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Abstract

This paper proposes a physics-guided neural network model
to predict crop yield and maintain the fairness over space.
Failures to preserve the spatial fairness in predicted maps
of crop yields can result in biased policies and intervention
strategies in the distribution of assistance or subsidies in sup-
porting individuals at risk. Existing methods for fairness en-
forcement are not designed for capturing the complex physi-
cal processes that underlie the crop growing process, and thus
are unable to produce good predictions over large regions un-
der different weather conditions and soil properties. More im-
portantly, the fairness is often degraded when existing meth-
ods are applied to different years due to the change of weather
conditions and farming practices. To address these issues, we
propose a physics-guided neural network model, which lever-
ages the physical knowledge from existing physics-based
models to guide the extraction of representative physical in-
formation and discover the temporal data shift across years.
In particular, we use a reweighting strategy to discover the re-
lationship between training years and testing years using the
physics-aware representation. Then the physics-guided neu-
ral network will be refined via a bi-level optimization pro-
cess based on the reweighted fairness objective. The proposed
method has been evaluated using real county-level crop yield
data and simulated data produced by a physics-based model.
The results demonstrate that this method can significantly im-
prove the predictive performance and preserve the spatial fair-
ness when generalized to different years.

Introduction
The global food system has been threatened by many rising
challenges, such as the population explosion, sub-optimal or
even destructive farming practices, climate change, and loss
of productive land due to urbanization (Ortiz et al. 2008;
d’Amour et al. 2017; Bebber, Holmes, and Gurr 2014; Jia
et al. 2019). Given the limited land and water resources
available for crop production, ensuring food security re-
quires effective use of existing farmland by increasing crop
productivity through sustainable farming practices. The im-
portance and urgency of the problem have also led to ma-
jor national and international efforts to monitor crops at
large scales, including G20’s GEOGLAM (Singh Parihar
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Figure 1: Example of spatial bias on crop yield prediction.

et al. 2012) and NASA Harvest (Whitcraft, Becker-Reshef,
and Justice 2020). Importantly, resulting products are also
used to inform critical actions (e.g., distribution of subsidies
(Bock, Kirkendall et al. 2018; Bailey and Boryan 2010; Bo-
ryan et al. 2011)) to mitigate natural disturbance-incurred
food shortage, which is necessary for continued sustainabil-
ity and stability.

Physics-based crop models have been developed and
widely used to simulate different components in the crop
growing process (Grant et al. 2010; Zhou et al. 2021; Jones
et al. 2003; Srinivasan, Zhang, and Arnold 2010). Even
though these models are based on known physical laws
that govern relationships between input and output variables
(e.g., mass and energy conservation laws), most physics-
based models are necessarily approximations of reality due
to incomplete knowledge of certain processes or omission of
processes to maintain computational efficiency. Moreover,
running these models is often extremely time intensive due
to the needs to solve hundreds of ordinary and partial differ-
ential equations that are used to describe the complex inter-
actions among physical processes (Beven 2006). For exam-
ple, the Ecosys model (Zhou et al. 2021) used in this paper
takes about 4.15 days for training for 199 counties over the
years 2000-2020. Although machine learning (ML) mod-
els (Fan et al. 2022) can significantly speed up crop yield
predictions, existing products are largely subject to unfair-
ness across locations due to the data variability across space
and the ignorance of fairness during the training process. For
example, Fig. 1 shows the spatial distribution of the RMSE



values obtained by a deep learning model for real-world crop
yield prediction in 199 counties in the states of Illinois and
Iowa. As we can see, the differences between overall and
local results show that prediction accuracy in some regions
can be easily compromised to pursue better results at other
places. The unequal prediction accuracy may cause concerns
about inequality in many socioeconomic decision makings.
For example, higher risks associated with larger prediction
uncertainty can reduce farmers’ benefits through crop insur-
ance or subsidy-based programmes (Benami et al. 2021).

