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Abstract

Spectral methods which represent data points by eigenvectors of kernel matrices or graph

Laplacian matrices have been a primary tool in unsupervised data analysis. In many application

scenarios, parametrizing the spectral embedding by a neural network that can be trained over

batches of data samples gives a promising way to achieve automatic out-of-sample extension as

well as computational scalability. Such an approach was taken in the original paper of SpectralNet

(Shaham et al. 2018), which we call SpecNet1. The current paper introduces a new neural net-

work approach, named SpecNet2, to compute spectral embedding which optimizes an equivalent

objective of the eigen-problem and removes the orthogonalization layer in SpecNet1. SpecNet2

also allows separating the sampling of rows and columns of the graph affinity matrix by track-

ing the neighbors of each data point through the gradient formula. Theoretically, we show that

any local minimizer of the new orthogonalization-free objective reveals the leading eigenvectors.

Furthermore, global convergence for this new orthogonalization-free objective using a batch-based

gradient descent method is proved. Numerical experiments demonstrate the improved performance

and computational efficiency of SpecNet2 on simulated data and image datasets.

Keywords: Spectral embedding, orthogonalization-free, neural network

1. Introduction

Spectral embedding, namely representing data points in lower dimensional space using eigenvectors

of a kernel matrix or graph Laplacian matrix, plays a crucial role in unsupervised data analysis. It

can be used, for example, for dimension reduction, spectral clustering, and revealing the underly-

ing topological structure of a dataset. A known challenge in the use of spectral embedding is the

out-of-sample extension. Another shortcoming in practice is the possible high computational cost

due to the involvement of constructing a kernel matrix and solving an eigen-problem. To overcome

these challenges, previously, the original SpectralNet (Shaham et al., 2018), which we call SpecNet1

in this paper, adopted a neural network to embed data into the eigenspace of its associated graph

Laplacian matrix. To be able to enforce the orthogonality among eigenvectors, an additional orthog-

onalization layer is appended to the neural network and updated after each optimization step. Ac-

curate computation of the orthogonalization layer requires evaluation of the neural network model

on the whole dataset, which would be computationally too expensive for large datasets. To reduce

the computational cost in practice, in SpecNet1 the computation of the orthogonalization layer is

approximated by only using mini-batches of data samples, see more in Section 2.3. However, when
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a small batch is being used, the approximation error therein leads to unsatisfactory convergence

behavior in practice. This is further elaborated in Remark 2. This work develops SpecNet2, which

removes the orthogonalization layer and will compute the neural network spectral embedding more

efficiently.

From the perspective of linear algebra eigen-problems, SpecNet1 adopts the projected gradi-

ent descent method to optimize an orthogonally-constrained quadratic objective of the eigenvalue

problem, where the orthogonalization layer is updated to conduct the orthogonalization projection

step through a QR decomposition or a Cholesky decomposition. Meanwhile, the past decade has

witnessed a trend in employing unconstrained optimization to address the eigenvalue problem with-

out the need for the orthogonalization step (Liu et al., 2015; Lei et al., 2016; Li et al., 2019; Gao

et al., 2020, 2021), especially in the field of computational chemistry (Mauri et al., 1993; Ordejon

et al., 1993; Wang et al., 2019). These unconstrained optimization techniques are also known as

“orthogonalization-free optimization” for solving eigen-problems. All of these methods adopt var-

ious forms of quadratic polynomials as their objective functions. Some works (Liu et al., 2015;

Lei et al., 2016; Li et al., 2019; Gao et al., 2020; Wang et al., 2019) are equivalent to applying

the penalty method to the orthogonally constrained optimization problem. There are two major

reasons behind moving from constrained optimization to unconstrained optimization: 1) explicit

orthogonalization requires solving a reduced size eigenvalue problem, which is not of high parallel

efficiency; 2) explicit orthogonalization requires accessing the entire vectors, which is incompatible

with batch updating scheme. As a result, in dealing with large-scale eigenvalue problems where

parallelization and/or batch updating scheme are needed, an unconstrained optimization approach

is preferred. This naturally suggests the use of unconstrained optimization for the eigen-problem in

neural network spectral embedding methods.

In the current paper, we modify the orthogonalization-free objective in (Li et al., 2019) for the

graph Laplacian matrix and use it under the spectral network framework (Shaham et al., 2018) so as

to compute neural network parametrized spectral embedding of data. The contribution of the work

includes

• The proposed spectral network, SpecNet2, is trained with an orthogonalization-free training

objective, which can be optimized more efficiently than SpecNet1. In particular, the new

optimization objective we proposed allows updating the graph neighbors of the samples in

a mini-batch at each iteration, which memory-wise only requires loading part of the affinity

matrix restricted to that graph neighborhood. Thus the method better scales to large graphs.

• Theoretically, it is proved that the global minimum of the orthogonalization-free objective

function (unique up to a rotation) reveals the leading eigenvectors of the graph Laplacian

matrix and the iterative update scheme is guaranteed to converge to the global minimizer for

any initial point up to a measure-zero set.

• The efficiency and advantage of SpecNet2 over SpecNet1 with neighbor evaluation scheme

are demonstrated empirically on several numerical examples. The network embedding also

shows better stability and accuracy in some cases.

The rest of the paper is organized as follows. In Section 2, we introduce notations used through-

out the paper, as well as the background of the spectral embedding problem we aim to solve. In

Section 3, we propose an orthogonalization-free iterative eigen-problem solver from a numerical
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linear algebra point of view with three updating schemes. In Section 4, we introduce the neural net-

work parametrization as well as the updating scheme implementations in neural network training.

Theoretical results are analyzed in Section 5. Numerical results are shown in Section 6. Finally, we

conclude our paper with discussions in Section 7.

2. Background

2.1. Graph Laplacian and spectral embedding

Given a dataset of n samples X = {xi}ni=1 in R
m, an affinity matrix W is constructed such that

Wi,j measures the similarity between xi and xj . By construction, W is a real symmetric matrix of

size n × n, and Wi,j ≥ 0. One could also view W as the weights on edges of an undirected graph

G = (V,E), where V = [n] = {1, 2, . . . , n}, E = {(i, j),Wi,j > 0}. In many scenarios, W is

constructed to be a sparse matrix. For example, in Laplacian eigenmap (Belkin and Niyogi, 2003)

and Diffusion map (Coifman and Lafon, 2006), the affinity matrix can be constructed as

Wi,j = h

(‖xi − xj‖2
σ2

)

, (1)

where h is a non-negative function on [0,∞), is compactly supported or decays exponentially. As

a result, when the kernel bandwidth σ is chosen to be the scale of the size of a local neighborhood,

then Wi,j is significantly non-zero only when xi is a nearby neighbor of xj . Typical non-negative

examples of the function h include the indicator function on [0, 1), Gaussian function e−r
2
, trun-

cated Gaussian function, etc. Other examples of W which differs from the form of (1) include kNN

graphs and kernels with self-tuned bandwidth (Cheng and Wu, 2021a). These constructions also

produce a sparse real symmetric matrix W .

Given an affinity matrix W , the degree matrix D of W is a diagonal matrix with diagonal

entries defined by Di,i =
∑n

j=1Wi,j . Note that Di,i > 0 whenever the graph has no isolated

node. The matrix P := D−1W is row-stochastic and can be viewed as the transition matrix of a

random walk on the graph. The matrix Lrw = I − P is called the “random-walk graph Laplacian”

and Lrw has real eigenvalues and eigenvectors Lrwψk = λkψk, starting from λ1 = 0 and ψ1 is a

constant eigenvector. Throughout this paper, we call the zero eigenvalue the “trivial” eigenvalue and

eigenvectors associated with zero eigenvalue the “trivial” eigenvectors of Lrw; “nontrivial” refers

to non-zero eigenvalues and eigenvectors associated with non-zero eigenvalues of Lrw. When the

graph is connected, the trivial eigenvalue zero is of multiplicity one. The first K − 1 nontrivial

eigenvectors ψ2, . . . , ψK associated with the smallest eigenvalues 0 < λ2 ≤ · · · ≤ λK of Lrw, can

provide a low-dimensional embedding of the dataset X , known as the Laplacian Eigenmap (Belkin

and Niyogi, 2003), where each sample is mapped to

xi 7→ Ψ(xi) = [ψ2(i), . . . , ψK(i)] ∈ R
K−1. (2)

Diffusion maps (Coifman and Lafon, 2006) are closely related and map

xi 7→ Ψt(xi) = [λt2ψ2(i), . . . , λ
t
KψK(i)] ∈ R

K−1, (3)

where t > 0 is the diffusion time. These embeddings using the eigenvectors of graph Laplacians

are called spectral embedding. The eigenvectors of the unnormalized graph Laplacian D−W have

also been used for embedding and spectral clustering.
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2.2. Out-of-sample extension and limiting eigenfunctions

Note that in (2), the mapping Ψ is defined on the discrete points xi ∈ X but not on the whole space

yet, since it is provided by the eigenvectors of a discrete graph Laplacian matrix. The problem of

out-of-sample extension for kernel methods and spectral methods refers to the problem of efficiently

generalizing the spectral embedding to new samples not in X . Recomputing the eigenvalue decom-

position on the extended dataset is computationally too expensive to be practical. Ideally, we would

like to generalize the spectral embedding without such recomputation. Classical methods include

Nyström extension (Nyström, 1930; Belabbas and Wolfe, 2009; Williams and Seeger, 2000) and its

variants (Bermanis et al., 2013). More recently, a neural network-based approach has been proposed

in (Shaham et al., 2018) to parametrize the eigenvectors of the Laplacian that automatically gives

an out-of-sample extension.

Theoretically, it is thus natural to ask when the mapping Ψ(xi) is the restriction of an underlying

eigenfunction in the continuous space on the dataset X . An answer has been provided by the theory

of spectral convergence in a manifold data setting: when data are sampled on a sub-manifold M
which can be of lower dimensionality than the ambient space, the eigenvectors and eigenvalues

of the graph Laplacian Lrw built from n samples with kernel bandwidth parameter σ converge to

the eigenfunctions and eigenvalues of a limiting differential operator L when n → ∞ and σ →
0 (Coifman and Lafon, 2006). The expression of L depends on the affinity construction and the

kernel matrix normalization, e.g., when data points are uniformly sampled on the manifold with

respect to the Riemannian volume then L = −∆M (the Laplace-Beltrami operator up to a sign);

and when density is non-uniform, L is a certain infinitesimal generator of the manifold diffusion

process. The spectral convergence on finite samples requires σ to scale with n in a proper way,

and in practice, the low-lying eigenvectors, namely those with smaller eigenvalues of L near zero,

converge faster than the high-frequency (high-lying) ones.

