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ABSTRACT

Reward and representation learning are two long-standing challenges for learning
an expanding set of robot manipulation skills from sensory observations. Given the
inherent cost and scarcity of in-domain, task-specific robot data, learning from large,
diverse, offline human videos has emerged as a promising path towards acquiring
a generally useful visual representation for control; however, how these human
videos can be used for general-purpose reward learning remains an open question.
We introduce Value-Implicit Pre-training (VIP), a self-supervised pre-trained
visual representation capable of generating dense and smooth reward functions
for unseen robotic tasks. VIP casts representation learning from human videos
as an offline goal-conditioned reinforcement learning problem and derives a self-
supervised goal-conditioned value-function objective that does not depend on
actions, enabling pre-training on unlabeled human videos. Theoretically, VIP
can be understood as a novel implicit time contrastive objective that generates a
temporally smooth embedding, enabling the value function to be implicitly defined
via the embedding distance, which can then be used to construct the reward function
for any goal-image specified downstream task. Trained on large-scale Ego4D
human videos and without any fine-tuning on in-domain, task-specific data, VIP
can provide dense visual reward for an extensive set of simulated and real-robot
tasks, enabling diverse reward-based visual control methods and outperforming all
prior pre-trained representations. Notably, VIP can enable simple, few-shot offline
RL on a suite of real-world robot tasks with as few as 20 trajectories.

1 INTRODUCTION

A long-standing challenge in robot learning is to develop robots that can learn a diverse and expanding
set of manipulation skills from sensory observations (e.g., vision). This hope of developing general-
purpose robots demands scalable and generalizable representation learning and reward learning
to provide effective task representation and specification for downstream policy learning. Inspired
by pre-training successes in computer vision (CV) (He et al., 2020; 2022) and natural language
processing (NLP) (Devlin et al., 2018; Radford et al., 2019; 2021), pre-training visual representations
on out-of-domain natural and human data (Deng et al., 2009; Grauman et al., 2022) has emerged as
an effective solution for acquiring a general visual representation for robotic manipulation (Shah &
Kumar, 2021; Parisi et al., 2022; Nair et al., 2022; Xiao et al., 2022) This paradigm is favorable to the
traditional approach of in-domain representation learning because it does not require any intensive
task-specific data collection or representation fine-tuning, and a single fixed representation can be
used for a variety of unseen robotic domains and tasks (Parisi et al., 2022).

A key unsolved problem to pre-training for robotic control is the challenge of reward specification.
Unlike simulated environments, real-world robotics tasks do not come with privileged environment
state information or a well-shaped reward function defined over this state space. Prior pre-trained rep-
resentations for control demonstrate results in only visual reinforcement learning (RL) in simulation,
assuming access to a well-shaped dense reward function (Shah & Kumar, 2021; Xiao et al., 2022), or
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Figure 1: Value-Implicit Pre-training (VIP). Pre-trained on large-scale, in-the-wild human videos, frozen VIP
network can provide visual reward and representation for downstream unseen robotics tasks and enable diverse
visuomotor control strategies without any task-specific fine-tuning.

visual imitation learning (IL) from demonstrations (Parisi et al., 2022; Nair et al., 2022). In either case,
substantial engineering effort is required for learning each new task. Instead, a simple and general
way of specifying real-world manipulation tasks is by providing a goal image (Andrychowicz et al.,
2017; Pathak et al., 2018) that captures the desired visual changes to the environment. However, as we
demonstrate in our experiments, existing pre-trained visual representations do not produce effective
reward functions in the form of embedding distance to the goal image, despite their effectiveness as
pure visual encoders. Given that these models are already some of the most powerful models derived
from computer vision, it begs the pertinent question of whether a universal visual reward function
learned entirely from out-of-domain data is even possible.

In this paper, we show that such a general reward model can indeed be derived from a pre-trained
visual representation, and we acquire this representation by treating representation learning from
diverse human-video data as a big offline goal-conditioned reinforcement learning problem. Our
idea philosophically diverges from all prior works: instead of taking what worked the best for CV
tasks and “hope for the best” in visual control, we propose a more principled approach of using
reinforcement learning itself as a pre-training mechanism for reinforcement learning. Now, this
formulation certainly seems impractical at first because human videos do not contain any action
information for policy learning. Our key insight is that instead of solving the impossible primal
problem of direct policy learning from out-of-domain, action-free videos, we can instead solve the
Fenchel dual problem of goal-conditioned value function learning. This dual value function, as we
will show, can be trained without actions in an entirely self-supervised manner, making it suitable for
pre-training on (out-of-domain) videos without robot action labels.

Theoretically, we show that this dual objective amounts to a novel form of implicit time contrastive
learning, which attracts the representations of the initial and goal frame in the same trajectory,
while implicitly repelling the representations of intermediate frames via recursive one-step temporal-
difference minimization. These properties enable the representation to capture long-range temporal
dependencies over distant task frames and inject local temporal smoothness over neighboring frames,
making for smooth embedding distances that we show are the key ingredient of an effective reward
function. This contrastive lens, importantly, enables the value function to be implicitly defined as
a similarity metric in the embedding space, resulting in our simple final algorithm, Value-Implicit
Pre-training (VIP); see Fig. 1 for an overview.

Trained on the large-scale, in-the-wild Ego4D human video dataset (Grauman et al., 2022) using a
simple sparse reward, VIP is able to capture a general notion of goal-directed task progress that makes
for effective reward-specification for unseen robot tasks specified via goal images. On an extensive
set of simulated and real-robot tasks, VIP’s visual reward significantly outperforms those of prior
pre-trained representations on a diverse set of reward-based policy learning paradigms. Coupled with
a standard trajectory optimizer (Williams et al., 2017), VIP can solve ≈ 30% of the tasks without
any task-specific hyperparameter or representation fine-tuning and is the only representation that
enables non-trivial progress on the set of more difficult tasks. Given more optimization budget,
VIP’s performance can further improve up to ≈ 45%, whereas other representations do worse due
to reward hacking. When serving as both the visual representation and reward function for visual
online RL, VIP again significantly outperforms prior methods by a wide-margin and achieves 40%
aggregate success rate. To the best of our knowledge, these are the first demonstrations of a successful
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perceptual reward function learned using entirely out-of-domain data. Finally, we demonstrate that
VIP can enable real-world few-shot offline RL with as few as 20 trajectories on a diverse suite of
real-robot manipulation tasks, demonstrating for the first time that offline RL is possible in this
low-data regime and paving the way towards truly scalable and autonomous robot learning.

2 RELATED WORK

We review relevant literature on (1) Out-of-Domain Representation Pre-Training for Control, (2)
Perceptual Reward Learning from Human Videos, and (3) Goal-Conditioned RL as Representation
Learning. Due to space constraint, the latter two are included in App. B.

Out-of-Domain Representation Pre-Training for Control. Bootstrapping visual control using
frozen representations pre-trained on out-of-domain non-robot data is a nascent field that has seen
fast progress over the past year. Shah & Kumar (2021) demonstrates that pre-trained ResNet (He
et al., 2016) representation on ImageNet (Deng et al., 2009) serves as effective visual backbone for
simulated dexterous manipulation RL tasks. Parisi et al. (2022) finds ResNet models trained with
unsupervised objectives, such as momentum contrastive learning (MOCO) (He et al., 2020), to surpass
supervised objectives (e.g, image classification) for both visual navigation and control tasks. Xiao et al.
(2022) demonstrates that masked-autoencoder (He et al., 2022) trained on diverse video data (Goyal
et al., 2017; Shan et al., 2020) can be an effective visual embedding for online RL. The closest
work to ours is R3M Nair et al. (2022), which is also pre-trained on the Ego4D dataset and attempts
to capture temporal information in the videos by using time-contrastive learning (Sermanet et al.,
2018); whereas VIP is fully self-supervised, R3M additionally requires video textual descriptions
to align its representation. These prior works primarily re-purpose existing objectives and models
for visual control and do not address the reward specification challenge. In contrast, VIP is the first
to propose a novel RL-based objective for out-of-domain pre-training and is capable of producing
generalizable dense reward signals that enable several new visuomotor control strategies that have
not been demonstrated in this setting before.

3 PROBLEM SETTING AND BACKGROUND

In this section, we describe our problem setting of out-of-domain pre-training and provide formalism
for downstream representation evaluation. Additional background on goal-conditioned reinforcement
learning and contrastive learning is included in App. A.

Out-of-Domain Pre-Training Visual Representation. We assume access to a training set of video
data D = {vi := (oi1, ..., o

i
hi

)}Ni=1, where each o ∈ O :=RH×W×3 is a raw RGB image; note that
this formalism also captures standard image datasets (e.g., ImageNet), if we take hi = 1 for all
vi. Like prior works, we assume D to be out-of-domain and does not include any robot task or
domain-specific data. A learning algorithm A ingests this training data and outputs a visual encoder
φ := A(D) : RH×W×3 → K, where K is the embedding dimension.

