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Abstract

Variational quantum algorithms stand at the forefront of simulations on near-term and future
fault-tolerant quantum devices. While most variational quantum algorithms involve only continu-
ous optimization variables, the representational power of the variational ansatz can sometimes be
significantly enhanced by adding certain discrete optimization variables, as is exemplified by the
generalized quantum approximate optimization algorithm (QAOA). However, the hybrid discrete-
continuous optimization problem in the generalized QAOA poses a challenge to the optimization.
We propose a new algorithm called MCTS-QAOA, which combines a Monte Carlo tree search
method with an improved natural policy gradient solver to optimize the discrete and continuous
variables in the quantum circuit, respectively. We find that MCTS-QAOA has excellent noise-
resilience properties and outperforms prior algorithms in challenging instances of the generalized
QAOA.
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Figure 1: The schematics of MCTS-QAOA: MCTS provides promising paths for the discrete optimization
search; the inner loop (highlighted in red) Policy Gradient (PG) solver evaluates the discrete
sequence in a noise-robust way; the reward obtained is then propagated back through the search
tree and used to improve the tree policy.

1. Introduction

Quantum computing provides a fundamentally different way for solving a variety of impor-
tant problems in scientific computing, such as finding the ground state energy in computational
chemistry, and the MaxCut problem in combinatorial optimization. Variational quantum circuits
are perhaps the most important quantum algorithms on near term quantum devices (Preskill, 2018),
mainly due to the tunability and the relatively short circuit depth (Cerezo et al., 2021b), as exem-
plified by the variational quantum eigensolver (VQE) (Peruzzo et al., 2014; McClean et al., 2016)
and the quantum approximate optimization algorithm (QAOA) (Farhi et al., 2014). A common
thread in these algorithms is to variationally optimize a parameterized quantum circuit using clas-
sical methods to obtain an approximate ground state. For instance, in combinatorial optimization,
QAOA encodes the classical objective function into a quantum Hamiltonian, and constructs a quan-
tum circuit with a set of two alternating quantum gates. The continuous adjustable parameters are
the duration or phases of the gates.

For quantum many-body problems, the expressivity of the QAOA ansatz may be limited: the
exponentially large (in the number of qubits) Hilbert space may not be efficiently navigated by the
dynamics generated by the alternating gate sequence. This can lead to circuit depths that grow with
the system size (Ho and Hsieh, 2019), or render the target ground state outside the scope of acces-
sible states altogether, thus fundamentally precluding its preparation. To address these problems,
various versions of a generalized QAOA ansatz have been presented in recent works (Zhu et al.,
2020; Yao et al., 2020c; Chandarana et al., 2021), where additional control Hamiltonians are used
to generate the variational circuits. In general, these Hamiltonians are tailored to the many-body
system whose ground state we seek to prepare, and the extended Hamiltonian pool is often con-
structed using ideas from variational counter-diabatic (CD) driving (Sels and Polkovnikov, 2017).
When the optimization of the parameterized circuit is performed successfully, the generalized ansatz
produces a closer approximation to the ground state than the original alternating QAOA ansatz. The
generalized QAOA may also significantly reduce the total protocol duration T and therefore the
depth of the quantum circuit while giving a high fidelity with respect to the ground state (Yao et al.,
2020c).
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However, the ansatz of the generalized QAOA also results in a more challenging optimization
problem. The original QAOA only involves optimization of continuous parameters. The generalized
QAOA ansatz, in contrast, leads to a hybrid optimization problem that involves both the discrete
variables (the choice of quantum gates) and the continuous variables (the duration of each gate).
To solve this hybrid optimization problem, we propose a novel algorithm that combines the Monte
Carlo Tree Search (MCTS) algorithm (Coulom, 2006; Browne et al., 2012; Abramson, 2014; Silver
et al., 2016, 2017) – a powerful method in exploring the discrete sequence, with an improved noise-
robust natural policy gradient solver for the continuous variables of a fixed gate sequence.

Contributions:

• We propose the MCTS-QAOA algorithm which combines the MCTS algorithm and a noise-
robust policy gradient solver. We show that it is not only efficient in exploring the quantum
gate sequences but also robust in the presence of different types of noise.

• The proposed MCTS-QAOA algorithm produces accurate results for problems that appear
difficult or infeasible for previous algorithms based on the generalized QAOA ansatz, such as
RL-QAOA (Yao et al., 2020b). In particular, MCTS-QAOA shows superior performance in
the large protocol duration regime, where the hybrid optimization becomes challenging.

• In order for the MCTS-QAOA algorithm to produce reliable optimal results, it is crucial that
the inner loop solver finds the optimal continuous variables with high accuracy. Compared
to the original PG-QAOA solver introduced in (Yao et al., 2020a), we improve the inner
loop solver with entropy regularization and the natural gradient method, and implement it
in Jax (Bradbury et al., 2018), which offers more accurate, stable, and efficiently computed
solutions during the continuous optimization.

