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Abstract

Imperfect score-matching leads to a shift between the training and the sampling distribution of
diffusion models. Due to the recursive nature of the generation process, errors in previous steps yield
sampling iterates that drift away from the training distribution. Yet, the standard training objective via
Denoising Score Matching (DSM) is only designed to optimize over non-drifted data. To train on drifted
data, we propose to enforce a consistency property which states that predictions of the model on its own
generated data are consistent across time. Theoretically, we show that if the score is learned perfectly on
some non-drifted points (via DSM) and if the consistency property is enforced everywhere, then the score
is learned accurately everywhere. Empirically we show that our novel training objective yields state-of-
the-art results for conditional and unconditional generation in CIFAR-10 and baseline improvements in
AFHQ and FFHQ. We open-source our code and models: https://github.com/giannisdaras/cdm.

1 Introduction

The diffusion-based (Sohl-Dickstein et al., 2015; Song and Ermon, 2019; Ho et al., 2020) approach to generative
models has been successful across various modalities, including images (Ramesh et al., 2022; Saharia et al.,
2022; Dhariwal and Nichol, 2021; Nichol and Dhariwal, 2021; Kim et al., 2022; Song et al., 2021b; Ruiz et al.,
2022; Gal et al., 2022; Daras and Dimakis, 2022; Daras et al., 2022a), videos (Ho et al., 2022a,b; Hong et al.,
2022), audio (Kong et al., 2021), 3D structures (Poole et al., 2022), proteins (Anand and Achim, 2022; Trippe
et al., 2022; Schneuing et al., 2022; Corso et al., 2022), and medical applications (Jalal et al., 2021; Arvinte
et al., 2022).

Diffusion models generate data by first drawing a sample from a noisy distribution and slowly denoising
this sample to ultimately obtain a sample from the target distribution. This is achieved by sampling, in
reverse from time t = 1 down to t = 0, a stochastic process {xt}t∈[0,1] wherein x0 is distributed according to
the target distribution p0 and, for all t,

xt ∼ pt where pt := p0 ⊕N(0, σ2
t Id). (1)

That is, pt is the distribution resulting from corrupting a sample from p0 with noise sampled from N(0, σ2
t Id),

where σt is an increasing function such that σ0 = 0 and σ1 is sufficiently large so that p1 is nearly
indistinguishable from pure noise. We note that diffusion models have been generalized to other types of
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corruptions by the recent works of Daras et al. (2022b); Bansal et al. (2022); Hoogeboom and Salimans
(2022); Deasy et al. (2021); Nachmani et al. (2021).

In order to sample from a diffusion model, i.e. sample the afore-described process in reverse time, it
suffices to know the score function s(x, t) = ∇x log p(x, t), where p(x, t) is the density of xt ∼ pt. Indeed,
given a sample xt ∼ pt, one can use the score function at xt, i.e. s(xt, t), to generate a sample from pt−dt by
taking an infinitesimal step of a stochastic or an ordinary differential equation (Song et al., 2021b,a), or by
using Langevin dynamics (Grenander and Miller, 1994; Song and Ermon, 2020).1 Hence, in order to train
a diffusion model to sample from a target distribution of interest p∗0 it suffices to learn the score function
s∗(x, t) using samples from the corrupted distributions p∗t resulting from p∗0 and a particular noise schedule
σt. Notice that those samples can be easily drawn given samples from p∗0.

The Sampling Drift Challenge: Unfortunately the true score function s∗(x, t) is not perfectly learned
during training. Thus, at generation time, the samples xt drawn using the learned score function, s(x, t), in
the ways discussed above, drift astray in distribution from the true corrupted distributions p∗t . This drift
becomes larger for smaller t due to compounding of errors and is accentuated by the fact that the further
away a sample xt is from the likely support of the true p∗t the larger is also the error ‖s(xt, t)− s∗(xt, t)‖
between the learned and the true score function at xt, which feeds into an even larger drift between the
distribution of xt′ from p∗t′ for t′ < t; see e.g. (Sehwag et al., 2022; Ho et al., 2020; Nichol and Dhariwal, 2021;
Chen et al., 2022a). These challenges motivate the question:

Question 1. How can one train diffusion models to improve the error ‖s(x, t)− s∗(x, t)‖ between the learned
and true score function on inputs (x, t) where x is unlikely under the target noisy distribution p∗t ?

A direct approach to this challenge is to train our model to minimize the afore-described error on pairs
(x, t) where x is sampled from distributions other than p∗t . However, there is no straightforward way to do so,
because we do not have direct access to the values of the true score function s∗(x, t).

This motivates us to propose a novel training method to mitigate sampling drift by enforcing that the
learned score function satisfies an invariant, that we call “consistency property.” This property relates
multiple inputs to s(·, ·) and can be optimized without using any samples from the target distribution p∗0. As
we will show theoretically, enforcing this consistency in conjunction with minimizing a very weakened form of
the standard score matching objective (for a single t and an open set of x’s) suffices to learn the correct score
everywhere. We also provide experiments illustrating that regularizing the standard score matching objective
using our consistency property leads to state-of-the-art models.

Our Approach: The true score function s∗(x, t) is closely related to another function, called optimal
denoiser, which predicts a clean sample x0 ∼ p∗0 from a noisy observation xt = x0 + σtη where the noise is
η ∼ N(0, Id). The optimal denoiser (under the `2 loss) is the conditional expectation:

h∗(x, t) := E[x0 | xt = x],

and the true score function can be obtained from the optimal denoiser as follows: s∗(x, t) = (h∗(x, t)− x)/σ2
t .

Indeed, the standard training technique, via score-matching, explicitly trains for the score through the denoiser
h∗ (Vincent, 2011; Efron, 2011; Meng et al., 2021; Kim and Ye, 2021; Luo, 2022).

We are now ready to state our consistency property. We will say that a (denoising) function h(x, t) is
consistent iff

∀t, ∀x : E[x0|xt = x] = h(x, t),

where the expectation is with respect to a sample from the learned reverse process, defined in terms of the
implied score function s(x, t) = (h(x, t)− x)/σ2

t , when this is initialized at xt = x and run backwards in time
to sample x0. See Eq. (3) for the precise stochastic differential equation and its justification. In particular, h
is called consistent if the prediction h(x, t) of the conditional expectation of the clean image x0 given xt = x
equals the expected value of an image that is generated by the learned reversed process, starting from xt = x.

1Some of these methods, such as Langevin dynamics, require also to know the score function in the neighborhood of xt.
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While there are several other properties that the score function of a diffusion process must satisfy, e.g. the
Fokker-Planck equation (Lai et al., 2022), our first theoretical result is that the consistency of h(x, t) suffices
(in conjunction with the conservativeness of its score function s(x, t) = (h(x, t)− x)/σ2

t ) to guarantee that s
must be the score function of a diffusion process (and must thus satisfy any other property that a diffusion
process must satisfy). If additionally s(x, t) equals the score function s∗(x, t) of a target diffusion process at a
single time t = t0 and an open subset of x ∈ Rd, then it equals s∗ everywhere. Intuitively, this suggests that
learning the score in-sample for a single t = t0, and satisfying the consistency and conservativeness properties
off-sample, also yields a correct estimate off-sample. This can be summarized as follows below:

Theorem 1.1 (informal). If some denoiser h(x, t) is consistent and its corresponding score function s(x, t) =
(h(x, t) − x)/σ2

t is a conservative field, then s(x, t) is the score function of a diffusion process, i.e. the
generation process using score function s is the inverse of a diffusion process. If additionally s(x, t) = s∗(x, t)
for a single t = t0 and all x in an open subset of Rd, where s∗ is the score function of a target diffusion
process, then s(x, t) = s∗(x, t) everywhere, i.e. to learn the score function everywhere it suffices to learn it for
a single t0 and an open subset of x’s.