Representation Evaluation. Given a choice of representation φ, every evaluation task can be
instantiated as a Markov decision processM(φ) := (φ(O), A,R(ot, ot+1;φ, g), T, γ, g), in which
the state space is the induced space of observation embeddings, and the task is specified via a (set of)
goal image(s) g. Specifically, for a given transition tuple (ot, ot+1), we define the reward to be the
goal-embedding distance difference (Lee et al., 2021; Li et al., 2022):

R(ot, ot+1;φ, {g}) := Sφ(ot+1; g)− Sφ(ot; g) := (1− γ)Sφ(ot+1; g) + (γSφ(ot+1; g)− Sφ(ot; g)) ,
(1)

where Sφ is a distance function in the φ-representation space; in this work, we set Sφ(ot; g) :=
−‖φ(ot)− φ(g)‖2. This reward function can be interpreted as a raw embedding distance reward
with a reward shaping (Ng et al., 1999) term that encourages making progress towards the goal. This
preserves the optimal policy but enables more efficient and robust policy learning.

Under this formalism, parameters of φ are frozen during policy learning (it is considered a part of the
MDP), and we want to learn a policy π : RK → A that outputs an action based on the embedded
observation a ∼ π(φ(o)). Note that while our evaluation tasks are defined via visual goals, the
policies do not explicit condition on a goal as in multi-goal RL (Andrychowicz et al., 2017) setting
because there is only one goal to be attempted per task.
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4 VALUE-IMPLICIT PRE-TRAINING

In this section, we demonstrate how a self-supervised value-function objective can be derived from
computing the dual of an offline RL objective on passive human videos (Section 4.1). Then, we
show how this objective amounts to a novel implicit formulation of temporal contrastive learning
(Section 4.2), which helps inducing a temporally smooth embedding favorable for downstream
visual reward specification. Finally, we leverage this contrastive interpretation to instantiate a simple
implementation (<10 lines of PyTorch code) of our dual value objective that does not explicitly learn
a value network (Section 4.3), culminating in our final algorithm, Value-Implicit Pre-training (VIP).

4.1 FOUNDATION: SELF-SUPERVISED VALUE LEARNING FROM HUMAN VIDEOS

While human videos are out-of-domain data for robots, they are in-domain for learning a goal-
conditioned policy πH over human actions, aH ∼ πH(φ(o) | φ(g)), for some human action space
AH . Therefore, given that human videos naturally contain goal-directed behavior, one reasonable idea
of utilizing offline human videos for representation learning is to solve an offline goal-conditioned
RL problem over the space of human policies and then extract the learned visual representation. To
this end, we consider the following KL-regularized offline RL objective (Nachum et al., 2019) for
some to-be-specified reward r(o, g):

max
πH ,φ

EπH

[∑
t

γtr(o; g)

]
−DKL(dπH (o, aH ; g)‖dD(o, ãH ; g)), (2)

where dπH (o, aH ; g) is the distribution over observations and actions πH visits conditioned on g.
Observe that a “dummy” action ã is added to every transition (oih, ã

i
h, o

i
h+1) in the dataset D so that

the KL regularization is well-defined, and ãhi can be thought of as the unobserved true human action
taken to transition from observation oih to oih+1. While this objective is mathematically sound and
encourages learning a conservative πH , it is seemingly implausible because the offline dataset DH

does not come with any action labels nor can AH be concretely defined in practice. However, what
this objective does provide is an elegant dual objective over a value function that does not depend on
any action label in the offline dataset. In particular, leveraging the idea of Fenchel duality (Rockafellar,
1970) from convex optimization, we have the following result:

Proposition 4.1. Under assumption of deterministic transition dynamics, the dual optimization
problem of equation 2 is

maxφ minV Ep(g)
[
(1− γ)Eµ0(o;g)[V (φ(o);φ(g))] + logE(o,o′;g)∼D [exp (r(o, g) + γV (φ(o′);φ(g))− V (φ(o), φ(g)))]

]
,

(3)

where µ0(o; g) is the goal-conditioned initial observation distribution, and D(o, o′; g) is the goal-
conditioned distribution of two consecutive observations in dataset D.

As shown, actions do not appear in the objective. Furthermore, since all expectations in equation 3
can be sampled using the offline dataset, this dual value-function objective can be self-supervised with
an appropriate choice of reward function. In particular, since our goal is to acquire a value function
that extracts a general notion of goal-directed task progress from passive offline human videos, we set
r(o, g) = I(o == g)− 1, which we refer to as δ̃g(o) in shorthand. This reward provides a constant
negative reward when o is not the provided goal g, and does not require any task-specific engineering.
The resulting value function V (φ(o);φ(g)) captures the discounted total number of steps required to
reach goal g from observation o. Consequently, the overall objective will encourage learning visual
features φ that are amenable to predicting the discounted temporal distance between two frames in a
human video sequence. With enough size and diversity in the training dataset, we hypothesize that
this value function can generalize to completely unseen (robot) domains and tasks.

4.2 ANALYSIS: IMPLICIT TIME CONTRASTIVE LEARNING

While equation 3 will learn some useful visual representation via temporal value function optimization,
in this section, we show that it can be understood as a novel implicit temporal contrastive learning

4



Published as a conference paper at ICLR 2023

objective that acquires temporally smooth embedding distance over video sequences, underpinning
VIP’s efficacy jointly as a visual representation and reward for downstream control.

We begin by simplifying the expression in equation 3 by first assuming that the optimal V ∗ is found:

minφ Ep(g)
[
(1− γ)Eµ0(o;g)[−V ∗(φ(o);φ(g))] + logED(o,o′;g)

[
exp

(
δ̃g(o) + γV (φ(o′);φ(g))− V (φ(o), φ(g))

)]−1]
,

(4)

where we have also re-written the maximization problem as a minimization problem. Now, after
few algebraic manipulation steps (see App. C for a derivation), if we think of V ∗(φ(o);φ(g)) as a
similarity metric in the embedding space, then we can massage equation 4 into an expression that
resembles the InfoNCE (Oord et al., 2018) time contrastive learning (Sermanet et al., 2018) (see
App. A.2 for a definition and additional background) objective:

minφ(1− γ)Ep(g),µ0(o;g)

[
− log eV

∗(φ(o);φ(g))

ED(o,o′;g)[exp(δ̃g(o)+γV ∗(φ(o′);φ(g))−V ∗(φ(o),φ(g)))]
−1

(1−γ)

]
(5)

In particular, p(g) can be thought of the distribution of “anchor” observations, µ0(s; g) the distribution
of “positive” samples, and D(o, o′; g) the distribution of “negative” samples. Counter-intuitively and
in contrast to standard single-view time contrastive learning (TCN), in which the positive observations
are temporally closer to the anchor observation than the negatives, equation 5 has the positives to
be as temporally far away as possible, namely the initial frame in the the same video sequence,
and the negatives to be middle frames sampled in between. This departure is accompanied by
the equally intriguing deviation of the lack of explicit repulsion of the negatives from the anchor;
instead, they are simply encouraged to minimize the (exponentiated) one-step temporal-difference
error in the representation space (the denominator in equation 5); see Fig. 1. Now, since the value
function encodes negative discounted temporal distance, due to the recursive nature of value temporal-
difference (TD), in order for the one-step TD error to be globally minimized along a video sequence,
observations that are temporally farther away from the goal will naturally be repelled farther away in
the representation space compared to observations that are nearby in time; in App. C.3, we formalize
this intuition and show that this repulsion always holds for optimal paths. Therefore, the repulsion
of the negative observations is an implicit, emergent property from the optimization of equation 5,
instead of an explicit constraint as in standard (time) contrastive learning.

Figure 2: Learned 2D representation of a held-out task
demonstration by VIP and TCN trained on task-specific
in-domain data. The color gradient indicates trajectory
time progression (purple for beginning, red for end). The
inset plots are embedding distances to the last frame.

Now, we dive into why this implicit time con-
trastive learning is desirable. First, the explicit
attraction of the initial and goal frames enables
capturing long-range semantic temporal depen-
dency as two frames that meaningfully indicate
the beginning and end of a task are made close
in the embedding space. This closeness is also
well-defined due to the one-step TD backup that
makes every embedding distance recursively de-
fined to be the discounted number of timesteps
to the goal frame. Combined with the implicit
yet structured repulsion of intermediate frames,
this push-and-pull mechanism helps inducing a
temporally smooth and consistent representation.
In particular, as we pass a video sequence in the training set through the trained representation, the
embedding should be structured such that two trends emerge: (1) neighboring frames are close-by
in the embedding space, (2) their distances to the last (goal) frame smoothly decrease due to the
recursively defined embedding distances. To validate this intuition, in Fig. 2, we provide a simple
toy example comparing implicit vs. standard time contrastive learning when trained on in-domain,
task-specific demonstrations; details are included in App. E.2. As shown, standard time contrastive
learning only enforces a coarse notion of temporal consistency and learns a non-locally smooth
representation that exhibits many local minima. In contrast, VIP learns a much better structured
embedding that is indeed temporally consistent and locally smooth.
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4.3 ALGORITHM: VALUE-IMPLICIT PRE-TRAINING (VIP)

Recall that V ∗ is assumed to be known for the derivation in Section 4.2, but in practice, its analytical
form is rarely known. Now, given that V ∗ plays the role of a distance measure in our implicit time
contrastive learning framework, a simple and practical way to approximate V ∗ is to set it to be a
choice of similarity metric, bypassing having to explicitly parameterize it as a neural network. In
this work, we choose the common choice of the negative L2 distance used in prior work Sermanet
et al. (2018); Nair et al. (2022): V ∗(φ(o), φ(g)) := −‖φ(o)− φ(g)‖2. Given this choice, our final
representation learning objective is as follows:

L(φ) = Ep(g)
[
(1− γ)Eµ0(o;g) [‖φ(o)− φ(g)‖2] + logE(o,o′;g)∼D

[
exp

(
‖φ(o)− φ(g)‖2 − δ̃g(o)− γ ‖φ(o′)− φ(g)‖2

)]]
,

(6)

in which we also absorb the exponent of the log-sum-exp term in 4 into the inner exp(·) term via
Jensen’s inequality; we found this upper bound to be numerically more stable. To sample video
trajectories from D, because any sub-trajectory of a video is also a valid video sequence, VIP samples
these sub-trajectories and treats their initial and last frames as samples from the goal and initial-state
distributions (Step 3 in Alg. 1). Altogether, VIP training is illustrated in Alg. 1; it is simple and its
core training loop can be implemented in fewer than 10 lines of PyTorch code (Alg. 2 in App. D.3).

