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Abstract. Central pattern generators (CPGs) are ubiquitous neural cir-
cuits that contribute to an eclectic collection of rhythmic behaviors across
an equally diverse assortment of animal species. Due to their prominent
role in many neuromechanical phenomena, numerous bioinspired robots
have been designed to both investigate and exploit the operation of these
neural oscillators. In order to serve as effective tools for these robotics
applications, however, it is often necessary to be able to adjust the phase
alignment of multiple CPGs during operation. To achieve this goal, we
present the design of our phase difference control (PDC) network using
a functional subnetwork approach (FSA) wherein subnetworks that per-
form basic mathematical operations are assembled such that they serve
to control the relative phase lead/lag of target CPGs. Our PDC network
operates by first estimating the phase difference between two CPGs, then
comparing this phase difference to a reference signal that encodes the
desired phase difference, and finally eliminating any error by emulating
a proportional controller that adjusts the CPG oscillation frequencies.
The architecture of our PDC network, as well as its various parame-
ters, are all determined via analytical design rules that allow for direct
interpretability of the network behavior. Simulation results for both the
complete PDC network and a selection of its various functional subnet-
works are provided to demonstrate the efficacy of our methodology.

Keywords: Multistate central pattern generators · Functional
subnetwork approach · Phase difference control

1 Introduction

As one of the fundamental neural units that contributes to a myriad of rhythmic
behaviors throughout the animal kingdom, central pattern generators (CPGs)
have seen a plethora of academic research over the past several decades. Thanks
to these efforts, there is strong evidence for the existence of CPGs in a wide
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variety of animals, including but not limited to insects [10], fish [9], mollusks
[15], amphibians [8], and mammals [6], as well as numerous studies detailing
their role in various animal behaviors from respiration [11] to swimming [15],
flying [12], and ambulation [3]. At the same time, we have seen numerous exam-
ples of biologically inspired robots that incorporate CPG elements into their
broader control schemes in attempts to study the underlying neuromechanical
basis for locomotion [7]. Given their wide applicability to disparate fields of
academic research from biology to robotics, it is difficult to overstate the impor-
tance of these ostensibly elementary neural circuits; yet, despite the abundance
of research in this field, several fundamental areas of inquiry still remain open. Of
particular importance to locomotor robotics applications is the question of how
best multiple CPGs may be coordinated via descending commands to achieve
desired activation patterns. More specifically, since many practical applications
require the ability to modify the phase relationship between several interacting
CPGs, such as in legged locomotion where the relative timing of individual legs
segments varies by gait, it is necessary to be able to design systems of coupled
CPGs whose phase difference may be adjusted by simple descending commands.
This is precisely the feat that we set out to accomplish in this paper.

1.1 Our Contribution

We present a novel method for controlling the phase difference between several
multistate CPGs using a non-spiking functional subnetwork approach (FSA).
These CPGs are “multistate” in that they permit arbitrarily many neurons
to become maximally excited in a specific, predetermined order. Similarly, the
“functional subnetwork approach” refers to the analytical non-spiking network
design techniques developed in [14], which we extend and apply extensively in
this work to the design of our phase difference control (PDC) network. Our
PDC network operates by: (1) computing the existing phase lead/lag between
two multistate CPGs, (2) computing the difference between the computed phase
lead/lag and the desired phase lead/lag represented by a single descending com-
mand, and (3) adjusting the relative excitation of the two CPGs to modify their
oscillation frequency and thus adjust their phase difference based on a simple
proportional control scheme. Compared to existing techniques such as [1], this
method is novel not just in the analytical approach that we take to designing our
PDC network, but also in the fact that we are able to control the relative phase
difference between two multistate CPGs with a single descending command, as
opposed to having a specific, pre-determined desired phase difference built into
the network parameters themselves. Furthermore, the technique that we present
here is applicable to controlling the relative phase of multistate CPGs arranged
in arbitrary patterns, including both sequential chains of CPGs such as those
found in lamprey [9] and salamander [8] applications, as well as configurations
where multiple CPGs utilize a single reference CPG such as when pattern gen-
erating CPG layers connect to higher level rhythm generating CPG layers in
walking applications [2].
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2 Background

The two fields of information that are required to understand our PDC network
formulation are those pertaining to central pattern generators (CPGs) and the
non-spiking functional subnetwork approach (FSA).

2.1 Central Pattern Generators (CPGs)

As has perhaps already been made clear by the abundant selection of aforemen-
tioned studies, a thorough treatment of the history of CPGs and their develop-
ment is beyond the scope of this work. For a summary, refer to works such as [6]
and [10] that provide animal specific overviews. To meet our ends, it is sufficient
to instead focus on the mathematical description of these dynamical systems.