As a result, in applications where the data samples can be viewed as lying on or near to a

low-dimensional submanifold, it is natural to parametrize the first K − 1 nontrivial eigenvectors

ψk of the large kernel matrix, evaluated at sample xi, by a neural network, that gives us ψk,θ(xi),
k = 2, . . . ,K, where θ stands for network parameters.

2.3. Summary of SpecNet1

SpecNet1 (Shaham et al., 2018) adopts neural network parametrizations of eigenvectors of a normal-

ized graph Laplacian, and the network is trained by minimizing an objective which is the variational

form of the eigen-problem with an orthogonality constraint. Here we briefly review the three in-

gredients of the method of SpecNet1: the linear algebra optimization objective, the batch-based

gradient evaluation scheme, and the neural network parametrization (including the orthogonaliza-

tion layer).

Optimization objective. From a linear algebra point of view, SpecNet1 aims to find the first K

eigenvectors of the symmetrically normalized Laplacian Lsym := I −D− 1
2WD− 1

2 via solving the

following orthogonally constrained optimization problem

min
Y ⊤Y=nI
Y ∈Rn×K

f1(Y ) =
1

n
tr
(

Y ⊤(I −D− 1
2WD− 1

2 )Y
)

. (4)

Note that in (4), Y is a real array as in the classical variational form of eigen-problem. It will be

parametrized by a neural network below.
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Mini-batch gradient evaluation. When the graph is large, memory constraint in practice usually

prevents loading the full graph affinity matrix W into the memory or solving the full matrix Y

over iterations. Thus, mini-batch is used in the training of SpecNet1. Given a batch of data points

B ⊂ X , SpecNet1 performs a single projected gradient descent step of a surrogate constrained

optimization problem

min
Y ⊤
B YB=bI

YB∈Rb×K

f̃1(YB) =
1

b
tr

(

Y ⊤
B (I − D̃

− 1
2

B WB,BD̃
− 1

2
B )YB

)

, (5)

where WB,B is a submatrix of W with row and column index associated to data points in B, D̃B is

the diagonal degree matrix of WB,B, and b is the number of data points in B. We call (5) the “local

evaluation scheme” of SpecNet1, as it only uses WB,B retrieved from the matrix W when updating

YB. In this paper, we will propose and study three different mini-batch evaluation schemes in the

training SpecNet2, and local scheme is one of the three. Corresponding to the other two mini-batch

evaluation schemes of SpecNet2, which are called “neighbor” and “full” schemes respectively, we

also study the counterpart schemes for SpecNet1. The details are explained in Section 4.2 (for

neural network training) and Section 3.2 (for linear algebra optimization problem). Figure 3 gives

a comparison of the different mini-batch schemes used to train SpecNet1 and SpecNet2. It can be

seen that the performance of the local scheme is inferior to the other mini-batch evaluation schemes.

Actually, in the linear algebra iterative solver (without neural network parametrization) of the vari-

ational eigen-problem, the relatively worse performance of the local scheme already presents, c.f.

Figure 2. This is because only using the submatrix WB,B may drastically lose the information of W

when the batch size is small, especially when the graph is sparse. In contrast, the neighbor and full

schemes use more information of W . See more in later sections.

Neural network parametrization. The neural network architecture in SpecNet1 (Shaham et al.,

2018) contains two parts: First, a network mapping Φθ : Rm → R
K , parametrized by θ, which

maps an input data point xi ∈ R
m to the K-dimensional space of spectral embedding coordinates;

Second, an additional linear layer Ξ ∈ R
K×K , mapping from R

K to R
K and parametrized by the

matrix Ξ, such that the composed mapping Φθ(xi)Ξ approximates the spectral embedding (eigen-

vectors), i.e.,

Ψ(xi) ≈ Φθ(xi)Ξ. (6)

The linear layer parametrized by Ξ is called the “orthogonalization layer”. The neural network

embedding of the entire dataset X is then represented as

Y (X) =
(

(Φθ(x1)Ξ)
⊤ (Φθ(x2)Ξ)

⊤ · · · (Φθ(xn)Ξ)
⊤)⊤ ∈ R

n×K , (7)

where (Φθ(xi)Ξ)
⊤ is a column vector in R

K for each i = 1, . . . , n.

Influence on the orthogonality constraint. We now explain a crucial difference when parametriz-

ing Y by a neural network on the maintenance of the orthogonality constraint when using mini-

batch. Note that the network representation (7) differs from a real array Y in that all rows of Y in

(7) are related via network parametrization θ and Ξ. Using mini-batch, in a linear-algebra update of

Y in (5), an update on YB would only change YB and leave the rest entries YBc unchanged, where

Bc = X \ B. In contrast, using the back-propagated gradient to update network parameters in (7),

any update on θ and Ξ would change the embedding of all data points in B and Bc.
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In the training of SpecNet1, the neural network parameters θ and Ξ are updated separately in a

mini-batch iteration. Specifically, at each mini-batch iteration, SpecNet1 first computes an overlap-

ping matrix
(

(Φθ(xi))
⊤Φθ(xj)

)

xi,xj∈B and its Cholesky factor L. Then the orthogonalization layer

parameter Ξ is updated as Ξ =
√
b(L−1)⊤ to enforce the orthogonality constraint in (5). In the sec-

ond step, it takes a gradient descent step or an equivalent optimization step of f̃1(YB) with respect

to θ to update weights θ and keep the orthogonalization layer unchanged. Due to the dependence

among rows of Y as in (7), we emphasize that such a mini-batch iteration also changes YBc and the

orthogonality constraint as in (4) cannot be exactly maintained.

We see in Figure 2 that in the linear algebra setting, SpecNet1 achieves good convergence with

both the full and neighbor evaluation schemes; however, in the neural network setting, SpecNet1

with the neighbor scheme performs significantly worse than the full scheme, as shown in Figure 3.

This is because in the neural network, at each iteration, the orthogonalization is computed based on

the update only on the neighborhood of B for the neighbor scheme, while for the full scheme, the

orthogonalization is computed on the updated output on the whole dataset X . On the other hand,

due to memory constraints, we do not want to perform orthogonalization over all data samples at

each iteration, we thus want to find a way such that we can still obtain good convergence with light

memory budget. This motivates our development of SpecNet2 in this paper.

2.4. Other related works

The convergence of graph Laplacian eigenvectors to the limiting eigenfunctions of the manifold

Laplacian operator has been proved in a series of works (Belkin and Niyogi, 2007; Von Luxburg

et al., 2008; Burago et al., 2014; Singer and Wu, 2016) and recently in (Garcı́a Trillos et al., 2020;

Calder and Garcia Trillos, 2019; Dunson et al., 2021; Calder et al., 2020; Cheng and Wu, 2021b).

The result shows that in the i.i.d. manifold data setting, the empirical graph Laplacian eigenvectors

approximate the eigenfunctions evaluated on the data points in the large sample limit, where the

kernel bandwidth is properly chosen to decrease to zero. The robustness of spectral embedding with

input data noise has been shown in (Shen and Wu, 2020), among others. Based on these theories,

the current work utilizes neural networks to approximate eigenfunctions so as to generalize to test

data samples, due to that the eigenfunctions are the consistent limit of the eigenvectors of a properly

constructed graph Laplacian.

For neural network methods to obtain dimension-reduced embedding, neural network embed-

ding guided by pairwise relation was explored earlier in SiameseNet (Hadsell et al., 2006), where

the training objective is heuristic. Using kernel affinity and spectral embedding to overcome the

topological constraint in neural network embedding has been explored in (Mishne et al., 2019), and

under the Variational Auto-encoder framework in (Li et al., 2020). The current paper differs from

these auto-encoder methods in that SpecNet2, analogous to SpecNet1, outputs a dimension-reduced

representation of data in a low-dimensional space, from which the training objective is computed

via the graph Laplacian matrix.

3. Orthogonalization-free Iterative Eigensolver

We first investigate an orthogonalization-free iterative eigensolver, which serves as the loss function

of SpecNet2 from a linear algebra point of view. Then three updating schemes incorporated with

the coordinate descent method are proposed and compared, which later will be turned into the
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mini-batch technique in the neural network in Section 4. Finally, the computational costs of three

updating schemes are analyzed.

3.1. Unconstrained optimization

Recall that the spectral embedding is by computing the leading eigenvectors of the graph Laplacian

Lrw = I − D−1W . Equivalently, it aims to find K eigenvectors corresponding to the K largest

eigenvalues of a generalized eigenvalue problem (GEVP) with the matrix pencil (W,D), where

K − 1 is the dimension of embedded space and D is the diagonal degree matrix associated with W .

More explicitly, the generalized eigenvalue problem is of the form,

WU = DUΛ,

U⊤DU = n2I,
(8)

where Λ ∈ R
K×K is a diagonal matrix with its diagonal entries being the largest K eigenvalues

of (W,D), U ∈ R
n×K is the corresponding eigenvector matrix, and I denotes the identity matrix

of size K. Throughout this paper, we assume the eigenvalue problem (8) has a nonzero eigengap

between theK-th and (K+1)-th eigenvalues. Such a GEVP has been extensively studied and many

efficient algorithms can be found in (Golub and Van Loan, 2013) and references therein.

In contrast to the constrained optimization problem as in SpecNet1, we propose to solve an

unconstrained optimization problem to find the eigenpairs of (8). Many previous works (Liu et al.,

2015; Lei et al., 2016; Li et al., 2019; Wang et al., 2019) adopt an unconstrained optimization

problem for solving the standard eigenvalue problem, i.e., with D = I in (8). The optimization

problem therein minimizes
∥

∥W − Y Y ⊤∥
∥

2

F
without any constraint on Y .

