. VDD of the sMTJ branch is 500 
mV. (Right) Time-averaged VOUT over 200 s as VIN is varied. The first op-amp 
(AD8692) uses a reference voltage of VREF (= 0.39 V), the second comparator 
acts as buffer to drive the PMOD pin of FPGA. (c) Normalized VOUT vs time at 
different VIN. (d) sMTJ-augmented p-bits serve as a clock. Positive edges and 
negative edges update two separate blocks of p-bits without overlapping with 
each other.  Our sMTJ-based p-bit is biased to produce 50/50 fluctuations.
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Table I. Summary of results and projections. The prototype 
sMTJ-augmented FPGA has high energy efficiency: The 
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Fig.  5.  Experimentally measured output of the sMTJ-augmented p-bit + FPGA system compared against the quantum (exact) solution of a 1D TFIM 
Hamiltonian: (a) A transverse field (ΓX = +1) is applied to a linear chain of eight (8) FM coupled (Jij = 2) qubits with periodic boundary operating at β = 0.5. The 
qubits are initialized to the state (|↑↓↑↓↑↓↑↓ ) where  mZ    is zero.  A symmetry breaking field along z-direction (either ΓZ = +1 or ΓZ = −1) is applied such that 
the exact average is  (± 0.941), respectively.  Average output (over 100 different runs) with R = 10 replicas gradually reaches the exact equilibrium value for both 
ΓZ. (b) Outputs of each individual run. (c) Measured equilibrium probabilities for the first 32 states (highest probability) show excellent agreement with the 
theoretical equilibrium probabilities as calculated from the corresponding quantum density matrix.
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sMTJ branch draws ~6.7 μW power, in good agreement with theoretical predictions [1]. It also has 
low throughput (~ 4e-8 flips/ns) since slow sMTJs were deliberately used to ease design, compared 
to the all-digital FPGA reaching ~100 flips/ns. Nanoseconds fluctuations have been demonstrated 
using sMTJs [4]. Up to 1M sMTJs fluctuating with 1 ns time scale can lead to 1M flips/ns with about 
20 W power consumption [1], orders of magnitude better than optimized GPU/TPU (Fig. 7). 

(c) fast annealing (d) slow annealing

(f) slow annealing

8 10 12 14 16 18
Number of bits

10 
−1

10 
0

10 
1

TT
S

 (s
) 

99

6750 p-bits
τ = 0.03 s
100 semiprimes/bit
100 trials/semiprime

Classical annealing
Replicated classical annealing
Simulated quantum annealing

8 10 12 14 16 18
Number of bits

10 
1

10 
2

TT
S

 (s
) 

99

6750 p-bits
τ = 3 s
50 semiprimes/bit
50 trials/semiprime

Classical annealing
Replicated classical annealing
Simulated quantum annealing

 (e) fast annealing

8 10 12 14 16 18 20 22 24 26
Number of bits

10 
0

10 
1

10 
2

10 
3

10 
4

TT
S

 (s
) 

99

7085 p-bits
τ = 0.03 s
100 semiprimes/bit
100 trials/semiprime

Classical annealing
Replicated classical annealing
Simulated quantum annealing

8 10 12 14 16 18 20 22 24 26
Number of bits

10 
1

10 
2

10 
3

10 
4

TT
S

 (s
) 

99

7085 p-bits
τ = 3 s
50 semiprimes/bit
50 trials/semiprime

18-bit factorizer, 10 replicas

26-bit factorizer, 5 replicas

Classical annealing
Replicated classical annealing
Simulated quantum annealing

0.000 0.005 0.010 0.015 0.020 0.025 0.030
Time (s)

0.00

0.01

0.02

J T

Simulated quantum annealing schedule (SQA)
FPGA (fixed point)
Theoretical

0.000 0.005 0.010 0.015 0.020 0.025 0.030
Time (s)

0

1

2

3

β

Classical annealing schedule (CA)
FPGA (fixed point)

0.000 0.005 0.010 0.015 0.020 0.025 0.030
Time (s)

0.5

1.0
Γ  schedule x

(b) 

(a) 

R
β

τ = 0.03 s

100 semiprimes/point
100 trials/semiprimeOptimal

R
β

 = 2.5  R
β

 = 2.5  

R
β

 = 2.5  R
β

 = 2.5  

Fig.  6. Fully digital FPGA evaluation of SQA vs RCA. An 18-bit factorizer with 10 replicas and a 26-bit factorizer with 5 replicas are encoded with 6,750 and 
7,085 p-bits, respectively. Both circuits are synthesized only once and reconfigured to factor semiprime numbers from 8-bit to the highest bit. (a) For SQA, β/R 
= 2.5 shows the optimum TTS99 (time to find the exact solution with 99% probability for a given annealing schedule). β/R = 2.5 is used for all experiments. (b) 
(Upper panel) The annealing schedule for the SQA for JT where the transverse field, ΓX is linearly decreased at fixed β (inset). FPGA approximates JT with s[6][3] 
fixed point precision. (Lower panel) The annealing schedule for RCA with β linearly increased from 0.500 to 3.625. (c,e) Fast annealing schedules (τ = 0.03 s) 
for RCA and SQA on the 18-bit and the 26-bit factorizer circuits to factor 100 random semiprimes with 100 trials for each number of bits. (d,f) Slow annealing 
schedules (τ = 3 s) for RCA and SQA on the 18 and 26-bit factorizers (50 semiprimes, 50 trials). For all results (c,d,e,f) RCA and SQA perform similarly, both 
significantly better than the single replica CA. Error bars are obtained using bootstrapping with 95% confidence.

Simulated quantum annealing parameter optimization