We propose a loss function to train for the consistency property and we show experimentally that
regularizing the standard score matching objective using our consistency property leads to better models.

Summary of Contributions:

1. We identify an invariant property, consistency of the denoiser h, that any perfectly trained model should
satisfy.

2. We prove that if the denoiser h(x, t) is consistent and its implied score function s(x, t) = (h(x, t)−x)/σ2
t

is a conservative field, then s(x, t) is the score function of some diffusion process, even if there are
learning errors with respect to the score of the target process, which generates the training data.

3. We prove that if these two properties are satisfied, then optimizing perfectly the score for a single t = t0
and an open subset S ⊆ Rd, guarantees that the score is learned perfectly everywhere.

4. We propose a novel training objective that enforces the consistency property. Our new objective
optimizes the network to have consistent predictions on data points from the learned distribution.

5. We show experimentally that, paired with the original Denoising Score Matching (DSM) loss, our
objective achieves a new state-of-the-art on conditional and unconditional generation in CIFAR10 and
baseline improvements in AFHQ and FFHQ.

6. We open-source our code and models: https://github.com/giannisdaras/cdm.

2 Background

Diffusion processes, score functions and denoising. Diffusion models are trained by solving a super-
vised regression problem (Song and Ermon, 2019; Ho et al., 2020). The function that one aims to learn, called
the score function, defined below, is equivalent (up to a linear transformation) to a denoising function (Efron,
2011; Vincent, 2011), whose goal is to denoise an image that was injected with noise. In particular, for some
target distribution p0, one’s goal is to learn the following function h : Rd × [0, 1]→ Rd:

h(x, t) = E[x0 | xt = x]; x0 ∼ p0, xt ∼ N(x0, σ
2
t Id). (2)

In other words, the goal is to predict the expected “clean” image x0 given a corrupted version of it, assuming
that the image was sampled from p0 and its corruption was done by adding to it noise from N(0, σ2

t Id), where
σ2
t is a non-negative and increasing function of t. Given such a function h, we can generate samples from p0

3
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by solving a Stochastic Differential Equation (SDE) that depends on h (Song et al., 2021b). Specifically, one
starts by sampling x1 from some fixed distribution and then runs the following SDE backwards in time:

dxt = −g(t)2h(xt, t)− xt
σ2
t

dt+ g(t)dBt, (3)

where Bt is a reverse-time Brownian motion and g(t)2 =
dσ2

t

dt . To explain how Eq. (3) was derived, consider
the forward SDE that starts with a clean image x0 and slowly injects noise:

dxt = g(t)dBt, x0 ∼ p0. (4)

We notice here that the xt under Eq. (4) is N(x0, σ
2
t Id), where x0 ∼ p0, so it has the same distribution that it

has in Eq. (2). Remarkably, such SDEs are reversible in time (Anderson, 1982). Hence, the diffusion process
of Eq. (4) can be viewed as a reversed-time diffusion:

dxt = −g(t)2∇x log p(xt, t)dt+ g(t)dBt, (5)

where p(xt, t) is the density of xt at time t. We note that s(x, t) := ∇x log p(x, t) is called the score function
of xt at time t. Using Tweedie’s lemma (Efron, 2011), one obtains the following relationship between the
denoising function h and the score function:

∇x log p(x, t) =
h(x, t)− x

σ2
t

. (6)

Substituting Eq. (6) in Eq. (5), one obtains Eq. (3).

Training via denoising score matching. The standard way to train for h is via denoising score matching.
This is performed by obtaining samples of x0 ∼ p0 and xt ∼ N(x0, σ

2
t Id) and training to minimize

Ex0∼p0,xt∼N(x0,σ2
t Id)L

1
t,xt,x0

(θ) = Ex0∼p0,xt∼N(x0,σ2
t Id) ‖hθ(xt, t)− x0‖2 ,

where the optimization is over some family of functions, {hθ}θ∈Θ. It was shown by Vincent (2011) that
optimizing Eq. (2) is equivalent to optimizing h in mean-squared-error on a random point xt that is a noisy
image, xt ∼ N(x0, σ

2
t Id) where x0 ∼ p0:

Ext
‖hθ(xt, t)− h∗(xt, t)‖2 ,

where h∗ is the true denoising function from Eq. (2).

3 Theory

We define below the consistency property that a function h should satisfy. This states that the output of h(x, t)
(which is meant to approximate the conditional expectation of x0 conditioned on xt = x) is indeed consistent
with the average point x0 generated using h and conditioning on xt = x. Recall from the previous section
that generation according to h conditionning on xt = x is done by running the following SDE backwards in
time conditioning on xt = x:

dxt = −g(t)2h(xt, t)− xt
σ2
t

dt+ g(t)2dBt, (7)

The consistency property is therefore defined as follows:

Property 1 (Consistency.). A function h : Rd × [0, 1]→ Rd is said to be consistent iff for all t ∈ (0, 1] and
all x ∈ Rd,

h(x, t) = Eh[x0 | xt = x], (8)

where Eh[x0 | xt = x] corresponds to the conditional expectation of x0 in the process that starts with xt = x
and samples x0 by running the SDE of Eq. (7) backwards in time (where note that the SDE uses h).
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The following Lemma states that Property 1 holds if and only if the model prediction, h(x, t), is consistent
with the average output of h on samples that are generated using h and conditioning on xt = x, i.e. that
h(xt, t) is a reverse-Martingale under the same process of Eq. (7).

Lemma 3.1. Property 1 holds if and only if the following two properties hold:

• The function h is a reverse-Martingale, namely: for all t > t′ and for any x:

h(x, t) = Eh[h(xt′ , t
′) | xt = x],

where the expectation is over xt′ that is sampled according to Eq. (7) with the same function h, given
the initial condition xt = x.

• For all x ∈ Rd, h(x, 0) = x.

The proof of this Lemma is included in the Appendix. Further, we introduce one more property that will
be required for our theoretical results: the learned vector-field should be conservative.

Property 2 (Conservative vector field / Score Property.). Let h : Rd × [0, 1] → Rd. We say that h
induces a conservative vector field (or that is satisfies the score property) if for any t ∈ (0, 1] there exists
some probability density p(·, t) such that

h(x, t)− x
σ2
t

= ∇ log p(x, t).

We note that the optimal denoiser, i.e. h defined as in Eq. (2) satisfies both of the properties we introduced.
In the paper, we will focus on enforcing the consistency property and we are going to assume conservativeness
for our theoretical results. This assumption can be relieved to hold only at a single t ∈ (0, 1] using results of
Lai et al. (2022).

Next, we show the theoretical consequences of enforcing Properties 1 and 2. First, we show that this
enforces h to indeed correspond to a denoising function, namely, h satisfies Eq. (2) for some distribution p′0
over x0. Yet, this does not imply that p0 is the correct underlying distribution that we are trying to learn.
Indeed, these properties can apply to any distribution p0. Yet, we can show that if we learn h correctly for
some inputs and if these properties apply everywhere then h is learned correctly everywhere.

Theorem 3.2. Let h : Rd × [0, 1]→ Rd be a continuous function. Then:

1. The function h satisfies both Properties 1 and 2 if and only if h is defined by Eq. (2) for some distribution
p0.

2. Assume that h satisfies Properties 1 and 2. Further, let h∗ be another function that corresponds to
Eq. (2) with some initial distribution p∗0. Assume that h = h∗ on some open set U ⊆ Rd and some fixed
t0 ∈ (0, 1], namely, h(x, t0) = h∗(x, t0) for all x ∈ U . Then, h∗(x, t) = h(x, t) for all x and all t.