Various methods have been developed to enforce fair-
ness in machine learning models, and they can be broadly
classified into several categories, such as bi-level learning
(Xie et al. 2022; He et al. 2022), regularization (Zafar et al.
2017; Yan and Howe 2019; Kamishima, Akaho, and Sakuma
2011; Serna et al. 2020), sensitive category de-correlation
(Sweeney and Najafian 2020; Zhang and Davidson 2021;
Alasadi, Al Hilli, and Singh 2019), data collection/filtering
strategies (Jo and Gebru 2020; Yang et al. 2020; Steed and
Caliskan 2021), and more (e.g., a recent survey (Mehrabi
et al. 2021)). However, these fairness-preserving methods
are faced with two major challenges when used in crop yield
prediction. First, they are not designed to model underly-
ing physical processes, the complexity of which can vary
across space due to the variation of weather conditions and
soil properties. For example, crop yield is very sensitive to
soil moisture, which is highly variable over the landscape
due to changes in precipitation, local topography and wa-
ter table depth. And water table interacts with crop roots to
determine not only crop water uptake but also nutrient sup-
plies that are essential for crop production. Hence, standard
ML models may not fully capture key physical variables and
processes, and thus perform differently across space. Exist-
ing heterogeneity-aware learning methods (Xie et al. 2021;
Gupta et al. 2021) can adapt over space but do not account
for fairness. Another major issue is the temporal data distri-
bution shift across years due to changes in weather condi-
tions and farming practices. As a result, a fairness-enforced
model learned from training years may fail to preserve the
fairness in target testing years.

To address these issues, we develop a physics-guided
attention network (PG-AN), which leverages the physical
knowledge from existing physics-based models to guide the
extraction of representative physical information and dis-
cover the distribution shift across years. The PG-AN model
introduces threefold benefits. First, as inspired by prior
work (Jia et al. 2021b,c), the predictive performance can
be improved if key physical variables involved in the crop
growth can be extracted from high-dimensional raw data.
Second, the representation learned by the PG-AN model
can facilitate addressing the temporal data shift. For exam-
ple, rather than directly operating on the raw data, meth-
ods for addressing domain shift (e.g., the reweighting strat-
egy (Freedman and Berk 2008)) can better estimate the gap
and similarity between training and testing samples based
on the most relevant information for crop yield. Third, the
awareness of physical knowledge can contribute to the over-
all spatial fairness because the model has a higher chance at
learning a uniform mapping from the physics-aware repre-

sentation to the crop yield, which performs well over all the
spatial regions.

In particular, we use the PG-AN model to embed key
physical variables involved in the carbon cycle of the crop
growing process with an additional constraint of mass con-
servation. Then we use the extracted physics-aware embed-
dings to reweight training samples in refining the PG-AN
model so as to reduce the distribution gap with the target
years. Moreover, the obtained sample weights are used to
modify the fairness objective, which is enforced through a
bi-level optimization in the refinement process. The model
with the reweighted fairness objective stands a higher chance
at preserving the fairness in the target years.

We evaluate the proposed method using real corn yield
data over a 21-year period in Iowa and Illinois, two leading
states of corn production in the United States. The results
demonstrate the fairness improvement achieved by incor-
porating the physical information and the bi-level fairness-
driven refinement. Moreover, the integration of physics into
the PG-AN model can significantly improve the overall
predictive performance and maintain the consistency of
known physical relationships. The experiments are also con-
ducted using different spatial partitionings and different tar-
get years, which confirms the robustness and stability.

Problem Formulation and Preliminaries
The objective is to predict the county-level yield for corn in
target years. For each county i, we are provided with input
features within each year t, as Xi,t = {x1

i,t, x2i,t, ..., xD
i,t},

which are available at daily scales, i.e., D = 365 in a non-
leap year. The daily features xdi,t include weather drivers
(e.g., precipitation, solar radiation), and soil and crop prop-
erties. The feature values are obtained as the average of the
variable values from a set of randomly sampled farm loca-
tions in each county. More details can be found in the Ex-
periment Section. Additionally, we have the access to the
crop yield labels Y = {yi,t} from agricultural surveys in the
training yearsR. In the target testing years T , we only have
the input features but do not have the crop yield labels in the
training process.