Algorithm 1 Value-Implicit Pre-Training (VIP)

1: Require: Offline (human) videos D = {(oi1, ..., oihi)}
N
i=1, visual architecture φ

2: for number of training iterations do
3: Sample sub-trajectories {oit, ..., oik, oik+1, ..., o

i
T }Bi=1 ∼ D, t ∈ [1, hi − 1], t ≤ k < T, T ∈ (t, hi], ∀i

4: L(φ) := 1−γ
B

∑B
i=1

[∥∥φ(oit)− φ(oiT )∥∥2]+ log 1
B

∑B
i=1

[
exp

(∥∥φ(oik)− φ(oiT )∥∥2 − δ̃oiT (oik)− γ ∥∥φ(oik+1)− φ(oiT )
∥∥
2

)]
5: Update φ using SGD: φ← φ− αφ∇L(φ)

5 EXPERIMENTS

In this section, we demonstrate VIP’s effectiveness as both a pre-trained visual reward and representa-
tion on three distinct reward-based policy learning settings. We begin by detailing VIP’s training and
introducing baselines. Then, we present the full evaluation results for each setting, and we conclude
with qualititave analysis, delving into VIP’s unique effectiveness.

VIP Training. We use a standard ResNet50 (He et al., 2016) architecture as VIP’s visual backbone
and train on a subset of the Ego4D dataset (Grauman et al., 2022), a large-scale egocentric video
dataset consisting of humans accomplishing diverse tasks around the world. These choices are
identical to a prior work (Nair et al., 2022); additionally, we use the exact same hyperparameters (e.g.,
batch size, optimizer, learning rate) as in Nair et al. (2022). See App. D for details.

Figure 3: Frankakitchen example goal images.

Baselines. The closest comparison is
R3M (Nair et al., 2022), which pre-trains on the
same Ego4D dataset using a combination of time
contrastive learning, L1 weight regularization,
and language embedding consistency losses. We
also consider a self-supervised ResNet50 net-
work trained on ImageNet using Momentum
Contrastive (MoCo), a supervised ResNet50
network trained on ImageNet, and CLIP Rad-
ford et al. (2021), covering a wide range of pre-
existing visual representations that have been
used for robotics control (Shah & Kumar, 2021; Parisi et al., 2022; Cui et al., 2022), though none
has been tested in our three reward-based settings in which the reward also has to be produced
by the representation. Note that the visual backbone for all methods is ResNet50, enabling a fair
comparison of the pre-training objectives. Besides VIP, all models are taken from their publicly
released checkpoints. In Appendix G.1, we additionally compare to MoCo and Masked Auto-Encoder
(MAE) models trained on Ego4D.

6



Published as a conference paper at ICLR 2023

Figure 4: Visual trajectory optimization and online RL aggregate results (cumulative success rate %).

Evaluation Environments For our simulation experiments, we consider the FrankaKitchen (Gupta
et al., 2019) environment, in which a 7-DoF Franka robot is tasked with manipulating common
household kitchen objects to pre-specified configurations. We use all 12 subtasks supported in the
environment and 3 camera views (left, center, right) for each task, in total of 36 visual manipulation
tasks. Furthermore, we consider two initial robot state for every task, one Easy setting in which the
end-effector is initialized close to the object of interest, and one Hard setting in which the end-effector
is uniformly initialized above the stove edge regardless of the task. The task horizon is 50 (resp. 100)
for the Easy (resp. Hard) setting. Each task is specified via a goal image; see Fig. 3 for example goal
images for all three views, and see Fig. 8-9 in App. E.1 for initial and goal frames for all tasks).

5.1 TRAJECTORY OPTIMIZATION & ONLINE REINFORCEMENT LEARNING

We evaluate pre-trained representations’ capability as pure visual reward functions by using them to
directly synthesize a sequence of actions using trajectory optimization In particular, we use model-
predictive path-integral (MPPI) (Williams et al., 2017). To evaluate each proposed sequence of
actions, we directly roll it out in the simulator for simplicity. Vanilla trajectory optimization, though
sample efficient, is prone to local minima in the reward landscape due to a lack of trial-and-error
exploration. We hypothesize that online RL may be able to overcome bad local minima, but it comes
with the added challenge of demanding the pre-trained representation to provide both the visual
reward and representation for learning a closed-loop policy. To further study the importance of a
learned dense reward in online RL, we compare to using ground-truth task sparse reward coupled with
VIP’s visual representation, VIP (Sparse). The RL algorithm we use is natural policy gradient
(NPG) (Kakade, 2001). We leave all experiment details are in App. E.3-E.4. In Fig. 4, we report each
representation’s cumulative success rate averaged over all configurations (3 seeds * 3 cameras * 12
tasks = 108 runs); the success rate for online RL is computed over a separate set of test rollouts.

Figure 5: VIP benefits from compute scaling
in downstream control.

Examining the MPPI results, we see that VIP is substan-
tially better than all baselines in both Easy and Hard set-
tings, and is the only representation that makes non-trivial
progress on the Hard setting. In Fig. 5, we couple VIP and
the strongest baselines (R3M, Resnet) with increasingly
more powerful MPPI optimizers (i.e., more trajectories per
optimization step; default 32 are used in Fig. 4). As shown,
while VIP steadily benefits from stronger optimizers and
can reach an average success rate of 44%, baselines often
do worse when MPPI is given more compute budget, sug-
gesting that their reward landscapes are filled with local
minima that do not correlate with task progress and are
easily exploited by stronger optimizers. To further validate
these observations, in App. E.3, we report the L2 error to
the ground-truth goal-image robot and object poses after each environment step taken by MPPI. We
find that VIP is able to minimize both the robot and object pose errors quite robustly over diverse tasks
and views, whereas several baselines in fact increase the robot pose error on average. Given these

7



Published as a conference paper at ICLR 2023

Table 1: Real-robot offline RL results (success rate % averaged over 10 rollouts with standard deviation reported).

Pre-Trained In-Domain
Environment VIP-RWR VIP-BC R3M-RWR R3M-BC Scratch-BC VIP-RWR VIP-BC

CloseDrawer 100 ± 0 50 ± 50 80 ± 40 10 ± 30 30 ± 46 0 ± 0 0∗ ± 0

PushBottle 90 ± 30 50 ± 50 70 ± 46 50 ± 50 40± 48 0∗ ± 0 0∗ ± 0

PlaceMelon 60 ± 48 10 ± 30 0 ± 0 0 ± 0 0 ± 0 0∗ ± 0 0∗ ± 0

FoldTowel 90 ± 30 20 ± 40 0 ± 0 0 ± 0 0 ± 0 0∗ ± 0 0∗ ± 0

findings, we hypothesize that VIP’s reward functions are able capture task-salient information in the
visual observations. In App. G.4, we validate this hypothesis and find that on at least one camera view
for 8 out of the 12 tasks, VIP’s rewards are highly correlated with the human-engineered state-based
dense rewards, with correlation coefficients as high as R2 = 0.95, highlighting its potential of
replacing manual reward engineering without any prior knowledge about the robot domain or tasks.

Switching gears to online RL, VIP again achieves consistently superior performance. VIP (Sparse)’s
inability to solve any task, despite a strong visual representation provided by VIP itself, indicates
the necessity of dense reward in solving these challenging visual manipulation tasks and further
accentuates VIP’s versatility doubling as both visual reward and representation; furthermore, we find
that sparse reward coupled with even the true state representation is unable to make any progress.
Finally, we comment that whereas sparse reward still requires human engineering via installing
additional sensors (Rajeswar et al., 2021; Singh et al., 2019) and faces exploration challenges (Nair
et al., 2018), with VIP, the end-user has to provide only a goal image.

5.2 REAL-WORLD FEW-SHOT OFFLINE REINFORCEMENT LEARNING

In this section, we demonstrate how VIP’s reward and representation can power a simple and practical
system for real-world robot learning in the form of few-shot offline reinforcement learning, making
offline RL simple, sample-efficient, and more effective than BC with almost no added complexity.

