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Abstract
In goal-reaching reinforcement learning (RL), the
optimal value function has a particular geome-
try, called quasimetric structure. This paper in-
troduces Quasimetric Reinforcement Learning
(QRL), a new RL method that utilizes quasimet-
ric models to learn optimal value functions. Dis-
tinct from prior approaches, the QRL objective
is specifically designed for quasimetrics, and pro-
vides strong theoretical recovery guarantees. Em-
pirically, we conduct thorough analyses on a dis-
cretized MountainCar environment, identifying
properties of QRL and its advantages over al-
ternatives. On offline and online goal-reaching
benchmarks, QRL also demonstrates improved
sample efficiency and performance, across both
state-based and image-based observations.

Project Page: tongzhouwang.info/quasimetric_rl

1. Introduction
Modern decision-making problems often involve dynamic
programming on the cost-to-go function, also known as
the value function. This function allows for bootstrapping,
where a complicated decision is broken up into a series of
subproblems. Once a subproblem is solved, its subgraph can
be collapsed into a single node whose cost is summarized
by the value function. This approach appears in nearly all
contemporary RL and planning algorithms.

In deep RL, value functions are modeled with general neural
nets, which are universal function approximators. Further,
most RL algorithms focus on optimizing toward a single
goal. In this setting, the value function V ∗(s) reports the
(optimal) cost-to-go to achieve that single goal from state
s ∈ S. In this single-goal case, V ∗ can be any function
V ∗ : S → R, that is, for any V ∗ : S → R, there exists a
Markov Decision Process (MDP) for which that V ∗ is the
desired optimal value function.
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However, additional structure emerges when we switch in-
stead to the multi-task setting, where the (goal-conditioned)
value function V ∗(s; g) : S ×S → R models the cost-to-go
to a set of goals (Figure 1). In this case, the true optimal
value function, for any MDP, is always a quasimetric func-
tion (Wang & Isola, 2022b; Tian et al., 2020; Liu et al.,
2022), which is a generalization of metric functions to allow
asymmetry while still respecting the triangle inequality.

Given this structure, it is natural to constrain value func-
tion search to the space of quasimetrics. This approach
searches within a much smaller subset of the space of all
functions S × S → R, ensuring that the true value function
is guaranteed to be present within this subspace. Recent
advancements in differentiable parametric quasimetric mod-
els (Wang & Isola, 2022a; Pitis et al., 2020) have already
enabled a number of studies (Liu et al., 2022; Wang & Isola,
2022b) to explore the use of these models in standard RL al-
gorithms, resulting in improved performance in some cases.

However, traditional RL algorithms (such as Q-learning
(Watkins, 1989)) were designed for on large unconstrained
function spaces, and their performance may severely de-
grade with restricted spaces (Wang et al., 2020; 2021). In-
stead of constraining the search space, these methods en-
courage quasimetric properties via the objective function.
For example, the Bellman update partly enforces the triangle
inequality on the current state, next state, and target goal.
With the advent of differentiable parametrized quasimetric
models and their demonstrated effectiveness in RL, it is
newly possible to design a new RL algorithm that is specifi-
cally geared towards learning quasimetric value functions.

In this work, we propose Quasimetric Reinforcement Learn-
ing (QRL). QRL is in the family of geometric approaches
to value function learning, which model the value function
as some distance metric, or, in our case, a quasimetric. Ob-
taining local distance estimates is easy because the cost
of a single transition is by definition given by the reward
function, which can be learned via supervised regression.
However, capturing global relations is hard. This is a prob-
lem studied in many fields such as metric learning (Roweis
& Saul, 2000; Tenenbaum et al., 2000), contrastive learning
(Oord et al., 2018; Wang & Isola, 2020), etc. A general
principle is to find a model where local relationships are
captured and otherwise states are spread out.
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Figure 1: In multi-goal RL, the set of all possible (optimal) value
functions is exactly the set of quasimetrics. In single-task RL, there
is no similar structure and value functions can be any function.

We argue that a similar idea can be used for value function
learning. QRL finds a quasimetric value function in which
local distances are preserved, but otherwise states are max-
imally spread out. All three properties are essential in
accurately learning the function. Intuitively, a quasimetric
function that maximizes the separation of states s0 and
s1, subject to the constraint that it captures cost for each
adjacent pair of states, gives exactly the cost of the shortest
path from s0 to s1. It can’t be longer than that due to triangle
inequality from quasimetric and preservation of local dis-
tances. It can’t be shorter than that due to the maximal
spreading. Analogously, consider a chain with several links.
If one pushes the chain ends apart, then the distance between
the ends is exactly equal to the length of all the links.

These three properties (which we will indicate with the three
text colors above) make our method distinct from other con-
trastive approaches to RL, and ensures that QRL provably
learns the optimal value function. Some alternatives use
symmetrical metrics that cannot capture complex dynamics
(Yang et al., 2020; Ma et al., 2022; Sermanet et al., 2018).
Others do not enforce how much adjacent states are pulled
together nor how much states are pushed apart, and rely on
carefully weighting loss terms and specific sample distri-
butions to estimate on-policy (rather than optimal) values
(Eysenbach et al., 2022; Oord et al., 2018).

In summary, our contributions in this paper are
• Based on the connection between value functions and

quasimetrics (Section 2), we propose QRL, a new RL
framework that utilizes quasimetric models to learn opti-
mal goal-reaching value functions (Section 3).

• We provide theoretical guarantees (Section 3.1) as
well as thorough empirical analysis on a discretized
MountainCar environment (Section 3.3), highlighting
qualitative differences with many existing methods.

• We augment the proposed method to (optionally) also
learn optimal Q-functions and/or policies (Section 3.4).

• On offline maze2d tasks, QRL performs well in single-
goal and multi-goal evaluations, improving > 37% over
the best baseline and > 46% over the d4rl handcoded
reference controller (Fu et al., 2020) (Section 5.1).

• Our learned value functions can be directly used in con-
junction with trajectory modelling and planning methods,
improving their performances (Section 5.1).

• On online goal-reaching settings, QRL shows up to 4.9×
improved sample efficiency and performance in both
state-based and imaged-based observations, outperform-
ing baselines including Contrastive RL (Eysenbach et al.,
2022) and plugging quasimetric Q-function models into
existing RL algorithms (Liu et al., 2022) (Section 5.2).

2. Value Functions are Quasimetrics
This section covers the preliminaries on goal-reaching RL
settings, value functions, and quasimetrics. We also present
a new result showing an equivalence between the latter two.

2.1. Goal-Reaching Reinforcement Learning

We focus on the goal-reaching RL tasks in the form of
Markov Decision Processes (MDPs): (S,A, P,R), where S
is the state space, A is the action space, P : S ×A → ∆(S)
is the transition function, and R : S × S → [Rmin, 0] is the
reward (cost) function for performing a transition between
two states. ∆(A) denotes the set of distributions over set A.

Given a target state sgoal ∈ S , a goal-conditioned agent
π(a | s; sgoal) is tasked to reach sgoal as soon as possible
from the current state s. Formally, until the agent reaches
the goal, it receives a negative reward (cost) r(s, s′) for
each transition (s, s′). The agent π aims to maximize the ex-
pected total reward given any s and sgoal, which equals
the negated total cost. We call this quantity the (goal-
conditioned) on-policy value function V π(s; sgoal) for π.

There exists an optimal policy π∗ that is universally optimal:

∀s, sgoal, V π∗
(s; sgoal) = max

π
V π(s; sgoal). (1)

We thus define the optimal value function V ∗ ≜ V π∗
.

Similarly, we can define the optimal state-action value func-
tion, i.e., Q-function:

Q∗(s, a; sgoal) ≜ Es′∼P (s,a) [R(s, s′) + V ∗(s′; sgoal)] .

2.2. Value-Quasimetric Equivalence

Regardless of the underlying MDP, some fundamental prop-
erties of optimal value V ∗ always hold.

Triangle Inequality. As observed in prior works (Wang
& Isola, 2022a;b; Liu et al., 2022; Pitis et al., 2020; Du-
rugkar et al., 2021), the optimal value V ∗ always obeys the
triangle inequality (due to optimality and Markov property):

∀s1, s2, s3, V ∗(s1; s2) + V ∗(s2; s3) ≤ V ∗(s1; s3). (2)

Intuitively, V ∗(s1, s3) is the highest value among all plans
from s1 to s3; and V ∗(s1; s2) + V ∗(s2; s3) is the highest
among all plans from s1 to s2 and then to s3, a more re-
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stricted set. Thus, Equation (2) holds, and −V ∗ is just like
a metric function on S , except that it may be asymmetrical.