Extending the optimization problem to GEVP, we propose the following unconstrained opti-

mization problem,

min
Y ∈Rn×K

f2(Y ) =
1

n2
tr

(

−2Y ⊤WY +
1

n2
Y ⊤DY Y ⊤DY

)

. (9)

The gradient of f2(Y ) with respect to Y is

∇Y f2(Y ) = −4
W

n
Y + 4

D

n3
Y Y ⊤DY. (10)

Note that ∇Y f2(Y ) in (10) is n times the actual gradient of f2(Y ) in (9). The reason of normalizing

f2(Y ) and ∇Y f2(Y ) in the way above is due to that we want to ensure anO(1) limit, corresponding

to the continuous limit of the eigen-problem, as n→ ∞. Details are explained in Appendix C.

Once we obtain the solution Ŷ to (9), we can retrieve the approximations to eigenvectors of

D−1W , denoted as Û , by a single step of Rayleigh-Ritz method. More specifically, Û is calculated

as Û = Ŷ O, where O ∈ R
K×K satisfies

Ŷ ⊤WŶ O = Ŷ ⊤DŶ OΛ̂, (11)

for diagonal matrix Λ̂ as a refined approximation of the eigenvalues of (W,D).
Since the first trivial constant eigenvector ofD−1W is typically not useful, one can skip solving

for that in (9) by deflation, i.e., replacing W by W − ηη⊤, where η = d

‖
√
d‖2

, and d ∈ R
n is a
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Figure 1: Entries of W − ηη⊤ used (in gray block) in different gradient evaluation schemes at each

batch step. See section 3.2 for detail.

column vector with di = Di,i. Since D is positive-definite, Theorem 4 and other analysis results

still hold except that we will skip the first trivial eigenvector in Y ⋆, where Y ⋆ is the minimizer of

(9). Hence, for the rest of the paper beside Section 5, we will use

min
Y ∈Rn×K

f2(Y ) =
1

n2
tr

(

−2Y ⊤(W − ηη⊤)Y +
1

n2
Y ⊤DY Y ⊤DY

)

. (12)

The gradient of f2(Y ) is then

∇f2(Y ) = −4
W − ηη⊤

n
Y + 4

D

n3
Y Y ⊤DY. (13)

3.2. Different gradient evaluation schemes

In this subsection, we introduce efficient optimization methods of loss (12) by mini-match. Mini-

batch is a mandatory technique in dealing with big datasets. Traditional mini-batch techniques

randomly sample a mini-batch of data points B ⊂ X , and solve the reduced problem on B. Due to

the fact that the computational cost to evaluate the term Y ⊤DY in (13) is very expensive for large

n, we study different approximations to the gradient ∇f2(Y ), which yields three different gradient

evaluation schemes. The visualization of these schemes in terms of the corresponding entries of

W − ηη⊤ is shown in Figure 1.

• Local evaluation scheme: One can evaluate the gradient on each mini-batch as

∇Bf̃2(YB) = −4

b
(WB,B − η̃Bη̃⊤B )YB +

4

b3
D̃BYBY ⊤

B D̃BYB, (14)

where f̃2(Y ) = 1
b2
tr
(

−2Y ⊤(WB,B − η̃Bη̃⊤B )Y + 1
b2
Y ⊤
B D̃BYBY ⊤

B D̃BYB
)

is the objective

function on B, b = |B| is the cardinality of B and η̃ = d̃

‖
√
d̃‖2

, and d̃ ∈ R
|B| is a column

vector with d̃i = D̃B,i,i, i.e., the i-th diagonal entry of D̃B. The iterative algorithm then

conducts the update as,

YB = YB − α∇Bf̃2(YB), (15)

8
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where α > 0 is the stepsize.

Consider an example, where data points are relatively well-separated and the affinity matrix

is very sparse. Such a mini-batch sampling is difficult to capture the neighbor points effec-

tively and WB,B for most B is nearly diagonal. Comparing (13) and (14), (14) is not a good

approximation of (10) unless B is sufficiently large to capture the asymptotic behavior of the

continuous limit. Therefore, optimizing the loss function using such a mini-batch technique

requires either a big batch size or many iterations to achieve reasonable results.

• Full evaluation scheme: We evaluate the gradient on batch B as

∇Bf2(Y ) = − 4

n
(WB,X − ηBη⊤)Y +

4

n3
DBYBY ⊤DY, (16)

where DB is the principle submatrix of D restricting to rows and columns in B. And the

update is then conducted as

YB = YB − α∇Bf2(Y ), (17)

where α > 0 is the stepsize.

This update is the block coordinate descent method applied to the proposed optimization

problem. The computational burden lies in evaluating η⊤Y and Y ⊤DY every iteration.

• Neighbor evaluation scheme: We introduce another way to conduct mini-batch on the gradi-

ent directly, which is block coordinate gradient descent with dynamic updating and plays an

important role in the later neural network part. Given a sampled mini-batch B, we define the

neighborhood of B as,

N (B) = {xj |Wi,j 6= 0, xi ∈ B}, (18)

and we abbreviate it as N . The gradient of batch B is evaluated as

∇Bf̄2(Y ) = − 4

n
WB,NYN +

4

n
ηBη⊤Y +

4

n3
DBYBY ⊤DY. (19)

Note that η⊤Y = η⊤B YB + η⊤BcYBc and Y ⊤DY = Y ⊤
B DBYB + Y ⊤

BcDBcYBc , where Bc =
[n]\{i : xi ∈ B}. At each iteration, we only update η⊤Y and Y ⊤DY on batch B in (19);

that is, we update η⊤B YB for η⊤Y and Y ⊤
B DBYB for Y ⊤DY using YB without touching the

Bc part. The iterative algorithm then conducts the update as,

YB = YB − α∇Bf̄2(Y ) (20)

for α being the stepsize.

Similarly, we can evaluate the gradient of f1(Y ) using three different evaluation schemes, whose

detail can be found in Appendix A.1.

Remark 1 In the linear algebra sense, both the gradient in (16) and the gradient in (19) are the

same as the exact gradient of f2(Y ) restricted to batch B. When the neural network gets involved,

the full and neighbor gradient evaluation schemes become different, which will be discussed in

section 4.2. The gradient in (14), however, is the gradient of f̃2, which is not ∇Bf2 unless B = X .
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Figure 2: In the linear algebra problems of SpecNet1 and SpecNet2, relative errors of eigenvector (or

eigenfunction, see titles of subfigures) approximations by different evaluation schemes on the one

moon training dataset. The affinity matrix is 2000×2000 and detail about how the data is generated

can be found in Appendix B. Legend refers to the update: SpecNet1-full (28), SpecNet1-local (26),

SpecNet1-neighbor (30), SpecNet2-full (17), SpecNet2-local (15), SpecNet2-neighbor (20). The

relative error for eigenfunction approximations is defined in (31), and the relative error for eigen-

vector approximation is defined as
‖ψ−ψ̃‖

2
‖ψ‖2

, where ψ is the true eigenvector of (D,W ) and ψ̃ is the

corresponding column in Û obtained through (11) that approximates ψ at each iteration.

We illustrate the convergence of three gradient evaluation schemes of f1 and f2 on a one moon

dataset, the visualization of which is shown in Figure 7, and the results are shown in Figure 2. Here

we choose constant stepsize for each method. The formulation for computing relative errors can be

found in Appendix B.1.

Remark 2 As shown in Figure 2, the full and neighbor gradient evaluation schemes of f1 and f2
can achieve good convergence, but the local scheme of either f1 or f2 does not converge. See Figure

3 for the illustration in the neural network setting.

3.3. Computational cost of different schemes

We study the computational cost of different gradient evaluation schemes, taking f2 as an example.

Consider a sparse affinity matrix with on average s nonzeros on rows and columns.

For the local evaluation scheme, the computational cost for the first part in (14) is O(|B|2K)
for |B| being the cardinality of B and the cost for the second part is O(|B|K2). The overall compu-

tational cost per batch step is then O(|B|2K), assuming |B| ≥ K.

For the full evaluation scheme, the computational cost for the first part in (16) isO(n |B|K) and

the cost for the second part isO(nK2). The overall computational cost per batch step isO(n |B|K),
again assuming |B| ≥ K.

For the neighbor evaluation scheme, the computational cost for the first part in (19) isO(s |B|K),
where s is the number of neighbors of B. While the naı̈ve computation of the third part in (19) costs

O(nK2) operations, same as the full update scheme. When dynamic updating is taken into con-

sideration at each step, only Y restricted to B is updated, and the matrix Y ⊤DY can be efficiently

updated in O(|B|K2) operations. Hence we can dynamically update the matrix Y ⊤DY through-

out iterations and the computation of the third part in (19) is reduced to O(|B|K2). Similarly, we

can dynamically update the vector η⊤Y , and only those restricted to B is updated, and the second

term can be updated in O(|B|K) operations. The overall computational cost per batch step is then

O(s |B|K), assuming s ≥ K.

10
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4. Neural network parametrization and training

Inspired by the convergence results by two gradient evaluation schemes (16) and (19) as shown in

Figure 2 as well as the theoretical guarantee for their convergence that we will prove later in Section

5, we propose a neural network that can incorporate the linear algebra formulations in Section 3.2.

4.1. Network parametrization of eigenfunctions

In section 2.2 we mention that eigenvectors of the graph Laplacian matrix can be viewed as the

restriction of underlying eigenfunctions of a limiting operator on the dataset X . (Shaham et al.,

2018) suggests we approximate those eigenfunctions by a neural network. In this paper, we use a

feedforward fully-connected neural network, and it can be extended to other types of neural net-

works, for example, convolutional neural network. Suppose the neural network computes a map

Gθ : Rm → R
K , where θ denotes the network weights. Let Y = Gθ(X), so that each coordinate

of Gθ, (Gθ)i, i = 1, . . . ,K is an approximation to an eigenfunction, and each column of Gθ(X)
approximates an eigenvector of the graph Laplacian matrix. Our goal is to find a good approxima-

tion by training the neural network, SpecNet2, with the orthogonalization-free objective function

L(θ) = f2(Y ).