• For the physics models considered in this paper, we observe that there can be many “good”
gate sequences. This means that for a large portion of gate sequences, the energy ratio ob-
tained is not far away from the optimal energy ratio obtainable with the generalized QAOA
ansatz, given that the continuous variables are solved with high quality. This phenomenon
has not been recorded in the literature to the best of the authors’ knowledge.

Related works:

Quantum control and variational quantum eigensolver: Traditional optimal quantum control
methods, often used in prior works, are GRAPE (Khaneja et al., 2005) and CRAB (Caneva et al.,
2011). More recently, success has been seen by the combination of traditional methods with ma-
chine learning (Schäfer et al., 2020; Wang et al., 2020a; Sauvage and Mintert, 2019; Fösel et al.,
2020; Nautrup et al., 2019; Albarrán-Arriagada et al., 2018; Sim et al., 2021; Wu et al., 2020a,b;
Anand et al., 2020; Dalgaard et al., 2022), and especially reinforcement learning (Niu et al., 2019;
Fösel et al., 2018; August and Hernández-Lobato, 2018; Porotti et al., 2019; Wauters et al., 2020;
Yao et al., 2020a; Sung, 2020; Chen et al., 2013; Bukov, 2018; Bukov et al., 2018; Sørdal and
Bergli, 2019; Bolens and Heyl, 2020; Dalgaard et al., 2020; Metz and Bukov, 2022; Baba et al.,
2022)). Among them, Variational quantum eigensolver or VQE (Cerezo et al., 2021a; Tilly et al.,
2021) provides a general framework applicable on noisy intermediate-scale quantum (NISQ) de-
vices (Preskill, 2018) to variationally tune the circuit parameters and improve the approximation. In
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the fault tolerant setting, there are also possibilities of error mitigation via the variational quantum
optimization (Sung et al., 2020; Arute et al., 2020).

QAOA (Farhi et al., 2014) can be viewed as a specific variational quantum algorithm, and can
be extended to the generalized QAOA ansatz (Zhu et al., 2020; Yao et al., 2020c; Chandarana et al.,
2021). Prior works optimize the generalized QAOA greedily and progressively for each circuit layer
or end-to-end as a large autoregressive network. The present work differs from these methods; we
take advantage of the MCTS structure and formulate the problem as a two-level optimization.

MCTS and RL: Monte Carlo tree search (MCTS) has been one major workhorse behind the recent
breakthrough of reinforcement learning algorithm, especially AlphaGo algorithms and variants (Sil-
ver et al., 2016, 2017, 2018; Schrittwieser et al., 2020; Ye et al., 2021). MCTS (Browne et al., 2012;
Guo et al., 2014) makes use of a discrete hierarchical structure to figure out a better exploration in
high dimensional search problems. While it is typically applied to discrete search, it has also been
used in the continuous setting (Wang et al., 2020b), where the partition space of the whole space is
viewed as branching of the tree. In the context of quantum computing, applications of MCTS have
been recently emerged such as the Quantum Circuit Transformation (Zhou et al., 2020b), the quan-
tum annealing schedules (Chen et al., 2020), and the quantum dynamics optimization (Dalgaard
et al., 2020).

Further related works in hybrid optimization, counter-diabatic driving methods, and architecture
search can be found in Appendix A.

2. Generalized QAOA ansatz

The generalized QAOA ansatz (Yao et al., 2020c) constructs a variational quantum circuit via
the composition of a sequence of parameterized unitary operators:

U(θ)=

q∏
j=1

U(τj , αj)=

q∏
j=1

exp
(
−iαjHτj

)
. (2.1)

Here the circuit parameters θ = (α, τ ) contain two components: i) the discrete variables τ =
(τ1, τ2, . . . , τq) define a sequence of Hamiltonians with length q, while ii) the continuous variables
α={αj}qj=1 represent the duration that each corresponding gate is applied for. It is further assumed
that each Hamiltonian Hτj is selected from a fixed Hamiltonian poolA={H1, H2, · · · , H|A|}, and
consecutive gates are not repeated, i.e., τj ̸= τj+1, 1 ≤ j ≤ q − 1. The total number of possible
sequences is thus |A|(|A| − 1)q−1, which grows exponentially with q, rendering exhaustive search
intractable.

After applying the circuit to an initial quantum state |ψinit⟩, one obtains the final quantum state
|ψ⟩ = U(θ) |ψinit⟩. To prepare a high quality approximation of the ground state |ψGS⟩ of the target
Hamiltonian H , the continuous and discrete variables are solved for by minimizing the following
objective function:

L(θ)=E(θ)/N=⟨ψinit|U †(θ)HU(θ)|ψinit⟩/N. (2.2)

Note that the energy E in the objective function is divided by the number of particles N in the
physical model, e.g. the number of qubits. This scaled objective function has a well-behaved limit
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when increasing the number of qubits, as required for larger-scale computations. Here, the energy
function E(θ) is always lower-bounded by the ground state energy EGS = ⟨ψGS|H|ψGS⟩. It is also
worth noticing that the quantum states |ψ⟩ are unknown to the optimization algorithm (they cannot
be measured), which increases the difficulty of the optimization algorithm.

3. Reinforcement learning setup

After defining the optimization problem posed by the generalized QAOA, let us briefly cast it
within the RL framework.