Consider a CPG comprised of n ∈ N neurons. Let N≤n = {1, . . . , n}. Then
∀i ∈ N≤n the membrane voltage Ui of the ith neuron with respect to its resting
potential Er,i with leak, synaptic, sodium channel, and applied currents satisfies

Cm,iU̇i = Ileak,i + Isyn,i + INa,i + Iapp,i (1)

where Cm,i is the membrane capacitance and the constituent currents are defined
as

Ileak,i = −Gm,iUi, (2)

Isyn,i =
n∑

j=1

Gsyn,ij(ΔEsyn,ij − Ui), (3)

INa,i = GNa,im∞,ihi(ΔENa,i − Ui) (4)

with membrane conductance Gm,i, synaptic reversal potential ΔEsyn,ij , sodium
channel conductance GNa,i, and sodium channel reversal potential ΔENa,i. Like-
wise, the synaptic conductance of the ijth synapse Gsyn,ij is defined by

Gsyn,ij = gsyn,ij min
(

max
(

Uj

Rj
, 0

)
, 1

)
(5)

where gsyn,ij is the maximum synaptic conductance of the ijth synapse and Rj

is the operating voltage domain of the jth pre-synaptic neuron. Note that hi is
a second dynamical variable that describes the sodium channel deactivation of
neuron i and satisfies

ḣi =
h∞,i − hi

τh,i
(6)

where the sodium channel deactivation time constant is

τh,i = τh,max,ih∞,i

√
Ah,ie−Sh,i(ΔEh,i−Ui) (7)
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with maximum sodium channel deactivation time constant τh,max,i, and sodium
channel deactivation parameters Ah,i, Sh,i, and ΔEh,i. The final remaining vari-
ables of these equations are the steady state sodium channel activation and
deactivation parameters defined by

m∞,i =
1

1 + Am,ie−Sm,i(ΔEm,i−Ui)
, (8)

h∞,i =
1

1 + Ah,ie−Sh,i(ΔEh,i−Ui)
(9)

where Am,i, Sm,i, and ΔEm,i are sodium channel activation parameters.

2.2 Functional Subnetwork Approach (FSA)

The functional subnetwork approach (FSA) refers to the analytical methods
developed by [14] for designing subnetworks of non-spiking neurons to perform
basic tasks, including: (1) signal transfer such as transmission and modulation;
(2) arithmetic operations such as addition, subtraction, multiplication, and divi-
sion; and (3) calculus operations such as differentiation and integration. One of
the main attractions of this work lies in the fact that it combines simple neural
architectures with analytical design rules constrained by biological limitations,
a combination of features that ensures that the resulting subnetworks are both
meaningful and easily interpretable. This is in contrast to the often “black-box”
nature of networks whose architectures and other hyper-parameters are tuned
via genetic algorithms [4] or Bayesian optimization [5], and whose lower level
parameters are determined via any number of popular optimization schemes. In
order to construct our phase difference controller subnetwork, we apply many
slight variations of the different FSA subnetworks. For a thorough explanation
of their original FSA design rules refer to Tables 1 and 2 in [14].

3 Methodology

Having established the context for this work, we now present the computational
algorithm that our PDC network performs, as well as the mathematical formu-
lations necessary to design each of its constituent subnetworks. Since the same
PDC network architecture is used to control the relative phase between any
pair of multistate CPGs, we can assume that we have N = 2 multistate CPGs
with n ∈ N neurons each without loss of generality. Let the subscripts A and B
refer to the properties of the first and second multistate CPGs, respectively. In
this case, we wish to construct a PDC network that controls the phase differ-
ence ΔφAB = φA − φB according to the desired phase difference encoded as an
applied current. To accomplish this task, we: (1) create the two multistate CPGs
whose relative phase we will control; (2) design a subnetwork that estimates the
phase difference between these two CPGs; (3) compute the phase error relative
to the desired phase reference; and (4), use a simple proportional control scheme
to eliminate the error.
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3.1 Designing Driven Multistate CPGs

The first step in designing our PDC subnetwork is to actually create the two
multistate CPGs whose relative phase we will be controlling. To accomplish this,
we draw significant inspiration from [13], extending their methodology to work
for CPGs comprised of arbitrarily many neurons.

Sodium Channel Conductances GNa,i. While the sodium channel reversal
potentials ΔENa,i are determined based on biological constraints, the sodium
channel conductances GNa,i are CPG exclusive parameters that must be set to
ensure adequate intrinsic excitation of the CPG neurons. Fortunately, the use
of arbitrarily many CPG neurons does not complicate [13]’s design rule beyond
additional indexing, so no additional derivation is required.

