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ABSTRACT
There is a growing need to empirically evaluate the quality
of online instructional interventions at scale. In response,
some online learning platforms have begun to implement
rapid A/B testing of instructional interventions. In these
scenarios, students participate in series of randomized ex-
periments that evaluate problem-level interventions in quick
succession, which makes it difficult to discern the effect of
any particular intervention on their learning. Therefore, dis-
tal measures of learning such as posttests may not provide
a clear understanding of which interventions are effective,
which can lead to slow adoption of new instructional meth-
ods. To help discern the effectiveness of instructional in-
terventions, this work uses data from 26,060 clickstream se-
quences of students across 31 different online educational
experiments exploring 51 different research questions and
the students’ posttest scores to create and analyze different
proximal surrogate measures of learning that can be used
at the problem level. Through feature engineering and deep
learning approaches, next problem correctness was deter-
mined to be the best surrogate measure. As more data from
online educational experiments are collected, model based
surrogate measures can be improved, but for now, next prob-
lem correctness is an empirically effective proximal surrogate
measure of learning for analyzing rapid problem-level exper-
iments.
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1. INTRODUCTION
There is a growing need to empirically evaluate the quality
of online instructional interventions at scale. This is in part
motivated by the lack of empirical evidence for many ex-
isting interventions, especially in mathematics. According
to Evidence for ESSA, a website that tracks empirical re-
search on educational practices created by the Center for Re-

search and Reform in Education at Johns Hopkins Univer-
sity School of Education, only four technology based inter-
ventions have strong evidence for improving students’ math-
ematics skills [5]. In response, more and more online learn-
ing platforms are creating infrastructure to run randomized
controlled experiments within their platforms [21, 12, 20] in
order to increase the impact of the their programs on student
learning and facilitate research in the field. This infrastruc-
ture allows for rapid A/B testing of different instructional
interventions. In an A/B testing scenario, students assigned
to particular assignments or problems within these online
learning platforms will be automatically randomized to one
of multiple experimental conditions in which different in-
structional interventions will be provided to them. While
this paradigm allows for rapid testing of many hypotheses,
this rapid testing environment makes statistical analysis dif-
ficult. In some cases, students participate in many random-
ized controlled experiments in parallel or in quick succession.
For example, in ASSISTments, an online learning platform
in which students complete pre-college level mathematics as-
signments [9], students can be randomized between different
instructional interventions for each mathematics problem in
their assignment. In these scenarios, it is important to eval-
uate the effect of the interventions as quickly as possible.
If one were to wait until the end of a section of the cur-
riculum, or even the end of the current assignment before
evaluating students’ mastery of the subject matter, then the
effect of an intervention for a single problem near the begin-
ning of the assignment would be obfuscated by the effects of
all the following interventions. For this reason, prior work
has only used students’ behavior on the problem they at-
tempted after receiving an intervention but before receiving
another intervention to evaluate the effectiveness of the first
intervention [13, 17]. However, the measures used in prior
work were chosen based on theory, without any empirical
evidence that they are in fact an effective surrogate measure
of learning.

To address the lack of empirical evidence for these proximal
surrogate measures of learning, the first goal of this work
was to create a variety of surrogate measures from students’
clickstream data on the problem they attempted after re-
ceiving an experimental intervention. These measures were
created through feature engineering, discussed in Section 3,
and model fitting, discussed in Sections 4.1 and 4.2.

After creating surrogate measures, The second goal of this
work was to evaluate how effective these measures were at



estimating the treatment effects between pairs of conditions
in online experiments. To achieve this goal, data was col-
lected to compare 51 different pairs of conditions from 31
assignment-level online experiments with posttests in which
students were exposed to the same intervention multiple
times within the same assignment, but were not exposed
to any other interventions. By determining the extent to
which each measure was a surrogate for students’ posttest
scores, discussed more in Sections 2.3 and 4.4, the surrogate
measures could be compared to each other.

After determining which surrogate measure was most suited
for use in rapid online experiments, the third goal of this
work was to explore the effects of using the chosen surro-
gate to analyze the results of online education experiments
compared to using posttest scores to analyze the results,
discussed more in Section 4.5.

To summarise, this work strives to answer the following three
research questions:

1. What surrogate measures can be created from short
sequences of students’ clickstream data?

2. Which of these surrogate measures is the best surro-
gate for posttest score?

3. How does using this surrogate measure to analyze on-
line educational experiments effect their results?

2. BACKGROUND
2.1 Rapid Online Educational Experimenta-

tion
Experimentation is a cornerstone of formative improvement
of online instructional interventions [20, 1]. When mak-
ing decisions about implementing changes to online learn-
ing programs, designers must understand which features will
have the greatest impact on student learning. A/B test-
ing, i.e., comparing students’ performance when they are
randomly exposed to different variants of feature, allows re-
searchers to estimate the causal effect of a specific feature.
This causal estimate can be used to determine which variant
of a feature should be scaled system wide and inform design
decisions for future product development.