3.1. Quantum constraints on the RL environment

Beyond classical physics, quantum mechanics imposes counterintuitive constraints on the state
and reward spaces, which need to be embedded in a realistic RL environment.

First, the quantum state (or wavefunction) is not a physical observable by itself, and inference
of the information of the full quantum state from experiments (called quantum state tomography)
can require exponential resources. This fact is intimately related to the expected superior perfor-
mance of quantum computers against their classical counterparts on certain tasks. To embed this
quantum behavior into our environment simulator, we define the RL state as the sequence of actions
applied (Bukov, 2018) rather than the quantum state. Starting from a fixed initial state, the quantum
state is uniquely determined (though still unmeasurable) by the Hamiltonian sequence applied.

Second, (strong) quantum measurements lead to a collapse of the quantum wavefunction. This
means that, once a measurement has been performed, the state itself is irreversibly lost. Therefore, a
second constraint for our quantum RL environment is the sparsity of rewards. Indeed, only after the
RL episode comes to an end, can we measure the energy and obtain the reward. In Sec. 4, we exploit
this fact to introduce MCTS into the algorithm which does not evaluate the protocol τ during the
construction of it. As a result, the evaluation is delegated to the noise-robust PG-QAOA solver.

3.2. The reinforcement learning environment

In the language of reinforcement learning (RL), the choice of quantum gates corresponds to the
action of the learner, and the quantum circuit is completed after q actions, which marks the end
of the RL session/episode. The reward signal is provided by the inner loop solver which aims to
compute the lowest possible energy that can be reached by the fixed chosen gate sequence. To be
more specific, the action space A = {Hj : 1 ≤ j ≤ |A|} is a set of Hamiltonians; the state space
S = {(τ1, τ2, . . . , τt) : τj ∈ A, 0 ≤ j ≤ t, 1 ≤ t ≤ q} is the set of sequences of Hamiltonians
with length no larger than q. In particular, a session always starts with the empty sequence s0, and
ends with a state given by a Hamiltonian sequence of length q. When st = (τ1, τ2, . . . , τt) is not a
terminal state, i.e., t<q, the next state st+1 is obtained by appending the (t+1)-th action τt+1 at the
end of st, i.e., st+1 = (τ1, τ2, . . . , τt, τt+1).

The reward r(s) only depends on the state s, and it is set as 0 whenever s is not a terminal
state. As explained in the previous section, this implements the physical constraint reflecting the
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Algorithm 1 MCTS-QAOA
Input: UCB bound coefficient c, number of outer loop iterations Titer, number of random initial-

ization Tinit.
1: Initialize the Monte Carlo tree.
2: for t = 1, .., Titer do
3: Pick a node according to the tree policy πtree, cf. Eq. (4.1), using the UCB bound with

parameter c.
4: if the tree node is not the terminal state then
5: Randomly roll out from the current tree node to obtain a terminal state τt.
6: end if
7: for i = 1, .., Tinit do
8: Run natural policy gradient method (see Algorithm 2) to obtain the estimated reward r[i]t .
9: end for

10: Choose the best gate sequence durations according to the maximum reward r̂t = maxi r
[i]
t

across different random intialization of policy gradient.
11: Back-propagate the reward r̂t from the node up to the root and update the statistics (Q,N )

on each node.
12: end for

inability to perform a strong quantum measurement without destroying the quantum state. When s
is a terminal state τ = (τ1, τ2, . . . , τq), we define

r(s) = r(τ ) = −min
α

E({αj}qj=1, τ )/N, (3.1)

where {αj}qj=1 are the duration obtained by the inner loop continuous optimizer, and the energy E
is defined in (2.2).

4. Monte Carlo tree search with improved policy gradient solver

In this section, we introduce MCTS-QAOA, an algorithm that solves the hybrid optimization
problem defined by the generalized QAOA ansatz, using a combination of MCTS and an improved
policy gradient solver. In the combined algorithm, MCTS serves as the solver for the outer opti-
mization problem: it is used to search for high quality gate sequences τ . At the same time, we
design an improved policy gradient solver to produce the optimal gates duration α for the discrete
sequence provided by MCTS. Finally, the outcome of the evaluation is propagated back through the
nodes of the MC tree to improve the tree policy before the next iteration.

4.1. Discrete optimization: Monte Carlo tree search

MCTS-QAOA strikes an efficient balance between exploration and exploitation of the RL states,
by leveraging the statistics recorded in a search tree. Each node of this tree corresponds to a state
s; the child nodes denote all possible states s′ following the state s. For the problem considered
in this paper, trajectories are loop-free, since each child state s′ has one more action attached than
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its parent state s. Thus, we refer to a given node by its corresponding state. In particular, the root
node corresponds to the empty state s0, which has |A| children, one for each action; any other
non-terminal state s has |A|−1 children, reflecting the constraint that no action can follow itself,
and a terminal state has none. During the search process, each node keeps track of the statistics
of two quantities: i) N(s, a) counts the selection of action a at state s; ii) Q(s, a) is the expected
reward after taking action a at state s. Intuitively, the averageQ(s, a)/N(s, a) is an estimate of how
promising a child node is. Finally, a node s is called fully expanded, if all its children are visited in
the search, i.e., if N(s, a)≥ 1 for all a ∈A; otherwise, s is called an expandable node, and is the
focus of exploration.