Quasimetrics are a generalization of metrics in that they
do not require symmetry. For a set X , a quasimetric is a
function d : X × X → R≥0 such that

∀x1, x2, x3, d(x1, x2) + d(x2, x3) ≥ d(x1, x3) (3)
∀x, d(x, x) = 0. (4)

We use Qmet(X ) to denote all such quasimetrics over X .

Equation (2) shows that −V ∗ ∈ Qmet(S). In fact, the
other direction also holds: for any d ∈ Qmet(S), −d is the
optimal value function for some MDP defined on S .

Theorem 1 (Value-Quasimetric Equivalence).

Qmet(S) ≡ {−V ∗ : V ∗ is the optimal value of
an MDP on S}. (5)

Generally, on-policy value −V π may not be a quasimetric.

All proofs are deferred to the appendix.

Structure emerges in multi-goal settings. The space of
quasimetrics is the exact function class for goal-reaching
RL. In contrast, a specific-goal value function V ∗( · ; sgoal)
can be any arbitrary function S → R. In other words, going
from single-task RL to multi-task RL may be a harder prob-
lem, but also has much more structure to utilize (Figure 1).

2.3. Quasimetric Models and RL

Quasimetric Models refer to parametrized models of quasi-
metrics dθ ∈ Qmet(X ), where θ is the parameter to be
optimized. Many recent quasimetric models are based on
neural networks (Wang & Isola, 2022a;b; Pitis et al., 2020),
can be optimized w.r.t. any differentiable objective, and can
potentially generalize to unseen inputs (due to neural net-
works). Many such models can universally approximate
any quasimetric and is capable of learning large-scale and
complex quasimetric structures (Wang & Isola, 2022a).

An Overview of Quasimetric Models. A quasimetric
model dθ usually consists of (1) a deep encoder mapping
inputs in X to a generic latent space Rd and (2) a differ-
entiable latent quasimetric head dlatent ∈ Qmet(Rd) that
computes the quasimetric distance for two input latents. θ
contains both the parameters of the encoder and parameters
of the latent head dlatent, if any. Recent works have proposed
many choices of dlatent, which have different properties and
performances. We refer interested readers to Wang & Isola
(2022a) for an in-depth treatment of such models.

Subtleties of Using Quasimetric Models in RL. It is
tempting to parametrize goal-conditioned value functions
with quasimetric models in standard RL algorithms, which
optimizes for V ∗ ∈ Qmet(S). However, these algorithms
usually use temporal-difference learning or policy iteration,

whose success rely on accurate representation of intermedi-
ate results (e.g., on-policy values; Theorem 1) (Wang et al.,
2020; 2021)) that are not quasimetrics. Indeed, simply using
quasimetric models in such algorithms may yield only mi-
nor benefits (Wang & Isola, 2022b;a) or require significant
relaxations of quasimetric inductive bias (Liu et al., 2022).

Can we directly learn V ∗ without those iterative procedures?
Fortunately, the answer is yes, with the help of quasimetrics.

3. Quasimetric Reinforcement Learning
Quasimetric Reinforcement Learning (QRL) at its core
learns the optimal goal-conditioned value function V ∗ that
is parametrized by a quasimetric model dθ ⊂ Qmet(S).

Similar to many recent RL works (Kumar et al., 2019; Ghosh
et al., 2019; Janner et al., 2022; 2021; Emmons et al., 2021;
Chen et al., 2021; Paster et al., 2022; Yang et al., 2022), our
method is derived with the assumption that the environment
dynamics P are deterministic.

Given ways to sample (e.g., from a dataset / replay buffer)

(

current state

s, a
action

,

next state

s′, r
reward≤0

) ∼ ptransition (transitions)

s ∼ pstate (random state)
sgoal ∼ pgoal, (random goal)

QRL optimizes a quasimetric model dθ as following:

max
θ

Es∼pstate
g∼pgoal

[dθ(s, g)] (6)

subject to E(s,a,s′,r)∼ptransition
[relu(dθ(s, s

′) + r)2] ≤ ϵ2,

where ϵ > 0 is small, and relu(x) ≜ max(x, 0) prevents
dθ(s, s

′) from exceeding the transition cost −r ≥ 0.

After optimization, we take −dθ as our estimate of V ∗. Sec-
tion 3.4 discusses extensions that learn optimal Q-functions
Q∗ and policies, making QRL suitable both as a standalone
RL method or in conjunction with other RL methods.

3.1. QRL Learns the Optimal Value Function

By using quasimetric models dθ to parametrize value func-
tions, we inherently satisfy the triangle-inequality con-
straints. What additional constraints should we add in order
to find the optimal value function for a specific MDP?

A Physical Analogy. Consider two objects connected by
multiple chains. Each chain is formed by several links. If
we pull them apart, their distance will be limited by the
shortest of all chains. Then, simply measuring the distance
between the two objects gives the length of that “optimal”
chain. This argument relies on (1) the triangle inequality of
our Euclidean physical space and (2) that each link of the
chains has a fixed length unaffected by our pulling.
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all local transitions

Under these constraints, we have
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Figure 2: QRL objective finds length of the shortest path connecting two states, i.e., the optimal value V ∗.

QRL works by the same principles, but in a quasimetric
space that both satisfies the triangle inequality and can cap-
ture any asymmetrical MDP dynamics (Figure 2):

• Locally, we constrain searching of V ∗ to dθ’s that are
consistent with local costs, i.e., not overestimating them:

∀ transition (s, a, s′, r), dθ(s, s
′) ≤ −r. (7)

We ensure this because dθ should approximate −V ∗ and

−V ∗(s; s′) ≤ cost of specific path s
action a−−−−→ s′ = −r.

• Globally, since dθ is a quasimetric that satisfies the tri-
angle inequality and Equation (7), for every state s and
goal g, any path s → g places a constraint on dθ(s, g):

dθ(s, g) ≤ total cost of path connecting s to g.

Optimal cost from s to g is given by pulling them apart:

max
θ

dθ(s, g) = cost of shortest path connecting s to g

= −V ∗(s; g). (8)

Optimal quasimetric −V ∗ achieves this maxima for all
(s, g) pairs. Therefore, we maximize dθ(s, g) simultane-
ously for all (s, g) pairs:

θ∗ = argmax
θ

Es∼pstate
g∼pgoal

[dθ(s, g)] (9)

subject to ∀(s, a, s′, r) transition, dθ(s, s′) ≤ −r.

This gives exactly the optimal value:

dθ∗(s, g) = −V ∗(s; g), ∀s, g, (10)

(assuming that pstate and pgoal having sufficient coverage).

The linear programming characterization of V ∗ (Manne,
1960; Denardo, 1970) is similar to Equation (9). However,
instead of enforcing triangle inequalities via |A||S|2 con-
straints, our quasimetric models automatically satisfy them.

3.1.1. THEORETICAL GUARANTEES

We now formally state the recovery guarantees for QRL in
both the ideal setting (i.e., optimizing over entire Qmet(S))
and the function approximation setting.

The proofs of the following results are mostly formalizations
of the ideas above. All proofs are presented in Appendix B.

Theorem 2 (Exact Recovery). If Equation (9) optimizes dθ
over the entire Qmet(S), then for s ∼ pstate, g ∼ pgoal, we
have dθ∗(s, g) = −V ∗(s; g) almost surely.

In the more realistic case, we use a quasimetric family that
is not quite as big as the entire Qmet(S) but flexible enough
to have universal approximation (e.g., IQE (Wang & Isola,
2022a)). Using a relaxed constraint, we still have a strong
guarantee on recovering true V ∗, ensuring a small error
even for (s, g) pairs that are far apart.

Theorem 3 (Function Approximation; Informal). Consider
a quasimetric model family {dθ}θ that is a universal ap-
proximator of Qmet(S) (in terms of L∞ error). If we solve
Equation (9) with a relaxed constraint, where

∀(s, a, s′, r) transition, relu(dθ(s, s
′) + r) ≤ ϵ, (11)

for small ϵ > 0. Then, for s ∼ pstate, g ∼ pgoal, we have∣∣dθ∗(s, g) + (1 + ϵ)V ∗(s; g)
∣∣ ∈ [−

√
ϵ, 0],

i.e., dθ∗(s, g) recovers −V ∗(s; g) up to a known scale, with
probability 1−O(−

√
ϵ · E[V ∗]).

3.2. A Practical Implementation

Quasimetric Model. We use Interval Quasimetric Em-
beddings (IQE; Wang & Isola (2022a)) as our quasimet-
ric model family {dθ}θ. IQEs have convincing empirical
results in learning various quasimetric spaces, and enjoy
strong approximation guarantees (as needed in Theorem 3).