Systems like ASSISTments E-TRIALS were established to
allow researchers to test learning theories and feature ideas
through experiments within online mathematics assignments
[12]. Using systems like E-TRIALS, students are random-
ized between different assignment-level interventions and com-
plete a posttest at the end of their assignment to evaluate
their learning. Experiments in E-TRIALS have shown that
providing explanations, hints, or scaffolding questions to stu-
dents tends improves their performance more than simply
providing them with the answer after an incorrect attempt
[18]. Experiments in E-TRIALS have evaluated more than
just instructional intervention based experiments. For ex-
ample, experiments have shown that students’ learning was
negatively impacted by interjecting motivational messages
into their mathematics assignments [18].

Although assignment-level experiments provide some rele-
vant information to online program designers, these design-

ers are faced with a nearly infinite number of decisions about
what features to build and how to build them. Since only
one causal inference can be estimated from each manipu-
lation [10], designing assignment-level experiments for each
potential impactful variant of a feature is often infeasible.
Rapid online educational experimentation provides a more
efficient alternative more traditional assignment-level exper-
iments by assigning students to a condition at each problem
and instead of requiring students to complete a posttest, us-
ing the student’s performance on the subsequent problem as
the outcome.

One example of rapid online educational experimentation
is the TeacherASSIST system, which randomizes students
between crowdsourced educator generated hints and expla-
nations. In this system, there were over 7,000 support mes-
sages produced by 11 educators. These support messages
consisted of hint messages or worked explanations in both
text and video form. These educator created problem-level
support messages produced an average positive effect on stu-
dent performance [13, 17] and more work is being done to
understand the nuanced effects of each tutoring message [15].
This system has allowed for a much more efficient deploy-
ment of experiments and evaluation of feature nuances.

2.2 Unconfounded Outcomes For Rapid On-
line Experiments

In order for rapid online experimentation to increase the
number of casual inferences made, we must identify out-
comes that are unconfounded by the other experimental
manipulations to which a student was exposed. Distal out-
comes, such as end-of-unit or assignment-level posttest scores,
do not allow a researcher to determine which of the treat-
ments the student was exposed to during the experiment
produced the effect. An alternative, used by [13, 17] to eval-
uate TeacherASSIST, is to use data from the problem stu-
dents completed directly after the experimental condition,
i.e., next problem measures.

Although individual students’ behaviors and performance
may be influenced by the aggregate of experimental ma-
nipulations within an assignment, the average difference in
next problem measures is unconfounded due to the random
assignment at the problem level. Next problem measures
are unconfounded by either the prior experimental condi-
tions or next problem experimental conditions because the
assignment to each condition is independently random and
therefore the effects of the prior and post-conditions are zero.
Therefore, the remaining difference in the next problem mea-
sures between treatment and control is an unconfounded
measure of the treatment effect.

2.3 Surrogate Measures
Although measures taken during the next problem after the
experiment, such as next-problem correctness, are uncon-
founded by other experiments within the problem set, it is
not yet known whether these measure are good estimates
of distal outcomes. In assignment-level A/B testing, a re-
searcher creates a posttest designed to measure the expected
effect of the treatment condition compared to the control
condition, but within online instructional interventions, the
next problem was designed for pedagogical purposes, not



to evaluate the effects of the intervention. Therefore, to use
next problem measures to validate the impact of a condition,
we must validate whether these measures assess researchers’
outcomes of concern.

One way to think about these next problem measures is as
surrogate measures. Surrogate measures are used in medical
experiments when the outcome is either difficult to assess or
distal [19]. Surrogates can either have causal or correlation
relations to the outcome [11]. Validating causal surrogates
requires a causal path from the treatment to the surrogate
and subsequently to the outcome, such that the indirect path
through the surrogate has a larger effect than the direct path
through from the treatment to the outcome. Alternatively,
an associative surrogate is valid when the following three
criteria are met [11]:

1. There is a monotonic relationship between the treat-
ment effect on the surrogate and the treatment effect
on the outcome across experiments.

2. When the treatment effect on the surrogate is zero, the
treatment effect on the outcome is also zero.

3. The treatment effect on the surrogate predicts the treat-
ment effect on the outcome.

In this work, various next problem measures are evaluated
for their effectiveness as an associative surrogate measure of
posttest scores.

3. DATA COLLECTION AND PREPARATION
3.1 Data Source
The data used in this work comes from ASSISTments, an on-
line learning platform that focuses on pre-college mathemat-
ics curricula. Within ASSISTments, external researchers
can run experiments at scale that compare different instruc-
tional interventions. In July, 2022 ASSISTments released a
dataset of 88 randomized controlled experiments that were
conducted within the platform since 2018 [18]. These exper-
iments compared various assignment-level and problem-level
interventions. For example, Fig. 1 shows the two conditions
of an ASSISTments experiment in which students were ran-
domized between receiving either open response problems,
or multiple choice problems.