Proof overview. We start with the first part of the theorem. We assume that h satisfies Properties 1 and
2 and we will show that h is defined by Eq. (2) for some distribution p0 (while the other direction in the
equivalence follows trivially from the definitions of these properties). Motivated by Eq. (6), define the function
s : Rd × (0, 1] according to

s(x, t) =
h(x, t)− x

σ2
t

. (9)

We will first show that s satisfies the partial differential equation

∂s

∂t
= g(t)2

(
Jss+

1

2
4s
)
, (10)
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where Js ∈ Rd×d is the Jacobian of s, (Js)ij = ∂si
xj

and each coordinate i of 4s ∈ Rd is the Laplacian of

coordinate i of s, (4s)i =
∑n
j=1

∂2si
∂x2

j
. In order to obtain Eq. (10), first, we use a generalization of Ito’s

lemma, which states that for an SDE

dxt = µ(xt, t)dt+ g(t)dBtx (11)

and for f : Rd × [0, 1]→ Rd, f(xt, t) satisfies the SDE

df(xt, t) =

(
∂f

∂t
+ Jfµ−

g(t)2

2
4f
)
dt+ g(t)JfdBt.

If f is a reverse-Martingale then the term that multiplies dt has to equal zero, namely,

∂f

∂t
+ Jfµ−

g(t)2

2
4f = 0.

By Lemma 3.1, h(xt, t) is a reverse Martingale, therefore we can substitute f = h and substitute µ = −g(t)2s
according to Eq. (7), to deduce that

∂h

∂t
− g(t)2Jhs−

g(t)2

2
4h = 0.

Substituting h(x, t) = σ2
t s(x, t) + x according to Eq. (6) yields Eq. (10) as required.

Next, we show that any s′ that is the score-function (i.e. gradient of log probability) of some diffusion
process that follows the SDE Eq. (4), also satisfies Eq. (10). To obtain this, one can use the Fokker-Planck
equation, whose special case states that the density function p(x, t) of any stochastic process that satisfies
the SDE Eq. (4) satisfies the PDE

∂p

∂t
=
g(t)2

2
4p

where 4 corresponds to the Laplacian operator. Using this one can obtain a PDE for ∇x log p which happens
to be exactly Eq. (10) if the process is defined by Eq. (4).

Next, we use Property 2 to deduce that there exists some densities p(·, t) for t ∈ [0, 1] such that

s(x, t) =
h(x, t)− x

σ2
t

= ∇x log p(x, t).

Denote by p′(x, t) the score function of the diffusion process that is defined by the SDE of Eq. (4) with the
initial condition that p(x, 0) = p′(x, 0) for all x. Denote by s′(x, t) = ∇x log p′(x, t) the score function of p′.
As we proved above, both s and s′ satisfy the PDE Eq. (10) and the same initial condition at t = 0. By the
uniqueness of the PDE, it holds that s(x, t) = s′(x, t) for all t ≥ t0. Denote by h∗ the function that satisfies
Eq. (2) with the initial condition x0 ∼ p0. By Eq. (6),

s′(x, t) =
h∗(x, t)− x

σ2
t

.

By Eq. (9) and since s = s′, it follows that h = h∗ and this is what we wanted to prove.
We proceed with proving part 2 of the theorem. We use the notion of an analytic function on Rd: that is

a function f : Rd → R such that at any x0 ∈ Rd, the Taylor series of f centered at x0 converges for all x ∈ Rd
to f(x). We use the property that an analytic function is uniquely determined by its value on any open subset:
If f and g are analytic functions that identify in some open subset U ⊂ Rd then f = g everywhere. We prove
this statement in the remainder of this paragraph, as follows: Represent f and g as Taylor series around
some x0 ∈ U . The Taylor series of f and g identify: indeed, these series are functions of the derivatives of f
and g which are functions of only the values in U . Since f and g equal their Taylor series, they are equal.
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Next, we will show that for any diffusion process that is defined by Eq. (4), the probability density of
p(x, t0) at any time t0 > 0 is analytic as a function of x. Recall that the distribution of x0 is defined in Eq. (4)
as p0 and it holds that the distribution of xt0 is obtained from p0 by adding a Gaussian noise N(0, σ2

t I) and
its density at any x equals

p(x, t0) =

∫
a∈Rd

1√
2πσt0

exp

(
− (x− a)2

2σ2
t

)
dp0(a).

Since the function exp(−(x− a)2/(2σ2
t )) is analytic, one could deduce that p(x, t0) is also analytic. Further,

p(x, t0) > 0 for all x which implies that there is no singularity for log p(x, t0) which can be used to deduce
that log p(x, t0) is also analytic and further that ∇x log p(x, t0) is analytic as well.

We use the first part of the theorem to deduce that s is the score function of some diffusion process hence
it is analytic. By assumption, s identifies with some target score function s∗ in some open subset U ⊆ Rd at
some t0, which, by the fact that s(x, t0) and s∗(x, t0) are analytic, implies that s(x, t0) = s∗(x, t0) for all x.
Finally, since s and s∗ both satisfy the PDE Eq. (10) and they satsify the same initial condition at t0, it
holds that by uniqueness of the PDE s(x, t) = s∗(x, t) for all x and t.

4 Method

Theorem 3.2 motivates enforcing the consistency property on the learned model. We notice that the consistency
equation Eq. (8) may be expensive to train for, because it requires one to generate whole trajectories. Rather,
we use the equivalent Martingale assumption of Lemma 3.1, which can be observed locally with only partial
trajectories:2 We suggest the following loss function, for some fixed t, t′ and x:

L2
t,t′,x(θ) = (Eθ[hθ(xt′ , t′) | xt = x]− hθ(x, t))

2
/2,

where the expectation Eθ[· | xt = x] is taken according to process Eq. (7) parameterized by hθ with the initial
condition xt = x. Differentiating this expectation, one gets the following (see Section B.1 for full derivation):

∇L2
t,t′,x(θ) = Eθ [hθ(xt′ , t

′)− hθ(xt, t) | xt = x]
> Eθ

[
hθ(xt′ , t

′)∇θ log (pθ(xt′ | xt = x)) +

∇θhθ(xt′ , t′)−∇θhθ(xt, t)
∣∣∣∣ xt = x

]
,

where pθ corresponds to the same probability measure where the expectation Eθ is taken from and ∇θhθ
corresponds to the Jacobian matrix of hθ where the derivatives are taken with respect to θ. Notice, however,
that computing the expectation accurately might require a large number of samples. Instead, it is possible
to obtain a stochastic gradient of this target by taking two samples, xt′ and xt′ , independently, from the
conditional distribution of xt′ conditioned on xt = x and replace each of the two expectations in the formula
above with one of these two samples.

We further notice the gradient of the consistency loss can be written as

∇θL2
t,t′,x(θ) =

1

2
∇θ ‖Eθ[hθ(xt′ , t′)]− hθ(x, t)‖

2
+ Eθ [hθ(xt′ , t

′)− hθ(x, t)]
> Eθ []∇θ log (p(xt′))hθ(xt′ , t

′)]

In order to save on computation time, we trained by taking gradient steps with respect to only the first
summand in this decomposition and notice that if the consistency property is preserved then this term
becomes zero, which implies that no update is made, as desired.

It remains to determine how to select t, t′ and xt′ . Notice that t has to vary throughout the whole range
of [0, 1] whereas t′ can either vary over [0, t], however, it sufficient to take t′ ∈ [t− ε, t]. However, the further

2According to Lemma 3.1, in order to completely train for Property 1, one has to also enforce h(x, 0) = x, however, this is
taken care from the denoising score matching objective Eq. (2).
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away t and t′ are, we need to run more steps of the reverse SDE to avoid large discretization errors. Instead,
we enforce the property only on small time windows using that consistency over small intervals implies global
consistency. We notice that xt can be chosen arbitrarily and two possible choises are to sample it from the
target noisy distribution pt or from the model.