Constrained Optimization is done via dual optimization
and jointly updating a Lagrange multiplier λ ≥ 0 (Eysen-
bach et al., 2021). We use a relaxed constraint that local
costs properly modelled in expectation.

Stable Maximization of dθ. In practice, maximizing
E[dθ(s, g)] via gradient descent tends to increase the weight
norms of the late layers in dθ. This often leads to slow con-
vergence since λ needs to constantly catch up. Therefore,
we instead place a smaller weight on distances dθ(s, g) that
are already large and optimize E[ϕ(dθ(s, g))] , where ϕ is
a monotonically increasing convex function (e.g., affine-
transformed softplus). This is similar to the discount fac-
tor in Q-learning, which causes its MSE loss to place less
weight on transitions of low value.
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Figure 3: Learned value functions on the offline MountainCar. Each plot shows the estimated values from every state towards a single
goal (indicated in leftmost column) as a 2-dimensional image (velocity as x-axis, position as y-axis). Left: Ground truth distances, as well
as the (expected) distance for the behavior policy that generated dataset. Middle: Learned value functions for single-goal methods. Right:
Learned value functions for multi-goal methods. Only QRL accurately recovers the ground truth distance structure in both settings, which
crucially relies on the asymmetry of quasimetrics. Q-learning methods generally fail in multi-goal settings. While their learned values
improve with quasimetric models, they still can’t capture the fine details. Contrastive RL only inaccurately estimates the on-policy values.

Full Objective. Putting everything together, we imple-
ment QRL to jointly update (θ, λ) according to

min
θ

max
λ≥0

−Es∼pstate
g∼pgoal

[ϕ(dIQE
θ (s, g))] +

λ
(
E(s,a,s′,r)∼ptransition

[relu(dIQE
θ (s, s′) + r)2]− ϵ2

)
.

(12)

3.3. Analyses and Comparisons via Discretized
MountainCar

We empirically analyze QRL and compare to previous works
via experiments on the MountainCar environment with a
discretized state space. In this environment, the agent ob-
serves the location and velocity of a car, and controls it
to reach the top of a hill. Due to gravity and velocity, the
dynamics are highly asymmetrical. We discretize the 2-
dimensional state space into 160× 160 bins so that we can
compute the ground truth value functions. We collected an
offline dataset by running a uniform random policy, and
evaluate the learning result of various methods, including

• QRL, our method;
• Using QRL objective to train a symmetrical ℓ2 distance

value function;
• Q-Learning with regular unconstrained Q function class;
• Q-Learning with quasimetric function class;
• Contrastive RL (Eysenbach et al., 2022), which uses a

contrastive objective but estimates on-policy values;
• Contrastive RL with quasimetric function class;
• Conservative Q-Learning (CQL) (Kumar et al., 2020),

which regularizes Q-Learning to reduce over-confidence
in out-of-distribution regions;

• Model Standard-deviation Gradients (MSG)
(Ghasemipour et al., 2022), a state-of-the-art offline RL
algorithm using an ensemble of up to 64 CQL value
functions to estimate uncertainty and train policy;

• Diffuser (Janner et al., 2022), a representative trajectory
modelling methods with goal-conditioned sampling.

QRL can be used for both single-goal and multi-goal set-
tings by specifying pgoal. For methods that are not designed
for multi-goal settings (MSG and Q-Learning), we use Hind-
sight Experience Replay (HER; Andrychowicz et al. (2017))
to train the goal-conditioned value functions.

Evaluation. Visually, we compare the learned values
against ground truths (Figures 3 and 4). We test the agents’
control performances in both reaching the original goal, top
of the hill, as well as 9 distinct states (Table 1). A diverse
set of goals allows us to evaluate how well the value func-
tions capture the true environment dynamics structure.For
QRL and Q-Learning, agents take the action that greedily
maximizes the estimated value for simplicity. We describe
how to obtain Q-values for QRL later in Section 3.4.

Q-Learning is the standard way to train optimal value
functions for such discrete-action space environments. De-
spite its popularity, many issues have been identified with
its temporal-difference training, such as slow convergence
(Lyle et al., 2022; Fujimoto et al., 2022). Figure 4 visual-
izes the learning dynamics of Q-Learning and QRL, where
vanilla Q-Learning indeed learns very slowly. While using a
quasimetric Q-function helps significantly, QRL still learns
the V ∗ structure much faster, and better captures the true tar-
get V ∗ even after training concludes (Figure 3). In planning
(Table 1), vanilla Q-Learning and (Q-Learning based) MSG
struggle in multi-goal settings. While Q-Learning with
quasimetrics achieves comparable planning performance
with QRL, the higher-quality V ∗ estimate from QRL are
likely important in more complex environments. Further-
more, with continuous action spaces, Q-Learning requires a
jointly learned actor, which (1) reduces to on-policy value
learning and (2) can have complicated training dynamics
as the actor’s on-policy values may not be a quasimetric
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Figure 4: Learning dynamics on the offline MountainCar setting. Each plot shows the learned values from every state towards a single
goal (indicated at the top) as a 2-dimensional image (velocity as x-axis, position as y-axis). Yellow is greater distance (lower value
function). Bottom row shows the ground truth distances based on true environment dynamics, and ground truth distances based on
transitions appearing in dataset. QRL generally learns the target value function structures much earlier than Q-learning methods.

(Theorem 1). QRL is exempt from such issues. In later sec-
tions with experiments on online learning in more complex
environments, simply using quasimetric in traditional value
training indeed greatly underperforms QRL (Section 5.2).

Contrastive RL uses an arguably similar contrastive ob-
jective. However, it samples positive pairs from the same
trajectory, and does not enforce exact representation of local
costs. Hence, it estimates the on-policy values that gener-
ated the data (random actor in this case). Indeed, Figure 3
shows that the Contrastive RL value functions mostly re-
sembles that of a random actor, and fails to capture the
boundaries separating states that have distinct values under
optimal actors. As shown in Table 1, this indeed leads to
much worse control results.

Ablations. We highlight three ablation studies here:

• Asymmetry. QRL objective with symmetrical value
functions underperforms QRL greatly, suggesting the
importance of asymmetry from quasimetrics.

• Optimality. Contrastive RL with quasimetric can be
seen as a method that uses quasimetric to train on-policy
values. Thus, the learned values fail to capture optimal de-
cision structures. QRL instead enforce consistency with
observed local costs and maximal spreading of states,
which leads to optimal values and better performance.

• QRL Objective. While Q-Learning with quasimetrics
plans comparably well here , it learns more slowly than
QRL (Figure 4) and fails to capture finer value function
details (Figure 3). As discussed above, Q-Learning (with
or without quasimetrics) also have potential issues with
complex dynamics and/or continuous action space, while
QRL does not have such problems and attain much supe-
rior performance in such settings (see later Section 5.2).

Method Method
Configuration

Task
Reach Top of Hill Reach 9 States

QRL Single-Goal 97.69 ± 0.26 —
Multi-Goal 95.89 ± 0.55 85.55 ± 3.57

Q-Learning — 98.74 ± 0.19 —
+ Relabel 89.27 ± 11.69 22.06 ± 8.72

Contrastive RL — 83.91 ± 8.04 53.75 ± 32.93

MSG — 97.44 ± 0.22 —
+ Relabel 14.30 ± 0.00 37.80 ± 8.20

Diffuser — 19.78 ± 3.03 36.41 ± 1.44

QRL Objective
with Symmetric ℓ2 Distance

Single-Goal 95.42 ± 0.16 —
Multi-Goal 96.13 ± 0.12 73.27 ± 0.84

Contrastive RL
+ Quasimetric Q-Function — 83.90 ± 8.73 72.28 ± 4.63

Q-Learning
+ Quasimetric Q-Function + Relabel 96.33 ± 0.37 85.53 ± 3.69

Oracle (Full Dynamics) — 100.00 100.00
Oracle (Dataset Transitions) — 69.22 75.89

Table 1: Control results on MountainCar. Scores are normalized
returns to reach the desired goal with budget of 200 steps, averaged
across all 160×160 starting states. Each row shows evaluations of
a method in a specific configuration with standard deviations from
5 seeds. We highlight results that are ≥ 95% of the best method.

Compared to existing approaches, QRL efficiently and accu-
rately finds optimal goal-conditioned value functions, show-
ing the importance of both the quasimetric structure and the
novel learning objective. In the next section, we describe
extensions of QRL, followed by more extensive experiments
on offline and online goal-reaching benchmarks in Section 5.