Figure 1: An example of two experimental conditions. In
the first condition (left), students are given open response
versions of mathematics problems. In the second condition
(right), students are given multiple choice versions of the
same problems.

In this work, only the experimental assignments from AS-
SISTments that had posttests were used. This ensured that
any learning measures derived from a student’s clickstream
data on the problem immediately after receiving an interven-
tion for the first time could be directly compared to their
posttest score. A students posttest score is the fraction of
problems they answered correctly on their posttest. To avoid
bias from missing posttest scores, only data from experi-
ments in which there was no statistically significant differ-
ence in students’ completion rates between conditions were
used, and students that did not complete the posttest were
excluded from the analysis. In some contexts it would be
better to impute missing posttest scores as the minimum
score. However, the purpose of this work was to create
a surrogate measure for posttest score in situations where
it is infeasible to require students to complete a posttest,
and therefore it seems more appropriate to remove missing
posttest scores to ensure that the surrogate measures stu-
dents’ posttest scores, not their propensity to complete an
assignment. This additional filtering step removed only one
of the ASSISTments experiments from the analysis. Addi-
tionally, the data used in this work is limited to students who
participated in the experiments prior to July 23rd, 2021. On
July 23rd, 2021 all unlisted YouTube videos created prior to
2017 were made private [7]. Many of the experiments in-
cluded YouTube videos uploaded prior to 2017, which were
made private, ruining the experiments that contained them.

These experiments provided a rare opportunity to fairly
compare next problem measures to posttest score because
typically, when next problem measures are used as a de-
pendent measure, it is because many different types of in-
terventions are being given to a student in quick succes-
sion. However, in these experiments students are given the
same intervention for each problem in the experimental as-
signment. Therefore, in these experiments, next problem
measures measure the student’s propensity to learn the ma-
terial after seeing the experimental intervention for the first
time, and posttest score measures the student’s propensity
to learn the material after seeing the same intervention mul-
tiple times, but both are evaluating the effectiveness of the
same intervention. In total, 26,060 clickstream sequences
of a student completing a problem and their corresponding
posttest score were collected for model training and analysis
across 51 different research questions within 31 different ex-
perimental assignments. These sequences and the code used
to evaluate them has been made publicly available and can
be found at CLICK HERE FOR BLINDED LINK.

3.2 Expert Features
As established by prior work, i.e. ([13, 17, 15]), collecting
data to evaluate the effectiveness of an intervention is often
limited to data from the next problem in a student’s assign-
ment, before they received another intervention. While next
problem correctness was used in prior work, this work ex-
tracted four additional expert features from students’ click-
stream data on their next problem that have been useful
predictors of student behavior in prior work [22, 23]. Table
1 describes the expert features used in this work.

3.3 Clickstream Data
In addition to expert features, this work used deep learning
to create surrogate measures of learning from students’ click-

https://osf.io/uj48v/?view_only=619154bde1924dcda089513958e1d173


Table 1: Expert Features

Feature Name Description
Correctness A binary indicator of whether or not the student answered the problem correctly

on their first try without tutoring of any kind.
Tutoring Requested A binary indicator of whether or not the student requested tutoring of any kind.
No Attempts Taken A binary indicator of whether or not the student did not make any attempts to

answer the problem.
Attempt Count The number of attempts made by the student to answer the problem.

First Response Time The natural log of the total seconds from when the problem was started to when
the student submitted an answer or requested tutoring of any kind for the first
time.

stream data. The clickstream data consisted of the action
sequences of students within the ASSISTments tutor from
the time they start the problem after they received an exper-
imental intervention to the time they either receive another
intervention or complete the problem. This short window of
time is not confounded by other experimental interventions
and is likely to give the clearest insight into the impact of
experimental interventions being tested in quick succession.

The students’ clickstream data was broken down into a se-
ries of one-hot encoded actions followed by the time since
taking the last action. The first action was always ”prob-
lem started”, therefore this action was dropped from stu-
dents’ clickstreams prior to being given to a deep learn-
ing model. The time since taking the last action was log-
transformed in order to weight the difference between short
time periods more than long time periods and to reduce the
impact of large outliers, which are due to students walking
away from their computers during assignments and return-
ing later. Additionally, the log-transformed times are scaled
within the range [0, 1]. Scaling the time within the same
range as the one-hot encoded actions helps the model bal-
ance the importance of the different features. Each action
sequence was equal in length to the longest action sequence,
which was 12 actions. When students took less than the
maximum number of actions, their action sequences were
zero padded from the start of the sequence. Table 2 provides
an example sequence of a student’s clickstream data in which
a student unsuccessfully attempted to get a problem correct
twice, then took a break, then returned to their assignment,
got the problem incorrect again, and then on their fourth
attempt, got the problem correct. The first six columns
contain all zeros because the student only took a total of
six actions. This representation of students’ clickstream ac-
tion sequences was chosen because of previous work’s success
with this representation for various prediction tasks [22, 16,
23].