Remark 4.1. It is important to sample xt′ conditioned on xt according to the specific SDE Eq. (7). While a
variety of alternative SDEs exist which preserve the same marginal distribution at any t, they might not
preseve the conditionals.

5 Experiments

For all our experiments, we rely on the official open-sourced code and the training and evaluation hyper-
parameters from the paper “Elucidating the Design Space of Diffusion-Based Generative Models” (Karras
et al., 2022) that, to the best of our knowledge, holds the current state-of-the-art on conditional generation on
CIFAR-10 and unconditional generation on CIFAR-10, AFHQ (64x64 resolution), FFHQ (64x64 resolution).
We refer to the models trained with our regularization as “CDM (Ours)” and to models trained with vanilla
Denoising Score Matching (DSM) as “EDM” models. “CDM” models are trained with the weighted objective:

Lours
λ (θ) = Et

[
Ex0∼p0,xt∼N (x0,σ2

t Id)L
1
t,xt,x0

(θ) + λExt∼ptEt′∼U [t−ε,t]L
2
t,t′,xt

(θ)

]
,

while the “EDM” models are trained only with the first term of the outer expectation. We also denote in the
name whether the models have been trained with the Variance Preserving (VP) Song et al. (2021b); Ho et al.
(2020) or the Variance Exploding Song et al. (2021b); Song and Ermon (2020, 2019), e.g. we write EDM-VP.
Finally, for completeness, we also report scores from the models of Song et al. (2021b), following the practice
of the EDM paper. We refer to the latter baselines as “NCSNv3” baselines.

We train diffusion models, with and without our regularization, for conditional generation on CIFAR-10
and unconditional generation on CIFAR-10 and AFHQ (64x64 resolution). For the re-trained models on
CIFAR-10, we use exactly the same training hyperparameters as in Karras et al. (2022) and we verify that
our re-trained models match (within 1%) the FID numbers mentioned in the paper. For AFHQ, we had to
drop the batch size from the suggested value of 512 to 256 to fit in memory, which increased the FID from
1.96 (reported value) to 2.29. All models were trained for 200k iterations, as in Karras et al. (2022). Finally,
we retrain a baseline model on FFHQ for 150k iterations and we finetune it for 5k steps using our proposed
objective.

Implementation Choices and Computational Requirements. As mentioned, when enforcing the
Consistency Property, we are free to choose t′ anywhere in the interval [0, t]. When t, t′ are far away, sampling
x′t from the distribution pθt′(x

′
t|xt) requires many sampling steps (to reduce discretization errors). Since this

needs to be done for every Gradient Descent update, the training time increases significantly. Instead, we
notice that local consistency implies global consistency. Hence, we first fix the number of sampling steps to
run in every training iteration and then we sample t′ uniformly in the interval [t− ε, t] for some specified ε.
For all our experiments, we fix the number of sampling steps to 6 which roughly increases the training time
needed by 1.5x. We train all our models on a DGX server with 8 A100 GPUs with 80GBs of memory each.

5.1 Consistency Property Testing

We are now ready to present our results. The first thing that we check is whether regularizing for the
Consistency Property actually leads to models that are more consistent. Specifically, we want to check that
the model trained with Lours

λ achieves lower consistency error, i.e. lower L2
t,t′,xt

. To check this, we do the

following two tests: i) we fix t = 1 and we show how L2
t,t′,xt

changes as t′ changes in [0, 1], ii) we fix t′ = 0
and we show how the loss is changing as you change t in [0, 1]. Intuitively, the first test shows how the
violation of the consistency property splits across the sampling process and the second test shows how much
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you finally (t′ = 0) violate the property if the violation started at time t. The results are shown in Figures 1a,
1b, respectively, for the models trained on AFHQ. We include additional results for CIFAR-10, FFHQ in
Figures 4, 5, 6, 7 of the Appendix. As shown, indeed regularizing for the Consistency Loss drops the L2

t,t′,xt

as expected.
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(a) Consistency Property Testing on AFHQ. The plot
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(b) Consistency Property Testing on AFHQ. The plot
illustrates how the Consistency Loss, L2
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, behaves

for t = 0, as t′ changes.

Figure 1: Consistency Property Testing on AFHQ.

Performance. We evaluate performance of the models trained from scratch. Following the methodology
of Karras et al. (2022), we generate 150k images from each model and we report the minimum FID
computed on three sets of 50k images each. We keep checkpoints during training and we report FID for
30k, 70k, 100k, 150k, 180k and 200k iterations in Table 1. We also report the best FID found for each model,
after evaluating checkpoints every 5k iterations (i.e. we evaluate 40 models spanning 200k steps of training).
As shown in the Table, the proposed consistency regularization yields improvements throughout the training.
In the case of CIFAR-10 (conditional and unconditional) where the re-trained baseline was trained with
exactly the same hyperparameters as the models in the EDM Karras et al. (2022) paper, our CDM models
achieve a new state-of-the-art.

We further show that our consistency regularization can be applied on top of a pre-trained model.
Specifically, we train a baseline EDM-VP model on FFHQ 64x64 for 150k using vanilla Denoising Score
Matching. We then do 5k steps of finetuning, with and without our consistency regularization and we
measure the FID score of both models. The baseline model achieves FID 2.68 while the model finetuned with
consistency regularization achieves 2.61. This experiment shows the potential of applying our consistency
regularization to pre-trained models, potentially even at large scale, e.g. we could apply this idea with
text-to-image models such as Stable Diffusion Rombach et al. (2022). We leave this direction for future work.

Uncurated samples from our best models on AFHQ, CIFAR-10 and FFHQ are given in Figures 2a, 2b, 8.
One benefit of the deterministic samplers is the unique identifiability property (Song et al., 2021b). Intuitively,
this means that by using the same noise and the same deterministic sampler, we can directly compare visually
models that might have been trained in completely different ways. We select a couple of images from Figure
2a (AFHQ generations) and we compare the generated images from our model with the ones from the EDM
baseline for the same noises. The results are shown in Figure 3. As shown, the consistency regularization fixes
several geometric inconsistencies for the picked images. We underline that the shown images are examples for
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(a) Uncurated images by our model trained on AFHQ.
FID: 2.21, NFEs: 79.

(b) Uncurated images by our conditional CIFAR-10 model.
FID: 1.77, NFEs: 35.

Figure 2: Comparison of uncurated images generated by two different models.

Model 30k 70k 100k 150k 180k 200k Best
CDM-VP (Ours)

AFHQ

3.00 2.44 2.30 2.31 2.25 2.44 2.21
EDM-VP (retrained) 3.27 2.41 2.61 2.43 2.29 2.61 2.26

EDM-VP (reported)∗3 1.96
EDM-VE (reported)∗ 2.16

NCSNv3-VP (reported)∗ 2.58
NCSNv3-VE (reported)∗ 18.52

CDM-VP (Ours)

CIFAR10 (cond.)

2.44 1.94 1.88 1.88 1.80 1.82 1.77
EDM-VP (retrained) 2.50 1.99 1.94 1.85 1.86 1.90 1.82
EDM-VP (reported) 1.79
EDM-VE (reported) 1.79

NCSNv3-VP (reported) 2.48
NCSNv3-VE (reported) 3.11

CDM-VP (Ours)

CIFAR10 (uncond.)