4.2. Network Training for SpecNet2

In this subsection, we introduce the training of SpecNet2; that is, how to update θ to minimize

L(θ) = f2(Y ). We have proposed three different gradient evaluation schemes in section 3.2 to cal-

culate the gradients in the block coordinate descent method to minimize f2(Y ) in the linear algebra

setup. In the neural network setting, note that
∂L(θ)
∂θ

= ∇Y f2(Y ) · ∂Gθ(X)
∂θ

, we can also incorporate

these gradient evaluation schemes to evaluate ∇Y f2(Y ) in the training of a neural network. Let

B ⊂ X be the randomly sampled mini-batch, and N be the neighborhood of B. Note that unlike in

the linear algebra setup where we can only update Y on B, we are updating θ for the neural network,

such that once θ is updated, not only Gθ(B) is different but also Gθ(Bc). We follow the notations

as in section 3.2, and we have different gradient evaluation schemes for SpecNet2 as follows:

Local evaluation scheme: At each batch step, we can compute the neural network mapping of

batch B as YB = Gθ(B), so that we can obtain ∇Bf̃2(YB) by plugging YB into (14). Then we want

to minimize tr
(

YB(θ)⊤∇Bf̃2(YB)
)

and update θ using the gradient of tr
(

YB(θ)⊤∇Bf̃2(YB)
)

with

respect to θ through the chain rule, where inside the trace we write the first term YB as YB(θ) to

emphasize it is a function of θ; and the second term ∇Bf̃2(YB) is detached and viewed as constant.

Full evaluation scheme: At each batch step, we can compute ∇Bf2(YB) by plugging YB and

Y into (16). Then we want to minimize tr
(

YB(θ)⊤∇Bf2(YB)
)

and update θ using the gradient of

tr
(

YB(θ)⊤∇Bf2(YB)
)

through the chain rule. And similarly, inside the trace we only view YB(θ)
as a function of θ but ∇Bf2(YB) as constant when computing the gradient.

Neighbor evaluation scheme: We keep a record of two matrices (Y DY )⋆ and Y0 throughout

the training, where they are initialized at the first iteration: (Y DY )⋆ = Y ⊤DY and Y0 = Y , and

detach both of them. At each batch step, we compute YN = Gθ(N ). Then we update (Y DY )⋆ =
(Y DY )⋆ − Y0(N )⊤DNY0(N ) + Y ⊤

NDNYN followed by an update of Y0 on N as Y0(N ) = YN .

Both matrices are again detached. The gradient of f2(Y ) on B is then evaluated as

∇Bf̄2(YB) = − 4

n
WB,NYN +

4

n
ηBη⊤Y0 +

4

n3
DBYB(Y DY )⋆.

11
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Then we minimize tr
(

YB(θ)⊤∇Bf̄2(YB)
)

and update θ by computing the gradient of the quantity

tr
(

YB(θ)⊤∇Bf̄2(YB))
)

by the chain rule. Similarly, inside the trace we only view YB(θ) as a

function of θ but ∇Bf̄2(YB) as constant when computing the gradient.

Details about the network training for SpecNet1 can be found in Appendix A.2. With those dif-

ferent learning objective functions from different evaluation schemes, we can choose an optimizer,

for example, SGD or Adam, with some user-selected learning rate to update the network weights θ.

Detail for the choice in our experiments is introduced in Appendix B.

Remark 3 Note that while ∇Bf̄2(YB) in (19) is the exact gradient of f2(Y ) on B, the gradient

∇Bf̄2(YB) we evaluate here in the neural network setting is no longer the exact gradient of f2(Y )
of Y on B, but only an approximation.

5. Theoretical Analysis

In this section, we provide a theoretical guarantee for the performance of SpecNet2 by analyzing

the optimization iterations to minimize (9). In Section 5.1, we discuss the energy landscape of (9).

Through our analysis, we show that (9) is a nonconvex function whose local minima are global

minima. In addition, we also give the explicit expression of the global minima of (9), which span

the same space as that of the leading eigenvectors of matrix pencil (W,D), assuming D is positive

definite. All analysis in this section holds for general symmetric matrix W and diagonal positive

definite matrix D such that (W,D) has at least K positive eigenvalues. Hence our results apply

to deflated matrix pencil (W − ηη⊤, D) as well. In Section 5.2, based on the energy landscape,

we prove the global convergence of the gradient descent method with full and neighbor evaluation

schemes for all initial points in a giant ball except a measure-zero set.

5.1. Analysis of energy landscape

The explicit form of the local minimizers of (9) are explicitly given in Theorem 4.

Theorem 4 The local minimizers of (9) are of the form,

Y ⋆ = UΛ
1
2Q, (21)

where U and Λ are defined as in (8), and Q ∈ R
K×K denotes an arbitrary orthogonal matrix.

The proof of Theorem 4 can be found in Appendix D.1. Through the analysis, we find that f2(Y ) is

nonconvex and all local minimizers span the same space as the eigenvectors of (W,D) associated

with the K largest eigenvalues.

Corollary 5 All local minimizers of (9) are global minimizers.

The proof of Corollary 5 can be found in Appendix D.2. According to Theorem 4 and Corollary 5,

the unconstrained optimization problem (9) does not have any spurious local minima and all local

minimizers are global minimizers. Furthermore, the target of our problem, leading K eigenpairs of

(W,D), can be extracted from the global minimizers through a single step Rayleigh-Ritz method,

as mentioned in (11).

12
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5.2. Global convergence

In this section, we prove the global convergence for the iterative schemes, (17) and (20), with

full and neighbor gradient evaluation schemes, respectively. The energy landscape analysis in the

previous section already hints at the global convergence from the gradient flow perspective. Here,

we give a rigorous statement and its proof for the global convergence of our iterative scheme (17),

which can be applied to (20) directly.

The difficulties of the convergence analysis come from two aspects. First, our objective function

f2(Y ) is a fourth-order polynomial of Y , and its Hessian is unbounded from above for Y ∈ R
n×K

and so is the Lipschitz constant. Second, the iterative scheme updates Y on different batches for

different iterations. Hence the iterative mapping is not fixed across iterations.

We first prove a few lemmas to overcome these difficulties and then conclude the global conver-

gence in Theorem 9. In Lemma 6, we define a giant ball with radius R and prove that our iterative

scheme never leaves the ball. Given the bounded ball, we then have a bounded Lipschitz constant

being defined in Lemma 7 and a nonempty set for stepsize α. Lemma 8 shows that our iterative

scheme converges to first-order points of f2(Y ). Combining these lemmas together with results in

(Lee et al., 2019), we prove the global convergence.

We define a set of notations to simplify the statements of lemmas and theorem. The mini-batch

technique partitions the dataset X into disjoint b batches. We denote the index set of mini-batch

partitions as {S1, S2, . . . , Sb} such that Sp ∩ Sq = ∅ for p 6= q and ∪pSp = [n]. For an index i, ic

denotes the complement indices, i.e., ic = [n]\{i}. Di denotes the i-th diagonal entry of D and Yi
denotes the i-th row of Y . Y (ℓ) denotes the iteration variable at ℓ-th iteration. Further, we define

two constants and a function depending on entries of W and D,

M1 := max
i

Wi,i +

√

W 2
i,i +Di

∥

∥

∥

∥

Wi,icD
− 1

2
ic

∥

∥

∥

∥

2

2

+ Di

2

2Di
, M2 := max

i

W 2
i,i

4Di
+

∥

∥

∥

∥

Wi,icD
− 1

2
ic

∥

∥

∥

∥

2

2

4
,

and M(R) := 3

(

maxiW
2
i,iR

2 +maxiD
2
i · n2K2R6 +maxiDi

∥

∥

∥

∥

Wi,icD
− 1

2
ic

∥

∥

∥

∥

2

2

· nR2

)

, where

the R will be the radius of the giant ball.

Lemma 6 Let R be a constant such that R ≥ 2
√
M1 and α be the stepsize such that

α < min{−2M2 +
√

4M2
2 + 3M(R)R2

8M(R)
,

1

16M(R)
}.

Then for any Y (ℓ) ∈W0 = {Y ∈ R
n×K : maxi

∥

∥

∥

∥

D
1
2
i Yi

∥

∥

∥

∥

2

< R}, we have Y (ℓ+1) ∈W0.

Lemma 7 For any 1 ≤ i1, i2 ≤ n, 1 ≤ k1, k2 ≤ K and Y ∈W0 with R ≥ 2
√
M1, we have

∣

∣

∣

∣

∂2f2

∂Yi1,k1∂Yi2,k2

∣

∣

∣

∣

≤ 4max
i,j

Wi,j + 4(n+K)R2max
i
Di.

We define the upper bound in Lemma 7 as

L := 4max
i,j

Wi,j + 4(n+K)R2max
i
Di, (22)
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which is a Lipschitz constant of ∇f2 in the coordinate sense.

We denote the iterative mapping as Y (ℓ+1) = gp(Y
(ℓ)), which is the block coordinate update at

the ℓ-th iteration on batch Sp. Our iterative scheme then applies g1, . . . , gb in a cyclic way. When

contiguous b iterations of our iterative scheme are applied, we could view it as a composed iterative

mapping as,

g = gb ◦ gb−1 ◦ · · · ◦ g1, (23)

and the corresponding iteration is

Y ((i+1)b) = g(Y (ib)), i = 0, 1, 2, . . . . (24)

Though mapping g is not explicitly shown in the statements of Lemma 8 and Theorem 9, their

proofs rely on the detailed analysis of g.

Lemma 8 Suppose α is sufficiently small such that α < 1
L

. Then the iteration converges to first-

order points, i.e.,

lim
ℓ→∞

∥

∥

∥
∇f2(Y (ℓ))

∥

∥

∥
= 0.

With all these lemmas available, we then show the global convergence of our iterative scheme

with full gradient evaluation scheme (17), in Theorem 9. The proof is based upon the stable manifold

theorem (Lee et al., 2019).

Theorem 9 (Global Convergence) Let R ≥ 2
√
M1 be a constant and suppose the stepsize satis-

fies that

α < min

{

−2M2 +
√

4M2
2 + 3M(R)R2

8M(R)
,

1

16M(R)
,

1

KLmaxi∈[b] |Si|

}

.

Then the iteration (17) converges to global minimizers of (9) for all Y (0) ∈ W0 up to an initial

point set of measure zero.

Proofs of Lemma 6, Lemma 7, Lemma 8 and Theorem 9 are provided in Appendix D.3. We

emphasize that the iterative scheme with full gradient evaluation scheme and neighbor gradient

evaluation scheme are identical in the linear algebra sense. Hence the iterative scheme with the

neighbor gradient evaluation scheme, (20), also admits the same global convergence property.