4. METHODOLOGY
4.1 Expert Feature-Based Models
To derive a surrogate measure of learning from the expert
features, three approaches were taken. The first approach
was to simply use each expert feature as a surrogate mea-
sure of learning. If an expert feature could be used as an
effective surrogate measure, it would make it much easier
for researchers and online learning platforms to adopt this
measure, as no model fitting would be required. The second
approach was to fit a linear regression on posttest score using
the expert features as input. Equation 1 shows the model

fit for approach two, where n is the number of students, f is
the number of features, Y is an n by 1 matrix of students’
posttest scores, X is an n by f matrix of students’ feature
values, and β is an f by 1 matrix of coefficients learned
during model fitting.

Y = Xβ (1)

The third approach was to fit a linear regression on the
treatment effect on posttest score using the treatment ef-
fects on each expert feature as input. The third approach
was included because if the goal is to predict the treatment
effect on posttest score, than it might be more effective to
fit a model that combines the treatment effects on differ-
ent expert features into the treatment effect on posttest
score than to simply predict posttest score. This would
be advantageous in a scenario where there was informa-
tion in the expert features that was predictive of a stu-
dent’s propensity to learn independent of the intervention
they were given. In that scenario, a model trained to pre-
dict posttest score might learn to rely on that information,
which would lead the model to predict more similar posttest
scores between different experimental conditions than were
actually observed. By directly predicting the treatment ef-
fect on posttest score, the model must learn to use the fea-
tures that are predictive of the effect of the experimental
conditions. The downside of this approach is that each re-
search question’s data is reduced to a single sample in the
regression. Therefore, while the second approach had the
full 26,060 samples of student data to fit on, the third ap-
proach only had 51 samples to fit on; one for each research
question. Equation 2 shows the model fit for the third ap-
proach, where n is the number of students, f is the number
of features, Y is an n by 1 matrix of students’ posttest scores,
X is an n by f matrix of students’ feature values, Z is an
array of conditions where 1 indicates the student was placed
in the treatment condition, and 0 indicates the student was
placed in the control condition, and β is an f by 1 matrix
of coefficients learned during model fitting.



Table 2: A Student’s Clickstream Data Sequence After Processing

Feature Name Clickstream Data Sequence
problem resumed 0 0 0 0 0 0 0 0 1 0 0 0

tutoring requested 0 0 0 0 0 0 0 0 0 0 0 0
wrong response 0 0 0 0 0 0 1 1 0 1 0 0
correct response 0 0 0 0 0 0 0 0 0 0 1 0
problem finished 0 0 0 0 0 0 0 0 0 0 0 1

time since last action 0.00 0.00 0.00 0.00 0.00 0.00 0.62 0.51 6.39 0.12 0.38 0.01

yt =

∑n
i=1 Yi × Zi∑n

i=1 Zi
, yc =

∑n
i=1 Yi × (1− Zi)∑n

i=1 1− Zi

xt =

∑n
i=1 Xi × Zi∑n

i=1 Zi
, xc =

∑n
i=1 Xi × (1− Zi)∑n

i=1 1− Zi

yt − yc = (xt − xc)β

(2)

4.2 Deep Learning Models
Two deep learning approaches were used to create a surro-
gate measure of learning from students’ clickstream data.
Both approaches trained a recurrent neural network to pre-
dict students’ posttest scores given their clickstream data
using Bidirectional LSTM layers [24, 6], which read the
clickstream data both forward and backward to learn the
relationship between students’ actions and their posttest
scores. Following the same intuition as the previous sec-
tion, while the first model used the mean squared error of
its posttest score predictions as its loss function, the second
model used the squared error of the treatment effect calcu-
lated from its posttest score predictions as its loss function.
Essentially, the first model was trained to predict accurate
posttest scores, and the second model was trained to pre-
dict posttest scores that would lead to the same treatment
effect estimates as the actual posttest scores. For context,
Equation 3 formalizes the mean squared error loss function
of the first approach using the same notation as Equation
4, which formalizes the custom loss function for the second
approach, where Y is an array of students’ posttest scores,
Ŷ , is an array of predicted posttest scores, Z is an array of
conditions where 1 indicates the student was placed in the
treatment condition, and 0 indicates the student was placed
in the control condition, n is the number of students in the
array, and τ and τ̂ are the treatment effects of the research
question calculated using posttest and the surrogate mea-
sure respectively.