To this end, we consider a simple reward-weighted regression (RWR) (Peters & Schaal, 2007; Peng
et al., 2019) approach, in which the reward and the encoder are provided by the pre-trained model φ:

L(π) = −EDtask(o,a,o′,g) [exp(τ ·R(o, o′;φ, g)) log π(a | φ(o))] , (7)

where R is defined via equation 1 and τ is the temperature scale. Compared to BC, which would
be equation 7 with uniform weights to all transitions, RWR can focus policy learning on transitions
that have high rewards (i.e., high task progress) under the deployed representation. Consequently, if
the chosen representation is predictive of task progress (i.e., assigning high rewards to key transitions
for the task), then RWR should be able to outperform BC, especially on tasks that naturally admit key
transitions (e.g., picking up the towel edge in our FoldTowel task). This intuition is theoretically
proven (Kumar et al., 2022) and holds even if the offline data consists of solely expert demonstrations,
though not validated on real-world tasks.

Figure 6: Embedding distance curves on Ego4D (L) and real-robot (R) videos.

We introduce 4 tabletop ma-
nipulation tasks (see Fig. 1
and Fig. 13) requiring a
real 7-DOF Franka robot to
manipulate objects drawn
from distinct categories of
objects. For each task,
we collect in-domain, task-
specific offline data Dtask

of ∼ 20 demonstrations
with randomized object ini-
tial placements for policy
learning; we provide de-
tailed task and experiment descriptions in App. F. We compare VIP to R3M, the only other rep-
resentation that has been deployed on real robots in the visual imitation setting, and instantiate
{VIP,R3M}-{RWR,BC}. To assess whether pre-training is necessary for low-data regime offline
RL, we also train in-domain VIP-{RWR,BC} from scratch using only Dtask, where the VIP rep-
resentation is learned using Dtask first and then frozen during the policy training via RWR/BC. In
addition, we include Scratch-BC, for which the regression loss is used to learn the policy and the
representation in a completely end-to-end manner.
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We train all policies using the same set of hyperparameters used for real-world BC training in Nair
et al. (2022), and evaluate each method on 10 rollouts, covering the distribution of object’s initial
placement in the dataset. The average success rate (%) and standard deviation across rollouts are
reported in Table 1. As shown, VIP-RWR improves upon VIP-BC on all tasks and provides substantial
benefit on the harder tasks that are multi-stage in nature. In contrast, R3M-RWR, while able to
improve R3M-BC on the simpler two tasks involving pushing an object, fails to make any progress
on the harder tasks. In-domain VIP-based methods fail completely and their actions are almost
always pre-empted by the hardware safety check to prevent robot damage (indicated by ∗), suggesting
significant overfitting in training the VIP representation using just the scarce task-specific data Dtask.
The low performance of BC-based methods on the harder PickPlaceMelon and FoldTowel
tasks indicates that in this low-data regime, regardless of what visual representation the policy uses,
good reward information is necessary for task success. Altogether, these results corroborate the
necessity of pre-training in achieving few-shot offline RL in the real-world and highlight the unique
effectiveness of VIP in realizing this goal. Qualitatively, we find VIP-RWR policies acquire intelligent
behavior such as robust key action execution and task re-attempt; see App. F.4 and our supplementary
video for analysis.

5.3 QUALITATIVE ANALYSIS

We hypothesize that VIP learns the most temporally smooth embedding that enables effective
zero-shot reward-specification, and present several qualitative experiments investigating this claim.
First, in Fig. 6, we visually overlay and compare the embedding distance-to-goal curves for each
representation on representative videos from both Ego4D and our real-robot dataset; the curve for
every representation is normalized to have initial distance 1 to enable comparison. As shown, VIP
has the most visually smooth curves, whereas all other methods exhibit “bumps” (i.e., positive slope
at a step) that signal more prevalent presence of local minima in their reward landscapes; in App. G.5,
we provide additional embedding curves. Finally, we quantify the total number of “bumps” each
representation encounters over both datasets in App. G.6, and find VIP indeed has much fewer bumps.

Figure 7: Embedding reward histogram on our real-robot dataset.

In addition to the number
of bumps, we posit that
the magnitude of bumps
is also a key distinguish-
ing factor among represen-
tations. Because the reward
(equation 1) is the nega-
tive embedding distance-to-
goal difference, a positive
reward at a step is equiva-
lent to a negative slope at
that step in the corresponding embedding distance curve. The ideal representation should have a
reward histogram that has a tall peak in the first positive bin, indicating that its embedding distance
curves consist of mostly small, negative slopes that make for smooth curves. In Fig. 7, we compare
VIP and R3M representations (comparisons to other baselines are in App. G.7) by overlaying their
respective normalized embedding reward histogram computed over the entirety of the real-robot
dataset (we include the histograms computed over Ego4D in App. G.8). In addition, we create a
bar-plot over the count-difference ratio for each bin, |VIP|−|R3M|

|R3M| . We see that VIP has much higher
count in the first positive-reward bin (≈+20% more than R3M), fewer negative rewards overall, and
much fewer extreme rewards (≈-100% to R3M) in either direction, indicating that on aggregate VIP’s
reward landscape is much smoother than that of R3M, and this trend holds against all other baselines.
These findings confirm our hypothesis that VIP learns the most temporally smooth representation.
Surprisingly, despite trained on Ego4D, VIP’s smoothness property transfers to the robot domain,
suggesting that VIP representation indeed has learned generalizable features that are predictive of
goal-directed task progress, and it is this generalization that lies at the heart of VIP’s ability to perform
zero-shot reward-specification.

6 CONCLUSION

We have proposed Value-Implicit Pre-training (VIP), a self-supervised value-based pre-training
objective that is highly effective in providing both the visual reward and representation for downstream
unseen robotics tasks. VIP is derived from first principles of dual reinforcement learning and admits an
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appealing connection to an implicit and more powerful formulation of time contrastive learning, which
captures long-range temporal dependency and injects local temporal smoothness in the representation
to make for effective zero-shot reward specification. Trained entirely on diverse, in-the-wild human
videos, VIP demonstrates significant gains over prior state-of-art pre-trained visual representations
on an extensive set of policy learning settings. Notably, VIP can enable sample-efficient real-world
offline RL with just handful of trajectories. Altogether, we believe that VIP makes an important
contribution in both the algorithmic frontier of visual pre-training for RL and practical real-world
robot learning.
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A ADDITIONAL BACKGROUND

A.1 GOAL-CONDITIONED REINFORCEMENT LEARNING

This section is adapted from Ma et al. (2022b). We consider a goal-conditioned Markov decision
process from visual state space: M = (O,A,G, r, T, µ0, γ) with state space O, action space A,
reward r(o, g), transition function o′ ∼ T (o, a), the goal distribution p(g), and the goal-conditioned
initial state distribution µ0(o; g), and discount factor γ ∈ (0, 1]. We assume the state space O and

16



Published as a conference paper at ICLR 2023

the goal space G to be defined over RGB images. The objective of goal-conditioned RL is to find a
goal-conditioned policy π : O ×G→ ∆(A) that maximizes the discounted cumulative return:

J(π) := Ep(g),µ0(o;g),π(at|st,g),T (ot+1,|ot,at)

[ ∞∑
t=0

γtr(ot; g)

]
(8)

The goal-conditioned state-action occupancy distribution dπ(o, a; g) : O ×A×G→ [0, 1] of π is

dπ(o, a; g) := (1− γ)
∞∑
t=0

γtPr(ot = o, at = a | o0 ∼ µ0(o; g), at ∼ π(ot; g), ot+1 ∼ T (ot, at))

(9)

which captures the goal-conditioned visitation frequency of state-action pairs for policy π. The
state-occupancy distribution then marginalizes over actions: dπ(o; g) =

∑
a d

π(o, a; g). Then, it
follows that π(a | o, g) = dπ(o,a;g)

dπ(o;g) . A state-action occupancy distribution must satisfy the Bellman
flow constraint in order for it to be an occupancy distribution for some stationary policy π:∑

a

d(o, a; g) = (1− γ)µ0(o; g) + γ
∑
õ,ã

T (s | õ, ã)d(õ, ã; g), ∀o ∈ O, g ∈ G (10)

We write dπ(o, g) = p(g)dπ(o; g) as the joint goal-state density induced by p(g) and the
policy π. Finally, given dπ, we can express the objective function equation 8 as J(π) =
1

1−γE(o,g)∼dπ(o,g)[r(o, g)].

A.2 INFONCE & TIME CONTRASTIVE LEARNING.

As VIP can be understood as a implicit and smooth time contrastive learning objective, we provide ad-
ditional background on the InfoNCE Oord et al. (2018) and time contrastive learning (TCN) (Sermanet
et al., 2018) objective to aid comparison in Section 4.2.

InfoNCE is an unsupervised contrastive learning objective built on the noise contrastive estima-
tion (Gutmann & Hyvärinen, 2010) principle. In particular, given an “anchor” datum x (otherwise
known as context), and distribution of positives xpos and negatives xneg, the InfoNCE objective
optimizes

min
φ

Expos

[
− log

Sφ(x, xpos)

Exneg
Sφ(x, xneg)

]
, (11)

where Exneg
is often approximated with a fixed number of negatives in practice.

It is shown in Oord et al. (2018) that optimizing equation 11 is maximizing a lower bound on the
mutual information I(x, xpos), where, with slight abuse of notation, x and xpos are interpreted as
random variables.