2.83 2.21 2.14 2.08 1.99 2.03 1.95
EDM-VP (retrained) 2.90 2.32 2.15 2.09 2.01 2.13 2.01
EDM-VP (reported) 1.97
EDM-VE (reported) 1.98

NCSNv3-VP (reported) 3.01
NCSNv3-VE (reported) 3.77

Table 1: FID results for deterministic sampling, using the Karras et al. (2022) second-order samplers. For
the CIFAR-10 models, we do 35 function evaluations and for AFHQ 79.

which consistency regularization helped and that potentially there are images for which the baseline models
give more realistic results.
Ablation Study for Theoretical Predictions. One interesting implication of Theorem 3.2 is that it
suggests that we only need to learn the score perfectly on some fixed t0 and then the consistency property
implies that the score is learned everywhere (for all t and in the whole space). This motivates the following

10



Figure 3: Visual comparison of EDM model (top) and CDM model (Ours, bottom) using deterministic
sampling initiated with the same noise. As seen, the consistency regularization fixes several geometric
inconsistencies and artifacts in the generated images.

Model FID
EDM (baseline) 5.81
CDM, all times t 5.45
CDM, for some t 6.59

CDM, for some t, early stopped sampling 14.52

Table 2: Ablation study on removing the DSM loss for some t. Table reports FID results after 10k steps of
training in CIFAR-10.

experiment: instead of using as our loss the weighted sum of DSM and our consistency regularization for all
t, we will not use DSM for t ≤ tthreshold, for some tthreshold that we test our theory for.

We pick tthreshold such that for 20% of the diffusion (on the side of clean images), we do not train with
DSM. For the rest 80% we train with both DSM and our consistency regularization. Since this is only an
ablation study, we train for only 10k steps on (conditional) CIFAR-10. We report FID numbers for three
models: i) training with only DSM, ii) training with DSM and consistency regularization everywhere, iii)
training with DSM for 80% of times t and consistency regularization everywhere. In our reported models,
we also include FID of an early stopped sampling of the latter model, i.e. we do not run the sampling for
t < tthreshold and we just output hθ(xtthreshold , tthreshold). The numbers are summarized in Table 2. As shown,
the theory is predictive since early stopping the generation at time t gives significantly worse results than
continuing the sampling through the times that were never explicitly trained for approximating the score (i.e.
we did not use DSM for those times). That said, the best results are obtained by combining DSM and our
consistency regularization everywhere, which is what we did for all the other experiments in the paper.

6 Related Work

The fact that imperfect learning of the score function introduces a shift between the training and the sampling
distribution has been well known. Chen et al. (2022a) analyze how the l2 error in the approximation of
the score function propagates to Total Variation distance error bounds between the true and the learned
distribution. Several methods for mitigating this issue have been proposed, but the majority of the attempts
focus on changing the sampling process Song et al. (2021b); Karras et al. (2022); Jolicoeur-Martineau et al.
(2021); Sehwag et al. (2022). A related work is the Analog-Bits paper Chen et al. (2022b) that conditions the
model during training with past model predictions.

Karras et al. (2022) discusses potential violations of invariances, such as the non-conservativity of the
induced vector field, due to imperfect score matching. However, they do not formally test or enforce this
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property. Lai et al. (2022) study the problem of regularizing diffusion models to satisfy the Fokker-Planck
equation. While we show in Theorem 3.2 that perfect conservative training enforces the Fokker-Planck
equation, we notice that their training method is different: they suggest to enforce the equation locally by
using the finite differences method to approximate the derivatives. Further, they do not train on drifted
data. Instead, we notice that our consistency loss is well suited to handle drifted data since it operates across
trajectories generated by the model. Finally, they show benchmark improvements on MNIST whereas we
achieve state-of-the-art performance and benchmark improvements in more challenging datasets such as
CIFAR-10 and AFHQ.

7 Conclusions and Future Work

We proposed a novel objective that enforces the trained network to have self-consistent predictions over time.
We optimize this objective with points from the sampling distribution, effectively reducing the sampling drift
observed in prior empirical works. Theoretically, we show that the consistency property implies that we
are sampling from the reverse of some diffusion process. Together with the assumption that the network
has learned perfectly the score for some time t0 and some open set U , we can prove that the consistency
property implies that we learn the score perfectly everywhere. Empirically, we use our objective to obtain
state-of-the-art for CIFAR-10 and baseline improvements on AFHQ and FFHQ.

There are limitations of our method and several directions for future work. The proposed regularization
increases the training time by approximately 1.5x. It would be interesting to explore how to enforce consistency
in more effective ways in future work. Further, our method does not test nor enforce that the induced
vector-field is conservative, which is a key theoretical assumption. Our method guarantees only indirectly
improve the performance in the samples from the learned distribution by enforcing some invariant. Finally,
our theoretical result assumes perfect learning of the score in some subset of Rd. An important next step
would be to understand how errors propagate if the score-function is only approximately learned.
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A Proof of Theorem 3.2

In Section A.1 we present some preliminaries to the proof, in Section A.2 we include the proof, with proofs of
some lemmas ommitted and in the remaining sections we prove these lemmas.

A.1 Preliminaries

Preliminaries on diffusion processes In the next definition we define for a function F : Rd → Rd its
Jacobian JF , its divergence ∇ · F and its Laplacian 4F that is computed separately on each coordinate of F :

Definition A.1. Given a function F = (f1, . . . , fn) : Rd → Rd, denote by JF : Rd → Rd×d its Jacobian:

(JF )ij =
∂fi(x)

∂xj
.

The divergence of F is defined as

∇ · F (x) :=
n∑
i=1

∂fi(x)

∂xi
.

Denote by 4F : Rd → Rd the function whose ith entry is the Laplacian of fi:

(4F (x))i =
n∑
j=1

∂2fi(x)

∂x2
j

.

If F is a function of both x ∈ Rd and t ∈ R, then JF , 4f and ∇ · F correspond to F as a function of x,
whereas t is kept fixed. In particular,

(JF (x, t))ij =
∂fi(x, t)

∂xj
, (4F (x, t))i =

n∑
j=1

∂2fi(x, t)

∂x2
j

, ∇ · F =
n∑
i=1

∂fi(x, t)

∂xi
.

We use the celebrated Ito’s lemma and some of its immediate generalizations:

Lemma A.2 (Ito’s Lemma). Let xt be a stochastic process xt ∈ Rd, that is defined by the following SDE:

dxt = µ(xt, t)dt+ g(t)dBt,

where Bt is a standard Brownian motion. Let f : Rd × R→ R. Then,

df(xt, t) =

(
df

dt
+∇xf>µ(xt, t) +

g(t)2

2
4f
)
dt+ g(t)∇xf>dBt.

Further, if F : Rd × R→ Rd is a multi-valued function, then

dF (xt, t) =

(
dF

dt
+ JFµ+

g(t)2

2
4F

)
dt+ g(t)JF dBt.

Lastly, if xt is instead defined with a reverse noise,

dxt = µ(xt, t)dt+ g(t)dBt,

then the multi-valued Ito’s lemma is modified as follows:

dF (xt, t) =

(
dF

dt
+ JFµ−

g(t)2

2
4F

)
dt+ g(t)JF dBt. (12)
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Lastly, we present the Fokker-Planck equation which states that the probability distribution that corre-
sponds to diffusion processes satisfy a certain partial differential equation:

Lemma A.3 (Fokker-Planck equation). Let xt be defined by

dxt = µ(xt, t)dt+ g(t)dBt,

where xt, µ(x, t) ∈ Rd and Bt is a Brownian motion in Rd. Denote by p(x, t) the density at point x on time t.
Then,

∂

∂t
p(x, t) = −∇ · (µ(x, t)p(x, t)) +

g(t)2

2
4p(x, t) = −p∇ · µ− µ∇ · p+

g(t)2

2
4p.