6. Numerical Experiments

We compare the performance of SpecNet2 with SpecNet1 through an ablation study: That is,

all the setup of SpecNet1 is the same as SpecNet2 except that SpecNet1 has one additional or-

thogonalization layer appended to the output layer of SpecNet2. Details about the data genera-

tion, network architecture and parameters can be found in Appendix B. The code is available at

https://github.com/ziyuchen7/SpecNet2.
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Figure 3: In the neural network setting of SpecNet1 and SpecNet2, relative errors of eigenfunction

approximations by different evaluation schemes. SpecNet1-full, SpecNet1-local and SpecNet1-

neighbor are introduced in Section A.2; SpecNet2-full, SpecNet2-local and SpecNet2-neighbor are

introduced in Section 4.2. The relative error for training and testing is defined below (31).
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Figure 4: Results of full and neighbor schemes of SpecNet1 and SpecNet2 on the training data,

where we rescale the x-axis to the computational cost.

6.1. One moon data

The visualization of one moon data can be found in Figure 7. Training data and testing data both

consists of 2000 samples. Figure 3 demonstrates the performance of both methods with all three

gradient evaluation schemes on the one moon data. We also compare the computational efficiency

of full and neighbor schemes in Figure 4, and its detail can be found in Appendix B.1. We observe

in Figure 3 that SpecNet1-full, SpecNet2-full and SpecNet2-neighbor can provide good approxi-

mations to the first two nontrivial eigenfunctions; SpecNet1-local, SpecNet2-local, and SpecNet1-

neighbor give poor approximations as their relative errors are significantly larger. In Figure 4, we

see that the relative error for the first nontrivial eigenfunction by SpecNet2-neighbor reaches the

plateau earlier than SpecNet2-full in terms of the computational cost, while they can achieve simi-

lar accuracy. We also show the embedding results provided by different methods in Figure 8 in the

Appendix.

6.2. Two moons data

We compare the performance and stability of SpecNet2 with SpecNet1 through an unsupervised

clustering task on a two moons dataset (visualized in Figure 7) that contains 2000 training sam-

ples and 2000 testing samples. Due to the savings in memory and computational cost, we only

compare SpecNet2-neighbor with SpecNet1-neighbor in this example. Figure 5 shows the classifi-

cation performance of SpecNet1-neighbor and SpecNet2-neighbor over 10 different realizations of

the neural network. We observe that though the average curves provided by SpecNet1-neighbor and

SpecNet2-neighbor are close to each other, the variance of SpecNet1-neighbor is much larger than
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Figure 5: Classification results on two moons dataset. Average classification accuracy and error-

bars are plotted over 10 different network initializations. At each epoch, the classification and its

accuracy is computed in an unsupervised way.

that of SpecNet2-neighbor. Hence, we conclude that SpecNet2-neighbor is able to achieve similar

average classification accuracy as SpecNet1-neighbor but with much higher reliability.

6.3. MNIST data

In this experiment, we use 20,000 samples of MNIST data (gray-scale images of hand-written digits

which are of size 28 × 28) as the training set and 10,000 samples for testing. We construct the

adjacency matrix A of an kNN graph on the training set by setting Ai,j = 1 if the j-th training

sample is within k nearest neighbors of the i-th training sample and Ai,j = 0 otherwise, and we

use k = 16. The affinity matrix W is obtained by setting W = 1
2(A + A⊤). We compare the

performance of SpecNet1-local with SpecNet2-neighbor with different batch sizes. Specifically, the

batch sizes for SpecNet2-neighbor are 2, 4 and 8 and those for SpecNet1-local are 45, 90, 180 (the

average numbers of neighbors of a batch of size 2, 4 and 8 are about 45, 90 and 180 respectively).

Figure 6 shows the losses f1 and f2 (defined in (4) and (12) respectively) over the training

epochs. We observe that though SpecNet2-neighbor has larger variance compared to SpecNet1-

local, SpecNet2-neighbor achieves better performance in average when the batch size is small, e.g.,

comparing SpecNet2-neighbor with batch size 2 with SpecNet1-local with batch size 45. See Fig-

ure 11 in Appendix B.3 for the embedding result.

Figure 6: MNIST datset: plot of two different losses log10(f1(Y ) − f⋆1 ) and log10(f2(Y ) − f⋆2 )
over epochs (left two subfigures) and over time (right two subfigures), with f1 and f2 defined in (4)

and (12). Networks are trained on 20000 MNIST images on a 2021 14-inch Macbook Pro with an

8-core CPU. See Appendix B.3 for the detail.
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7. Discussion

The current paper develops a new spectral network approach, which removes the orthogonaliza-

tion layer in the original SpectralNet (Shaham et al., 2018). We first proposed an unconstrained

orthogonalization-free optimization problem to reveal the leading K eigenvectors of a given matrix

pencil (W,D). Iterative algorithms with three different mini-batch gradient evaluation schemes,

namely local scheme, full scheme, and neighbor scheme, are proposed and extended to the neural

network training setting. The energy landscape of the optimization problem is analyzed, and the

global convergence to the minimizer is guaranteed for all initial points up to a measure zero set. Nu-

merically, SpecNet2-neighbor achieves almost the same accuracy as SpecNet1-full and SpecNet2-

full while its computational cost is significantly lower due to the neighborhood tracking trick.

There are several directions to extend the work. Theoretically, the current analysis is in the

sense of linear algebra. Further analysis is needed to obtain optimization guarantee with the neural

network parametrization. Method-wise, the current approach assumes a graph affinity matrix is

provided, while in practice when only data samples are provided one also needs to explore how to

efficiently construct the graph affinity, which can be used by the SpecNet2 neural network. Finally,

application to other real-world datasets could be explored, which would potentially leads to more

efficient implementations.
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Appendix A. Gradient evaluation schemes for SpecNet1

A.1. Gradient evaluation schemes for f1

The gradient descent of the formulation in (4) can be written as Y = Y − 2α(I −D− 1
2WD− 1

2 )Y ,

where α is the stepsize. We multiply both sides byD− 1
2 on the left and we haveD− 1

2Y = D− 1
2Y −

2α(I − D−1W )D− 1
2Y . So instead of updating Y , we update Ỹ := D− 1

2Y at each iteration, i.e.,

Ỹ = Ỹ − 2α(I −D−1W )Ỹ . And the constraint will be Ỹ ⊤DỸ = n2I . To keep the consistency of

the notation, we will abuse the notion of gradient and still call that 2(I −D−1W )Ỹ as the gradient

of f1 for the rest of the paper, while keeping in mind that we are updating D− 1
2Y in (4). Then the

gradient evaluation schemes for f1 with orthogonalization constraint works as follows
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• Local evaluation scheme: One can evaluate the gradient on each mini-batch as

∇Bf̃1(YB) = 2(I − D̃−1
B WB,B)YB. (25)

The iterative algorithm then conducts the update as,

YB = YB − α∇Bf̃1(YB), (26)

where α > 0 is the stepsize, which is followed by an orthogonalization step Y = bY R−1,

where D̃
1
2
BYB = QR is the QR decomposition of D̃

1
2
BYB.

• Full evaluation scheme: We evaluate the gradient on batch B as

∇Bf1(Y ) = 2(I −D−1
B WB,X)Y, (27)

and the update is then conducted as

YB = YB − α∇Bf1(Y ), (28)

where α > 0 is the stepsize. It follows by an orthogonalization step Y = nY R−1, where

D
1
2Y = QR is the QR decomposition of D

1
2Y . The full scheme of f1 is equivalent to the

power method with mini-batch and dynamic shift.

• Neighbor evaluation scheme: The gradient of batch B is evaluated as

∇Bf̄1(YN ) = 2(YB −D−1
B WB,NYN ). (29)

The iterative algorithm then conduct the update as,

YB = YB − α∇Bf̄1(YN ) (30)

for α being the stepsize.

It follows by an orthogonalization step such that Y = nY (L−1)⊤, where Y ⊤DY = LL⊤ is

the Cholesky decomposition of Y ⊤DY , and as in (19), we only update Y ⊤DY on B at each

iteration.

A.2. Network Training for SpecNet1

Different from SpecNet2, we have one additional orthogonalization layer, denoted by R ∈ R
K×K ,

appended to Gθ for SpecNet1. Therefore, the mapping given by SpecNet1 is x 7→ Gθ(x) · R for

any x ∈ R
m. We also introduce the training of SpecNet1 that incorporates those gradient evaluation

schemes in section A.1.

Local evaluation scheme: At each batch step, we compute YB = Gθ(B). The orthogonal-

ization layer is computed as in the QR factorization D̃
1
2
BYB = QR, and the output after that is

then ỸB = bYBR−1. So we can obtain ∇Bf̃1(ỸB) by plugging ỸB into (25). Then we minimize

tr
(

ỸB(θ)⊤∇Bf̃1(ỸB))
)

and update θ using the gradient of tr
(

ỸB(θ)⊤∇Bf̃2(YB)
)

with respect to

θ through the chain rule, where inside the trace we write the first term ỸB as ỸB(θ) to emphasize

it is a function of θ; and the second term ∇Bf̃2(ỸB) is detached and viewed as constant. We shall
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Figure 7: Visualizations of the one moon and two moons training dataset. For each example, the

testing set are i.i.d. sampled from the same distribution as the training set.

mention that SpecNet1 with local evaluation scheme is the method in the original SpecNet1 pa-

per (Shaham et al., 2018), except that here we also update weights of the orthogonalization layer

using the gradient by back-propagation, which turns out to improve the performance of the original

SpecNet1 significantly.

Full evaluation scheme: At each batch step, we compute Y = Gθ(X). The orthogonaliza-

tion layer is computed as in the QR factorization D̃
1
2Y = QR, and the output after that is then

Ỹ = nY R−1. So we can obtain ∇Bf1(Ỹ ) by plugging Ỹ into (27). Then we want to minimize

tr
(

ỸB(θ)⊤∇Bf1(Ỹ ))
)

and update θ using the gradient of tr
(

ỸB(θ)⊤∇Bf1(Ỹ )
)

through the chain

rule. And similarly, inside the trace we only view ỸB(θ) as a function of θ but ∇Bf1(Ỹ ) as constant

when computing the gradient.