In addition to the real crop yield dataset, we also run the
physics-based Ecosys model (Zhou et al. 2021) to simulate
crop yield. Here we use S to represent the set of locations
and years (i, t) for which we have the simulated crop yield.
Another benefit of the physics-based model is that it can also
simulate some intermediate physical variables in the crop
growing process, such as variables involved in carbon and
nitrogen cycling. It is noteworthy that physics-based models
are often biased as they are necessarily approximations of
reality due to incomplete knowledge or excessive complex-
ity in modeling underlying processes. Hence, the simulated
data can only be used for weak supervision.
Attention-based crop yield predictive model: The pre-
dictive model FΘ(xi,t) used in this work is based on an
LSTM-Attention network. Here Θ represents all the param-
eters in this network. Specifically, we first use an LSTM net-
work to extract hidden representations at every time step
(i.e., each date in a year), as hd=1:D

i,t = LSTM(xd=1:D
i,t ).
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Figure 2: The overall flow of the proposed method. An LSTM-Attention network is used as a base model.

Then we create attention weights for each time step from
its corresponding hidden representation via a linear trans-
formation and a softmax function, as follows:

αd
i,t =

exp(wα · hd
i,t + bα)∑

d′ exp(wα · hd′

i,t + bα)
, (1)

where wα ∈ RDh and bα ∈ R1 are attention model pa-
rameters. Hereinafter we use {w∗,W∗, b∗, b∗} to represent
model parameters.

The embedding for each county i in year t can be obtained
by the weighted mean over all the time steps using the atten-
tion weights, as:

ei,t =
∑
d

αd
i,th

d
i,t. (2)

Finally, the model outputs the predicted yield value of the
county i in year t as:

FΘ(xi,t) = wyei,t + by. (3)

The model can be trained by minimizing a mean squared
error-based loss function, as follows:

min
Θ
Lsup =

∑
t∈R

∑
i(FΘ(xi,t)− yi,t)

2

N |R|
, (4)

where N is the total number of counties.
Spatial fairness: Here we introduce the spatial fairness
measure Mfair(Xie et al. 2022), which is defined on a spa-
tial partitioning P . The partitioning P splits an input space
into multiple partitions, as P = {p | p ∈ P}. The objec-
tive of fairness over a spatial partitioning P is to guaran-
tee that the model’s performance is balanced across all the
space partitions p that are contained in P . First, we consider
a metric MF used to evaluate the performance of a model
F , e.g., root mean squared error (RMSE). Another impor-
tant variable for the fairness definition is EP , which quanti-
fies the mean model performance over all the partitions. EP
is implemented as the overall performance of a base model
FΘ0 over all the partitions, where parameters Θ0 are trained
without any consideration of spatial fairness. More formally,
this can be represented as:

EP = MF (FΘ0
, {∪p | p ∈ P}) (5)

Intuitively, if the model performance MF (FΘ, p) on a
specific partition p deviates significantly from the overall
mean performance EP , the model FΘ tends to be unfair
across partitions. The fairness is formally defined as

Mfair(FΘ,MF ,P) =
∑
p∈P

d(MF (FΘ, p), EP)

|P| (6)

where d(·, ·) is a distance measure, e.g., the absolute dis-
tance in our test.
Sample reweighting strategy: Sample reweighting strat-
egy has been explored to reduce the gap of input space be-
tween the source and target domains (Bickel, Brückner, and
Scheffer 2007; Freedman and Berk 2008). In our problem,
a classifier G is trained to distinguish between source/train-
ing and target/testing years. The classifier G is implemented
as a four-layer fully-connected network. Its output is in the
range of [0,1], and is closer to 1 if it predicts the data to be
more likely from the target years and otherwise is closer to
0. Then the weight of each sample (e.g., county i in each
year t) is estimated as:

wi,t =
G(ei,t)

1− G(ei,t)
(7)

After gathering the estimated sample weights, we normal-
ize them to the range of [γ,1], where γ is a small value, e.g.,
0.1 in our test, which is used to ensure that all the samples
are involved in the training process. We represent the nor-
malized weights as w̄.

The obtained weights can then be used in the training loss
function to alleviate the temporal data shift in the training
process, as follows:

min
Θ
Lrew =

∑N
i=1

∑T
t=1 w̄i,t(FΘ(xi,t)− yi,t)

2

N |R|
(8)

Proposed Method
The overall flow of the proposed method is shown in Fig. 2.
We first introduce the proposed PG-AN model and the en-
hanced reweighting strategy using the PG-AN representa-
tion. Then we discuss the refinement process for the PG-AN



model to further enhance the spatial fairness with the aware-
ness of temporal data shift. Our implementation is released1.