Mean Squared Error Loss =

∑n
i=1(Ŷi − Yi)

2

n
(3)

yt =

∑n
i=1 Yi × Zi∑n

i=1 Zi
, yc =

∑n
i=1 Yi × (1− Zi)∑n

i=1 1− Zi

ŷt =

∑n
i=1 Ŷi × Zi∑n

i=1 Zi
, ŷc =

∑n
i=1 Ŷi × (1− Zi)∑n

i=1 1− Zi

τ = yt − yc, τ̂ = ŷt − ŷc

Treatment Effect Squared Error Loss = (τ̂ − τ)2

(4)

4.3 Model Training
To fairly evaluate the surrogate measures of learning, each
model was trained and evaluated using leave-one-out cross-
validation partitioned by the experimental assignment, and
only the surrogate measures of learning calculated for the
held out data were used to determine the surrogate mea-
sures’ effectiveness. In each experimental assignment, mul-
tiple research questions are evaluated, but there is overlap
in the data used to answer each of these research questions.
For example, one experimental assignment evaluated the ef-
fectiveness of both video-based and text-based encouraging
messages during an assignment. Both of these conditions
shared the same control condition in which students did not
receive encouraging messages. While there are two research
questions being evaluated, if we trained a model using the
data from all but one of these research questions, the data
from the control condition of the held out research question
would have been used to train the model. This would have
given the model an unfair advantage. Therefore, when using
leave-one-out cross-validation to train and evaluate the mod-
els, the data was partitioned by experimental assignment,
and all the research questions in the held-out experimental
assignment were evaluated using the model trained on all
the other experimental assignments. This ensures that no
data is shared between the training data and the held-out
data.

For the expert feature-based models, an ablation study was
performed to identify which combination of features lead
to the highest correlation between surrogate measure and
posttest treatment effects. In this ablation study, the mod-
els were trained first using all of the expert features as input,
and then models were trained using all but one of the fea-
tures. If any of the all-but-one-feature models out-performed
the model with all the features, then that model became the
best model so far, and more models were trained using all
but one of the features in the new best model. Eventually,
the best model will not have improved from removing any



of its features, denoting that this model has the optimal set
of features as input.

For the deep learning models, the models were initialized,
trained, and evaluated ten times, and the average of all these
evaluations was used to determine the quality of the deep
learning models predictions as a surrogate measure. Unlike
linear regressions, neural networks cannot be solved for the
optimal value of their coefficients. Instead, a neural net-
work’s weights, which are akin to a linear regression’s coef-
ficients, are randomly initialized, and then gradient descent
is used to optimize them. These random initializations can
lead to more or less optimal weights at the end of training.
Therefore, by training the model multiple times using dif-
ferent random initializations and averaging the results, the
evaluation of the model’s surrogate measure is more reliable.

Additionally, deep learning models are highly nonlinear and
are prone to over-fitting on the data, which leads to worse
predictive accuracy on the held-out data. To address this,
only half of the data used for training the model were used to
optimize the weights for the first approach. The other half of
the data was used as a validation set. The prediction error
on the validation set was calculated each time the model’s
weights were updated. Once the prediction error on the
validation set began to increase, training was stopped, be-
cause any further reduction in prediction error on the train-
ing data would be due to over-fitting on the training data,
as opposed to learning the underlying relationship between
students’ clickstream data and their posttest scores. For the
second approach, the treatment effect loss function made it
more difficult for the model to learn the relationships in the
data because all predictions for a single experiment were
reduced to a single loss value, making it more difficult to
properly attribute blame for predictive error to the weights
in the model. Therefore, none of the data was used for
validation during the second approach. This provided the
neural network with as much information as possible. In-
stead, over-fitting was prevented by training the model used
in the second approach for about the same number of train-
ing steps taken by the model trained for the first approach
before it began to over-fit.

4.4 Evaluation of Surrogate Measures
To reiterate from Section 2.3, a surrogate measure must meet
three criteria [11]:

1. There is a monotonic relationship between the treat-
ment effect on the surrogate and the treatment effect
on the outcome across experiments.

2. When the treatment effect on the surrogate is zero, the
treatment effect on the outcome is also zero.

3. The treatment effect on the surrogate predicts the treat-
ment effect on the outcome.

Criteria 1 and 3 can be simultaneously evaluated by looking
at the Pearson correlation between the treatment effect on
the surrogate measures and the treatment effect on posttest
score because a high Pearson correlation between two mea-
sures indicates that there is a monotonic linear relationship

between them [2], and the linearity implies predictability.
The higher the Pearson correlation between treatment ef-
fects across all research questions, the more effective the sur-
rogate measure is. Using the same terminology from Equa-
tion 4, the goal is to maximize corr(τ, τ̂).