Neighbor evaluation scheme: We keep a record of two matrices (Y DY )⋆ and Y0 throughout

the training, where they are initialized at the first iteration: (Y DY )⋆ = Y ⊤DY and Y0 = Y ,

and detach both of them. At each batch step, we compute YN = Gθ(N ). Then we update

(Y DY )⋆ = (Y DY )⋆ − Y0(N )⊤DNY0(N ) + Y ⊤
NDNYN followed by an update of Y0 on N as

Y0(N ) = YN . Both matrices are again detached. The orthogonalization layer is computed as in

the Cholesky factorization (Y DY )⋆ = LL⊤, and the output after that is then ỸN = nYN (L−1)⊤.

So we can obtain ∇Bf̄1(ỸN ) by plugging ỸN , which includes ỸB, into (29). Then we minimize

tr
(

ỸB(θ)⊤∇Bf̄1(ỸN )
)

and update θ by computing the gradient of tr
(

ỸB(θ)⊤∇Bf̄1(ỸN )
)

by the

chain rule. Similarly, inside the trace we only view ỸB(θ) as a function of θ but ∇Bf̄1(ỸN ) as

constant when computing the gradient.

Appendix B. Details of the numerical examples in Section 6

B.1. One moon data

Data generation: The training set consists of n = 2000 points in R
2, and is generated by xi =

(cos ηi, sin ηi) + ξi, i = 1, . . . , 2000, where ηi are i.i.d. uniformly sampled on [0, π] and ξi are i.i.d.

Gaussian random variables of dimension two drawn from N (0, 0.01I2). The testing set consists

of 2000 points and is generated in the same way as the training set with a different realization.

21



ORTHOGONALIZATION-FREE SPECTRAL EMBEDDING BY NEURAL NETWORKS

The sparse affinity matrix associated with the training set is generated via Gaussian kernel with

bandwidth σ = 0.1, and truncated at threshold 0.6.

Network training: We use a fully-connected feedforward neural network with a single 128-unit

hidden layer:

SpecNet1: 2
fc−→ 128− ReLU

linear−−−→ 3
orthogonal−−−−−→ 3;

SpecNet2: 2
fc−→ 128− ReLU

linear−−−→ 2,

where “fc” stands for fully-connected layers. The batch size is 4, and we use Adam as the

optimizer with learning rate 10−3 for SpecNet2 and 10−4 for SpecNet1.

Error evaluation: We evaluate the network approximation of the first two nontrivial eigenfunctions

by computing the relative errors of the output functions of the trained network with the underlying

true eigenfunctions. The true eigenfunctions are constructed via a fine grid discretization of the con-

tinuous operator. We introduce how the relative error is calculated. Suppose ψ ∈ R
n is the limiting

eigenfunction evaluated at {xi}, and ψ̃ ∈ R
n is the network output function, which approximates

ψ, evaluated at {xi}. The relative error τ(ψ̃, ψ) of ψ̃ with respect to ψ is defined as

τ(ψ̃, ψ) :=

∥

∥

∥
ψ − βψ̃

∥

∥

∥

2

‖ψ‖2
, (31)

where β = ψ⊤ψ̃

‖ψ̃‖2

2

is the number that minimizes

∥

∥

∥
ψ − βψ̃

∥

∥

∥

2
serving the role of aligning two eigen-

functions. To evaluate the relative error on the training set, ψ will be the limiting eigenfunction

evaluated at training samples and ψ̃ is the corresponding network output function evaluated at train-

ing samples; the relative error on the testing set can be defined similarly on testing samples.

To further compare the computational efficiency of gradient evaluation schemes, we plot the

relative errors against the leading computational cost in Figure 4, where the leading computational

costs are estimated as: n2

|B| · epoch for the full gradient evaluation scheme;
n|N |
|B| · epoch for the

neighbor gradient evaluation scheme, where the averaged number of neighbors of a batch of size 4

is about 620. We also show the embedding results provided by different methods in Figure 8.

Moreover, we seek to solve the generalized eigenvalue problem (W,D), corresponding to the

random walk Laplacian D−1W in both the SpecNet1 and SpecNet2 implementation here. We can

also approximate the eigenvalue problem ofD− 1
2WD− 1

2 , the symmetrically normalized Laplacian,

in our implementation: that is, setting W = D− 1
2WD− 1

2 and D = I in (9) for SpecNet2 and

multiply the output by D− 1
2 on the left to get back to the generalized eigenvalue problem (W,D),

which approximates eigenfunctions of a continuous limiting operator. We show the result in Figure 9

for the full scheme for the relative errors of approximations of first two nontrivial eigenfunctions

on the training set. We see that the performance is similar if we switch from using (W,D) to

D− 1
2WD− 1

2 for the training objective (we may need to change the learning rate after switch, but

we did not tune it here).

B.2. Two moons data

Data generation: The two moons training set consists of n = 2000 points in R
2. One piece of

moons is generated by the equation xi = (cos ηi − 0.5, sin ηi − 0.3) + ξi, i = 1, . . . , 1000, and the

other piece is generated by xi = (− cos ηi+0.5,− sin ηi+0.3)+ ξi, i = 1001, . . . , 2000, where ηi
are i.i.d. uniformly sampled on [0, π] and ξi are i.i.d. Gaussian random variables of dimension two
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Figure 8: One moon datset: embeddings by different methods using the first two nontrivial eigen-

functions. The first row is the ground truth.
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Figure 9: One moons datset: network approximations of eigenfunctions using different Laplacian

matrix on the training set.

drawn from N (0, 0.0036I2). The testing set consists of 2000 points and is generated in the same

way as the training set with a different realization. The sparse affinity matrix associated with the

traning set is generated via Gaussian kernel with bandwidth σ = 0.15, and truncated at threshold

0.08.

Network training: We use a fully-connected feedforward neural network with single 128-unit

hidden layer:

SpecNet1: 2
fc−→ 128− ReLU

linear−−−→ 2
orthogonal−−−−−→ 2;

SpecNet2: 2
fc−→ 128− ReLU

linear−−−→ 1.

The batch size is 4 (the average number of neighbors of batches of size 4 in the sparse affinity

matrix is about 670), and we use the Adam as the optimizer with learning rate 10−3 for SpecNet2

and 10−5 for SpecNet1.

Error evaluation: The classification is done in an unsupervised way. Specifically, we label the

training and testing samples that are generated from one piece of moons as 1; label those samples

generated from the other piece of moons as 2; use them as the ground truth and train the network

on the training data without labels. Let us take the classification accuracy on the training data as

an example, we evaluate the network output function corresponding to the first nontrivial eigen-

vector on the training set and perform the standard K-means algorithm (K = 2) to split their

one-dimensional embedding into two clusters also labeled as number 1 or 2, denoted as γ̃ ∈ R
n.

Denote the ground truth of labels on the training set as γ ∈ R
n. The classification accuracy is

computed by max{
∑n

i=1|γi−γ̃i|
n

, 1−
∑n

i=1|γi−γ̃i|
n

}. The classification accuracy on the testing set can

be computed in a similar way.

B.3. MNIST data

Data preprocessing: Our training set consists of 20000 sample images randomly selected from the

MNIST training dataset and our testing set contains 10000 sample images from the MNIST testing

dataset. Every sample in the training and testing set is vectorized as a vector in R
784.

Network training: We use a fully-connected feedforward neural network with two 256-unit hidden

layers:

SpecNet1: 784
fc−→ 256− ReLU

fc−→ 256− ReLU
linear−−−→ 7

orthogonal−−−−−→ 7;

SpecNet2: 784
fc−→ 256− ReLU

fc−→ 256− ReLU
linear−−−→ 6.

We want to embed the training set using first six nontrivial eigenvectors ofD−1W , so the output

dimension for SpecNet1 is 7 and that for SpecNet2 is 6, and we use the Adam as the optimizer with

learning rate 10−4 for both SpecNet1 and SpecNet2.
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Figure 10: Two moons datset: embeddings by neighbor schemes using the first nontrivial eigen-

functions. The first row is the ground truth.

In Figure 6, since the minimum of f1 and f2 are not necessarily zero, we plot the quantities

log10(f1(Y ) − f⋆1 ) and log10(f2(Y ) − f⋆2 ), where f⋆1 = K −∑K
i=1 λi and f⋆2 =

∑K
i=2 λ

2
i are

the global minimums (over matrix Y ) of f1 and f2 respectively. (In the definition of f⋆1 and f⋆2 ,

λ1 ≥ λ2 · · · ≥ λK are the K largest eigenvalues of D−1W , D being the degree matrix of W .) The

values of (fi(Y )− f⋆i ), i = 1, 2, in the plots are computed over 10 replicas of random initialization

of the neural network. The solid curve shows the average over the replicas, and the shaded area

around each curve reveals the standard deviation.

Figure 11 shows the embeddings (on both training and testing sets) at the 50-th training epoch,

computed by SpecNet2-neighbor (with batch size 2) and SpecNet1-local (with batch size 45) re-

spectively. By comparing to the true spectral embeddings (by linear algebra eigenvectors) plotted in

the top panel, we can see that SpecNet2-neighbor gives a better result, and this is consistent with the

lower value of losses of SpecNet2-neighbor in Figure 6. As shown in Figure 11, the embedding on

test set is close to that on the training set, and this demonstrates the out-of-sample extension ability

of SpecNet2.

We also show another example in Figure 12 where we construct the adjacency matrix A of an

kNN graph on the training set by setting Ai,j = 1 if the j-th training sample is within k nearest

neighbors of the i-th training sample and Ai,j = 0 otherwise, and we use k = 10. As a result, the

average numbers of neighbors of a batch of size 2, 4 and 8 are about 28, 56 and 112 respectively.

We observe that SpecNet2-neighbor with batch size 2 has higher variance, but it can still achieve

better performance compared to SpecNet1-local with batch size 28 in the long run.

Appendix C. Scaling of the losses and gradients

We consider the generalized eigenvalue problem WU = DUΛ, where W,D ∈ R
n×n, X ∈

R
n×K , Wi,j = kσ(xi, xj) := e

−‖xi−xj‖
2

2σ2 , and σ is fixed; D is a diagonal matrix such that Di,i =
∑n

j=1Wi,j .
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Figure 11: Embeddings of the MNIST datset. Top row: embeddings of the training set using the

first six nontrivial eigenvectors of D−1W ; Middle row: embeddings computed by SpecNet1-local

with batch size 45 at the 50-th epoch; Bottom row: embeddings computed by SpecNet2-neighbor

with batch size 2 at the 50-th epoch.