Physics-guided Sample Reweighting
We first build the PG-AN model to embed key variables in-
volved in the carbon cycle and improve the prediction of
crop yield (Fig. 2). During the crop growing process, carbon
is cycled through the atmosphere, crops and the soil. Carbon
makes a major contribution to soil fertility and soil’s capac-
ity to retain water (Zhou et al. 2021). Carbon is absorbed
by crops in the form of carbon dioxide, which contributes to
the growth of crops. While the crops grow up, their produced
roots and leaves also affect the soil carbon storage.

Although most variables in the carbon cycle are not ob-
servable, they can be simulated by existing physics-based
models based on known physical theories. In this work, we
use the physics-based Ecosys model (Zhou et al. 2021) to
simulate three key variables in the carbon cycle, ecosystem
autotrophic respiration (Ra), ecosystem heterotrophic respi-
ration (Rh), and net ecosystem exchange (NEE). The entire
carbon cycle can be captured by a mass conservation rela-
tion, as−NEE = GPP−Ra−Rh, where GPP represents the
gross primary production, and can be estimated from remote
sensing. The estimated GPP values are available over large
regions and used as input to the predictive model.

Given the hidden representation hd
i,t extracted by the

LSTM-Attention model on each date d, we predict the physi-
cal variables Ra, Rh, and NEE using another transformation
q̂d
i,t = f(hd

i,t), where q̂ represents the predicted values of
[Ra,Rh,NEE] on the date d, and f(·) can be implemented
as a fully connected network. By applying the model on the
simulated data, we can compare the predicted q̂ and the sim-
ulated values q in each year, as follows:

Diff-simi,t =
∑
d

||q̂di,t − qdi,t||2 (9)

Given the GPP values, we also consider a penalty for vio-
lating the carbon mass conservation, as follows:

MCi,t =
∑
d

(GPPd
i,t − Radi,t − Rhdi,t + NEEd

i,t)
2 (10)

We then combine Diff-sim and MC to define a physical
loss. Here Diff-sim can be measured only on the simulated
data. The mass conservation MC can be measured on both
simulated data and real data (both R and T ) using the pre-
dicted Ra, Rh, and NEE. The physical loss can be expressed
as:

Lphy = β1

∑
(i,t)∈S Diff-simi,t

|S|

+ β2(

∑
t∈R∪T

∑
i MC2

i,t

|R ∪ T |N
+

∑
(i,t)∈S MC2

i,t

|S|
),

(11)

where β1 and β2 are model hyper-parameters.
Finally, we optimize the model combining the supervised

loss (Eq. 4) and the physical loss (Eq. 11), as follows:

1https://github.com/ai-spatial/PG-AN

LPG-AN = Lsup + Lphy (12)
We obtain the model F by minimizing the loss LPG-AN.

We will then use the obtained embeddings e from this PG-
AN model to estimate the weights {w̄i,t} following Eq. 7
and the normalization.

Fairness-driven Model Refinement
After collecting the normalized weights w̄i,t, we refine the
PG-AN model F to alleviate the temporal domain shift
while preserving the spatial fairness. Note that the direct
fine-tuning using the preliminary reweighted loss function
(Eq. 8) only reduces the temporal gap but may impair the
spatial fairness. Hence, we propose a bi-level fairness-driven
refining strategy for the PG-AN model that takes into ac-
count both the temporal data shift and the spatial fairness.

First, we modify the original fairness objective (Eq. 6) by
considering the similarity to the target dataset T based on
the obtained sample weights w̄i,t. Each partition p contains
training samples from multiple locations and multiple years.
We will increase the weight for each sample (i, t) if the cor-
responding weight w̄i,t is higher. This will be reflected in
the performance measure MF (FΘ, p) and the overall mean
performance EP in the fairness definition (Eq. 6). In this
work, we use the predictive RMSE as the performance met-
ric, and the weighted performance on each partition p and
the weighted overall performance can be computed as:

M̃F (FΘ, p) =

√∑
i∈p,t∈R w̄i,t(FΘ(xi,t)− yi,t)2∑

i∈p,t∈R w̄i,t

ẼP =

√∑
i∈P,t∈R w̄i,t(FΘ0

(xi,t)− yi,t)2∑
i∈P,t∈R w̄i,t

(13)
Then we use the weighted performance measure to re-

define the spatial fairness, as follows:

M̃fair =
∑
p∈P

d(M̃F (FΘ, p), ẼP)

|P| (14)

A traditional way to incorporate the fairness objective
(e.g., Eq. (14)) is to include it as an additional term in the
loss function, e.g., L = Lsup + λ · M̃fair, where λ is a
scaling factor or weight. This regularization-based formu-
lation has several limitations when used for spatial-fairness
enforcement. In particular, deep learning training often uses
mini-batches due to data size, but it is difficult for each mini-
batch to contain representative samples from all partitions
{p | ∀p ∈ P} when calculating M̃fair. More importantly,
the regularization brings direct competition between Lsup

and M̃fair, and thus may lead to limited fairness improve-
ment while preserving similar overall performance. Also,
the regularization term requires another scaling factor λ, the
choice of which directly impacts the final output and varies
from problem to problem.

To mitigate these concerns, we propose to disentangle
Lsup and M̃fair via a bi-level model refinement of the PG-
AN model. Specifically, there are two levels of decision-
making in this model refinement process:



Global referee: A referee evaluates the spatial fairness be-
fore each epoch using the metric M̃F (e.g., RMSE) and Eq.
(14). The evaluation is performed on all partitions p ∈ P ,
guaranteeing the representativeness. Based on the deviation
d(M̃F (FΘ, p), ẼP) of a particular partition p, we first create
a revised learning rate η′p = max((M̃F (FΘ, p) − ẼP), 0),
which aims to increase the learning rate for partitions with
larger RMSE values. Then we normalize the learning rate
as ηp =

η′
p−η′

min

η′
max−η′

min
· ηinit, where ηinit is the learning rate

used to train the base model, η′min = argminη′
p
{η′p | η′p >

0, ∀p ∈ P}, and η′max = argmaxη′
p
{η′p | ∀p ∈ P} (Xie

et al. 2022).
The intuition is that, if a partition’s performance measure

(e.g., RMSE) is worse than the expectation Ẽp, its learning
rate ηp will be increased relative to other partitions. This in-
crease ensures that the prediction loss for that partition has
a higher impact during parameter updates in this epoch. In
contrast, if a partition’s performance is the same or better
than the expectation, its ηp will be set to 0 to prioritize the
worse-performing partitions. Positive learning rates after the
update are then normalized back to the range [0, ηinit] to
maintain gradient stability. This bi-level design also help get
rid of the additional scaling factor to combine the prediction
and fairness losses.
Model update: Using learning rates {ηp} assigned by the
referee, we perform regular training with the prediction loss
Lsup over data in all individual partitions p ∈ P in mini-
batches. Note that each partition p contains multiple data
samples. When we iterate over each sample (i, t), we also
use the obtained sample weights in updating the model pa-
rameters. Given the gradient ∆i,t for each sample (i, t), the
aggregated gradient descent can be expressed as:

Θnew ← Θ−
∑
p∈P

ηp
∑
i∈p

w̄i,t∆i,t (15)

Experiments
Dataset
We use the corn yield data in Illinois and Iowa from the
years 2000-2020 provided by USDA National Agricultural
Statistics Service (NASS) 2. In particular, there are in to-
tal 199 counties in our study region (100 counties in Illi-
nois and 99 counties in Iowa). The corn yield data (in
gCm−2) are available for each county each year. The in-
put features have 19 dimensions, including NLDAS-2 cli-
mate data (Xia et al. 2012), 0-30cm gSSURGO soil proper-
ties 3, crop type information, the 250m Soil Adjusted Near-
Infrared Reflectance of vegetation (SANIRv) based daily
GPP product (Jiang et al. 2021), and calendar year. More-
over, we use the physics-based Ecosys model (Zhou et al.
2021) to simulate Ra, Rh, NEE, and crop yield for 10,335
samples from the years 2001-2018.