In each MCTS iteration, the tree and the node statistics are updated as follows:

1. Forming a search path. Starting from the root node, if the current node is fully expanded, then
one of its children is chosen according to the following Upper Confidence Bound (UCB) (Auer
et al., 2002):

πtree(s)=argmax
a∈A

(
Q(s, a)

N(s, a)
+ c

√
2 logN(s)

N(s, a)

)
, (4.1)

until reaching a terminal state or an expandable node; here πtree(s) denotes the tree policy.
Then an unvisited child of the current node is chosen at random, unless the current node is
a terminal state. After that, a simulation is rolled out with a uniform policy until reaching a
terminal state.

2. Evaluation and backup. The reward r̂1 of the terminal state is evaluated by the inner loop
solver and the tree statistics are updated usingQ(s, a)← Q(s, a)+ r̂, N(s, a)← N(s, a)+1
for each visited edge (s, a).

For the generalized QAOA ansatz, the real challenge lies in the evaluation step. On the one
hand, the overall minimization of the energy depends on the potential of the trajectory selected by
the MCTS, whose role is to find the optimal trajectory sequence. On the other hand, if the accuracy
of the evaluation is low, then the searching process can be stuck at a severely suboptimal solution.
Similarly, if the evaluation is not efficient enough, then the benefit obtained by using quantum
computation strategy will also be lost. And last but not least, if the evaluation results are not robust
to noise, then the algorithm can hardly be carried out on quantum devices. Hence, the inner loop
solver used to implement the evaluation must be able to efficiently offer high accuracy results while
being robust to different kinds of noise. The above considerations refer to the generic case; in
practice, the optimization dynamics of the algorithm is set by the properties of the optimization
landscape.

4.2. Continuous optimization: natural policy gradient solver

For each terminal state τ = (τ1, τ2, . . . , τq) reached in the MCTS process, an inner loop solver
is invoked to produce the optimal duration α={αj}qj=1 and the reward −E({αj}qj=1, τ )/N which
are then back-propagated through the tree to update the tree statistics. In order to ensure that the

1. In order to distinguish the estimated reward from the true reward r(s) in the presence of noise, we denote the
estimated reward as r̂.
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duration obtained has a practical magnitude and to allow for a fair comparison between algorithms,
we further assume that the total duration of all gates is fixed as T , which can be seen as a protocol
for the circuit depth.

The continuous optimization problem for the inner-loop solver in the reward-evaluation step is
thus

min
{αj}qj=1

E({αj}qj=1, τ ) :

q∑
j=1

αj=T ; 0 ≤ αj ≤ T

 . (4.2)

In order to avoid using explicit derivatives of the energy E, we instead optimize the expectation
of the energy E over a parameterized probability distribution of α; this is also crucial to to make
the algorithm resilient to noise. More specifically, we set αj =

T α̃j∑
k α̃k

to ensure the constraints

on αj , where α̃j is a random variable drawn from the sigmoid Gaussian distribution SN (µj , σj)
2.

It can be parameterized as α̃j = g(δj), where δj ∼ N (µj , σj) is a Gaussian random variable
and g(x) = 1

1+exp(−x) is the sigmoid function. Adding a Shannon entropy regularizer to the total
expected reward we obtain the regularized objective function:

J ({µj , σj}qj=1)=Eδj∼N (µj ,σj) [R(δ)] + β−1
S

q∑
j=1

log σj , (4.3)

which is maximized over the parameters {µj , σj}qj=1. Here R(δ) = −E
({

Tg(δj)∑
k g(δk)

}q

j=1
, τ

)
/N ,

and β−1
S denotes the temperature, which controls the trade-off between exploration and exploita-

tion: higher temperature β−1
S leads to a larger weight on the entropy term, and thus encourages

exploration, while smaller β−1
S reduces exploration. The entropy term

∑q
j=1 log σj can be derived

from the definition of Shannon entropy, cf. Appendix D.

The inner loop solver is then constructed with a natural policy gradient (NPG) method applied
to the regularized objective function J using the natural gradient direction F−1∇J , where F is the
Fisher information matrix for the joint distribution of {δj}qj=1 and ∇J is the gradient of J with
respect to the parameters. This procedure is different from the solver established in PG-QAOA (Yao
et al., 2020a), where the standard gradient is used to update the parameters and no regularization
is used. Using independent standard normal variables ξj , the natural gradient direction can be
approximated by unbiased estimators:

F−1
j

[
∂J
∂µj
∂J

∂ log σj

]
≈
[

σjR(δ)ξj
1
2R(δ)(ξ

2
j − 1) + 1

2β
−1
S

]
, (4.4)

where δj = µj + σjξj and Fj is the j-th 2-by-2 diagonal block of the Fisher information matrix,
since F is a block diagonal matrix, cf. Appendix D. In practice, we update log σ instead of σ to
ensure the positivity of σ, and we use the average of the unbiased estimators in (4.4) within a batch
of size M to give the approximation of the natural gradient direction.