Figure 12: MNIST datset: plot of two different losses log10(f1(Y ) − f⋆1 ) and log10(f2(Y ) − f⋆2 )
over epochs (left two subfigures) and over time (right two subfigures), with f1 and f2 defined in (4)

and (12). Networks are trained on 20000 MNIST images on a 2021 14-inch Macbook Pro with an

8-core CPU.

This generalized eigenvalue problem can be viewed as the discretization of the following con-

tinuous eigenvalue problem:
∫

kσ(x, y)ψk(y)p(y) dy = λkuσ(x)ψk(x), (32)

where p(x) is the density function, and uσ(x) :=
∫

kσ(x, y)p(y) dy ≈ m0p(x)σ
d+Od,p,kσ(σ

d+2),
where m0 depends on the dimension d. And ψi satisfies the normalization condition:

∫

ψi(x)ψj(x)uσ(x)p(x) dx = δij . (33)
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Note that limn→∞
Di,i

n
= uσ(xi) by the law of large numbers.

Consider the loss function

g(Y ) = tr
(

−2Y ⊤AY + Y ⊤BY Y ⊤BY
)

, (34)

where Y ≈ [y1(x), . . . , yk(x)] = [
√
λ1ψ1(x), . . . ,

√
λkψk(x)] and entries of Y is O(1). We need

to know a proper scaling of A and B in terms of W and D so that g is O(1) and does not scale with

n. Recall that tr
(

Y ⊤WY
)

and tr
(

Y ⊤DY Y ⊤DY
)

are discretization of integrals,

(Y ⊤WY )k,k =
n
∑

i=1

n
∑

j=1

yk(xi)yk(xj)kσ(xi, xj)

≈ n2
∫ ∫

kσ(x, y)yk(x)yk(y)p(x)p(y) dx dy,

(Y ⊤DY )k,l =

n
∑

i=1

yk(xi)yl(xi)Di,i

≈
n
∑

i=1

yk(xi)yl(xi)nuσ(xi)

≈ n2
∫

yk(x)yl(x)uσ(x)p(x) dx.

Hence, the proper scaling for A and B are A = W
n2 and B = D

n2 respectively.

Now let us look at the functional (variational) derivative of g with respect to ys. We first split f

into g1(Y ) = tr
(

−2Y ⊤AY
)

and g2(Y ) = tr
(

Y ⊤BY Y ⊤BY
)

.

g1(Y ) ≈ −2
∑

k

∫ ∫

kσ(x, y)yk(x)yk(y)p(x)p(y) dx dy.

Replacing ys(x) by ys(x) + ǫη(x), and taking derivative with repsect to ǫ at 0, we have

dg1
dǫ

∣

∣

∣

ǫ=0
= −4

∫ ∫

kσ(x, y)ys(x)η(y)p(x)p(y) dx dy,

and the variational derivative of g1 with respect to ys(x) is

∂g1

∂ys
(y) = −4

∫

kσ(x, y)ys(x)p(x) dx ≈ 1

n
(−4

n
∑

i=1

kσ(xi, y)ys(xi)).

Therefore, the O(1) scaling of the gradient of g1 is ∇Y g1 = −4W
n
Y .

On the other hand, a similar procedure can be applied to analyze the scaling of the gradient of

g2. Recall,

g2(Y ) =
∑

k

(

n
∑

i=1

(Y ⊤BY )k,i(Y
⊤BY )i,k) ≈

∑

k

∑

i

(

∫

yk(x)yi(x)uσ(x)p(x) dx)
2.

27



ORTHOGONALIZATION-FREE SPECTRAL EMBEDDING BY NEURAL NETWORKS

Replacing ys(x) by ys(x) + ǫη(x), taking derivative with respect to ǫ at 0, and using the orthogo-

nality condition (33), we have,

dg2
dǫ

∣

∣

∣

ǫ=0
= 4[(

∫

y2s(x)uσ(x)p(x) dx)(

∫

ys(x)η(x)uσ(x)p(x) dx)],

and

∂g2

∂ys
(xj) = 4(

∫

y2s(y)uσ(y)p(y) dy)ys(xj)uσ(xj)

≈ 4
1

n
(
n
∑

i=1

y2s(xi)
Di,i

n
)ys(xj)

Dj,j

n
=

4

n3
(
n
∑

i=1

y2s(xi)Di,i)ys(xj)Dj,j .

Hence the O(1) scaling of the gradient of g2 is ∇Y g2 =
4
n3DY Y

⊤DY .

Appendix D. Proofs

D.1. Proof of Theorem 4

We prove Theorem 4 in three steps. First we explicitly give the expressions for all stationary points

of (9). Then we show that many of these stationary points are strict saddle points, i.e., there exists

decay direction at these points. Finally, we prove the rest stationary points are of form as (21) and

are global minimizers.

Recall the gradient of the objective function f2(Y ) is of form (10). We can also derive the

Hessian of the objective function and its bilinear form satisfies,

S⊤∇2f2(Y )S =− 4tr

(

S⊤W
n
S

)

+ 4tr

(

S⊤D
n
SY ⊤D

n
Y

)

+ 4tr

(

S⊤D
n
Y S⊤D

n
Y

)

+ 4tr

(

S⊤D
n
Y Y ⊤D

n
S

)

,

where S⊤∇2f2(Y )S is a symbolic notation.

Stationary points of (9) satisfy the first order condition, i.e.,

∇f2(Y ) = 0 ⇔WY = DY Y ⊤D
n
Y ⇔

(

D− 1
2WD− 1

2

)(

D
1
2Y
)

=
(

D
1
2Y
)

Y ⊤D
n
Y. (35)

The right most equality in (35) implies that D
1
2Y lies in an invariant subspace of D− 1

2WD− 1
2 ,

which is formed by eigenvectors of D− 1
2WD− 1

2 . Denote the invariant subspace by eigenvectors

Vr ∈ R
n×r, where r ≤ K is the dimension. The corresponding eigenvalues are denoted by a

diagonal matrix Λr ∈ R
r×r. In connection to (8), Λr consists r eigenvalues of (W,D) and Vr

consists of r eigenvectors of (W,D) transformed byD
1
2 . D

1
2Y then can be written asD

1
2Y = VrA

for A ∈ R
r×K being a full row rank matrix. Substituting the expression back into (35), we obtain,

VrΛrA = VrAA
⊤A⇔ ΛrA = AA⊤A⇔ Λr = AA⊤, (36)

where the equivalences are due to the orthogonality of Vr and full-rankness of A. Therefore, A

admit the follow expression,

A = Λ
1
2
r Q, (37)
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where Q ∈ R
r×K is a unitary matrix such that QQ⊤ = I . Putting the above analysis together, we

conclude that the stationary points of (9) are of form,

Y = UΛ
1
2PQ, (38)

where Λ and U are the eigenvalue and the corresponding eigenvector matrix of (W,D), P ∈ R
n×r

is the first r columns of an arbitrary permutation matrix for r ≤ K, and Q ∈ R
r×K is an arbitrary

orthogonal matrix.

Next we will show that many of these stationary points are saddle points. Consider a stationary

point Y0 which does not include one of the leading K eigenvectors, e.g., Y ⊤
0 DUi = 0 and i is an

index smaller than K. If r < K, then we have a unitary vector Q⊥ ∈ R
1×K such that Q⊥Q⊤ = 0.

Selecting a direction S0 = UiQ⊥, the Hessian at Y0 evaluated at S0 is,

S⊤
0 ∇2f2(Y0)S0 = −4tr

(

S⊤
0

W

n
S0

)

+ 4tr

(

S⊤
0

D

n
S0Y

⊤
0

D

n
Y0

)

= −4λi < 0. (39)

If r = K, then there are K eigenvectors selected by P and one of them must have index greater

than K. Without loss of generality, we assume the first column of UΛ
1
2P is eigenvector with index

K + 1. Then we choose a specific S0 =
[

Ui 0 · · · 0
]

Q ∈ R
n×K and obtain,

S⊤
0 ∇2f2(Y0)S0 = −4tr

(

S⊤
0

W

n
S0

)

+ 4tr

(

S⊤
0

D

n
S0Y

⊤
0

D

n
Y0

)

= −4λi + 4λK+1 < 0, (40)

where the last inequality is due to the assumption on the nonzero eigengap between the K-th and

(K +1)-th eigenvalues. Therefore, we conclude that when any of the leading K eigenvectors is not

selected in (38), the stationary point is a strict saddle point. Besides these strict saddle points, the

rest stationary points are of form,

Y = UKΛ
1
2
KQ, (41)

where ΛK consists K leading eigevalues and UK consists the corresponding K eigenvectors, Q ∈
R
K×K is an arbitrary orthogonal matrix.

D.2. Proof of Corollary 5

Proof f2(Y ) is a smooth function of Y and note that the second term inside the trace of f2 is

Y ⊤DY Y ⊤DY , which is a fourth-order term of Y , and D is positive-definite, so f2(Y ) → +∞ as

‖Y ‖ → +∞ and f2(Y ) is bounded from below. Hence global minimizers of f2(Y ) exist and are

among local minimizers. Substituting all local minimizers as shown in Theorem 4 into f2(Y ), we

have,

f2(Y
⋆) = −

K
∑

i=1

λ2i , (42)

which means all local minimizers are of the same objective function value. They are all global

minimizers.
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D.3. Proof of Theorem 9

Proof [Proof of Lemma 6]

Let Y + = gp(Y ) for any p = 1, . . . , b. By the definition ofW0, it suffices to show

∥

∥

∥

∥

D
1
2
i Y

+
i

∥

∥

∥

∥

2

<

R for i ∈ Sp to prove the lemma.

First, recall the iterative expression for i-th coordinate,

Y +
i = Yi + 4α(Wi,:Y −DiYi(Y

⊤DY ))

= Yi + 4α(Wi,iYi +Wi,icYic −DiYi(Y
⊤
i DiYi)−DiYi(Y

⊤
ic DicYic)).