In our experiments, we consider two major use cases for
yield prediction, data reanalysis and future prediction, and

2https://quickstats.nass.usda.gov/
3https://gdg.sc.egov.usda.gov/

hence, two testing scenarios are applied, using the years
2005-2006 and the last two years 2019-2020 as target testing
years, respectively. In each testing scenario, the remaining
years are used for model training. We also consider two dif-
ferent spatial partitionings. The first partitioning P199 treats
each county as a spatial partition, and there are totally 199
partitions. The second partitioning P30 merges neighboring
6-10 counties as a partition, and contains in total 30 parti-
tions. The number of counties in each partition varies across
different partitions as we need to ensure each partition is
continuous over space.

Experiment Design
We aim to answer several questions in our experiments:

1. Can the proposed method outperform existing
methods given the temporal data shift? The proposed
method is compared against multiple baselines, includ-
ing the standard LSTM-Attention networks (LSTM-Attn),
the adversarial domain adaptation methods (DA) (Ganin
et al. 2016), the adversarial discriminating-based learning
for preserving fairness (ADL) (Alasadi, Al Hilli, and Singh
2019), regularization-based fairness enforcement method
(REG) (Kamishima, Akaho, and Sakuma 2011; Yan and
Howe 2019), REG with the reweighting strategy (REGrew),
and self-training-based fairness enforcement method (Self-
training) (An et al. 2022). All these methods use the base
LSTM-Attn model but adopt different strategies for preserv-
ing fairness or addressing the temporal data shift. Amongst
these methods, ADL and REG consider the fairness ob-
jective, DA considers the temporal data shift, and REGrew

and Self-training consider both. We also compare with two
methods that leverage simulated data for enhancing the
LSTM-Attn model. As inspired by the prior work (Read
et al. 2019; Jia et al. 2021a), the first method SIM-ptr pre-
trains the LSTM-Attn model using simulated yield data and
then fine-tunes it using real data. The second method SIM-
inp is trained using simulated data to predict Ra, Rh, and
NEE, and then use them as additional input features. We
also implement the SIM-inp method with the bi-level re-
finement (SIM-inpref ). Finally, we evaluate two versions of
the proposed method PG-AN (without using the bi-level re-
finement) and PG-ANref (using the bi-level refinement). For
each method, we measure the predictive RMSE and the spa-
tial fairness (Eq. 6 using the mean absolute distance) under
two different partitionings P199 and P30.

2. How will the performance change by adding sam-
ple weights and different levels of physical information?
We compare the performance of LSTM-Attn, LSTM-Attn
+ sample weights (LSTM-Attnrew), LSTM-Attn + sam-
ple weights + pre-training using simulated yield (LSTM-
Attnrew+ptr), LSTM-Attn + sample weights + pre-training
using simulated yield, Ra, Rh, NEE, and the mass con-
servation on these simulated variables and GPP (LSTM-
Attnrew+phy), and LSTM-Attn + sample weights + training
using simulated yield, Ra, Rh, NEE, the mass conservation
on both simulated data and predicted values in real data, and
real yield data (the proposed PG-AN model). We will also
report the performance and fairness for each model either
using or without using the bi-level fairness refinement.



Method
Testing scenario 2019-2020 Testing scenario 2005-2006

Partitioning P30 Partitioning P199 Partitioning P30 Partitioning P199

RMSE Fairness RMSE Fairness RMSE Fairness RMSE Fairness
LSTM-Attn 37.4284 11.0158 37.4284 16.8612 32.2486 8.9010 32.2486 13.6076

DA 38.0840 11.0802 38.0840 16.8274 32.2888 9.1424 32.0610 13.9750
ADL 38.6144 10.9396 38.2536 16.7950 32.2870 9.0022 32.1376 13.6252
REG 37.6738 10.9102 38.5752 16.7746 31.6602 8.9202 31.3974 13.5626

REGrew 36.2342 10.4966 36.5012 16.2694 29.5366 8.6024 30.1106 13.0416
Self-training 35.6784 10.3912 35.9520 16.1510 31.0714 8.6522 31.0758 12.9724

SIM-ptr 36.0920 10.5758 36.0920 16.1400 30.8404 8.6258 30.8404 12.7468
SIM-inp 34.3598 9.8968 34.3598 15.9064 30.6056 7.8356 30.6056 12.6990

SIM-inpref 33.9332 9.5888 33.9892 15.4732 30.0814 7.3696 31.0480 12.1536
PG-AN 30.3688 7.8064 30.3688 13.6370 24.7858 6.6092 24.7858 10.2498

PG-ANref 29.9558 7.2682 30.9058 12.5252 25.7476 5.7254 25.3546 9.8554

Table 1: The fairness and overall RMSE with two different partitionings for two testing scenarios.