TCN is a contrastive learning objective that learns a representation that in timeseries data (e.g., video
trajectories). The original work (Sermanet et al., 2018) considers multi-view videos and perform
contrastive learning over frames in separate videos; in this work, we consider the single-view variant.
At a high level, TCN attracts representations of frames that are temporally close, while pushing apart
those of frames that are farther apart in time. More precisely, given three frames sampled from a
video sequence (ot1 , ot2 , ot3), where t1 < t2 < t3, TCN would attract the representations of ot1
and ot2 and repel the representation of ot3 from ot1 . This idea can be formally expressed via the
following objective:

min
φ

E(ot1 ,ot2>t1 )∼D

[
− log

e−‖φ(ot1 )−φ(ot2 )‖2
Eot3 |t3>t2∼D [exp (−‖φ(ot1)− φ(ot3)‖2)]

]
(12)

Given a “positive” window of K steps and a uniform distribution among valid positive samples, we
can write equation 12 as

min
φ

1

K

K∑
k=1

E(ot1 ,ot1+k)∼D

[
− log

Sφ(ot1 ; ot1+k)

Eot3 |t3>t1+k∼D [Sφ(ot1 ; ot3)]

]
, (13)

in which each term inside the expectation is a standalone InfoNCE objective tailored to observation
sequence data.
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B EXTENDED RELATED WORK

Perceptual Reward Learning from Human Videos. Human videos provide a rich natural source
of reward and representation learning for robotic learning. Most prior works exploit the idea of
learning an invariant representation between human and robot domains to transfer the demonstrated
skills (Sermanet et al., 2016; 2018; Schmeckpeper et al., 2020; Chen et al., 2021; Xiong et al., 2021;
Zakka et al., 2022; Bahl et al., 2022). However, training these representations require task-specific
human demonstration videos paired with robot videos solving the same task, and cannot leverage the
large amount of “in-the-wild” human videos readily available. As such, these methods require robot
data for training, and learn rewards that are task-specific and do not generalize beyond the tasks they
are trained on. In contrast, VIP do not make any assumption on the quality or the task-specificity of
human videos and instead pre-trains an (implicit) value function that aims to capture task-agnostic
goal-oriented progress, which can generalize to completely unseen robot domains and tasks.

Goal-Conditioned RL as Representation Learning. Our pre-training method is also related to the
idea of treating goal-conditioned RL as representation learning. Chebotar et al. (2021) shows that a
goal-conditioned Q-function trained with offline in-domain multi-task robot data learns an useful
visual representation that can accelerate learning for a new downstream task in the same domain.
Eysenbach et al. (2022) shows that goal-conditioned Q-learning with a particular choice of reward
function can be understood as performing contrastive learning. In contrast, our theory introduces
a new implicit time contrastive learning, and states that for any choice of reward function, the dual
formulation of a regularized offline GCRL objective can be cast as implicit time contrast. This
conceptual bridge also explains why VIP’s learned embedding distance is temporally smooth and can
be used as an universal reward mechanism. Finally, whereas these two works are limited to training
on in-domain data with robot action labels, VIP is able to leverage diverse out-of-domain human data
for visual representation pre-training, overcoming the inherent limitation of robot data scarcity for
in-domain training.

Our work is also closely related to Ma et al. (2022b), which first introduced the dual offline GCRL
objective based on Fenchel duality (Rockafellar, 1970; Nachum & Dai, 2020; Ma et al., 2022a).
Whereas Ma et al. (2022b) assumes access to the true state information and focuses on the offline
GCRL setting using in-domain offline data with robot action labels, we extend the dual objective
to enable out-of-domain, action-free pre-training from human videos. Our particular dual objective
also admits a novel implicit time contrastive learning interpretation, which simplifies VIP’s practical
implementation by letting the value function be implicitly defined instead of a deep neural network
as in Ma et al. (2022b).

C TECHNICAL DERIVATIONS AND PROOFS

C.1 PROOF OF PROPOSITION 4.1

We first reproduce Proposition 4.1 for ease of reference:

Proposition C.1. Under assumption of deterministic transition dynamics, the dual optimization
problem of

max
πH ,φ

EπH

[∑
t

γtr(o; g)

]
−DKL(dπH (o, aH ; g)‖dD(o, ãH ; g)), (14)

is

maxφ minV Ep(g)
[
(1− γ)Eµ0(o;g)[V (φ(o);φ(g))] + logED(o,o′;g) [exp (r(o, g) + γV (φ(o′);φ(g))− V (φ(o), φ(g)))]

]
,

(15)
where µ0(o; g) is the goal-conditioned initial observation distribution, and D(o, o′; g) is the goal-
conditioned distribution of two consecutive observations in dataset D.
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Proof. We begin by rewriting equation 14 as an optimization problem over valid state-occupancy
distributions. To this end, we have1

max
φ

max
d(φ(o),a;φ(g))≥0

Ed(φ(o),φ(g)) [r(o; g)]−DKL(d(φ(o), a;φ(g))‖dD(φ(o), ã;φ(g)))

(P) s.t.
∑
a

d(φ(o), a;φ(g)) = (1− γ)µ0(o; g) + γ
∑
õ,ã

T (o | õ, ã)d(φ(õ), ã;φ(g)), ∀o ∈ O, g ∈ G

(16)
Fixing a choice of φ, the inner optimization problem operates over a φ-induced state and goal space,
giving us equation 16. Then, applying Proposition 4.2 of Ma et al. (2022b) to the inner optimization
problem, we immediately obtain

max
φ

min
V

Ep(g)
[
(1− γ)Eµ0(o;g)[V (φ(o);φ(g))]

(D) + logEdD(φ(o),a;φ(g))

[
exp
(
r(o, g) + γET (o′|o,a)[V (φ(o′);φ(g))]− V (φ(o), φ(g))

)]]
(17)

Now, given our assumption that the transition dynamics is deterministic, we can replace the inner
expectation ET (o′|o,a) with just the observed sample in the offline dataset and obtain:

max
φ

min
V

Ep(g)
[
(1− γ)Eµ0(o;g)[V (φ(o);φ(g))]

+ logEdD(φ(o),φ(o′);φ(g))

[
exp
(
r(o, g) + γV (φ(o′);φ(g))− V (φ(o), φ(g))

)]] (18)

Finally, sampling embedded states from dD(φ(o), φ(o′);φ(g)) is equivalent to sampling from
D(o, o′; g), assuming there is no embedding collision (i.e., φ(o) 6= φ(o′), ∀o 6= o′), which can
be satisfied by simply augmenting any φ by concatenating the input to the end. Then, we have our
desired expression:

maxφ minV Ep(g)
[
(1− γ)Eµ0(o;g)[V (φ(o);φ(g))] + logED(o,o′;g)

[
exp
(
r(o, g) + γV (φ(o′);φ(g))− V (φ(o), φ(g))

)]]
(19)

C.2 VIP IMPLICIT TIME CONTRAST LEARNING DERIVATION

This section provides all intermediate steps to go from equation 4 to equation 5. First, we have

minφ Ep(g)
[
(1− γ)Eµ0(o;g)[−V ∗(φ(o);φ(g))] + logED(o,o′;g)

[
exp

(
δ̃g(o) + γV (φ(o′);φ(g))− V (φ(o), φ(g))

)]−1]
.

(20)
We can equivalently write this objective as

minφ Ep(g)
[
(1− γ)Eµ0(o;g)[− log eV

∗(φ(o);φ(g))] + logED(o,o′;g)

[
exp

(
δ̃g(o) + γV (φ(o′);φ(g))− V (φ(o), φ(g))

)]−1]
.

(21)
Then,

min
φ

Ep(g)
[
(1− γ)Eµ0(o;g)

[
− log eV

∗(φ(o);φ(g)) − logED(o,o′;g)

[
exp

(
δ̃g(o) + γV (φ(o′);φ(g))− V (φ(o), φ(g))

)] −1
1−γ
]]

= min
φ

(1− γ)Ep(g),µ0(o;g)

log
e−V

∗(φ(o);φ(g))

ED(o,o′;g)

[
exp

(
δ̃g(o) + γV (φ(o′);φ(g))− V (φ(o), φ(g))

)] −1
1−γ

 .

(22)
This is equation 5 in the main text.

C.3 VIP IMPLICIT REPULSION

In this section, we formalize the implicit repulsion property of VIP objective (equation 5); in particular,
we prove that under certain assumptions, it always holds for optimal paths.