To evaluate Criteria 2, after the surrogate measures were
used to determine the treatment effects for the different re-
search questions, a linear regression was fit to predict the
treatment effect on posttest given the treatment effect on
one of the surrogate measures and an intercept. If the co-
efficient of the intercept is small and statistically insignifi-
cant, then there is no evidence that Criteria 2 was violated.
Therefore, the best surrogate measure was determined to be
the measure with the highest Pearson correlation between its
treatment effects and the posttest treatment effects across all
the research questions (Criteria 1 and 3), as long as the mea-
sure did not have a significant intercept when its treatment
effects were used to predict the posttest treatment effects
(Criteria 2).

4.5 Experiment Analysis
It is not only important to identify the best surrogate mea-
sure, but also to understand the impact that using this mea-
sure of learning would have on analyzing A/B tests and ed-
ucational experiments. Therefore, after each surrogate mea-
sure of learning was evaluated, the treatment effect on both
posttest score and the best surrogate measure along with the
95% confidence interval of these treatment effects were cal-
culated for each research question using a simple difference
in means between the treatment and control groups in each
research question [25]. The treatment effects on the surro-
gate measure were then compared to the treatment effects
on posttest score.

5. RESULTS
5.1 Evaluation of Surrogate Measures
The treatment effect of each research question was calcu-
lated using each surrogate measure described in Sections 4.1
and 4.2. To evaluate whether the surrogate measures met
Criteria 1 and 3 from Section 4.4, the treatment effects on
each surrogate measure across all the research questions were
correlated with the treatment effects on posttest score. Ta-
ble 3 reports the different surrogate measures, the Pearson
correlation [2] of their treatment effects, and the statistical
significance of these correlations.

Of all the expert features, correctness and tutoring requested
were the only two features whose treatment effects were sta-
tistically significantly correlated with the treatment effect on
students’ posttest scores. Correctness had a positive corre-
lation with posttest score, indicating that students that got
the next problem correct on their first try without any sup-
port tended to have higher posttest scores than those who
did not, and tutoring requested had a negative correlation
with posttest score, indicating that students that requested
tutoring on the next problem tended to have lower posttest
scores than those who did not. The direction of these corre-
lations makes intuitive sense, as one would expect students
who struggle to answer mathematics problems correctly dur-
ing their assignment to have difficulty on their posttest as
well.



Table 3: The Correlations between Surrogate Measure and Posttest Score Treatment Effects

Surrogate Measure Treatment Effect Correlation with Posttest Score Correlation p-value

Expert Features as a Surrogate Measure (Section 4.1, Approach 1)
Correctness 0.62 <0.001

Tutoring Requested -0.59 <0.001
No Attempts Taken -0.01 0.935
Attempt Count -0.16 0.264

First Response Time 0.04 0.784

Expert Features Used to Predict Posttest Score (Section 4.1, Approach 2)
Posttest Prediction 0.62 <0.001

Expert Feature Treatment Effects Used to Predict Treatment Effect on Posttest (Section 4.1, Approach 3)
Treatment Effect Prediction 0.50 <0.001

Deep Learning Posttest Prediction with Mean Squared Error Loss (Section 4.2, Approach 1)
Posttest Prediction 0.60 <0.001

Deep Learning Posttest Prediction with Treatment Effect Squared Error Loss (Section 4.2, Approach 2)
Posttest Prediction 0.49 <0.001

When performing the ablation study to identify the optimal
set of expert features for the linear regression used to pre-
dict posttest score (Section 4.1, Approach 2), the highest
performing model used only correctness. Interestingly, no
other feature could be used in combination with correctness
to improve the model’s predictions. Therefore, using this lin-
ear regression to predict posttest is an equivalent surrogate
measure to just using correctness as a surrogate measure
itself.

When performing the ablation study to identify the opti-
mal set of expert features for the linear regression used to
predict treatment effect on posttest (Section 4.1, Approach
3), the highest performing model used tutoring requested
and attempt count. Interestingly, correctness, while being
the best and only feature used to predict posttest score, was
not as effective at directly predicting treatment effect. Ulti-
mately, this approach was inferior to the other approaches
at identifying surrogate measures using expert features.

To evaluate Criteria 2 from Section 4.4, a linear regression
was fit for each surrogate measure using data from all the
research questions to predict the treatment effect on posttest
given the treatment effect on the surrogate measure and an
intercept. Table 4 reports the different surrogate measures,
the coefficients of their linear regressions’ intercepts, and
and the statistical significance of these coefficients.

There was little evidence that any of the surrogate mea-
sures violated Criteria 2. Only the deep learning model
with treatment effect squared error loss had an intercept
coefficient that was close to statistically significant, but the
p-value of 0.050 is rounded down, and that model was not
a contender for best model based on the results in Table 3.
Therefore, the best surrogate measure was simply next prob-
lem correctness, because the treatment effect on no other
feature nor any model prediction was more correlated with
the treatment effect on posttest than treatment effect on
next problem correctness.