Maximum Synaptic Conductances gsyn,ij . To compute the required max-
imum synaptic conductances gsyn,ij for each synapse in our multistate CPG,
we once again take inspiration from [13]. Szczecinski et al. point out that the
oscillatory behavior of a two neuron CPG depends strongly on the bifurcation
parameter δ, which represents the steady state membrane voltage of the inhib-
ited neuron when the other neuron is excited. If δ ≤ 0, the system operates in
a bistable mode. If instead 0 < δ < δmax, the system oscillates with increasing
frequency as δ → δmax. Finally, once δ ≥ δmax, the system settles into a single
stable equilibrium point.

For the purposes of our multistate CPG comprised of n ∈ N neurons, we will
have n(n−1) total δij values to set, where each δij represents the desired steady
state membrane voltage U�

i of neuron i when neuron j is maximally excited
∀i, j ∈ N≤n such that i �= j. In other words, when U�

j = Rj we want U�
i = δij

∀i �= j. Let (kj)n
j=1 = (k1, . . . , kn) be a sequence of n indexes kj ∈ N≤n such that

kj �= j that defines the order in which we would like the neurons of our multistate
CPG to become maximally excited. To ensure that only a single neuron becomes
excited at a time and that the system oscillates in the desired order, we require
that ∀j ∈ N≤n with i �= j

{
0 < δij < δmax, if i = kj

δij < 0, otherwise
(10)

In other words, we require that when each CPG neuron becomes excited, only
one other neuron in the network attains a positive (but not too large) steady
state membrane voltage 0 < δij < δmax,ij and that this neuron be the one
that we desire to become maximally excited next. All other neurons in the CPG
subnetwork should attain negative steady state membrane voltages δij < 0.

With an appropriate selection of bifurcation parameters δij , we can write
a system of equations that describes the steady state behavior of the multi-
state CPG system when each of its neurons is maximally excited one at a time.
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Specifically, ∀i, j, k ∈ N≤n with i �= j, j �= k, and k �= i we have

0 = −Gm,iδik +
n∑

j=1,j �=k

gsyn,ij min
(

max
(

δjk

Rj
, 0

)
, 1

)
(ΔEsyn,ij − δik)

+ GNa,im∞,i (δik) h∞,i (δik) (ΔENa,i − δik) + Iapp,i

(11)

where i indicates the post-synaptic neuron of interest, j indicates the pre-
synaptic neuron of interest, and k indicates the neuron that is maximally excited.
The previous expression is actually a system of n(n − 1) equations with the
n(n − 1) maximum synaptic conductances gsyn,ij being the only unknowns (we
do not use self-connections, so gsyn,ij = 0 ∀i = j). Solving this system for the
unknown gsyn,ij allows us to design a multistate CPG that oscillates in the order
determined by our choice of δij values.

Designing Drive Synapses. In order to control the phase difference between
two of our multistate CPGs, it is necessary that we design a mechanism through
which we can adjust their relative oscillation frequency. Since each δij represents
the steady state membrane voltage U�

i of neuron i when neuron j is maximally
excited, we can temporarily adjust the steady state membrane voltage U�

i with-
out changing the associated δij for which we designed our network by applying
an external drive current Idr,i to the ith neuron. When this drive current has
a magnitude of zero, the transition between neurons j and i occurs at the fre-
quency determined by δij . However, as we increase this drive current up to some
maximum value Imax

dr,id, the transition between neurons j and i occurs with an
increased frequency beyond that associated with δij . Since it is our intention to
control the aggregate phase difference between these CPGs, we use a single drive
current per CPG that increases the transition frequency of all pairs of neurons.

In order to control the CPG phase difference via feedback, this drive current
must be created via synaptic connections from a single drive neuron (one per
multistate CPG). Let d ∈ N be the index associated with the drive neuron.
Consider the synaptic currents Isyn,id generated by the drive neuron ∀i ∈ N≤n

Isyn,id = gsyn,id min
(

max
(

Ud

Rd
, 0

)
, 1

)
(ΔEsyn,id − Ui) . (12)

We want to choose gsyn,id such that when Ud = Rd and Ui = maxj∈N (δij) then
Isyn,id = Imax

dr,id. Making these substitutions into the above equation and solving
for gsyn,id yields our drive maximum synaptic conductance design requirement

gsyn,id =
Imax
dr,id

ΔEsyn,id − maxj∈N (δij)
. (13)

3.2 Estimating Phase Lead/Lag

Estimating the phase lead/lag of the two CPGs is the most involved part of con-
trolling their phase difference. This procedure adheres to the following logic: (1)
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subtract the signals from the corresponding neurons in the CPGs, (2) integrate
and post-process this difference to get a proxy for the phase difference, and (3)
combine the phase difference estimates for each CPG neuron pair into a single
phase difference estimate.