Preliminaries on analytic functions

Definition A.4. A function f : Rd → R is analytic on Rd if for any x0, x ∈ Rd, the Taylor series of f around
x0, evaluated at x, converges to f(x). We say that F = (f1, . . . , fn) : Rd → Rd is an analytic function if fi is
analytic for all i ∈ {1, . . . , n}.

The following holds:

Lemma A.5. If F,G : Rd → Rd are two analytic functions and if F = G for all x ∈ U where U ⊆ Rd,
U 6= 0, is an open set, then F = G on all Rd.

This is a well known result and a proof sketch was given in Section 3.

The heat equation. The following is a Folklore lemma on the uniqueness of the solutions to the heat
equation:

Lemma A.6. Let p and p′ be two continuous functions on Rd × [t0, 1] that satisfy the heat equation

∂p

∂t
=
g(t)2

2
4p. (13)

Further, assume that p(·, t0) = p′(·, t0). Then, p = p′ for all t ∈ [t0, 1].

A.2 Main proof

In what appears below we denote

s(x, t) :=
h(x, t)− x

σ2
t

. (14)

We start by claiming that if h satisfies Property 1, then s satisfies the PDE Eq. (10): (proof in Section A.3)

Lemma A.7. Let h satisfy Property 1 and define s according to Eq. (14). Then, s satisfies Eq. (10).

Next, we claim that the score function of any diffusion process satisfies the PDE Eq. (10): (proof in
Section A.4)

Lemma A.8. Let s be the score function of some diffusion process that is defined by Eq. (4). Then, s satisfies
the PDE Eq. (10).

To complete the first part of the proof, denote by p(·, t) the probability distribution such that s(x, t) =
∇ log p(x, t), whose existence follows from Property 2. We would like to argue that {p(·, t)}t∈(0,1] corresponds
the probability density of the diffusion

dxt = g(t)dBt. (15)

It suffices to show that for any t0 > 0, {p(·, t)}t∈(t0,1] corresponds to the same diffusion. To show the
latter, let t0 ∈ (0, 1) and consider the diffusion process according to Eq. (15) with the initial condition that
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xt0 ∼ p(·, t0). Denote its score function by s′ and notice that it satisfies the PDE Eq. (10) and the initial
condition s′(x, t0) = ∇x log p(x, t0) = s(x, t0), where the first equality follows from the definition of a score
function and the second from the construction of p(x, t0). Further, recall that s(x, t) satisfies the same PDE
Eq. (10) by Lemma A.3. Next we will show that s = s′ for all t ∈ [t0, 1], and this will follow from the following
lemma: (proof in Section A.5)

Lemma A.9. Let s and s′ be two solutions for the PDE (10) on the domain Rd × [t0, 1] that satisfy the
same initial condition at t0: s(x, t0) = s′(x, t0) for all x. Further, assume that for all t ∈ [t0, 1] there exist
probability densities p(·, t) and p′(·, t) such that s(x, t) = ∇x log p(x, t) and s′(x, t) = ∇x log p′(x, t) for all x.
Then, s = s′ on all of Rd × [t0, 1].

Then, by uniqueness of the PDE one obtains that s = s′ for all t ∈ [t0, 1]. Hence, s is the score of a
diffusion for all t ≥ t0 and this holds for any t0 > 0, hence this holds for any t > 0. This concludes the proof
of the first part of the theorem.

For the second part, let s∗ denote some score function of a diffusion process that satisfies Eq. (4). Assume
that for some t0 > 0 and some open subset U ⊆ Rd, s = s∗, namely s(x, t0) = s∗(x, t0) for all t0 > 0 and
all x ∈ U . First, we would like to argue that if s(x, t) is the score function of some diffusion process that
satisfies Eq. (4), then for any t0 > 0 it holds that s(x, t0) is an analytic function (proof in Section A.6)

Lemma A.10. Let xt obey the SDE Eq. (4) with the initial condition x0 ∼ µ0. Let t > 0 and let s(x, t)
denote the score function of xt, namely, s(x, t) = ∇x log p(x, t) where p(x, t) is the density of xt. Assume
that µ0 is a bounded-support distribution. Then, s(x, t) is an analytic function.

Since both s and s∗ are scores of diffusion processes, then s(x, t0) and s∗(x, t0) are analytic functions.
Using the fact that s = s∗ on U × {t0} and using Lemma A.5 we derive that s(x, t0) = s∗(x, t0) for all x. Let
p and p∗ denote the densities that correspond to the score functions s and s∗ and by definition of a score
function, we obtain that for all x,

∇ log p(x, t0) = s(x, t0) = s∗(x, t0) = ∇ log p∗(x, t0),

which implies, by integration, that
log p(x, t0) = log p∗(x, t0) + c

for some constant c ∈ R. However, c = 0. Indeed,

1 =

∫
p(x, t0)dx =

∫
elog p(x,t0)dx =

∫
elog p∗(x,t0)+cdx =

∫
p∗(x, t0)ecdx = ec,

which implies that c = 0 as required. As a consequence, the following lemma implies that p(x, 0) = p∗(x, 0)
for all x (proof in Section A.7):

Lemma A.11. Let xt and yt be stochastic processes that follow Eq. (4) with initial conditions x0 ∼ µ0 and
y0 ∼ µ′0 and assume that µ0 and µ′0 are bounded-support. Assume that for some t0 > 0, xt0 and yt0 have the
same distribution. Then, µ0 = µ′0.

Without loss of generality, one can replace 0 with any t̃ ∈ (0, t0), to obtain that p(x, t̃) = p∗(x, t̃) for any
t̃ ∈ [0, t0]. Now, p(x, t0) is analytic, from Lemma A.5, hence it is continuous. Consequently, Lemma A.6
implies that p = p∗ in Rd × [t0, 1]. This concludes that p = p∗ in all the domain, which implies that
s = ∇ log p = ∇ log p∗ = s∗, as required.

A.3 Proof of Lemma A.7

We use Ito’s lemma, and in particular Eq. (12), to get a PDE for the function h(xt, t) where xt satisfies the
stochastic process

dxt = −g(t)2s(xt, t)dt+ g(t)dBt.
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Ito’s formula yields that

dh(xt, t) =

(
∂h

∂t
− g(t)2JF s−

g(t)2

2
4h
)
dt+ σJhdB̄t.

Since (h, s) satisfies Property 1 and using Lemma 3.1, h is a reverse martingale which implies that the term
that multiplies dt has to equal zero. In particular, we have that

∂h

∂t
− g(t)2Jhs−

g(t)2

2
4h = 0. (16)

By Eq. (14),

s =
h− x
σ2
t

.

Therefore,
h = x+ σ2

t s.

Substituting this in Eq. (16) and using the relation dσ2
t /dt = g(t)2 that follows from Eq. (14), one obtains

that

0 =
∂

∂t
(x+ σ2

t s)− g(t)2Jx+σ2
t s
s− g(t)2

2
4(x+ σ2

t s)

= g(t)2s+ σ2
t

∂s

∂t
− g(t)2(I + σ2

t Js)s−
g(t)2σ2

t

2
4s

= σ2
t

∂s

∂t
− g(t)2σ2

t Jss−
g(t)2σ2

t

2
4s.

Dividing by σ2
t , we get that

∂s

∂t
− g(t)2Jss−

g(t)2

2
4s = 0,

which is what we wanted to prove.

A.4 Proof of Lemma A.8

We present as a consequence of the Fokker-Plank equation (Lemma A.3) a PDE for the log density log p:

Lemma A.12. Let xt be defined by

dxt = µ(xt, t)dt+ g(t)dBt.