3.4. From V ∗ to Q∗ and Policy

QRL’s optimal value V ∗ estimate may be used directly in
planning to control an agent. A more common approach is to
train a policy network w.r.t. to a Q-function estimate (Hafner
et al., 2019). This section describes simple extensions to
QRL that learn the optimal Q-function Q∗ and a policy.
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Transition and Q-Function Learning. We augment the
quasimetric model dθ to include an encoder f : S → Z:

dθ=(θ1,θ2)(s0, s1) ≜ dzθ1(fθ2(s0), fθ2(s1)). (13)

Since dθ captures V ∗, finding the Q-function Q∗(s, a; g)
only requires knowing the transition result, which we model
by a learned latent transition T : Z×A → Z . In this section,
for notation simplicity, we will drop the ()θ∗ subscript, and
use z ≜ f(s), z′ ≜ f(s′), ẑ′ ≜ T (z, a), and zg ≜ f(g).

Once with a well trained T , we can estimate Q∗(s, a; g) as

dz(T (z, a)

latent transition

, zg) − r

transition cost

= dz(ẑ′, zg)− r ≈ −Q∗(s, a; g).
(14)

(In our experiments, transition cost −r is a constant, and
thus omitted. Generally, T can be extended to estimate r.)

Transition loss. Given transition (s, a, s′), we define:

Ltransition(s, a, s
′;T, dθ) ≜

1

2

(
dz(ẑ′, z′)2 + dz(z′, ẑ′)2

)
,

which is used to optimize both dθ and T in conjunction with
the QRL objective in Equation (12).

Ltransition encourages the predicted next latent ẑ′ to be close
to the actual next latent z′ w.r.t. the learned quasimetric func-
tion dz . This is empirically superior to a simple regression
loss on Z , whose scale is meaningless.

More importantly, the quasimetric properties allow us to
directly relate Ltransition values to Q-function error:

Suppose dz(ẑ′, z′)2 + dz(z′, ẑ′)2 ≤ δ2, which means

dz(ẑ′, z′) ≤ δ and dz(z′, ẑ′) ≤ δ. (15)

For any goal g with latent zg , the triangle inequality implies

|dz(ẑ′, zg)
estimated Q∗(s,a;g)

− dθ(s
′, g)

estimated V ∗(s′;g)

| = |dz(ẑ′, zg)− dz(z′, zg)| ≤ δ.

In other words, if dθ accurately estimates V ∗, our estimated
Q∗(s, a; g) has bounded error, for any goal g, even though
we train with a local objective Ltransition. Hence, simply
training the transition loss locally ensures that Q-function
error is bounded globally, thanks to using quasimetrics.

Based on this argument, our theoretical guarantees for recov-
ering V ∗ (Theorems 2 and 3) can be potentially extended to
Q∗ and thus to optimal policy. We leave this as future work.

Policy Learning. We train policy π : S → ∆(A) to
maximize the estimated Q-function (Equation (14)):

min
π

Es∼pstate
g∼pgoal

[dz(T (f(s), a), f(g))]. (16)

Additionally, we follow standard RL techniques, training
two critic functions and optimizing the policy to maximize
rewards from the minimum of them (Fujimoto & Gu, 2021;
Eysenbach et al., 2022). In online settings, we also use an
adaptive entropy regularizer (Haarnoja et al., 2018).

4. Related Work
Contrastive Approaches to RL. As discussed in Sec-
tion 1, our objective bears similarity to those of contrastive
approaches. However, we also differ with them in that we
rely on (1) quasimetric models, (2) consistency with ob-
served local costs, and (3) maximal spreading of states to
learn the optimal value function. Most contrastive methods
satisfy none of these properties, and instead pull together
states sampled from the same trajectory for capturing on-
policy value/information (Eysenbach et al., 2022; Ma et al.,
2022; Sermanet et al., 2018; Oord et al., 2018). Yang et al.
(2020) ensures exact representation of local cost, but also
enforces non-adjacent states to have distance 2 via a metric
function, and thus cannot learn optimal values. Another
related line of work trains contrastive models to estimate the
alignment between current state and some abstract goal (e.g.,
text), which are then used as reward for RL training (Fan
et al., 2022). Despite the similar goal-reaching setting, their
trained model is potentially sensitive to training data, and
estimates a density ratio rather than the optimal cost-to-go.

Quasimetric Approaches to RL. Micheli et al. (2020)
consider using quasimetrics for multi-task planning, but
does not use models that enforces quasimetric properties.
Liu et al. (2022) use quasimetric models to parametrize the
Q-function, and shows improved performance with DDPG
(Lillicrap et al., 2015) and HER (Andrychowicz et al., 2017)
on goal-reaching tasks. These prior works mostly only esti-
mate on-policy value functions, and rely on iterative policy
improvements to train policies. Zhang et al. (2020b) use a
similar quasimetric definition, but does not use quasimetric
models and focuses on hierarchy learning. In contrast, our
work utilizes the full quasimetric geometry to directly es-
timate V ∗ and produce high-quality goal-reaching agents.
Additionally, the Wasserstein-1 distance induced by the
MDP dynamics is also a quasimetric. Durugkar et al. (2021)
utilize its dual form to derive a similar training objective
for reward shaping, but essentially employ a different 1-
dimensional Euclidean geometry for each goal state and
forgo much of the quasimetric structure in V ∗.

Metrics and Abstractions in RL. Many works explored
learning different state-space geometric structures. In par-
ticular, bisimulation metric also relates to optimality, but is
defined for single tasks where its metric distance bounds
the value difference Castro (2020); Ferns & Precup (2014);
Zhang et al. (2020a). Generally speaking, any state-space
abstraction can be viewed as a form of distance structure,
including state embeddings that are related to value func-
tions (Schaul et al., 2015; Bellemare et al., 2019), transition
dynamics (Mahadevan & Maggioni, 2007; Lee et al., 2020),
factorized dynamics (Fu et al., 2021; Wang et al., 2022), etc.
While our method also uses an encoder, our focus is to learn
a quasimetric that directly outputs the optimal value V ∗ to
reach any goal, rather than bounding it for a single task.
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Environment QRL Contrastive RL MSG
(#critic = 64)

MSG + HER
(#critic = 64)

MPPI with
GT Dynamics

MPPI with
QRL Value Diffuser Diffuser with

QRL Value Guidance
Diffuser with

Handcoded Controller

Single-Goal

large 191.52 ± 18.28 81.65 ± 43.79 159.30 ± 49.40 59.26 ± 46.70 5.1 19.32 ± 22.97 7.98 ± 1.54 10.08 ± 2.97 128.13 ± 2.59

medium 163.59 ± 9.70 10.11 ± 0.99 57.00 ± 17.20 75.77 ± 9.02 10.2 58.06 ± 42.79 9.48 ± 2.21 10.71 ± 4.59 127.64 ± 1.47

umaze 71.72 ± 26.21 95.11 ± 46.23 101.10 ± 26.30 55.64 ± 31.82 33.2 74.85 ± 21.30 44.03 ± 2.25 42.30 ± 3.87 113.91 ± 3.27

Average 142.27 62.29 105.80 63.56 16.17 50.74 20.50 21.03 123.23

Multi-Goal

large 187.71 ± 7.62 172.64 ± 5.13 — 44.57 ± 25.30 8 37.73 ± 16.67 13.09 ± 1.00 21.26 ± 2.95 146.94 ± 2.50

medium 150.51 ± 3.77 137.01 ± 6.26 — 99.76 ± 9.83 15.4 56.79 ± 7.66 19.21 ± 3.56 33.39 ± 2.78 119.97 ± 1.22

umaze 150.60 ± 5.32 142.43 ± 11.99 — 27.90 ± 10.39 41.2 87.49 ± 9.72 56.22 ± 3.90 69.96 ± 2.39 128.53 ± 1.00

Average 162.94 150.69 — 57.41 21.53 60.67 29.51 41.54 131.81

Table 2: Planning results on maze2d. Scores represent average normalized episode return, where 100 represents comparable performance
with the d4rl reference handcoded controller. Each column show evaluations of the same method configuration. E.g., we train goal-
reaching QRL agents and evaluate them in both single-goal and multi-goal settings. We highlight results that are ≥ 95% of the best
method. In both evaluations, QRL agents significantly outperform baselines, including MSG + HER with the ground truth reward function,
and MPPI with the ground truth environment dynamics. QRL value functions can also be used with planning methods (MPPI) or trajectory
sampling methods (Diffuser), and improve their performances. MPPI with GT Dynamics scores are copied from Janner et al. (2022).
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Figure 5: Online learning performance on GCRL benchmarks. No method has access to ground truth reward function. QRL learns faster
and better than the baseline methods across all environments for both state-based and image-based observations.