5.2 Experiment Analysis

After identifying next problem correctness as the best surro-
gate measure of learning, the treatment effects on posttest
and on next problem correctness were calculated for each
research question along with their confidence intervals. Fig-
ure 2 plots the treatment effect and confidence interval using
both measures for each research question, sorted from largest
to smallest posttest confidence interval. Figure 2 shows that
while next problem correctness tends to lead to wider con-
fidence intervals, it also tends to lead to larger treatment
effects.

Additionally, Figure 3 shows a confusion matrix comparing
the significant findings when using both measures. Only five
of the 51 research questions had significant findings when
using posttest score as a measure of learning. Using next
problem correctness as a measure of learning resulted in six
significant findings, but only one of these findings is found
when using both measures to perform the analysis. However,
the lack of common significant findings should not be dis-
couraging. There is typically a sparsity of significant findings
in online educational experiments, and the most important
result is that the two learning measures never disagreed on
which condition is better when they both identified a statis-
tically significant difference between conditions.

6. DISCUSSION
Ultimately, next problem correctness was the best surrogate
measure of learning. The treatment effect on next prob-
lem correctness had the highest Pearson correlation with the
treatment effect on posttest, and there was no evidence that
the treatment effect on next problem correctness was not
zero when the treatment effect on posttest was zero, which
satisfies all three criteria discussed in Section 2.3. It was
not expected that one of the simplest of the surrogate mea-
sures, which had been used previously despite no empirical
evidence to support that choice, would be the best surro-
gate. One possible reason for why the predictive models did
not perform well is that the behavior of students within an
experiment could be highly dependent on the material in
the assignment. For example, geometry problems might on
average take more time to answer than algebra problems,
which would make students first response time less informa-



Table 4: The Correlations between Surrogate Measure and Posttest Score Treatment Effects

Surrogate Measure Intercept Coefficient Intercept Significance p-value

Expert Features as a Surrogate Measure (Section 4.1, Approach 1)
Correctness -0.0084 0.133

Tutoring Requested -0.0059 0.293
No Attempts Taken -0.0066 0.340
Attempt Count -0.0080 0.293

First Response Time -0.0073 0.177

Expert Features Used to Predict Posttest Score (Section 4.1, Approach 2)
Posttest Prediction -0.0085 0.131

Expert Feature Treatment Effects Used to Predict Treatment Effect on Posttest (Section 4.1, Approach 3)
Treatment Effect Prediction -0.0098 0.152

Deep Learning Posttest Prediction with Mean Squared Error Loss (Section 4.2, Approach 1)
Posttest Prediction -0.0073 0.198

Deep Learning Posttest Prediction with Treatment Effect Squared Error Loss (Section 4.2, Approach 2)
Posttest Prediction 1.94 0.050

tive of their learning because it is in part dependent on the
subject matter. Methods like Knowledge Tracing and Per-
formance Factor Analysis, which measure students’ mastery
of mathematics concepts, take into account the knowledge
components of the students’ assignments when predicting
student performance to compensate for this dependence [4,
14]. By providing the models with more nuanced informa-
tion about student behavior, it is possible they were picking
up on behavioral trends that were not generalizable across
experiments. Additionally, the sample size of the data was
fairly low. Only 51 research questions were used in this anal-
ysis, and it is likely that data from more experiments testing
a greater variety of interventions would help the models learn
to differentiate between generalizable trends and trends spe-
cific to subsets of experiments.

These reasons help to explain what may have caused the
models to underperform, but from a different perspective,
what caused next problem correctness to perform so well? It
seems likely that next problem correctness was a strong sur-
rogate because posttest score is simply a different measure
of problem correctness. In other words, next problem cor-
rectness is a measure of whether the student got the problem
immediately following the intervention correct, and posttest
score is a measure of whether the student got a few prob-
lems ahead of the intervention correct. It makes sense that
two measures that revolve around a student’s propensity to
answer problems correctly would correlate. This leads to
the question: is correctness what matters? If the goal of
education is ultimately to give students better, more ful-
filling lives, then perhaps test scores are not what a sur-
rogate should measure. There is plenty of evidence of test
scores falling short when attempting to correlate them with
things like college and career success. For example, stud-
ies have found that SAT scores do not explain any addi-
tional variance in college GPA for non-freshman college stu-
dents after taking into account social/personality and cog-
nitive/learning factors [8]. Additionally, these test scores
can be biased against minority groups. For example, stud-
ies have found that SAT scores are more predictive of white
students’ college GPA than they are for Black or Hispanic
students [26]. While these are important factors to consider,
one could argue that these impacts are less relevant in the

context of this work, where the goal is simply to use short
patterns in students’ behavior to analyze the difference in
the impact of various problem-level interventions meant to
help students learn how to correctly answer the following
problems in their assignments. However, one should always
be cognizant of the potential bias a surrogate measure could
introduce.