Then,
∂ log p

∂t
= −∇ · µ− µ∇ · log p+

g(t)2‖∇ log p‖2

2
+
g(t)24 log p

2

Proof. We would like to replace the partial derivatives of p that appears in Lemma A.3 with the partial
derivatives of log p. Using the formula

∂ log p

∂t
=

1

p

∂p

∂t
,

one obtains that
∂p

∂t
= p

∂ log p

∂t
.

Similarly,
∂p

∂xi
= p

∂ log p

∂xi
(17)
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which also implies that
∇p = p∇ log p, ∇ · p = p∇ · log p.

Differentiating Eq. (17) again with respect to xi and applying Eq. (17) once more, one obtains that

∂2p

∂x2
i

=
∂

∂xi

(
p
∂ log p

∂xi

)
=

∂p

∂xi

∂ log p

∂xi
+ p

∂2 log p

∂x2
i

= p

((
∂ log p

∂xi

)2

+
∂2 log p

∂x2
i

)
.

Summing over i, one obtains that

4p = p
n∑
i=1

((
∂ log p

∂xi

)2

+
∂2 log p

∂x2
i

)
= p‖∇ log p‖2 + p4 log p. (18)

Substituting the partials derivatives of p inside the Fokker-Planck equation in Lemma A.3, one obtains that

p
∂ log p

∂t
= −p∇ · µ− µ(p∇ · log p) +

g(t)2

2

(
p‖∇ log p‖2 + p4 log p

)
.

Dividing by p, one gets that

∂ log p

∂t
= −∇ · µ− µ∇ · log p+

g(t)2‖∇ log p‖2

2
+
g(t)24 log p

2
.

as required.

We are ready to prove Lemma A.8: Substituting µ = 0 in Lemma A.12, on obtains that

∂ log p

∂t
=
g(t)2‖∇ log p‖2

2
+
g(t)24 log p

2
.

Taking the gradient with respect to x, one obtains that

∇∂ log p

∂t
=
g(t)2∇‖∇ log p‖2

2
+
g(t)2∇4 log p

2
. (19)

Since ∂/∂xi commutes with ∂/∂t, it holds that

∇∂ log p

∂t
=

∂

∂t
∇ log p =

∂s

∂t
, (20)

recalling that by definition s = ∇ log p. Further,

∂

∂xi
‖∇ log p‖2 =

n∑
j=1

∂

∂xi

(
∂ log p

∂xj

)2

= 2
n∑
j=1

∂2 log p

∂xi∂xj

∂ log p

∂xj
= 2(Hlog p∇ log p)i,

where for any function f : Rd → R, Hf is the Hessian function of f that is defined by

(Hf )ij =
∂2f

∂xi∂xj

This implies that
∇‖∇ log p‖2 = 2Hlog p∇ log p.

Further, notice that
Hf = J∇f ,

which implies that
∇‖∇ log p‖2 = 2J∇ log p∇ log p = 2Jss. (21)
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Lastly, we get that by the commutative property of partial derivatives,

∇4 log p = 4∇ log p = 4s. (22)

Substituting Eq. (20), Eq. (21) and Eq. (22) in Eq. (19), one obtains that

∂s

∂t
= g(t)2Jss+

g(t)24s
2

,

as required.

A.5 Proof of Lemma A.9

We will prove that p and p′ satisfy the same PDE (which is the heat equation). Recall that s and s′ satisfy

∂s

∂t
= g(t)2

(
Jss+

1

2
4s
)

=
g(t)2

2

(
∇‖s‖2 +4s

)
By substituting s = ∇ log p,

∂∇ log p

∂t
=
g(t)2

2

(
∇‖∇ log p‖2 +4∇ log p

)
.

By exchanging the order of derivatives, we obtain that

∇∂ log p

∂t
= ∇g(t)2

2

(
‖∇ log p‖2 +4 log p

)
.

By integrating, this implies that

∂ log p

∂t
=
g(t)2

2

(
‖∇ log p‖2 +4 log p

)
+ c(t),

where c(t) depends only on t. Eq. (18) shows that

4 log p =
4p
p
− ‖∇ log p‖2.

By substituting this in the equation above, we obtain that

∂ log p

∂t
=
g(t)2

2

4p
p

+ c(t).

By multiplying both sides with p, we get that

∂p

∂t
= p

∂ log p

∂t
=
g(t)2

2
4p+ c(t). (23)

Since p is a probability distribution, ∫
Rd

p(x, t)dx = 1,

therefore, ∫
∂p(x, t)

∂t
dx =

∂

∂t

∫
Rd

p(x, t)dx =
∂1

∂t
= 0.

Integrating over Eq. (23) we obtain that

0 =

∫
g(t)2

2
4p+ c(t)dx = 0 +

∫
c(t)dx,
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where the last equation holds since the integral of a Laplacian of probability density integrates to 0. It follows
that c(t) = 0 which implies that

∂p

∂t
=
g(t)2

2
4p, (24)

and the same PDE holds where p′ replaces p, and this follows without loss of generality. Further, since log p
and log p′ are differentiable, it holds that p(·, t) and p′(·, t) are continuous for all fixed t. This implies that p
and p′ are continuous as functions of x and t since they both satisfy the heat equation Eq. (13). Consequently,
Lemma A.6 implies that p = p′ on Rd × [t0, 1]. Finally, s = ∇ log p = ∇ log p′ = s′, as required.

A.6 Proof of Lemma A.10

First, recall that since xt satisfies Eq. (4) with the initial condition x0 ∼ µ0, then xt ∼ µ0 +N(0, σ2
t I), namely,

xt is the addition of a random variable drawn from µ0 and an independent Gaussian N(0, σ2
t I). Therefore,

the density of xt, which we denote by p(x, t), equals

p(x, a) = Ea∼µ0

[
1√

2πσt
exp

(
−‖x− a‖

2

2σ2
t

)]
.

Using the equation

∇x log f(x) =
∇xf(x)

f(x)
,

we get that

s(x, a) = ∇x log p(x, a) =
∇xp(x, a)

p(x, a)
=

Ea∼µ0

[
1√

2πσt

x−a
σ2
t

exp
(
−‖x−a‖

2

2σ2
t

)]
Ea∼µ0

[
1√

2πσt
exp

(
−‖x−a‖

2

2σ2
t

)] (25)

By using the fact that the Taylor formula for ex equals

ex =
∞∑
i=0

ei

i!
,

we obtain that the right hand side of Eq. (25) equals

Ea∼µ0

[
1√

2πσt

x−a
σ2
t

∑∞
i=0

(−1)i

i!

(
‖x−a‖2

2σ2
t

)i]
Ea∼µ0

[
1√

2πσt

∑∞
i=0

(−1)i

i!

(
‖x−a‖2

2σ2
t

)i] =

Ea∼µ0

[
x−a
σ2
t

∑∞
i=0

(−1)i

i!

(
‖x−a‖2

2σ2
t

)i]
Ea∼µ0

[∑∞
i=0

(−1)i

i!

(
‖x−a‖2

2σ2
t

)i] (26)

We will use the following property of analytic functions: if f and g are analytic functions over Rd and g(x) 6= 0
for all x then f/g is analytic over Rd. Since the denominator at the right hand side of Eq. (26) is nonzero, it
suffices to prove that the numerator and the denominator are analytic. We will prove for the denominator and
the proof for the numerator is nearly identical. By assumption of this lemma, the support of µ0 is bounded,
hence there is some M > 0 such that ‖x‖ ≤M for any x in the support. Then,∣∣∣∣∣ (−1)i

i!

(
‖x− a‖2

2σ2
t

)i∣∣∣∣∣ ≤ 1

i!

(
x2 + a2

σ2
t

)i
=
M2i

σ2i
t i!

.