5. Benchmark Experiments
We evaluate QRL learned policies on standard goal-reaching
benchmarks in both offline and online settings. All results
show means and standard deviations from 5 seeds. See
Appendix C for all experiment details.

5.1. Offline Goal-Reaching d4rl maze2d

Following Diffuser (Janner et al., 2022), we use maze2d
environments from d4rl (Fu et al., 2020), and evaluate the
learned policies’ performance in (1) reaching the original
fixed single goal defined in d4rl as well as (2) reaching
goals randomly sampled from the state space. Similar to
many offline works (e.g., Contrastive RL (Eysenbach et al.,
2022)), we adopt an additional behavior cloning loss for
QRL policy optimization in this offline setting.

QRL is a strong method for offline goal-reaching RL.
In Table 2, QRL significantly outperforms all baselines in
both single-goal and multi-goal settings. MSG uses a 64-
critic ensemble and is computationally expensive. With
only 2 critics, QRL outperforms MSG by 20% on single-
goal tasks and 188% on multi-goal tasks. The Diffuser
original paper reported results from a handcoded controller
with sampled states as input waypoints. We also report plan-

ning using Diffuser’s sampled actions, which attains a much
worse result. Regardless, QRL outperforms both Diffuser
settings, without using any external information/controller.
Compared with Contrastive RL, QRL again sees a big im-
provement, especially in the single-goal setting. Since the
dataset is not generated by agents trying to reach that goal,
the on-policy values estimated by Contrastive RL are likely
much worse than the optimal values from QRL.

QRL learned value function improves planning and tra-
jectory sampling methods. Given the high quality of
QRL value functions, we can use it to improve other meth-
ods. MPPI (Williams et al., 2015) is a model-based plan-
ning method. When planning with QRL Q-function, MPPI
greatly improves over using ground truth dynamics. We also
experiment using QRL Q-function to guide Diffuser’s goal-
conditioned sampling, and obtain consistent and non-trivial
improvements, especially in multi-goal settings.

5.2. Online Goal-Reaching RL

Following Contrastive RL (Eysenbach et al., 2022) and
Metric Residual Networks (MRN; Liu et al. (2022)), we use
the Fetch robot environments from the GCRL benchmark
(Plappert et al., 2018), where we experiment with both state-
based observation as well as image-based observation.
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QRL quickly achieves high performance in online RL.
Across all environments, QRL exhibits strong sample-
efficiency, and learns the task much faster than the al-
ternatives. Only QRL and Contrastive RL learn in the
two more challenging state-based settings, FetchPush and
FetchSlide. Compared to Contrastive RL, QRL has 4.9×
sample efficiency on state-based FetchPush and 2.7× sam-
ple efficiency on state-based FetchSlide. Strictly speaking,
image-based observation only contains partial information
of the true state, and thus has stochastic dynamics, which
violates the assumption of QRL. However, QRL still shows
strong performance on image-based settings, suggesting
that QRL can potentially also be useful in other partially
observable and/or stochastic environments.

QRL outperforms Q-Learning with quasimetric models
in complex environments. Following the approach by
Liu et al. (2022), we train standard DDPG (Lillicrap et al.,
2015) with relabelling and a quasimetric model Q-function.
Essentially, this jointly optimizes a quasimetric Q-function
with Q-Learning and a deterministic policy w.r.t. the Q-
function. While similar approaches worked well on the sim-
ple MountainCar environment (Section 3.3), they fail mis-
erably here on more complex continuous-control settings,
as Q-Learning must estimate on-policy Q-function that may
not be a quasimetric (Theorem 1). DDPG with quasimetrics
are the slowest to learn on state-based FetchReach, and gen-
erally are among the least-performing methods. The same
pattern holds for two different quasimetric models: IQE and
MRN (proposed also by Liu et al. (2022)). In comparison,
QRL (which also uses IQE in our implementation) quickly
learns the tasks. QRL is more general and scales far better
than simply using Q-Learning with quasimetrics.

6. Implications
In this work, we introduce a novel RL algorithm, QRL, that
utilizes the equivalence between optimal value functions
and quasimetrics. In contrast to most RL algorithms that op-
timize generic function classes, QRL is designed for using
quasimetric models to parametrize value functions. Combin-
ing quasimetric models with an objective that captures local
distances and maximally spreads out states (Section 3.1),
QRL provably recovers the optimal value function (Sec-
tion 3.1.1) without temporal-difference or policy iteration,
making it distinct from many prior approaches.

From thorough analyses on MountainCar, we empirically
confirm the importance of different components in QRL,
and observe that QRL can learn value functions faster and
better than alternatives (Section 3.3). Our experiments on
additional benchmarks echo these findings, showing better
control results in both online and offline settings (Section 5).
QRL can also be used to directly improve other RL methods,
and demonstrates strong sample efficiency in online settings.

These QRL results highlight the usefulness of quasimetrics
in RL, as well as the benefit of incorporating quasimetric
structures into designing RL algorithms.

Below we summarize several exciting future directions.

QRL as Representation and World Model Learning.
QRL can be also viewed as learning a decision-aware rep-
resentation (via encoder f ) and a latent world model (via
latent dynamics T ). In this work, for fair comparison, we did
not utilize such properties much. However, combining QRL
with techniques from these areas (e.g., estimating multi-step
return, auxiliary loss training) may yield even stronger per-
formances and/or more general QRL variants (e.g., better
support for partial observability and stochasticity).

Quasimetric Structures in Searching and Exploration.
QRL results show that quasimetrics can flexibly model
distinct environments and greatly boost sample efficiency.
Such learned (asymmetrical) state-space distances poten-
tially have further uses in long-range planning and explo-
ration. A locally distance-preserving quasimetric is always
a consistent and admissible heuristic (Pearl, 1984), which
guarantees optimality in search algorithms like A* (Hart
et al., 1968). Perhaps such exploration ideas may be incor-
porated in a quasimetric-aware actor, or even for solvers of
general searching and planning problems.

Better Exploration for Structure Learning. In our and
most RL works, online exploration is done via noisy actions
from the learned policy. Arguably, if an agent is learning the
structure of the environment, it should instead smartly and
actively probe the environment to improve its current esti-
mate. Consider QRL as an example. If current quasimetric
estimate dθ(s0, s1) is small but no short path connecting s0
to s1 was observed, the agent should test if they are actually
close w.r.t. the dynamics. Additionally, one may use uncer-
tainty/errors in learned quasimetric distances/dynamics to
derive new intrinsic exploration methods. Such advanced
exploration may speed up learning the geometric structures
of the world, and thus better generalist agents.

More Quasimetric-Aware RL Algorithms. To our best
knowledge, QRL is the first RL method designed for quasi-
metric models. We hope the strong performance of QRL
can inspire more work on RL algorithms that are aware of
quasimetric and/or other geometric structures in RL.
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A. Discussions and Generalizations of QRL
Self-Transitions are in fact already handled by the QRL objective presented in this paper (Equations (6) and (12)). For
any state s (with or without self-transition), we have V ∗(s; s) = 0, since the optimal cost to first reach s start from s is given
by the empty trajectory. This is naturally enforced by our value function model −dθ, since it is enforced to be a quasimetric.
For self-transitions (s, a, s, r) in the training data (where r ≤ 0 is the reward), their contribution to the constraint loss term
will always be relu(dθ(s, s) + r)2 = relu(0 + r)2 = relu(r)2 = 02 = 0. Therefore, the constraints are inherently
satisfied for self-transitions. So our theoretical results from Section 3.1.1 also hold for such cases.

Constant Costs. In many cases (and most goal-reaching benchmarks), each environment transition has a fixed constant
cost C. In other words, the task is to reach the given goal as quickly as possible. Then, in the QRL constrained optimization,
we can drop the relu(·) and essentially, since we know that −V ∗(s; s′) = C for sure, and thus we should have dθ(s, s′) = C.
Technically speaking, the relu(·) formulation should be able to find the same solution. In our experience, even when
it is known that the transition cost is constant, adding this information in the objective, i.e., removing relu(·), does not
significantly change the results.

General Goals (Sets of States). We can easily extend QRL to general goals, which are sets of states. Let G ⊂ S be such
a general goal. We augment our models to operate not just on S, but on S

⋃
{G} (which can be simply achieved by, e.g.,

adding an indicator dimension). When we encounter transition that ends within some s′ ∈ G, we simultaneously add a
transition (s′, G) to the dataset.