(a) (b) (c)

Figure 3: The distributions of predictive RMSE in 199 counties by three models for the testing years 2005-2006 and partitioning
P199. (a): The LSTM-Attn model. (b): The Self-training model. (c): The proposed PG-AN model.

3. Can the bi-level fairness-driven refinement outper-
form other fairness enforcement methods? We will incor-
porate the same level of physical information and sample
weights for the REG and ADL methods to create two base-
lines PG-ANREG and PG-ANADL. We then compare their
performance with the proposed PG-ANref method.

4. Can we interpret the distribution sample weights?
We will study the distribution of the learned sample weights
over different counties and different years.

Results
Performance comparison: Table 1 reports the perfor-
mance for the proposed method and other baselines using
different testing years and different spatial partitionings. It
can be seen that the proposed methods (PG-AN and PG-
ANref ) outperform other methods by a decent margin in
terms of both predictive RMSE and fairness measures. We
also have several observations: (1) Compared to the base
model LSTM-Attn, existing fairness enforcement methods
(ADL, REG) only slightly improve the fairness in some
testing cases, and can even lead to degraded fairness when
tested in the years 2005-2006. This is because they do not
consider the temporal data shift across years. (2) The DA
method generally produces worse performance compared to
LSTM-Attn because it cannot extract informative embed-

(a) Fairness and predictive RMSE on P30.

(b) Fairness and predictive RMSE on P199.

Figure 4: The performance change for the testing years
2005-2006. A higher fairness score indicates larger mean ab-
solute distance values and worse fairness performance.

dings for enforcing invariance in the adversarial learning
process. (3) The methods using the simulated data (SIM-
ptr, SIM-inp, and SIM-inpref ) perform better than the base
LSTM-Attn model and most of other baselines, which con-
firms the effectiveness of incorporating the simulated data.
Moreover, SIM-inp performs better than SIM-ptr because



Method
Testing scenario 2019-2020 Testing scenario 2005-2006

Partitioning P30 Partitioning P199 Partitioning P30 Partitioning P199

RMSE Fairness RMSE Fairness RMSE Fairness RMSE Fairness
PG-AN 30.3688 7.8064 30.3688 13.6370 24.7858 6.6092 24.7858 10.2498

PG-ANADL 30.5730 7.7638 30.8136 13.5244 25.9296 6.3658 25.4034 10.2104
PG-ANREG 29.2328 7.7154 31.5000 13.5916 24.5180 6.3400 25.4384 10.2210
PG-ANref 29.9558 7.2682 30.9058 12.5252 25.7476 5.7254 25.3546 9.8554

Table 2: Comparison between the bi-level refinement and other fairness enforcement methods for refining the PG-AN model.

Figure 5: Training sample weights when we use 2005-2006 as testing years (green: higher weights; white: lower weights).

it captures the intermediate physical variables in the car-
bon cycle. (4) The comparisons between SIM-inp and SIM-
inpref and between PG-AN and PG-ANref show the effec-
tiveness of the bi-level refinement in enhancing the fairness.

Fig. 3 also shows the distributions of RMSE for each
partition in P199 (i.e., each county) for the testing years
2005-2006 by the base LSTM-Attn model, the Self-training
model, and the proposed PG-AN model. It can be clearly
seen that the proposed method can effectively reduce the
RMSE for those counties that are poorly modeled by the
LSTM-Attn method and the Self-training method. Also, the
overall RMSE gets significantly improved.

Ablation study: Fig. 4 shows that the model performance
and spatial fairness get improved as we incorporate sample
weights and more physical information. The PG-AN model
performs better than LSTM-Attnrew+phy due to the gap be-
tween simulated and real data. Also, the bi-level refinement
can always improve the spatial fairness for each model while
maintaining a similar level of overall performance.

Effectiveness of bi-level training: Table 2 shows that the
PG-AN model with the bi-level refinement achieves the best
fairness without compromising the predictive RMSE perfor-
mance. This is because the bi-level refinement mitigates the
direct competition between predictive performance and spa-
tial fairness, and avoids the selection of hyper-parameters.