The first term in the objective function J can also be viewed as a smoothed reward function
obtained with Gaussian perturbation. The parameter {σj}qj=1 determines the distance between

2. SN (µ, σ) denotes the sigmoid Gaussian distribution with parameters µ and σ, i.e., the distribution of the Gaussian
random variable N (µ, σ) under the sigmoid transformation. It is also called the logit-normal distribution
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Algorithm 2 Improved policy gradient solver
Input: Action sequence τ , number of restartsR, batch sizeM , learning rates ηt, total number of it-

erationsK, the number of evaluation repeatsm, the total gate duration T , the initial temperature
β−1
S , the rate of temperature decrease 0 < γT < 1.

1: Randomly initialize the mean {µj}qj=1 and variance {σj}qj=1.
2: for t = 1, .., R ×K do
3: Sample a batch of variables {α̃l

j}qj=1, l = 1, 2, · · · ,M of size M from sigmoid Gaussian
distributions SN (µj , σj).

4: Normalize the generalized QAOA parameter αj = T α̃j/
∑

i α̃i.
5: Compute the approximate NPG direction using Eq. (4.4).
6: Update the parameters with the gradient and learning rate ηt.
7: if t mod K = 0 and t < (R− 1)K then β−1

S ← γTβ
−1
S .

8: if t = (R− 1)K then β−1
S ← 0.

9: end for
10: Apply the circuit m times with gate sequence τ and durations

{
Tg(µj)∑
i g(µi)

}q

j=1
, collect the re-

wards {rk}mk=1, and estimate the reward r̂ by r̂ = 1
m

∑m
k=1 rk.

Output: The mean and variance parameters {µj}qj=1 and {σj}qj=1; the estimated reward r̂.

J (µj , σj) and E(µj) (Nesterov and Spokoiny, 2017). If σ is too large, then J is far from E,
and yields suboptimal solutions of µj since too much details are lost after the Gaussian smoothing.
To avoid this, we propose to use a tempering technique (see for example (Klink et al., 2020; Ab-
dolmaleki et al., 2018; Haarnoja et al., 2018, Sec. 5)). More specifically, after a certain number of
NPG iterations, we reduce the temperature β−1

S , and in the final stage of entropy adjustment (cf.
line 10-12 in Algorithm 2), we discard the entropy term. In this way, the policy is less susceptible
to highly suboptimal local maxima in the beginning of the inner loop optimization thanks to the
entropy regularization. At the end of the optimization, the variance σj decreases, since the temper-
ature is reduced and the algorithm is able to achieve a higher precision as the smoothed problem
becomes a better approximation to the original one. As a result, many policy gradient updates can
be saved compared to the original policy gradient method in (Yao et al., 2020a), and the quality of
solutions is improved.

When the optimization by the inner loop solver is completed, the parameters {µj}qj=1 are used
to evaluate the reward to be back-propagated through the MC tree. More specifically, the gate
sequence τ with duration

{
Tg(µj)∑
i g(µi)

}q

j=1
is applied and a reward is obtained. In order to deal with

noisy rewards, the evaluation is repeated m times, and the average reward is sent to the discrete
solver. The details of the inner loop algorithm is summarized in Algorithm 2.

4.3. Relation to previous algorithms used to optimize the generalized QAOA ansatz

We finish this section by a comparison of MCTS-QAOA with previous methods solving the
QAOA problem. As shown in Table 1, the CD-QAOA method adopts Scipy solver for the continuous
optimization, which cannot be applied to problems with noise, and the RL-QAOA method can
produce suboptimal solutions in certain regimes, which we verify with numerical experiments in
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Method CD-QAOA RL-QAOA MCTS-QAOA

optimization (discrete) AutoReg+PG
AutoReg+PG

MCTS

optimization (continuous) SciPy PG

performance without noise ✓ ✓✗ ✓

performance with noise ✗ ✓✗ ✓

Table 1: Comparison among the three algorithms for the generalized QAOA ansatz: CD-QAOA,
RL-QAOA and MCTS-QAOA. In this table, AutoReg+PG stands for the policy gradient
algorithm with the autoregressive neural network as a policy (Yao et al., 2020b); ✓✗means
the algorithm can fail in certain challenging regimes (e.g., large total duration T ).

the next section. Moreover, note that, due to the large neural network used in RL-QAOA, it is
infeasible to apply the natural gradient methods as in Section 4.2.

5. Numerical experiments

To benchmark the performance of MCTS-QAOA, we consider three physics models: the 1-
dimensional Ising model, the 2-dimensional Ising model on a square lattice, and the Lipkin-Meshkov-
Glick (LMG) model. The description of the models and the additional Hamiltonians inspired from
the counter-diabatic theory can be found in Appendix B. In addition, in order to test the noise-
resilience of MCTS-QAOA, we consider three types of noise models: classical measurement Gaus-
sian noise, quantum measurement noise, and gate rotation error, cf. Appendix C.