B. Proofs
B.1. Theorem 1: Value-Quasimetric Equivalence

Proof of Theorem 1. We have shown already −V ∗ ∈ Qmet(S). (See also Proposition A.4 of Wang & Isola (2022b).)

For any d ∈ Qmet(S), define

A ≜ S
P (s, sact) ≜ δsact (δx is the Dirac measure at x)

R(s, s′) ≜ −d(s, s′).

Then the optimal value of (S,A, P,R) is −d, regardless of discounting factor (if any).

For the on-policy values, consider action space A = {aself , anext}. Assume that state-space |S| > 2. Let s1, s2, s3 be three
distinct states in S , all transitions have reward −1, and

P (s1, aself) = δs1
P (s2, aself) = δs2
P (s3, aself) = δs3 (aself is always a self-transition)
P (s1, anext) = δs2
P (s2, anext) = δs3
P (s3, anext) = δs1 (anext goes to the next state cyclically)

π(s1; s2) = δanext (π always takes anext when tasked to go to s2 from s1)
π(s2; s3) = δanext

π(s1; s2) = δaself
.

So

−V π(s1; s2) = −V π(s2; s3) = 1

−V π(s3; s1) = ∞,

violating triangle-inequality.
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B.2. Theorem 2: Exact Recovery

Proof of Theorem 2. Since the transition dynamics is deterministic, we can say that states s0 is locally connected to state s1
if ∃a ∈ A such that P (s1 | s0, a) = 1. We say a path (spath0 , spath1 , spath2 , . . . , spathT ) connects s0 to s1 if

spath0 = s0

spathi is locally connected to spathi+1 , ∀i ∈ {0, 1, . . . , T − 1}

spathT = s1.

And we say the total cost of this path is the total rewards over all T − 1 transitions, i.e., T − 1.

From the definition of V ∗ and Theorem 1, We know that,

−V ∗ ∈ Qmet(S)
−V ∗(s; g) = total cost of shortest path connecting s to g, ∀s, g.

Therefore, the constraints stated in Equation (9) is feasible. The rest of this proof focuses only on dθ’s that satisfy the
constraints, which includes −V ∗.

Due to triangle inequality, we have ∀s, g,

dθ(s, g) ≤ total cost of shortest path connecting s to g = −V ∗(s; g). (17)

Therefore,

Es,g[dθ(s, g)] ≤ Es,g[−V ∗(s; g)], (18)

with equality iff dθ(s, g) = −V ∗(s; g) almost surely.

Hence, dθ∗(s, g) = −V ∗(s; g) almost surely.

B.3. Theorem 3: Function Approximation

We first state the more general and formal version of Theorem 3.

Theorem 4 (Function Approximation; General; Formal). Assume that S is compact and V ∗ is continuous.

Consider a quasimetric model family that is a universal approximator of Qmet(S) in terms of L∞ error (e.g., IQE (Wang &
Isola, 2022a) and MRN (Liu et al., 2022)). Concretely, this means that ∀ϵ > 0, we can have {d(ϵ)θ }θ such that, there exists
some θ where

∀s0, s1 ∈ S,
∣∣∣d(ϵ)θ (s0, s1) + V (s0; s1)

∣∣∣ ≤ ϵ. (19)

Now for some small ϵ > 0, consider solving Equation (9) over {d(ϵ/2)θ }θ with the relaxed constraint that

∀(s, a, s′, r) transition, relu(d
(ϵ/2)
θ (s, s′) + r) ≤ ϵ, (20)

then for s ∼ pstate, g ∼ pgoal, and for all δ > 0, we have

|dθ∗(s, g) + (1 + ϵ)V ∗(s; g)| ∈ [−δ, 0],

with probability 1−O
(
ϵ
δ · (−E[V ∗])

)
.

As a special case with δ =
√
ϵ, we have

P
[∣∣dθ∗(s, g) + (1 + ϵ)V ∗(s; g)

∣∣ ∈ [−
√
ϵ, 0]

]
= 1−O

(
−
√
ϵ · E[V ∗]

)
, (21)

which is exactly Theorem 3.

Note that the compactness and continuity assumptions ensure that V ∗ is bounded. We start by proving a lemma.
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Lemma 1. With the assumptions of Theorem 4, there exists a d
(ϵ/2)

θ† that satisfies the constraint with

∀s, g, d
(ϵ/2)

θ† (s, g) ≥ −V ∗(s; g). (22)

Proof of Lemma 1. Let the underlying MDP of V ∗ be M = (S,A, P,R). Consider another MDP M̃ = (S,A, P,R− ϵ
2 ),

with optimal goal-reaching value function Ṽ ∗ ∈ Qmet(S).

Obviously, transitions (s, a, s′, r) in M bijectively correspond to transitions (s, a, s′, r − ϵ
2 ) in M̃.

For any s and g, let s → s1 → s2 → · · · → sn−1 → g be the shortest path connecting s to g in M̃ via n transitions.

−Ṽ ∗(s; g) = total cost of s → s1 → s2 → · · · → sn−1 → g according to R− ϵ

2
as reward (23)

=
n · ϵ
2

+ total cost of s → s1 → s2 → · · · → sn−1 → g according to R as reward (24)

≥ n · ϵ
2

+ total cost of shortest path connecting s to g in M according to R as reward (25)

=
n · ϵ
2

− V ∗(s; g). (26)

Since n > 0 iff s ̸= g, we have

−Ṽ ∗(s; g) ≥ ϵ

2
· 1s̸=g − V ∗(s; g), ∀s, g. (27)

By universal approximation, there exists d(ϵ/2)
θ† such that

∀s, g,
∣∣∣d(ϵ/2)θ† (s, g) + Ṽ ∗(s; g)

∣∣∣ ≤ ϵ

2
. (28)

In particular,

• for s ̸= g, by Equations (27) and (28), we have

d
(ϵ/2)

θ† (s, g) ≥ −Ṽ ∗(s; g)− ϵ

2
≥ −V ∗(s; g); (29)

• for s = g, by Equation (28), we have

d
(ϵ/2)

θ† (s, g) = d
(ϵ/2)

θ† (s, s) = 0 = −V ∗(s; s) = −V ∗(s; g). (30)

Hence, d(ϵ/2)
θ† ≥ −V ∗ globally. Now it only remains to show that d(ϵ/2)

θ† satisfies the constraint.

For any transition (s, a, s′, r = R(s, s′)) in M, by Equation (28),

d
(ϵ/2)

θ† (s, s′) ≤ −Ṽ ∗(s; s′) +
ϵ

2
(31)

≤ ϵ

2
−R(s, s′) +

ϵ

2
(since s → s′ is also a valid path in M̃ with cost ϵ

2 −R(s, s′))

= −r + ϵ, (32)

which means that d(ϵ/2)
θ† satisfies the constraint.

Hence the desired d
(ϵ/2)

θ† exists.

Now we are ready to prove Theorems 3 and 4.

Proof of Theorems 3 and 4. Let d(ϵ/2)θ∗ be the solution to the relaxed problem. By the definition of the universal approximator,
such solutions exist. Moreover, we have

∀s, g, d
(ϵ/2)
θ∗ (s, g) ≤ −(1 + ϵ)V ∗(s; g), (33)
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by the constraint and triangle inequality.

Define

p ≜ P[d(ϵ/2)θ∗ (s, g) < −(1 + ϵ)V ∗(s; g)− δ]. (34)

Then

E[d(ϵ/2)θ∗ (s, g)] ≤ −(1 + ϵ)E[V ∗(s; g)]− pδ, (35)

where we used Equations (33) and (34).

Let d(ϵ/2)
θ† be the quasimetric from Lemma 1. Then, by optimality, we must have

E[d(ϵ/2)θ∗ (s, g)] ≥ E[d(ϵ/2)
θ† (s, g)] ≥ −E[V ∗(s; g)]. (36)

Combining Equations (35) and (36), we have

−(1 + ϵ)E[V ∗(s; g)]− pδ ≥ −E[V ∗(s; g)]. (37)

Rearranging the terms, we have

p ≤ ϵ

δ
· (−E[V ∗]). (38)

Combining Equations (33) and (38) gives the desired result.

C. Experiment Details and Additional Results
All our results are aggregation from 5 runs with different seeds.

We first discuss general design details that holds across all settings. For task-specific details, we discuss them in separate
subsections below.