1We omit the human action superscript H in this derivation.
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Proposition C.2. Suppose V ∗(s; g) := −‖φ(s)− φ(g)‖2 for some φ, under the assumption of
deterministic dynamics (as in Proposition 4.1), for any pair of consecutive states reached by the
optimal policy, (st, st+1) ∼ π∗, we have that

‖φ(st)− φ(g)‖2 > ‖φ(st+1)− φ(g)‖2 , (23)

Proof. First, we note that
V ∗(s; g) = max

a
Q∗(s, a; g) (24)

A proof can be found in Section 1.1.3 of Agarwal et al. (2019). Then, due to the Bellman optimality
equation, we have that

Q∗(s, a; g) = r(s, g) + γEs′∼T (s,a) max
a′

Q∗(s′, a′; g) (25)

Given that the dynamics is deterministic and equation 24, we have that

Q∗(s, a; g) = r(s, g) + γV ∗(s′; g) (26)

Now, for (st, at, st+1) ∼ π∗, this further simplifies to

V ∗(st; g) = r(st, g) + γV ∗(st+1; g) (27)

Note that since V ∗ is also the optimal value function, given that r(st, g) = I(st = g)−1, V ∗(st; g) is
the negative discounted distance of the shortest path between st ans g. In particular, since V ∗(g; g) =

0 by construction, we have that V ∗(st; g) = −
∑K
k=0 γ

k (this also clearly satisfies equation 27),
where the shortest path (i.e., the path π∗ takes) between st and g are K steps long. Now, giving that
we assume V ∗(st; g) can be expressed as −‖φ(st)− φ(g)‖2 for some φ, it immediately follows that

‖φ(st)− φ(g)‖2 > ‖φ(st+1)− φ(g)‖2 , ∀(st, st+1) ∼ π∗ (28)

The implication of this result is that at least along the trajectories generated by the optimal policy, the
representation will have monotonically decreasing and well-behaved embedding distances to the goal.
Now, since in practice, VIP is trained on goal-directed (human video) trajectories, which are near-
optimal for goal-reaching, we expect this smoothness result to be informative about VIP’s embedding
practical behavior and help formalize out intuition about the mechanism of implicit time contrastive
learning. As confirmed by our qualitative study in Section 5.3, We highlight that VIP’s embedding is
indeed much smoother than other baselines along test trajectories on both Ego4D and on our real-robot
dataset. This smoothness along optimal paths makes it easier for the downstream control optimizer to
discover these paths, conferring VIP representation effective zero-shot reward-specification capability
that is not attained by any other comparison.

D VIP TRAINING DETAILS

D.1 DATASET PROCESSING AND SAMPLING

We use the exact same pre-processed Ego4D dataset as in R3M, in which long raw videos are first
processed into shorter videos consisting of 10-150 frames each. In total, there are approximately
72000 clips and 4.3 million frames in the dataset. Within a sampled batch, we first sample a set of
videos, and then sample a sub-trajectory from each video (Step 3 in Algorithm 1). In this formulation,
each sub-trajectory is treated as a video segment from the algorithm’s perspective; this can viewed as
a variant of trajectory data augmentation. As in R3M, we apply random crop at a video level within
a batch, so all frames from the same video sub-trajectory are cropped the same way. Then, each
raw observation is resized and center-cropped to have shape 224× 224× 3 before passed into the
visual encoder. Finally, as in standard contrastive learning and R3M, for each sampled sub-trajectory
{oit, ..., oik, oik+1, ..., o

i
T }, we also sample additional 3 negative samples (õj , õj+1) from separate

video sequences to be included in the log-sum-exp term in L(φ).

D.2 VIP HYPERPARAMETERS

Hyperparameters used can be found in Table 2.
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Table 2: VIP Architecture & Hyperparameters.

Name Value

Architecture Visual Backbone ResNet50 (He et al., 2016)
FC Layer Output Dim 1024

Hyperparameters Optimizer Adam (Kingma & Ba, 2014)
Learning rate 0.0001
L1 weight penalty 0.001
L1 weight penalty 0.001
Mini-batch size 32
Discount factor γ 0.98

D.3 VIP PYTORCH PSEUDOCODE

In this section, we present a pseudocode of VIP written in PyTorch (Paszke et al., 2019), Algorithm 2.
As shown, the main training loop can be as short as 10 lines of code.

Algorithm 2 VIP PyTorch Pseudocode

# D: offline dataset
# phi: vision architecture

# training loop
for (o_0, o_t1,o_t2, g) in D:

phi_g = phi(o_g)
V_0 = - torch.linalg.norm(phi(o_0), phi_g)
V_t1 = - torch.linalg.norm(phi(o_t1), phi_g)
V_t2 = - torch.linalg.norm(phi(o_t2), phi_g)
VIP_loss = (1-gamma)*-V_0.mean() + torch.logsumexp(V_t1+1-gamma*V_t2)
optimizer.zero_grad()
VIP_loss.backward()
optimizer.step()

E SIMULATION EXPERIMENT DETAILS.

E.1 FRANKAKITCHEN TASK DESCRIPTIONS

In this section, we describe the FrankaKitchen suite for our simulation experiments. We use 12 tasks
from the v0.1 version2 of the environment.

We use the environment default initial state as the initial state and frame for all tasks in the Hard
setting. In the Easy setting, we use the 20th frame of a demonstration trajectory and its corresponding
environment state as the initial frame and state. The goal frame for both settings is chosen to be the
last frame of the same demonstration trajectory. The initial frames and goal frame for all 12 tasks and
3 camera views are illustrated in Figure 8-9. In the Easy setting, the horizon for all tasks is 50 steps;
in the Hard setting, the horizon is 100 steps. Note that using the 20th frame as the initial state is a
crude way for initializing the robot, and for some tasks, this initialization makes the task substantially
easier, whereas for others, the task is still considerably difficult. Furthermore, some tasks become
naturally more difficult depending on camera viewpoints. For these reasons, it is worth noting that
our experiment’s emphasis is on the aggregate behavior of pre-trained representations, instead of
trying to solve any particular task as well as possible.

E.2 IN-DOMAIN REPRESENTATION PROBING

In this section, we describe the experiment we performed to generate the in-domain VIP vs. TCN
comparison in Figure 2. We fit VIP and TCN representations using 100 demonstrations from the

2https://github.com/vikashplus/mj_envs/tree/v0.1real/mj_envs/envs/relay_kitchen

21

https://github.com/vikashplus/mj_envs/tree/v0.1real/mj_envs/envs/relay_kitchen


Published as a conference paper at ICLR 2023

(a) ldoor_close (left) (b) ldoor_close (center) (c) ldoor_close (right)

(d) ldoor_open (left) (e) ldoor_open (center) (f) ldoor_open (right)

(g) rdoor_close (left) (h) rdoor_close (center) (i) rdoor_close (right)

(j) rdoor_open (left) (k) rdoor_open (center) (l) rdoor_open (right)

(m) sdoor_close (left) (n) sdoor_close (center) (o) sdoor_close (right)

(p) sdoor_open (left) (q) sdoor_open (center) (r) sdoor_open (right)

Figure 8: Initial frame (Easy), initial frame (Hard), and goal frame for all 12 tasks and 3 camera views in our
FrankaKitchen suite.

22



Published as a conference paper at ICLR 2023

(a) micro_close (left) (b) micro_close (center) (c) micro_close (right)

(d) micro_open (left) (e) micro_open (center) (f) micro_open (right)

(g) knob1_on (left) (h) knob1_on (center) (i) knob1_on (right)

(j) knob1_off (left) (k) knob1_off (center) (l) knob1_off (right)

(m) light_on (left) (n) light_on (center) (o) light_on (right)

(p) light_off (left) (q) light_off (center) (r) light_off (right)

Figure 9: Initial frame (Easy), initial frame (Hard), and goal frame for all 12 tasks and 3 camera views in our
FrankaKitchen suite.
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Figure 10: Trajectory optimization results with pose errors.

FrankaKitchen sdoor_open task (center view). For TCN, we use R3M’s implementation of the
TCN loss without any modification; this also allows our findings in Figure 2 to extend to the main
experiment section. The visual architecture is ResNet34, and the output dimension is 2, which enables
us to directly visualize the learned embedding. Different from the out-of-domain version of VIP, we
also do not perform weight penalty, trajectory-level random cropping data augmentation, or additional
negative sampling. Besides these choices, we use the same hyperparameters as in Table 2 and train
for 2000 batches.

E.3 TRAJECTORY OPTIMIZATION

We use a publicly available implementation of MPPI3, and make no modification to the algorithm or
the default hyperparameters. In particular, the planning horizon is 12 and 32 sequences of actions
are proposed per action step. Because the embedding reward (equation 1) is the goal-embedding
distance difference, the score (i.e., sum of per-transition reward) of a proposed sequence of actions is
equivalent to the negative embedding distance (i.e., Sφ(φ(oT );φ(g))) at the last observation.

E.3.1 ROBOT AND OBJECT POSE ERROR ANALYSIS

In this section, we visualize the per-step robot and object pose L2 error with respect to the goal-image
poses. We report the non-cumulative curves (on the success rate as well) for more informative
analysis.

E.4 REINFORCEMENT LEARNING

We use a publicly available implementation of NPG4, and make no modification to the algorithm or
the default hyperparameters. In the Easy (resp. Hard) setting, we train the policy until 500000 (resp.
1M) real environment steps are taken. For evaluation, we report the cumulative maximum success
rate on 50 test rollouts from each task configuration (50*108=5400 total rollouts) every 10000 step.

F REAL-WORLD ROBOT EXPERIMENT DETAILS

F.1 TASK DESCRIPTIONS

The robot learning environment is illustrated in Figure 11; a RealSense camera is mounted on the
right edge of the table, and we only use the RGB image stream without depth information for data
collection and policy learning.

We collect offline data Dtask for each task via kinesthetic playback, and the object initial placement
is randomized for each trajectory. On the simplest CloseDrawer task, we combine 10 expert
demonstrations with 20 sub-optimal failure trajectories to increase learning difficulty. For the other

3https://github.com/aravindr93/trajopt/blob/master/trajopt/algos/mppi.py
4https://github.com/aravindr93/mjrl/blob/master/mjrl/algos/npg_cg.py
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Table 3: Real-world robotics tasks descriptions.