Left multiplying D
1
2
i for rescaling purpose, we obtain,

D
1
2
i Y

+
i =D

1
2
i Yi + 4α

(

Wi,iD
1
2
i Yi +D

1
2
i Wi,icD

− 1
2

ic (D
1
2
icYic)

−Di(D
1
2
i Yi)(Y

⊤
i DiYi)−Di(D

1
2
i Yi)(Y

⊤
ic DicYic)

)

=:D
1
2
i Yi + 4αTi,

where Ti denotes all terms in the parentheses. Denote X := DY , Xi := D
1
2
i Yi, Xic := D

1
2
icYic and

X+
i := D

1
2
i Y

+
i . Then we have

∥

∥X+
i

∥

∥

2

2

= ‖Xi‖22 + 16α2 ‖Ti‖22 + 8α

(

Wi,i ‖Xi‖22 −Di ‖Xi‖42 +D
1
2
i Wi,icD

− 1
2

ic XicX
⊤
i −Di

∥

∥

∥
XiX

⊤
ic

∥

∥

∥

2

2

)

≤‖Xi‖22 + 16α2 ‖Ti‖22
+ 8α

(

Wi,i ‖Xi‖22 −Di ‖Xi‖42 +D
1
2
i

∥

∥

∥

∥

Wi,icD
− 1

2
ic

∥

∥

∥

∥

∥

∥

∥
XicX

⊤
i

∥

∥

∥
−Di

∥

∥

∥
XiX

⊤
ic

∥

∥

∥

2

2

)

.

First, we bound ‖Ti‖22 as,

‖Ti‖22 ≤3

(

max
i
W 2
i,iR

2 + ‖DiXi‖22
∥

∥

∥
X⊤X

∥

∥

∥

2

2
+

∥

∥

∥

∥

D
1
2
i Wi,icD

− 1
2

ic

∥

∥

∥

∥

2

2

‖Xic‖22

)

≤3

(

max
i
W 2
i,iR

2 +max
i
D2
i · n2K2R6 +max

i
Di

∥

∥

∥

∥

Wi,icD
− 1

2
ic

∥

∥

∥

∥

2

2

· nR2

)

=M(R),

where we adopts maxi ‖Xi‖2 < R,
∥

∥X⊤X
∥

∥

2

2
≤
∥

∥X⊤X
∥

∥

2

F
≤ K2(nR2)2, and ‖Xic‖22 < nR2.

Then, we estimate the coefficient of linear term in α. By the argument of second order polyno-

mial, we have,

Wi,i ‖Xi‖22 −Di ‖Xi‖42 ≤
W 2
i,i

4Di
,

D
1
2
i

∥

∥

∥

∥

Wi,icD
− 1

2
ic

∥

∥

∥

∥

2

∥

∥

∥
XiX

⊤
ic

∥

∥

∥

2
−Di

∥

∥

∥
XiX

⊤
ic

∥

∥

∥

2

2
≤

∥

∥

∥

∥

Wi,icD
− 1

2
ic

∥

∥

∥

∥

2

2

4
.
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Next we discuss the inequality of
∥

∥X+
i

∥

∥

2

2
in two cases: ‖Xi‖2 ≤ R

2 and R
2 < ‖Xi‖2 < R.

When ‖Xi‖2 ≤ R
2 , we have

∥

∥X+
i

∥

∥

2

2
≤ R2

4
+ 16α2M(R) + 8αM2 < R2,

where the last inequality can be verified using α <
−2M2+

√
4M2

2+3M(R)R2

8M(R) .

When R
2 < ‖Xi‖2 < R, again by the argument of second order polynomial, we have

Wi,i ‖Xi‖22 −Di ‖Xi‖42 +

∥

∥

∥

∥

Wi,icD
− 1

2
ic

∥

∥

∥

∥

2

2

4
< −1

8

due to the fact that R ≥ 2
√
M1. Substituting into the inequality of

∥

∥X+
i

∥

∥

2

2
, we have

∥

∥X+
i

∥

∥

2

2
≤ ‖Xi‖22 + 16α2M(R)− α < ‖Xi‖22 < R2,

where the second inequality can be verified using α < 1
16M(R) .

Proof [Proof of Lemma 7]

First, through a direct calculation, we have

∂f2

∂Yi1,k1
= −4

n
∑

j=1

Wi1,jYj,k1 + 4Di1

K
∑

k=1

Yi1,k

(

n
∑

ℓ=1

Yℓ,kDℓYℓ,k1

)

.

And the second order partial derivative admits,

∂2f2

∂Yi1,k1∂Yi2,k2
=− 4δk1k2Wi1,i2 + 4Di1δi1i2

(

n
∑

ℓ=1

Yℓ,k2DℓYℓ,k1

)

+ 4Di1Yi1,k2Di2Yi2,k1 + 4Di1

K
∑

k=1

Yi1,kYi2,kDi2δk1k2 ,

where δij = 1 if i = j and δij = 0 otherwise. By assumption that maxi

∥

∥

∥

∥

D
1
2
i Yi

∥

∥

∥

∥

2

< R, we have

maxi,j

∣

∣

∣

∣

D
1
2
i Yi,j

∣

∣

∣

∣

< R, and maxj

∥

∥

∥
D

1
2Y:,j

∥

∥

∥

2

2
< nR2. Therefore,

∣

∣

∣

∣

∂2f2

∂Yi1,k1∂Yi2,k2

∣

∣

∣

∣

≤4max
i,j

Wi,j + 4Di1nR
2 + 4max

i
DiKR

2

≤4max
i,j

Wi,j + 4max
i
Di(n+K)R2.
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Proof [Proof of Lemma 8] Applying the updating expression, we have

f2(Y
(ℓ+1)) ≤ f2(Y

(ℓ))− α
∑

i∈Sℓ

K
∑

j=1

(

∇i,jf2(Y
(ℓ))
)2

+ α2L
∑

i∈Sℓ

K
∑

j=1

(

∇i,jf2(Y
(ℓ))
)2
,

where we abuse noation Sℓ to denote the batch at ℓ-th iteration. Since 1− αL
2 > 0, we have

∑

i∈Sℓ

K
∑

j=1

(

∇i,jf2(Y
(ℓ))
)2

≤ 1

α(1− αL)

(

f2(Y
(ℓ))− f2(Y

(ℓ+1))
)

.

Summing over all ℓ from 0 to T − 1, for T = bP and any large integer P , we have

P−1
∑

p=0

b(p+1)−1
∑

ℓ=bp





∑

i∈Sℓ

K
∑

j=1

(

∇i,jf2(Y
(ℓ))
)2



 ≤ 1

α(1− αL)

(

f2(Y
(0))− f2(Y

(T ))
)

≤ 1

α(1− αL)

(

f2(Y
(0))− f∗2

)

,

where f∗2 denotes the minimum of f2. Hence

lim
ℓ→∞

∑

i∈Sℓ

K
∑

j=1

(

∇i,jf2(Y
(ℓ))
)2

= 0.

That is, for any ǫ > 0, there exists an integer P0 > 0, such that for any p ≥ P0, we have

∑

i∈Sℓ

K
∑

j=1

(

∇i,jf2(Y
(ℓ))
)2

≤ ǫ2, for ℓ = pb, . . . , (p+ 1)b− 1.

For any two iterations, ℓ1 and ℓ2 such that pb ≤ ℓ1 ≤ ℓ2 < (p + 1)b, and for any i ∈ Sℓ1 ,

1 ≤ j ≤ K, we have

∣

∣

∣
∇i,jf2(Y

(ℓ1))−∇i,jf2(Y
(ℓ2))

∣

∣

∣
≤
ℓ2−1
∑

ℓ=ℓ1

∣

∣

∣
∇i,jf2(Y

(ℓ))−∇i,jf2(Y
(ℓ+1))

∣

∣

∣

≤L
ℓ2−1
∑

ℓ=ℓ1

∥

∥

∥
Y (ℓ) − Y (ℓ+1)

∥

∥

∥

2

≤L
ℓ2−1
∑

ℓ=ℓ1

α

√

√

√

√

∑

i∈Sℓ

K
∑

j=1

(

∇i,jf2(Y (ℓ))
)2

<bǫ,

where the last inequality is due to αL < 1.
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Let ℓ0 be an iteration within pb and (p + 1)b − 1, p ≥ P0. Note that ∪(p+1)b−1
ℓ=pb Sℓ = [n]. Then

we have

∥

∥

∥
∇f2(Y (ℓ0))

∥

∥

∥

2

2
=

(p+1)b−1
∑

ℓ=pb

∑

i∈Sℓ

K
∑

j=1

(

∇i,jf2(Y
(ℓ0))

)2

=

(p+1)b−1
∑

ℓ=pb

∑

i∈Sℓ

K
∑

j=1

(

∇i,jf2(Y
(ℓ0))−∇i,jf2(Y

(ℓ)) +∇i,jf2(Y
(ℓ))
)2

≤
(p+1)b−1
∑

ℓ=pb

∑

i∈Sℓ

K
∑

j=1

[ (

∇i,jf2(Y
(ℓ))
)2

+ 2ǫ
∣

∣

∣
∇i,jf2(Y

(ℓ0))−∇i,jf2(Y
(ℓ))
∣

∣

∣

+
∣

∣

∣
∇i,jf2(Y

(ℓ0))−∇i,jf2(Y
(ℓ))
∣

∣

∣

2 ]

<(b+ 2nKb+ nKb2)ǫ2.

Since ǫ can be arbitrarily small, we proved the lemma.

Proof [Proof of Theorem 9]

Lemma 6 states that for any Y ∈ W0 and 1 ≤ i ≤ b, we have gi(Y ) ∈ W0. Hence we have

for any Y ∈ W0, g(Y ) ∈ W0. Lemma 7 states that f2 has bounded Lipschitz coordinate gradi-

ent in W0, and the stepsize α satisfies α < 1
KLmaxi∈[b]|Si| . Note that maxi∈[b]

∥

∥∇2f2(Y )Si

∥

∥

2
≤

maxi∈[b]
∥

∥∇2f2(Y )Si

∥

∥

F
≤
√

(K ·maxi∈[b] |Si|)2L2 = KLmaxi∈[b] |Si|, Proposition 6 in (Lee

et al., 2019) shows that under these conditions, we have det(Dg(x)) 6= 0. Corollary 5 in (Lee

et al., 2019) tells us that µ({Y (0) : limj→∞ gj(Y (0)) ∈ χs}) = 0 for χs being the set of unstable

stationary points and local maximizers. Combining with the conclusion of Lemma 8, we obtain the

conclusion of Theorem 9.
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