Double Subtraction Subnetwork. To begin this process, we first sub-
tract the membrane voltages of the corresponding CPG neurons such that
ΔVAB,i = VA,i − VB,i ∀i ∈ N≤n. In order to ensure that we can represent both
lead and lag conditions, we perform this subtraction in both directions, resulting
in two signals (e.g., ΔVAB,i and ΔVBA,i). The first of these signals, ΔVAB,i, is
maximized when neuron i of CPG A is maximally excited and neuron i of CPG
B is inactive, while the second, ΔVBA,i, exhibits the opposite behavior.

While these two signals are not direct proxies for the phase difference between
the two CPG neurons, they do provide information about the phase of the sys-
tem. Fortunately, no additional design rules are required here because our double
subtraction subnetwork is merely a combination of two of the single subtraction
subnetworks from [14].

Voltage-Based Integration Subnetwork. In order to determine the extent
to which one CPG leads/lags the other, we must integrate the result of our double
subtraction subnetwork using a modification of the integration subnetwork from
[14]. Integrating ΔVAB,i and ΔVBA,i over time indicates how long the ith neuron
of each CPG was held high while the other was inactive. Thus by integrating
these signals over the oscillation period T of the CPGs, we can compute a proxy
TAB,i for the temporal lead/lag between the ith neurons by

TAB,i =
∫ T

0

ΔVAB,i − ΔVBA,idt. (14)

Note that here we are assuming that the two CPGs have the same oscillation
period T , which will not be the case once we start driving them at different
oscillation frequencies to control their phase difference. This is not a problem in
practice so long as the ith neuron of the lagging CPG does not become inactive
while the ith neuron of the leading CPG remains active. Practically speaking,
this limits how quickly we can adjust the phase difference of the two CPGs.

Post-Processing Neuron Phase Difference Estimates. Having computed
a rough proxy for the temporal lead/lag between the ith neurons of two CPGs, it
is prudent to clean up this result before proceeding. In particular, the integration
subnetwork result tends to change linearly over time as it accumulates incoming
currents. Although such behavior is expected of an integrator, it is not ideal for
achieving an accurate phase difference estimate because the temporal lead/lag
estimate is only accurate after the integrator has reached a steady state result,
not during the transient period wherein it accumulates currents.
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To address this problem, we first split the centered integration result into two
signals via a second double subtraction subnetwork. The first of these signals is
produced by a neuron that is excited when the integration output is above its
equilibrium value and the second when it is below its equilibrium value. Once the
integration result is split into two signals, the linear ramping portions of these
signals are removed via a modulation subnetwork [14] that is setup to suppress
the results when either VAB,i or VBA,i are high. We call the signals from this
modulatory subnetwork Vlead,i and Vlag,i.

Aggregating Phase Difference Estimates. With clean temporal lead/lag
estimates Vlead,i and Vlag,i for each of the neuron pairs in our two CPGs, we
can now aggregate these results into single CPG-based lead/lag estimates Vlead

and Vlag. Due to the fact that only one neuron in each CPG is active at a time
and that we remove the integration transients, the act of combining the various
neuron-based temporal lead and lag estimates is a simple matter of addition.
This means that we can use an addition subnetwork from [14] to perform the
calculations Vlead =

∑n
i=1 Vlead,i and Vlag =

∑n
i=1 Vlag,i.

Although we now have neural estimates of the temporal lead/lag for our
two CPGs, it is necessary to consolidate these estimates into a single value
for the purpose of later computing phase error. To accomplish this, we use a
combination of transmission, addition, and subtraction subnetworks that we
refer to as a “centering subnetwork.” First, the Vlead and Vlag signals are scaled
via transmission synapses, then they are shifted upward using a tonic signal
of Rcenter

2 , and finally the opposing scaled signal is subtracted to produce a
single, centered lead/lag estimate. Since all of the subnetworks that comprise our
centering subnetwork are discussed in [13], no new design rules are necessary.