We compare the performance of MCTS-QAOA with that of RL-QAOA, and provide an analysis
on why RL-QAOA might fail in certain regimes. Further analysis of the energy landscape of the
discrete optimization reveals a surprising phenomenon: for generalized QAOA with optimal choices
of the continuous degrees of freedom, there can be a large number of discrete protocols producing
relatively accurate energies.

5.1. Comparison with RL-QAOA

For the methods solving the generalized QAOA problem summarized in Table 1, the CD-QAOA
algorithm cannot be applied to problems with noise since the continuous solver is not noise-resilient,
while the RL-QAOA algorithm has been shown to be effective with relatively short total duration
JT (using unnormalized Hamiltonians (Yao et al., 2020b)). Therefore, we use RL-QAOA as a
baseline when evaluating the performance of MCTS-QAOA, and we focus on the more challenging
regime of large JT with normalized Hamiltonians3.

3. The Hamiltonians used in this work are normalized by their operator norm ∥H∥, i.e., we use H/∥H∥ instead of the
original Hamiltonian H . The reason for introducing the normalized Hamiltonian is that the dependence of the cost
of performing a Hamiltonian evolution e−iHα on a quantum device – Ω(∥H∥α) – scales with the norm (Berry et al.,
2007; Low and Chuang, 2017). Interested readers can refer to Appendix B for more details.
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Figure 2: (Quantum noise experiment) comparison between MCTS-QAOA and RL-QAOA with
quantum measurement noise (Appendix C). (a): 1D spin-1/2 Ising chain (N = 8) at
hz/J=0.4523 and hx/J=0.4045; (b): 2D spin-1/2 Ising chain (N=3× 3) at hz/J=2
and hx/J =3; (c): LMG model (N =100) at h/J = 0.9. (see Sec. B for more details.)
The blue dotted line and the orange solid line display the energy ratioE/EGS obtained by
RL-QAOA and MCTS-QAOA. The green square shape and the red diamond shape in the
left panel approximately corresponds to JT =10 (an example in the small T regime) and
JT = 28 (an example in the large T regime) with unnormalized Hamiltonians, respec-
tively. The horizontal axis represents the total duration JT . MCTS-QAOA outperforms
RL-QAOA in all tests.

We first compare the performance of MCTS-QAOA against that of RL-QAOA for the physical
systems discussed in Appendix B in the presence of quantum noise. Detailed numerical results
for the noiseless experiments and other noise models can be found in Appendix C. In order to
compare the performance of different optimizers, noisy rewards are offered to the optimizers during
the training process, and the exact rewards are only used in evaluating the protocols found by the
optimizers. For MCTS-QAOA, the protocol evaluated is given by a greedy search, i.e., a searching
process with the exploration coefficient c = 0 in Eq. (4.1).

Figure 2 shows the energy ratio evaluated for the protocols obtained by the optimizers across
different lengths of total duration JT . For all three physics models, we find that the performance
of MCTS-QAOA is at least as good as that of RL-QAOA for all protocol durations. In particular,
for the 1D Ising model, MCTS-QAOA gives protocols that find close approximations to the true
ground state when JT ≳ 40; RL-QAOA gives inferior solutions in these settings. For the 2D Ising
model, while the performance of RL-QAOA is similar with that of MCTS-QAOA at JT = 60,
the performance of RLQAOA at JT = 30, 40 and 50 is still inferior to that of MCTS-QAOA.
For the LMG model, the quality of the gate sequence found by RL-QAOA further decreases when
JT > 500, and MCTS-QAOA is significantly more robust.

The inferior performance of RL-QAOA is directly related to the joint parameterization used in
RL-QAOA for the continuous and discrete policies. Since RL-QAOA optimizes the continuous and
discrete variables simultaneously, for each discrete sequence, the level of accuracy of the continu-
ous optimization can be relatively low. Consequently, the optimizer can get stuck at a suboptimal
discrete sequence.

To illustrate this behavior, we analyze the training of RL-QAOA using the LMG model with
(JT,N, q) = (1500, 100, 8) and noiseless rewards. Figure 3 summarizes the performance of RL-
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Figure 3: Analysis of RL-QAOA using the LMG test: (a): Energy ratio versus number of func-
tion evaluations; (b): Number of unique gate sequences encountered versus number of
function evaluations; (c): Histogram of the rewards received by the algorithm in the first
5000 iterations. The horizontal red line in the left / middle panel represents the maximal
energy ratio and the maximal number of unique gate sequences encountered during the
optimization, respectively. The orange line marks the transition between two stages of
the training process.