QRL. Across all experiments, we use ϵ = 0.25, initialize Lagrange multiplier λ = 0.01, and use Adam (Kingma & Ba,
2014) to optimize all parameters. λ is optimized via a softplus transform to ensure non-negativity. Our latent transition
model T is implemented in a residual manner, where

T (z, a) ≜ gϕ(z, a) + z, (39)

and gϕ being a generic MLP with weights and biases of the last fully-connected layer initialized to all zeros. Unless
otherwise noted, all networks are implemented as simple ReLU MLPs. pstate is taken to be the beginning state of a random
transition sampled from dataset / replay buffer. Unless otherwise noted, pgoal is taken to be the resulting state of a random
transition sampled from dataset / replay buffer. For maximizing dθ, unless otherwise noted, we use the strictly monotonically
increasing convex function

ϕ(x) ≜ −softplus(500− x, β = 0.01) = −100× softplus(5− x

100
). (40)

MSG. We follow the authors’suggestions, use 64-critics, and tune the two regularizer hyperparameters over α ∈
{0, 0.1, 0.5, 1} and β ∈ {−4,−8}. For other hyperparameters, we use the same default values used in the original paper
(Ghasemipour et al., 2022).

C.1. Discretized MountainCar

Discretization. MountainCar state is parametrized by position ∈ [−1.2, 0.6] and velocity ∈ [−0.07, 0.07]. For a
dimension with values in interval [l, u], we consider 160 evenly spaced bins of length (u− l)/159, with centers being{

l +
u− l

159
× k : k = 0, 1, 2, . . . , 159

}
. (41)

After each reset and transition, we discretize each dimension of the state vector, so that future dynamics start from the
discretized vector. To discretize a value, we find the bin it falls into, and replace it with the value of bin center. Note that the
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two bins at the two ends are centered at u and l, respectively. So the two ends are exactly represented. Discretizing each
dimension this way leads to 160× 160 discrete states.

Data. In MountainCar, the original environment goal (top of hill) is a set of states with position ∈ [0.5, 0.6] and
velocity ∈ [0, 0.07], where the agent is considered reaching that goal if it reaches any of those states. We adapt QRL and
other goal-reaching methods to support this general goal following the procedure outlined in Appendix A. Specifically, we
augment the observation space to include an additional indicator dimension, which is 1 only when representing this general
goal. In summary, any original (discretized) state s ≜ [u, v] becomes s̃ ≜ [u, v, 0], and G ≜ [0.5, 0, 1] refers to this general
goal. All critics and policies now takes in this augmented 3-dimensional vector as input. For each encountered state s̃ that
falls in this set, a new transition (s̃, G) is added to the offline dataset. The dataset includes 240 such added transitions and
199,888 transitions generated by running a random actor for 1,019 episodes, where each episode terminate when the agent
reaches top of hill or times out at 250 timesteps.

Evaluation. For each target goal, we evaluate the planning performance starting from each of 160× 160 states, with a
budget of 200 steps. At each step, the agent receives −1 reward until it reaches the goal. The episode return is then averaged
over 160× 160 states to compute the statistics. For the task of planning towards 9 specific states, we say that agent reaches
the goal if it reaches a 13× 13 neighborhood centered around the goal state, and average the metrics over 9 target goal states.
For QRL and Q-Learning, we did not train any policy network. Instead, the agents take the action that maximizes Q value
(or minimizes distance) for simplicity.

Goal Distribution. For all multi-goal methods, wherever possible, we adopt a goal-sampling distribution as following:
for sgoal ∼ pgoal,

sgoal =

{
resulting state from a random transition with probability 0.95

[0.5, 0, 1] with probability 0.05.
(42)

QRL. We use 3-1024-1024-1024-256 network for f and (256+3)-1024-1024-1024-256 residual network for T , where 3
represents the one-hot encoding of 3 discrete actions. For dθ, we use a 256-1024-1024-1024-256 projector followed by an
IQE-maxmean head with 16 components, each of size 32. Ltransition is optimized with a weight of 75. Our learning rate
is 0.3 for λ and 5 × 10−4 for the model parameters. We use a batch size of 4096 to train 5 × 105 gradient steps. For all
parameters except λ, we used cosine learning rate scheduling without restarting, decaying to 0 at the end of training.

Q-Learning. We use x-1024-1024-1024-1024-1024-1024-3 networks for vanilla Q-Learning, where x = 3 in the
single-goal setting, and x = 6 in the multi-goal setting. The 3 outputs represents estimated Q values for all 3 actions.

Q-Learning with Quasimetrics. We use the same encoder and projector architecture as QRL, as well as the same IQE
specification. Additionally, to model the Q-function, we also add a 256-1024-1024-1024-(3×256) transition model (which
outputs the residual for each of the 3 actions), and adopt QRL’s transition loss with a weight of 5. In other words, we replace
the QRL’s value learning objective with the Q-Learning temporal-difference objective (and keep the transition loss). We
use a discount factor of 0.95, and update the target Q model every 2 iterations with a exponential moving average factor of
0.005. We use a learning rate of 0.001 and a batch size of 4096 to train 5× 105 gradient steps.

Contrastive RL. We mostly follow the author’s parameters for their offline experiments, using x-1024-1024-1024-dz
encoders, where x = (3 + 3) for the state-action encoder, x = 3 for the goal encoder, and dz is the latent dimension. We
tune dz ∈ {16, 64} and choose 64 for better performance. The policy training is modified to compute exactly the expected
Q-value (rather than using a reparametrized sample) from the policy’s output action distribution, to accommodate the
discrete action space. Since the dataset is generated from a random actor policy, we disable the behavior cloning loss. We
train over 105 gradient steps using a batch size of 1024. We note that Contrastive RL requires a specific goal-sampling
distribution, which we use instead of pgoal from Equation (42).

Contrastive RL with Quasimetrics. We use the same encoder and projector architecture as QRL, as well as the same IQE
specification. Similar to Q-Learning, we also add a residual transition model, which uses the same (256+3)-1024-1024-256
architecture as QRL’s transition model, and adopt QRL’s transition loss with a weight of 5. In other words, we replace the
QRL’s value learning objective with the contrastive objective from Contrastive RL (and keep the transition loss). Contrastive
RL objective estimates the on-policy Q-function with an extra goal-specific term determined by pgoal (Eysenbach et al.,
2022). Thus, we also learn a 256-1024-1024-1 model c(zg), where zg is the latent of goal g. Contrastive RL loss is computed
with the sum of c(zg) and quasimetric output. Other hyperparameters are identical to the vanilla Contrastive RL choices.
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MSG. We follow the original paper and tune α ∈ {0, 0.1, 0.5, 1} and β ∈ {−4,−8}. After tuning, we select α = 0.1,
β = −4 for both the single-goal and multi-goal setting. For relabelling, we find using random goals hurting performance.
Hence, instead of pgoal from Equation (42), we use [0.5, 0.5, 1] with probability 0.05, and a future state from the same
trajectory with probability 0.95, where the future state is taken to be ∆t ≥ 1 steps away, where ∆t ∼ Geometric(0.3).

Diffuser. Diffuser’s training horizon defines the length of trajectory segment used in training. Any trajectory with length
shorter than this number won’t be sampled at all for training. We tune the training horizon between 16 (which includes
almost all training trajectories) and 200 (which excludes shorter trajectories from training but may better capture long-term
dependencies), and choose 16 due to its better performance in both evaluations.

C.2. Offline d4rl maze2d

Evaluation. For each method, we evaluate both single-goal and multi-goal planning over 100 episodes.

QRL. We use 4-1024-1024-1024-256 network for f and (256+2)-1024-1024-1024-256 residual network for T , where
2 is the action dimension. For dθ, we use a 256-1024-1024-2048 projector followed by an IQE-maxmean head with 64
components, each of size 32. Ltransition is optimized with a weight of 10. Our learning rate is 0.01 for λ, 5 × 10−4 for
the critic parameters, and 3× 10−5 for the policy parameters. We use a batch size of 4096 to train 2× 105 gradient steps.
Inspired by Contrastive RL (Eysenbach et al., 2022), we augment policy training with an additional behavior cloning loss of
weight 0.05 (towards a goal that is ∆t ≥ 1 steps in the future from the same trajectory, for ∆t ∼ Geometric(0.99)).

Contrastive RL. We mostly follow the author’s parameters for their offline experiments, using x-1024-1024-1024-16
encoders, where x = (4 + 2) for the state-action encoder, and x = 4 for the goal encoder, and dz is the latent dimension, as
well as a behavior cloning loss of weight 0.05. We train over 1.5× 105 gradient steps using a batch size of 1024. We note
that Contrastive RL requires a specific goal-sampling distribution, which we use instead of pgoal from Equation (42).