Sample weights over space and time: Fig. 5 shows
the sample weights for each county over multiple training
years 2000-2011. We can see that the years that are closer
to the testing years 2005-2006 generally have higher sample
weights. Also, it shows the variability across space. Some
counties in the testing years can be better predicted using the
knowledge transferred from previous years, and the testing

data are more similar to latter years for some other counties.

Conclusions
In this paper, we introduce a new method for predicting crop
yield while maintaining spatial fairness. The proposed PG-
AN model extracts the physics-aware representation, which
is then used to discover the temporal data shift using a sam-
ple reweighting strategy. Finally, the PG-AN model is re-
fined through a bi-level optimization process based on the
reweighted fairness objective. The evaluations on the real
corn yield dataset provided by NASS demonstrate that our
proposed method outperforms a diverse set of baselines for
enforcing fairness and addressing temporal data shift. Also,
it is shown that the incorporation of sample weights and
physical information can greatly improve both predictive
performance and spatial fairness. The bi-level optimization
also brings a larger fairness improvement compared with
other fairness enforcement methods for model refinement.

Although the proposed method is developed and evalu-
ated in the context of agricultural monitoring, it is gener-
ally applicable to many real applications of great societal
relevance. For example, flood mapping is critical to inform
timely actions (e.g., construction of barriers, sending emer-
gency workers) and estimate insurance for surrounding ar-
eas, but existing streamflow prediction methods often lead to
spatial biases due to the variability of soil conditions, catch-
ment characteristics, and data quantity over space. Future
work will also be pursued to consider other spatial partition-
ings, such as United States agricultural districts. We will also
explore the interpretation of spatial biases for different par-
titions, e.g., which physical factors in certain regions lead to
increased complexity for predicting crop yield.



Acknowledgements
This work was supported by NSF awards 2147195,
2105133, and 2126474, NASA award 80NSSC22K1164,
the USGS awards G21AC10207, G21AC10564, and
G22AC00266, Google’s AI for Social Good Impact Schol-
ars program, the DRI award at the University of Maryland,
and CRC at the University of Pittsburgh.

References
Alasadi, J.; Al Hilli, A.; and Singh, V. K. 2019. Toward
fairness in face matching algorithms. In Proceedings of the
1st International Workshop on Fairness, Accountability, and
Transparency in MultiMedia, 19–25.
An, B.; Che, Z.; Ding, M.; and Huang, F. 2022. Transfer-
ring Fairness under Distribution Shifts via Fair Consistency
Regularization. arXiv preprint arXiv:2206.12796.
Bailey, J. T.; and Boryan, C. G. 2010. Remote sensing ap-
plications in agriculture at the USDA National Agricultural
Statistics Service. Technical report, Research and Develop-
ment Division, USDA, NASS, Fairfax, VA.
Bebber, D. P.; Holmes, T.; and Gurr, S. J. 2014. The global
spread of crop pests and pathogens. Global Ecology and
Biogeography, 23(12): 1398–1407.
Benami, E.; Jin, Z.; Carter, M. R.; Ghosh, A.; Hijmans, R. J.;
Hobbs, A.; Kenduiywo, B.; and Lobell, D. B. 2021. Uniting
remote sensing, crop modelling and economics for agricul-
tural risk management. Nature Reviews Earth & Environ-
ment, 2(2): 140–159.
Beven, K. 2006. A manifesto for the equifinality thesis.
Journal of hydrology, 320(1-2): 18–36.
Bickel, S.; Brückner, M.; and Scheffer, T. 2007. Discrim-
inative learning for differing training and test distributions.
In Proceedings of the 24th international conference on Ma-
chine learning, 81–88.
Bock, M. E.; Kirkendall, N. J.; et al. 2018. Improving crop
estimates by integrating multiple data sources. National
Academies Press.
Boryan, C.; Yang, Z.; Mueller, R.; and Craig, M. 2011. Mon-
itoring US agriculture: the US department of agriculture, na-
tional agricultural statistics service, cropland data layer pro-
gram. Geocarto International, 26(5): 341–358.
d’Amour, C. B.; Reitsma, F.; Baiocchi, G.; Barthel, S.;
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