QAOA. Here by function evaluation we mean the computation of the objective function in (2.2).
From Figure 3(a) and Figure 3(b), it is clear that the training process can be divided into two distinct
stages, and the transition between the two stages is marked by the dashed-dotted vertical lines4. In
stage I, which is to the left of the vertical lines, the number of unique gate sequences encountered by
RL-QAOA quickly increases, while the energy ratio keeps oscillating below zero, which suggests
that RL-QAOA focuses on exploration and the continuous optimization is done only very roughly
within stage I. In stage II, which is to the right of the vertical lines, the number of unique gate
sequences encountered by RL-QAOA stops to grow, while the energy ratio obtained grow above
zero and eventually gets stuck at around 0.5, which means that the algorithm stops its exploration
and focuses on the optimization of the continuous variables for a fixed gate sequence with stage
II. The overall performance of RL-QAOA can highly depend on the discrete gate sequence that the
RL-QAOA agent decides to exploit. In the next section, we demonstrate that both the exploration
and the exploitation phases in RL-QAOA can be suboptimal in this example, but the main issue is
related to the suboptimal discrete sequences found in the exploration phase.

5.2. Landscape of the discrete optimization and comparison with random search

In order to further understand the relative importance of continuous optimization versus discrete
optimization for the generalized QAOA, we study the energy landscape of discrete optimization.
For each discrete gate sequence, we perform numerical optimization to identify the best continuous
parameters {αj}, and record the corresponding energy ratio.

Energy landscape of discrete optimization. – A profile of the discrete optimization landscape
can be given by solving the corresponding continuous optimization individually on a random sub-
set of all possible gate sequences; if the total number of possible gate sequences |A|(|A| − 1)q−1

4. These vertical lines are drawn at the point where the number of discrete protocol gate sequences drops to 10% of the
total number within a single mini-batch
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Figure 4: Discrete landscape of the LMG model (a, b, c) and the 1D Ising model (d, e, f):
Histograms of the energy ratio optimized by the improved natural gradient solver for
JT = 500, 1000, 1500, respectively. Nhist = 81920 samples are chosen from the discrete
gate sequences of generalized QAOA with parameters q = 8, |A| = 5 and N = 100
(LMG) or N = 8 (1D Ising). The dashed red line in the top right panel shows the energy
ratio achieved by RL-QAOA in Figure 3; the green dashed line shows the energy ratio
obtained by the NPG solver for the same gate sequences.

is relatively small, this subset can actually be chosen to include all sequences. In our numerical
implementation, each discrete gate sequence is sent to the natural policy gradient solver described
in Section 4.2, and the continuous variables are solved for different JT regime. Histograms for the
energy ratios obtained can then be drawn.

Figure 4 shows the discrete landscape for the LMG model and the 1D Ising model, respectively,
where the parameters of the ansatz are (|A|, q) = (5, 8), and the total number of gate sequences is
thus 81920. From the histogram plot, most gate sequences are concentrated at the right-most peak
in the large JT regime. Far from searching for “a needle in a haystack”, this showcases that there
are plenty of “good”5 gate sequences assuming that each continuous optimization parameter is well
solved. Note that the behavior is significantly different from the discrete-only optimization, where
the landscape has been shown to feature transitions between glassy, correlated and uncorrelated
phases (Day et al., 2019). To the best of our knowledge, the existence of many good discrete gate
sequences in the QAOA-type variational quantum algorithms has not been reported in the literature.

For the LMG model with total gate duration JT =1500 (cf. Figure 4), while most energy ratios
fall into the cluster above 0.9, there is a smaller cluster located at 0.5. The energy ratio obtained by
RL-QAOA (cf. Figure 3) falls into this cluster, which is depicted by the red dashed line, while the

5. “Good” gate sequences here means the optimized energy ratio is close to the optimal energy ratio obtainable within
the generalized QAOA ansatz.
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Figure 5: Comparison between MCTS-QAOA and Random Search: The blue and orange curves
correspond to MCTS-QAOA and random search, respectively. The physics system is
the 1D Ising model with duration JT = 30, which corresponds to Figure 2 (a). The
generalized QAOA parameters are q = 8 and |A| = 5. The horizontal axis is the number
of function evaluations (with the function evaluation in the continuous optimization taken
into account), and the vertical axis is the energy ratio. The shaded area for both algorithms
represents the standard deviation across ten different random initializations.

green dashed line shows the energy ratio obtained by the natural policy gradient solver with the same
gate sequence. The green line corresponds to a higher energy ratio than the red line, which means
that the optimization of the continuous variables in the second stage of RL-QAOA is not as good as
the NPG solver, and the difference between the two lines indicates the suboptimality caused by the
exploitation. However, the suboptimality of the RL-QAOA solution is mainly due to the exploration
stage, since the discrete sequence that RL-QAOA chooses to exploit represents a suboptimal local
optimum that belongs to a cluster much smaller than the rightmost one in the histogram. The top
right panel of Figure 4 also verifies the claim that RL-QAOA only does a rough optimization on the
continuous variables before it stops exploration, since the energy ratios displayed there are mostly
above 0.4, while the energy ratio obtained in optimization stage I is mainly negative. While the
landscape of the hybrid optimization is challenging for RL-QAOA, the proposed method MCTS-
QAOA is able to deal with it by using a noise-resilient solver for the continuous variables (NPG),
and by exploring the discrete variables constantly using MCTS.

For the 1D Ising model with total gate duration JT =30 shown in the bottom left panel, where
the rightmost cluster is not the largest. This means that in this setting, it is more difficult to find a
gate sequence in the rightmost cluster when the random search is used. We examine the performance
of random search and MCTS-QAOA using this example in the next part.