3.3 Eliminating Phase Error

Given a reasonable proxy for the phase difference between the two CPGs, the
next step is to compare this estimate with the desired phase difference and
then to take corrective actions to eliminate any error. To begin, we directly
compute the phase error via a third double subtraction subnetwork. This time
the first output of the double subtraction subnetwork is high when CPG A
leads CPG B by too great of a margin, and visa versa for the second output.
Despite the fact that these error signals contain the information that the control
system needs, the fact that they are split among two neurons is inconvenient. As
such, we implement a second centering subnetwork using the same strategy as
discussed in Sect. 3.2. Like before the first output of the centering subnetwork is
high when CPG A leads CPG B too significantly, low when CPG A lags CPG
B too significantly, and exactly in the middle of its representational domain
when there is no error. The second output of the centering subnetwork has an
exactly inverse interpretation. Given this representation of the error, we can now
implement any number of control schemes to eliminate the error by adjusting
the currents to the drive neurons for our two multistate CPGs. This work uses a
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simple proportional control scheme wherein the greater the phase error the more
substantial the adjustment in the current applied to each drive neuron.

4 Results

Given the analytical design rules for our various functional subnetworks in
Sect. 3, we now turn our attention to demonstrating that these design rules do
in fact yield networks that produce the desired results. Toward this end, Fig. 1
summarizes the architectures and open loop simulation results of each of the
main functional subnetworks components in their context as part of the PDC
network. Neuron C1 serves as the drive neuron in the CPG shown in Fig. 1 and
is set to have a small tonic current in order to achieve slow oscillation.

Figure 2 demonstrates the impact that our PDC network has on the CPGs
it controls as the desired lead/lag reference is varied.

5 Discussion

The results presented in Sect. 4 indicate that both our individual subnetworks
and the fully assembled PDC network accomplish their stated goals. More specif-
ically, as shown in Fig. 1, our multistate CPGs produce robust oscillations that
follow their specified neuron oscillation order and respond well to changes in
the drive neuron state. Similarly, our basic subnetworks, including our addition,
subtraction, integration, and centering subnetworks all perform their associated
mathematical operations in Fig. 1 with similar quality to that reported by [14].
Despite the relative slowness of our PDC network, the results generated by this
network 2 do demonstrate its ability to adjust the phase difference of two mul-
tistate CPGs using a single descending command.

Although our novel PDC network is successful at controlling phase differ-
ences, there are several potential areas for improvement, including: (1) improv-
ing the robustness of our phase difference estimate; (2) incorporating numerical
optimization techniques; and (3) utilizing a more sophisticated control scheme.
The first of these improvements concerns the main limiting factor of our cur-
rent approach. Since our computational strategy for estimating phase difference
requires not only that each pair of associated CPG neurons have over lapping
signals, but also that the oscillation period of the two CPGs remain relatively
similar, there are significant limitations on how quickly we can adjust the phase
of our CPGs. One potential solution to these limitations is to estimate phase
differences by detecting the rising and falling edges of our CPG neurons, rather
than directly subtracting their voltage signals. Once the phase difference esti-
mate it more robust to changing oscillation frequencies, it should be possible to
further refine the accuracy of our functional subnetworks by employing numeri-
cal optimization techniques. While each of our individual functional subnetworks
have been optimized analytically for their specific operation, it is intractable to
perform this same type of analysis on the complete network; hence the value in
employing a numerical approach. Finally, a more sophisticated control law, such
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Fig. 1. Selected functional subnetwork architectures and their associated open loop
responses in the context of a PDC network. While only a single CPG is shown in
the rhythm generator, the other subnetwork responses are selected from a simulation
with two multistate CPGs wherein CPG A lags CPG B. Neurons C2-C5 from CPG A
connect to neuron S1 from their associated phase difference estimator, while neurons
C2-C5 from CPG B connect to S2 from their associated phase difference estimator.
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Fig. 2. Simulation results for a PDC network that adjusts the phase difference between
two multistate CPGs comprised of four neurons each. (a) Desired CPG phase difference.
(b) Membrane voltage response of each multistate CPG.

as PID or state-space control, would be able to more quickly and accurately
reduce phase error given high quality feedback.

6 Conclusions

The functional subnetwork approach (FSA) provides a suite of analytical design
tools that can be leveraged to build biological relevant subnetworks that perform
basic mathematical operations. By extending the principles of the FSA, we have
successfully designed a phase difference control (PDC) network that adjusts the
phase difference of pairs of multistate CPGs through the use of a single descend-
ing command. As evidenced by the large body of research on the subject, CPGs
are ubiquitous neural circuits that are fundamental to the proper functioning of
many oscillatory animal behaviors and have therefore also been explored in a
wide variety of robotics applications. For many of these applications that utilize
a complex system of coupled CPGs, the PDC network approach could provide
a useful tool for their coordination. In future work, we intend to improve the
existing PDC methodology established here by incorporating the aforementioned
areas of improvement.
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