Environment Object Type Dataset Success Criterion

CloseDrawer Articulated Object 10 demos + 20 failures the drawer is closed enough that the spring loads.
PushBottle Transparent Object 20 demonstrations the bottle is parallel to the goal line set by the icecream cone.
PlaceMelon Soft Object 20 demonstrations the watermelon toy is fully placed in the plate.
FoldTowel Deformable Object 20 demonstrations the bottom half of the towel is cleanly covered by the top half.

Figure 11: Real-robot setup.

three tasks, we collect 20 expert demonstrations, which we found are difficult enough for learning
good policies. Each demonstration is 50-step long collected at 25Hz. The initial state for the robot is
fixed for each demonstration and test rollout, but the object initial position is randomized. The task
success is determined based on a visual criterion that we manually check for each test rollout. The
full task breakdown is described in Table 3.

Each task is specified via a set of goal images that are chosen to be the last frame of all demonstrations
for the task. Hence, the goal embedding used to compute the embedding reward (equation 1( for each
task is the average over the embeddings of all goal frames.

The tasks (in their initial positions) using a separate high-resolution phone camera are visualized in
Figure 12. Sample demonstrations in the robot camera view are visualized in Figure 13.

F.2 TRAINING AND EVALUATION DETAILS

The policy network is implemented as a 2-layer MLP with hidden sizes [256, 256]. As in R3M’s
real-world robot experiment setup, the policy takes in concatenated visual embedding of current
observation and robot’s proprioceptive state and outputs robot action. The policy is trained with a
learning rate of 0.001, and a batch size of 32 for 20000 steps.

For RWR’s temperature scale, we use τ = 0.1 for all tasks, except CloseDrawer where we find
τ = 1 more effective for both VIP and R3M.

For policy evaluation, we use 10 test rollouts with objects randomly initialized to reflect the object
distribution in the expert demonstrations. The rollout horizon is 100 steps.

(a) CloseDrawer (b) PushBottle (c) PickPlaceMelon (d) FoldTowel

Figure 12: Side-view of real-robot tasks using a high-resolution smartphone camera.
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(a) CloseDrawer

(b) PushBottle

(c) PickPlaceMelon

(d) FoldTowel

Figure 13: Real-robot task demonstrations (every 10th frame) in robot camera view. The first and last frames in
each row are representative of initial and final goal observaions for the respective task.

F.3 ADDITIONAL ANALYSIS & CONTEXT

Offline RL vs. imitation learning for real-world robot learning. Offline RL, though known as
the data-driven paradigm of RL (Levine et al., 2020), is not necessarily data efficient (Agarwal
et al., 2021), requiring hundreds of thousands of samples even in low-dimensional simulated tasks,
and requires a dense reward to operate most effectively (Mandlekar et al., 2021; Yu et al., 2022).
Furthermore, offline RL algorithms are significantly more difficult to implement and tune compared to
BC (Kumar et al., 2021; Zhang & Jiang, 2021). As such, the dominant paradigm of real-world robot
learning is still learning from demonstrations (Jang et al., 2022; Mandlekar et al., 2018; Ebert et al.,
2021). With the advent of VIP-RWR, offline RL may finally be a practical approach for real-world
robot learning at scale.

Performance of R3M-BC. Our R3M-BC, though able to solve some of the simpler tasks, appears to
perform relatively worse than the original R3M-BC in Nair et al. (2022) on their real-world tasks.
To account for this discrepancy, we note that our real-world experiment uses different software-
hardware stacks and tasks from the original R3M real-world experiments, so the results are not
directly comparable. For instance, camera placement, an important variable for real-world robot
learning, is chosen differently in our experiment and that of R3M; in R3M, a different camera angle is
selected for each task, whereas in our setup, the same camera view is used for all tasks. Furthermore,
we emphasize that our focus is not the absolute performance of R3M-BC, but rather the relative
improvement R3M-RWR provides on top of R3M-BC.

F.4 QUALITATIVE ANALYSIS

In this section, we study several interesting policy behaviors VIP-RWR acquire. Policy videos are
included in our supplementary video.

Robust key action execution. VIP-RWR is able to execute key actions more robustly than the
baselines; this suggests that its reward information helps it identify necessary actions. For example,
as shown in Figure 14, on the PickPlaceMelon task, failed VIP-RWR rollouts at least have the
gripper grasp onto the watermelon, whereas for other baselines, the failed rollouts do not have the
watermelon between the gripper and often incorrectly push the watermelon to touch the plate’s outer
edge, preventing pick-and-place behavior from being executed.
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(a) VIP-RWR (b) VIP-BC (c) REM-RWR (d) REM-RWR

Figure 14: Comparison of failure trajectories on PickPlaceMelon. VIP-RWR is still able to reach the critical
state of gripping watermelon, whereas baselines fail.

Figure 15: VIP vs. Alternative Pre-Training Algorithms on Ego4D.

Task re-attempt. We observe that VIP-RWR often learns more robust policies that are able to
perform recovery actions when the task is not solved on the first attempt. For instance, in both
CloseDrawer and FoldTowel, there are trials where VIP-RWR fails to close the drawer all the
way or pick up the towel edge right away; in either case, VIP-RWR is able to re-attempt and solves
the task (see our supplementary video). This is a known advantage of offline RL over BC (Kumar
et al., 2022; Levine et al., 2020); however, we only observe this behavior in VIP-RWR and not
R3M-RWR, indicating that this advantage of offline RL is only realized when the reward information
is sufficiently informative.

G ADDITIONAL RESULTS

G.1 COMPARISON TO MAE AND MOCO TRAINED ON EGO4D

In this section, we compare to two additional representations trained on the same pre-training dataset
of Ego4D. We compare them to VIP and R3M in the trajectory optimization setting and evaluate
their performance as the optimization budget increases in the spirit of Figure 5. The result are
shown in Figure 15. Consistent with the findings in the main text, the pre-training dataset is not
the source of VIP’s empirical gains; all prior state-of-art pre-training methods struggle as zero-shot
reward functions. Notably, MAE uses a vision transformer (Dosovitskiy et al., 2020) architecture
backbone and exhibits an improving trend in performance similar to VIP; however, MAE’s absolute
performance is still far inferior to VIP.

G.2 VALUE-BASED PRE-TRAINING ABLATION: LEAST-SQUARE TEMPORAL-DIFFERENCE

While VIP is the first value-based pre-training approach and significantly outperforms all existing
methods, we show that this effectiveness is also unique to VIP and not to training a value function.
To this end, we show that a simpler value-based baseline does not perform as well. In particular,
we consider Least-Square Temporal-Difference policy evaluation (LSTD) (Bradtke & Barto, 1996;
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Figure 16: VIP vs. LSTD Trajectory Optimization Comparison.

Table 4: Visual Imitation Learning Results.

Self-Supervised Supervised
VIP (E) LSTD (E) R3M-Lang (E) MOCO (I) R3M (E) ResNet50 (I) CLIP (Internet)

Success Rate 53.6 51.5 51.2 45.0 55.9 41.8 44.3

Sutton & Barto, 2018) to assess the importance of the choice of value-training objective:

min
φ

E(o,o′,g)∼D

[(
δ̃g(o) + γV (φ(o′);φ(g))− V (φ(s), φ(g))

)2]
, (29)

in which we also parameterize V as the negative L2 embedding distance as in VIP. Given that human
videos are reasonably goal-directed, the value of the human behavioral policy computed via LSTD
should be a decent choice of reward; however, LSTD does not capture the long-range dependency of
initial to goal frames (first term in equation 3), nor can it obtain a value function that outperforms
that of the behavioral policy. We train LSTD using the exact same setup as in VIP, differing in only
the training objective, and compare it against VIP in our trajectory optimization settings.

As shown in Fig. 16, interestingly, LSTD already works better than all prior baselines in the Easy
setting, indicating that value-based pre-training is indeed favorable for reward-specification. However,
its inability to capture long range temporal dependency as in VIP (the first term in VIP’s objective)
makes it far less effective on the Hard setting, which require extended smoothness in the reward
landscape to solve given the distance between the initial observation and the goal. These results
show that VIP’s superior reward specification comes precisely from its ability to capture both long-
range temporal dependencies and local temporal smoothness, two innate properties of its dual value
objective and the associated implicit time contrastive learning interpretation. To corroborate these
findings, we have also included LSTD in our qualitative reward curve and histogram analysis in
App. G.5, G.7, and G.8 and finds that VIP generates much smoother embedding than LSTD.

G.3 VISUAL IMITATION LEARNING

One alternative hypothesis to VIP’s smoother embedding for its superior reward-specification capabil-
ity is that it learns a better visual representation, which then naturally enables a better visual reward
function. To investigate this hypothesis, we compare representations’ capability as a pure visual
encoder in a visual imitation learning setup. We follow the training and evaluation protocol of (Nair
et al., 2022) and consider 12 tasks combined from FrankaKitchen, MetaWorld (Yu et al., 2020), and
Adroit (Rajeswaran et al., 2017), 3 camera views for each task, and 3 demonstration dataset sizes,
and report the aggregate average maximum success rate achieved during training. R3M-Lang is the
publicly released R3M variant without supervised language training. The average success rates over
all tasks are shown in Table 4; the letter inside () stands for the pre-training dataset with E referring
to Ego4D and I Imagenet.
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These results suggest that with current pre-training methods, the performance on visual imitation
learning may largely be a function of the pre-training dataset, as all methods trained on Ego4D, even
our simple baseline LSTD, performs comparably and are much better than the next best baseline
not trained on Ego4D. Conversely, this result also suggests that despite not being designed for this
purely supervised learning setting, value-based approaches constitute a strong baseline, and VIP is
in fact currently the state-of-art for self-supervised methods. While these results highlight that VIP
is effective even as a pure visual encoder, a necessary requirement for joint effectiveness for visual
reward and representation, it fails to explain why VIP is far superior to R3M in reward-based policy
learning. As such, we conclude that studying representations’ capability as a pure visual encoder
may not be sufficient for distinguishing representations that can additionally perform zero-shot
reward-specification.