MSG. For single-goal results, we report the evaluations from the original paper. For multi-goal tasks, we use the same
architectures with relabelling, and tune α ∈ {0, 0.1, 0.5, 1} and β ∈ {−4,−8}, following the procedure from original paper.
After tuning, we use α = 0.1 and β = −8 for the large maze, α = 0.5 and β = −4 for the medium maze, and α = 0.1 and
β = −8 for the umaze maze. For relabelling, we sample goal state a future state from the same trajectory, where the future
state is taken to be ∆t ≥ 1 steps away, where ∆t ∼ Geometric(0.3).

MPPI with QRL Value. We run MPPI in the QRL’s learned dynamics and value function with a planning horizon of 5
steps, 10,000 samples per step, and the QRL Q-function (via the QRL dynamics and value function) as reward in each step.
The noise variance to sample and explore actions is σ2 = 1. We experimented λ ∈ {0.1, 0.01}, a regularizer penalizing the
cost of control noise, and use λ = 0.01 due to its slightly superior performance.

Diffuser. We strictly follow the original paper’s parameters for maze2d experiments. For planning with sampled actions,
each Diffuser sample yields many actions, so we replan after using up all previously sampled actions (similar to open-
loop planning). In our experience, replanning at every timestep is extremely computationally costly without observed
improvements. For QRL value planning, we guide Diffuser sampling for minimizing the learned quasimetric distance
towards goal state (in addition to its existing goal-conditioning) with a weight of 0.1 over 4 guidance steps at each sampling
iteration. Since each Diffuser sample is a long-horizon trajectories refined over many iterations, guiding at each timestep of
the trajectory is computationally expensive. Therefore, we gather state-action pairs from every 5 timesteps as well as the last
step of the trajectory, and feed these pairs into learned QRL value function to compute the average QRL values as guidance.

C.3. Online GCRL

Environment. For FetchReach and FetchPush, we strictly follow Contrastive RL experimental setups (Eysenbach et al.,
2022) to generate initial and goal states/images. The image observations are RGB with 64× 64 resolution. For FetchSlide,
we adopt a similar strategy and generate goal states where object position dimensions are set to the target location and other
dimensions are set to zeros. We are unable to get any method to reach a non-trivial success rate on FetchSlide with image
observation despite tuning hyperparamteres and image rendering. We thus omit this setting in results.

Evaluation. We evaluate each method for 50 episodes every 2000 environment steps (i.e., 40 episodes). Following
standard practice, we mark an episode as successful if the agent completes the task at any timestep within the time limit (50
steps). For clearer visualizations in Figures 5 and 6, the success rates curves are smoothed with a sliding window of length 5
before gathering across 5 seeds, similar to visualizations in (Liu et al., 2022). For comparing sample efficiencies between
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Figure 6: Online learning performance on GCRL benchmarks, including an alternative method to integrate quasimetrics in DDPG and a
variant of Contrastive RL trained with two critics and exploration action noise on state-based settings. No method has access to ground
truth reward function. QRL still consistently outperforms the baseline methods, learning both faster and better. FetchSlide with image
observation is not shown because no method reaches a non-trivial success rate. See Appendix C.3 for details of the additional baselines.

Contrastive RL and QRL, we look at the smoothed success rates from both methods, find the sample size where QRL first
exceeds Contrastive RL’s final performance at 106 samples, and compute the sample size ratio.

Processing Image Observations. To process image inputs, all compared methods use the same backbone convolutional
architecture from (Mnih et al., 2013) to encode the input image into a 1024-dimensional flat vector. We adopt this approach
from Contrastive RL (Eysenbach et al., 2022). For different modules in a method, each module uses an independent copy of
this backbone (of same architecture but different set of parameters). For modules that takes in two observations (e.g., policy
network in all methods and monolithic Q-functions in vanilla DDPG), the same backbone processes each input into a flat
vector, and the concatenated 2048-dimensional vector is fed into later parts of the module (which is usually an MLP). Other
modules only take in a single observation and simply maps the processed 1024-dimensional vector to the output in a fashion
similar to the fully-connected head of convolutional nets (i.e., passing through an activation function and then an MLP).
In architecture descriptions below, we omit this backbone part for simplicity, and use x to denote the state dimension for
state-based observations and backbone output dimension (i.e., 1024) for image-based observations .

QRL (State-based Observations). We use a x-512-512-128 network for f and a (128+4)-512-512-128 residual network
for T , where 4 is the action dimension. For dθ, we use a 128-512-2048 projector followed by an IQE-maxmean head with
64 components, each of size 32. We use x-512-512-8 network for policy, where x is the input size and 8 parametrizes a
tanh-transformed diagonal Normal distribution. Ltransition is optimized with a weight of 0.1. Our learning rates are 0.01 for
λ, 1× 10−4 for the model parameters, and 3× 10−5 for the policy parameters. We use a batch size of 256 in training. We
prefill the replay buffer with 200 episodes from a random actor, and then iteratively perform (1) generating 10 rollouts and
(2) optimizing QRL objective for 500 gradients steps. We use N (0, 0.32)-perturbed action noise in exploration. For the
adaptive entropy regularizer (Haarnoja et al., 2018), we regularize policy to have target entropy −|A|, where the entropy
regularizer weight is initialized to be 1 and optimized in log-space with a learning rate of 3× 10−4. Since the environment
has much shorter horizon (each episodes ends at 50 timesteps), we instead use a different affine-transformed softplus for
maximizing dθ, where ϕ(x) ≜ −softplus(15− x, β = 0.1).

QRL (Image-based Observations). All settings are the same as QRL for state-based observations, except a few changes:

• We use the convolutional backbone followed by a x-512-128 network for encoder f .
• We optimize Ltransition with an increased weight of 10 (since the dynamics aren’t fully deterministic).
• We update the models less frequently with 125 gradient steps every 10 rollouts. Contrastive RL uses the same reduced

update frequency for image-based observations (Eysenbach et al., 2022), which we observe also has benefits for QRL1.

Contrastive RL. We strictly follow the original paper’s experiment settings (Eysenbach et al., 2022), which does not use
two critics or action noise for exploration, and only uses entropy regularizer for image-based observations. For a comparison,
we also run Contrastive RL with these techniques added on the state-based environments. As shown in Figure 6, while they
do sometimes improve performance, they do not completely explain the gap between QRL and Contrastive RL. Hence,
the improvement of QRL over Contrastive RL indeed (partly) comes from fundamental algorithmic differences. Since
Contrastive RL estimates on-policy values, it could be more sensitive adding exploration noises, which degrades the dataset.

1This is potentially related to the lost of capacity phenomenon observed generally in RL algorithms (D’Oro et al., 2023)
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QRL, however, is conceptually exempt from this issue, since it estimates optimal values.

Goal-Conditioned Behavior Cloning (GCBC). We strictly follow the hyperparameter setups for the GCBC baseline in
the Contrastive RL paper (Eysenbach et al., 2022).

DDPG + HER. We mostly follow the experiment setup in the MRN paper (Liu et al., 2022). However, we do not give
HER access to reward functions for fair comparison. Instead, HER relabels transition rewards based on whether the state
equals the target goal state, which is exactly the same reward structure other method uses (QRL, Contrastive RL and GCBC).

DDPG + HER + Quasimetrics (Method by Liu et al. (2022)). We strictly follow the MRN paper (Liu et al., 2022)
to modify DDPG to include quasimetrics, which is slightly different from our modifications to Q-Learning on offline
MountainCar, but was also shown to be empirically beneficial in online learning (Liu et al., 2022). We follow Liu et al.
(2022) for MRN hyperparameters, and use the same IQE hyperparameters as QRL.

DDPG + HER + Quasimetrics (Another method to add quasimetrics). We show additional results comparing QRL to
a different approach to integrate quasimetrics into DDPG. This approach is different from the one by Liu et al. (2022) but
similar to our modifications to Q-Learning on offline MountainCar that attain good performance in that task. We adapt
the architecture choices by Liu et al. (2022) and QRL. Specifically, we use a x-512-512-128 network for encoder f and
(128+4)-512-512-128 residual network for T . For dθ, we use a 128-2048-2048-2048 projector followed by an IQE-maxmean
head with 64 components, each of size 32. We adopt QRL’s transition loss with a weight of 5. In other words, we replace
the QRL’s value learning objective with the DDPG temporal-difference objective (and keep the transition loss). All other
hyperparameters follow the same choices in method by Liu et al. (2022). This approach performs extremely poorly on this
more challenging set of environments, suggesting that it is unable to scale to more complex continuous-control settings.

As shown in Figure 6, QRL greatly outperforms both approaches to integrate DDPG and quasimetrics, showing consistent
advantage of the QRL objective over Q-Learning’s temporal-difference objective.
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