This bound is independent on a, and summing these abvolute values of coefficients for i ∈ N, one obtains a
convergent series. Hence we can replace the summation and the expectation in the denominator at the right
hand side of Eq. (26) to get that it equals

∞∑
i=0

(−1)i

i!
Ea∼µ0

[(
‖x− a‖2

2σ2
t

)i]
. (27)
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This is the Taylor series around 0 of the above-described denominator it converges to the value of the
denominator at any x. While this Taylor series is taken around 0, we note the Taylor series around any
other point x0 ∈ Rn converges as well. This can be shown by shifting the coordinate system by a constant
vector such that x0 shifts to 0 and applying the same proof. One deduces that the Taylor series for the
denominator around any point x0 converges on all Rd, which implies that the denominator in the right hand
side of Eq. (26) is analytic. The numerator is analytic as well by the same argument. Therefore the ratio,
which equals s(x, t), is analytic as well as required.

A.7 Proof of Lemma A.11

Let t > 0, denote by µt and µ′t the distributions of xt and x′t, respectively, and by p(x, t) and p′(x, t) the
densities of these variables. Then, µt = µ0 +N(0, σ2

t I), namely, µt is obtained by adding an independent
sample from µ0 with an independent N(0, σ2

t I) variables, and similarly for µ′t. Hence, the density p(x, t)
is the convolution of the densities p(x, 0) with the density of a Gaussian N(0, σ2

t I). Denote by p̂(y, t) the
Fourier transform of the density p(x, t) with respect to x (while keeping t fixed) and similarly define p̂′ as the
Fourier transform of p′. Denote by g and by ĝ the density of N(0, σ2

t I) and its Fourier transform, respectively.
Denote the convolution of two functions by the operator ∗. Then,

p(x, t) = p(x, 0) ∗ g(x), p′(x, t) = p′(x, 0) ∗ g(x).

Since the Fourier transform turns convolutions into multiplications, one obtains that

p̂(y, t) = p̂(y, 0)ĝ(y), p̂′(y, t) = p̂′(y, 0)ĝ(y).

Since p(x, t) = p′(x, t) we obtain that p̂(y, t) = p̂′(y, t). Consequently,

p̂(y, 0)ĝ(y) = p̂′(y, 0)ĝ(y)

Since the Fourier transform of a Gaussian is nonzero, we can divide by ĝ(y) to get that

p̂(y, 0) = p̂′(y, 0).

This implies that the Fourier transform of p(x, 0) equals that of p′(x, 0) hence p(x, 0) = p′(x, 0) for all x, as
required.

B Other proofs

B.1 Differentiating the loss function

Denote our parameter space as Θ ⊆ Rm. In order to differentiate L1
t,t′,x(θ) with respect to θ ∈ Θ, we make

the following calculations below, and we notice that Eθ is used to denote an expectation with respect to the
distribution of x[t′,t] according to Eq. (7) with s = sθ and the initial condition xt = x. In other words, the
expectation is over x[t′,t] that is taken with respect to the sampler that is parameterized by θ with the initial
condition xt = x. We denote by pθ(x[t′,t] | xt = x) the corresponding density of x[t′,t]. For any function
f = (f1, . . . , fn) : Θ→ Rn, denote by ∇θf the Jacobian matrix of f , where

(∇θf)i,j =
∂fi
∂θj

.
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For notational consistency, if f is a single-valued function, namely, if n = 1, then ∇θf is a column vector.
We begin with the following:

∇θEθ [hθ(xt′ , t
′)] = ∇θ

∫
Rd

hθ(xt′ , t
′)pθ(x[t′,t] | xt = x)dxt′

=

∫
Rd

∇θhθ(xt′ , t′)pθ(x[t′,t] | xt = x)dxt′ +

∫
Rd

hθ(xt′ , t
′)∇θpθ(x[t′,t]|xt = x)dxt′

= Eθ [∇θhθ(xt′ , t′)] + Eθ
[
hθ(xt′ , t

′)
∇θpθ(x[t′,t]|xt = x)

pθ(x[t′,t]|xt = x)

]
= Eθ [∇θhθ(xt′ , t′)] + Eθ

[
hθ(xt′ , t

′)∇θ log
(
pθ(x[t′,t] | xt = x)

)]
Differentiating the whole loss, we get the following:

∇θL1
t,t′,x(θ) =

1

2
∇θ (Eθ[hθ(xt′ , t′)]− hθ(x, t))

2

= (Eθ[hθ(xt′ , t′)]− hθ(x, t))
>

(∇θE[hθ(xt′ , t
′)]−∇θhθ(x, t))

= Eθ [hθ(xt′ , t
′)− hθ(x, t)]

> Eθ [∇θhθ(xt′ , t′)−∇θhθ(x, t)]

+ Eθ [hθ(xt′ , t
′)− hθ(x, t)]

> Eθ
[
hθ(xt′ , t

′)∇θ log
(
pθ(x[t′,t] | xt = x)

)]
Let us compute the gradient of the log density. We use the discrete process, and let us assume that

t = t0 > t1 > · · · > tk = t′ are the sampling times. Then,

pθ(x[t′,t] | xt = x) =

k∏
i=1

pθ(xti | xti−1).

We assume that
pθ(xti | ti−1) = N (µθ,i, giId).

Then,

pθ(x[t′,t] | xt = x) ∝
k∏
i=1

exp

(
−
‖µθ,i − (xti − xti−1)‖2

2g2
i

)
Therefore

log pθ(x[t′,t] | xt = x) = C +
k∑
i=1

‖µθ,i − (xti − xti−1)‖2

2g2
i

where C corresponds to the normalizing factor that is independent of θ. Differentiating, we get that

∇θ log pθ(x[t′,t] | xt = x) =
k∑
i=1

(
µθ,i − (xti − xti−1

)
)>∇θµθ,i

g2
i

B.2 Proof of Lemma 3.1

In what appears below, the expectation E[· | xt = x] is taken with respect to the distribution obtained by
Eq. (7), namely, the backward SDE that corresponds to the function s, with the initial condition xt = x.
Similarly, E[· | xt′ ] is taken with the initial condition at xt′ . To prove the first direction in the equivalence,
assume that Property 1 holds and our goal is to prove the two consequences as described in the lemma. To
prove the first consequence, by the law of total expectation and by the fact that xt − xt′ − x0 is a Markov
chain, namely, x0 and xt are independent conditioned on xt′ , we obtain that

h(x, t) = E[x0 | xt = x] = E[E[x0 | xt′ ] | xt = x] = E[h(xt′ , t
′) | xt = x].
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To prove the second consequence, by Property 1

h(x, 0) = E[x0 | x0 = x] = x0.

This concludes the first direction in the equivalence.
To prove the second direction, assume that h(x, t) = E[h(xt′ , t

′) | xt = x] and that h(x, 0) = x and notice
that by substituting t′ = 0 we derive the following:

h(x, t) = E[h(x0, 0) | xt = x] = E[x0 | xt = x],

as required.

C Additional Results

C.1 Property Testing
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Figure 4: Consistency Property Testing on CIFAR10. The plot illustrates how the Consistency Loss, L2
t,t′,xt

,
behaves for t′ = 0, as t changes.
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Figure 5: Consistency Property Testing on CIFAR10. The plot illustrates how the Consistency Loss, L2
t,t′,xt

,
behaves for t = 0, as t′ changes.
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Figure 6: Consistency Property Testing on FFHQ. The plot illustrates how the Consistency Loss, L2
t,t′,xt

,
behaves for t′ = 0, as t changes.
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Figure 7: Consistency Property Testing on FFHQ. The plot illustrates how the Consistency Loss, L2
t,t′,xt

,
behaves for t = 0, as t′ changes.
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C.2 Uncurated Samples

Figure 8: Uncurated generated images by our fine-tuned model on FFHQ. FID: 2.61, NFEs: 79.
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