When using next problem correctness and posttest scores to
analyze the results of the 51 research questions, only six and
five of the 51 research questions had significant differences
between conditions respectively, but only one of these sig-
nificant findings was identified by both measures. While it
would be better if the two measures found more similar sig-
nificant findings, as long as the two measures do not disagree
on which condition is most effective when they both find
something statistically significant, then there is no concern
that using next problem correctness could lead a researcher
to the wrong conclusion. Next problem correctness, on aver-
age, had wider confidence intervals than posttest score, but
also had larger treatment effects. This may be explained
simply by the more extreme nature of the next problem cor-
rectness values. To gain some intuition on why this might
be the case, consider that posttest is essentially the aver-
age of many next problem correctness measures. If we think
of whether a student gets a problem correct as a random
variable, then one can see how the average of many ran-
dom variables will tend to be closer to the expected value
than a single random sample. The variance of students’
posttest scores can therefore be expected to be lower than
the variance of students’ next problem correctness, which
would cause the confidence interval of the treatment effect
on posttest to be smaller as well.

6.1 Limitations and Future Work
While in this work next problem correctness was found the
be the best proximal surrogate measure for posttest score,
there are some factors that could limit the generalizability of
these findings. Firstly, this work uses data entirely from AS-
SISTments Skill Builder assignments. In these assignments,
students are given a series of mathematics problems on the
same skill, and are given immediate feedback on each prob-



Figure 2: A plot of the treatment effect and confidence interval determined using posttest score and next problem correctness
for each research question.

lem as they complete it. Next problem correctness could be
especially relevant in this context because the next problem
is guaranteed to evaluate the same knowledge components as
the previous problem. In assignments where interleaving [3]
is used, the problem following an intervention could be only
tangentially related to the problem for which the interven-
tion was provided, and thus a student’s performance on the
next problem would not be a good measure of the effective-
ness of the intervention. In the future, using next problem
correctness as a surrogate measure should be evaluated in
other kinds of online learning environments, perhaps in con-
texts where the content students see is chosen adaptively. In
this scenario, students will see different problems following
an intervention, and combining the next problem correctness
of multiple problems could have positive or negative effects
on next problem correctness’s value as a surrogate measure
of learning.

Additionally, in this work, only 51 different research ques-
tions were used to evaluate the quality of different measures,
with a total of 26,060 samples. It is possible that some of
the model based attempts at creating a surrogate measure
of learning would be more successful if given more data from
a wider variety of situations in which A/B testing was per-
formed. Having a larger and more diverse dataset to train
the models from also opens up the possibility to train multi-
ple specific models for different subgroups of users or exper-
iments. With the limited data in this work, it was unlikely
that splitting the data into subgroups would have helped
any of the models. However, with more data it could be the
case that a model trained on students from a specific socioe-
conomic background would be more effective at interpreting
behaviors specific to those students. It could also be the case
that training a model for a specific type of experiment, for
example, experiments that alter the way in which students

must answer the question as opposed to experiments that
alter the support messages students receive, could improve
the model’s ability to pick up on different student behaviors
associated with these different experiments. In the future, if
more data becomes available, models trained on subgroups
should be explored.

7. CONCLUSION
In this work, we attempted to derive and validate an effective
surrogate measure of learning for use in online learning plat-
forms where rapid A/B testing is used to compare problem-
level instructional interventions at scale. To accomplish this,
a variety of proximal surrogate measures for posttest score
were created through feature engineering, regression, and
deep learning. After evaluating each surrogate measure by
ensuring it met the criteria for an associative surrogate as
described in [11], students’ next problem correctness was
determined to be the best surrogate. When comparing the
treatment effect on posttest score to the treatment effect on
next problem correctness across 51 different research ques-
tions, both measures determined that approximately 10% of
the research questions had statistically significant treatment
effects, but both of the measures shared only one statistically
significant finding. Although there was not much overlap in
these significant findings, both measures agreed on which
condition was most effective when they both found a sig-
nificant treatment effect. Additionally, using next problem
correctness as a measure lead to larger treatment effects with
wider confidence intervals than using posttest score.

Follow-up work should be done to validate next problem cor-
rectness as a measure of learning in different domains and for
different learning environments. Moving forward, using next
problem correctness as a measure of learning within online
learning platforms could be an effective way to evaluate stu-



Figure 3: A confusion matrix comparing the differences in
statistically significant findings when using posttest score and
next problem correctness as measures of learning.

dents’ progress and compare problem-level interventions to
each other. We hope this work can help support the learning
analytics community by providing a way to rapidly evaluate
new instructional methods and interventions.
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