G.4 EMBEDDING AND TRUE REWARDS CORRELATION

In this section, we create scatterplots of embedding reward vs. true reward on the trajectories MPPI
have generated to assess whether the embedding reward is correlated with the ground-truth dense
reward. More specifically, for each transition in the MPPI trajectories in Figure 4, we plot its reward
under the representation that was used to compute the reward for MPPI versus the true human-crafted
reward computed using ground-truth state information. The dense reward in FrankaKitchen tasks
is a weighted sum of (1) the negative object pose error, (2) the negative robot pose error, (3) bonus
for robot approaching the object, and (4) bonus for object pose error being small. This dense reward
is highly tuned and captures human intuition for how these tasks ought to be best solved. As such,
high correlation indicates that the embedding is able to capture both intuitive robot-centric and
object-centric task progress from visual observations. We only compare VIP and R3M here as a proxy
for comparing our implicit time contrastive mechanism to the standard time contrastive learning.

The scatterplots over all tasks and camera views (Easy setting) are shown in Figure 17,18, and 19.
VIP rewards exhibit much greater correlation with the ground-truth reward on its trajectories that
do accomplish task, indicating that when VIP does solve a task, it is solving the task in a way that
matches human intuition. This is made possible via large-scale value pre-training on diverse human
videos, which enables VIP to extract a human notion of task-progress that transfers to robot tasks and
domains. These results also suggest that VIP has the potential of replacing manual reward engineering,
providing a data-driven solution to the grand challenge of reward engineering for manipulation tasks.
However, VIP is not yet perfect in its current form. Both methods exhibit local minima where high
embedding distances in fact map to lower true rewards; however, this phenomenon is much severe
for R3M. On 8 out of 12 tasks, VIP at least has one camera view in which its rewards are highly
correlated with the ground-truth rewards on its MPPI trajectories.

G.5 EMBEDDING DISTANCE CURVES

In Figure 20, we present additional embedding distance curves for all methods on Ego4D and our
real-robot offline RL datasets. For Ego4D, we randomly sample 4 videos of 50-frame long (see
Appendix G.6 for how these short snippets are sampled), and for our robot dataset, we compute the
embedding distance curves for the 4 sample demonstrations in Figure 13. As shown, on all tasks in
the real-robot dataset, VIP is distinctively more smooth than any other representation. This pattern
is less accentuated on Ego4D. This is because a randomly sampled 50-frame snippet from Ego4D
may not coherently represent a task solved from beginning to completion, so an embedding distance
curve is not inherently supposed to be smoothly declining. Nevertheless, VIP still exhibits more local
smoothness in the embedding distance curves, and for the snippets that do solve a task (the first two
videos), it stands out as the smoothest representation.

G.6 EMBEDDING DISTANCE CURVE BUMPS

In this section, we compute the fraction of negative embedding rewards (equivalently, positive
slopes in embedding embedding distance curves) for each video sequence and average over all video
sequences in a dataset. Each sequence in our robot dataset is of 50 frames, and we use each sequence
without any further truncation. For Ego4D, video sequences are of variable length. For each long
sequence of more than 50 frames, we use the first 50 frames. We do not include videos shorter than
50 frames, in order to make the average fraction for each representation comparable between the
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(a) ldoor_close (left) (b) ldoor_close (c) ldoor_close (right)

(d) ldoor_open (left) (e) ldoor_open (f) ldoor_open (right)

(g) sdoor_close (left) (h) sdoor_close (i) sdoor_close (right)

(j) sdoor_open (left) (k) sdoor_open (l) sdoor_open (right)

Figure 17: Embedding reward vs. ground-truth human-engineered reward correlation (VIP vs. R3M) part 1.
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(a) rdoor_close (left) (b) rdoor_close (c) rdoor_close (right)

(d) rdoor_open (left) (e) rdoor_open (f) rdoor_open (right)

(g) micro_close (left) (h) micro_close (i) micro_close (right)

(j) micro_open (left) (k) micro_open (l) micro_open (right)

Figure 18: Embedding reward vs. ground-truth human-engineered reward correlation (VIP vs. R3M) part 2.
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(a) knob1_on (left) (b) knob1_on (c) knob1_on (right)

(d) knob1_on (left) (e) knob1_on (f) knob1_on (right)

(g) light_on (left) (h) light_on (i) light_on (right)

(j) light_off (left) (k) light_off (l) light_off (right)

Figure 19: Embedding reward vs. ground-truth human-engineered reward correlation (VIP vs. R3M) part 3.
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(a) Ego4D

(b) Real-robot dataset

Figure 20: Additional embedding distance curves on Ego4D and real-robot videos.

Table 5: Proportion of bumps in embedding distance curves.

Dataset VIP (Ours) R3M ResNet50 MOCO CLIP

Ego4D 0.253 ± 0.117 0.309 ± 0.097 0.414 ± 0.052 0.398 ± 0.057 0.444 ± 0.047
In-House Robot Dataset 0.243 ± 0.066 0.323 ± 0.076 0.366 ± 0.046 0.380 ± 0.052 0.438 ± 0.046

two distinct datasets. Note that for Ego4D, due to its in-the-wild nature, it is not guaranteed that a
50-frame segment represents one task being solved from beginning to completion, so there may be
naturally bumps in the embedding distance curve computed with respect to the last frame, as earlier
frames may not actually be progressing towards the last frame in a goal-directed manner.The full
results are shown in Table 5. VIP has fewest bumps in Ego4D videos, and this notion of smoothness
transfer to the robot dataset. Furthermore, since the robot videos are in fact visually simpler and each
video is guaranteed to be solving one task, the bump rate is actually lower despite the domain gap.
While this observation generally also holds true for other representations, it notably does not hold for
R3M, which is trained using standard time contrastive learning.

G.7 EMBEDDING REWARD HISTOGRAMS (REAL-ROBOT DATASET)

We present the reward histogram comparison against all baselines in Figure 21. The trend of VIP
having more small, positive rewards and fewer extreme rewards in either direction is consistent across
all comparisons.

G.8 EMBEDDING REWARD HISTOGRAMS (EGO4D)

We present the reward histogram comparison against all baselines in Figure 22. The histograms
are computed using the same set of 50-frame Ego4D video snippets as in Appendix G.6. The
y-axis is in log-scale due to the large total count of Ego4D frames. As discussed, Ego4D video
segments are less regular than those in our real-robot dataset, and this irregularity contributes to
all representations having significantly more negative rewards compared to their histograms on the
real-robot dataset. Nevertheless, the relative difference ratio’s pattern is consistent, showing VIP
having far more rewards that lie in the first positive bin. Furthermore, VIP also has significantly fewer
extreme negative rewards compared to all baselines.

H LIMITATIONS AND FUTURE WORK

In this section, we describe limitations within the current VIP formulation and model and some
potential future directions.

33



Published as a conference paper at ICLR 2023

(a) VIP vs. R3M (b) VIP vs. ResNet

(c) VIP vs. MoCo (d) VIP vs. CLIP

(e) VIP vs. LSTD

Figure 21: Embedding reward histogram comparison on real-robot dataset.

(a) VIP vs. R3M (b) VIP vs. ResNet

(c) VIP vs. MoCo (d) VIP vs. CLIP

(e) VIP vs. LSTD

Figure 22: Embedding reward histogram comparison on Ego4D videos.
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VIP is currently limited to providing rewards for tasks that can be specified via a goal image. While
this encompasses a wide range of robotics tasks, many tasks cannot be fully expressed via a static
image, such as ones that require following intermediate instructions and steps. Likewise, though not
a strict assumption, we have only tested VIP with visual goals from the same domain (robots are not
necessarily in the goal image). Extending VIP to be compatible with even more flexible and extensive
forms of goals is a fruitful direction for expanding VIP’s capability.

VIP current parameterizes the value function as a symmetric embedding distance; this assumes that
the environment is reversible (i.e., it is equally easy to get from o to g and from g to o), which
may not hold in practice. While we did not observe this to affect practical performance, we may
improve performance by parameterizing V (o; g) as some distance function that supports asymmetrical
structures, such as quasimetrics. Extending VIP with recent method (Wang & Isola, 2022) that can
learn quasimetrics with finite data may be a fruitful future direction.

We have also used VIP only as a frozen visual reward and representation module to test its broad
generalization capability. Better absolute task performance may be achieved by fine-tuning VIP on
task-specific data. Exploring how to best fine-tune VIP is a promising direction for pushing VIP’s
limit.

Finally, we have focused on robot manipulation tasks in this work, but VIP’s training objective can
also be used for pre-training reward and representation for other goal-directed tasks, such as visual
navigation (Savva et al., 2019). Exploring how VIP can be used to solve these other embodied AI
tasks is also a promising avenue of future work.
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