Comparison with random search. – A recent work (Mania et al., 2018) points out that ad-
vanced RL methods need not outperform simpler methods such as random search. In fact, if there
is no specific structure in a problem, a random search algorithm might be as efficient as any so-
phisticated algorithm. In addition, from the landscape illustrated in the previous histograms, one
can see that, for the models we investigated, there are lots of gate sequences with relatively high
energy ratios provided that the continuous protocols are optimized. Therefore, it is natural to com-

14



MCTS-QAOA

pare MCTS-QAOA against the random search algorithm6. For a fair comparison, we assume that
the continuous optimization in both cases is solved by the natural policy gradient algorithm, and the
difference only lies in the discrete optimization. In Figure 5, the best energy ratio in the training
history is shown for the two methods, and one sees that MCTS-QAOA consistently outperforms the
random search across different random seeds. MCTS-QAOA not only finds better gate sequences
much faster, but also gives a smaller variance across different realizations. It is clear that instead
of doing the search uniformly and treating each protocol as equally important, the tree statistics in
MCTS-QAOA better guides into a more promising search direction.

6. Conclusion and discussions

In this paper, we study a continuous-discrete variational quantum algorithm for the general-
ized QAOA ansatz. To solve this hybrid optimization problem, we design a novel algorithm that
combines the Monte Carlo tree search (MCTS) algorithm, a powerful method in exploring the dis-
crete sequence, with an improved noise-robust policy gradient solver for the continuous duration
variables of a fixed gate sequence. The proposed algorithms effectively generate robust quantum
control where the prior methods fail.

In this context, we expect that random search algorithms cannot efficiently determine the best
gate sequence if noisy rewards are used, while MCTS-QAOA is able to mitigate the noise and
provide robust choice of gate sequence with the help of the tree structure it maintains. Moreover,
it is possible for MCTS-QAOA to further reduce the number of evaluations by assigning different
number of iterations for different gate sequences, e.g., it can assign more iterations for the more
promising gate sequences. Also, MCTS-QAOA allows for the application of transfer learning using
the tree statistics, which is not possible for the random search.

There are a number of possible ways to extend the problem presented in this paper:

Learning based guided search. – MCTS can be possibly guided by a learned functional approx-
imator, such as neural networks or tensor networks. We have also tried the implementation of
AlphaZero in the same experimental settings. However, the neural network based method does not
work better than the simple MCTS. We find that the value function mapping from the discrete gate
sequences to the score was quite hard to learn. One reason might be that the continuous policy
gradient will try the best to optimize the energy ratio to the highest, thus making this mapping from
discrete sequences to score, highly non-linear. Also, in terms of sampling efficiency, the neural
network based approach needs lots of samples to fit the function, which is a heavy overhead com-
pared to the simple MCTS approach. Nevertheless, the question remains open as to how to upgrade
MCTS to a guided search.

Amortized computation. – The computation within the policy gradient solver for different gate
sequences can possibly be amortized. Currently, the continuous and discrete optimizations are sep-
arated. If some functional can be learned by replaying the data during the policy gradient iteration,
the number of function evaluations can be further reduced. However, one difficulty in the quantum

6. The random search algorithm also uses a two-level optimization, where the continuous optimization is solved by the
policy gradient algorithm and the discrete optimization uses the random search. Since we assume no prior knowledge,
the random search would be uniformly random on the discrete search space.
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setting is that we do not have access to the quantum state, and thus we cannot learn a mapping tak-
ing the quantum state as input, unless we apply non-trivial quantum tomography. Therefore, how
to reuse the past information and make the MCTS-QAOA algorithm quickly adaptive in physical
setting remains to be investigated. Advanced algorithms like meta learning can be explored in the
future work.

Budget-aware variational quantum algorithms. – A point of high interest is the design of budget-
aware variational quantum algorithms. The importance of sample efficiency in the quantum setting
can never be overemphasized. Each run of a quantum circuit can be expensive and quantum deco-
herence noise is usually not stationary over time. The budget-awareness property can be naturally
incorporated in the MTCS framework. Making use of the tree structure, the adaptive algorithm
would distribute more function evaluation budget to the most-visited or more promising nodes. The
current algorithm likely operates in a budget-sufficient regime and uses the same amount of bud-
get for each discrete gate sequences. We hope the adaptive algorithm can hit the sweet spot in
the middle, i.e., use the right amount of computational budget and still compute the best possible
gate sequence design. We hope that the present work will accelerate the research of budget-aware
variational quantum algorithms in a realistic setting.
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Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In International
conference on computers and games, pages 72–83. Springer, 2006.

Mogens Dalgaard, Felix Motzoi, Jens Jakob Sørensen, and Jacob Sherson. Global optimiza-
tion of quantum dynamics with AlphaZero deep exploration. npj Quantum Information, 6
(1), jan 2020. doi: 10.1038/s41534-019-0241-0. URL https://doi.org/10.1038%
2Fs41534-019-0241-0.

18

https://link.aps.org/doi/10.1103/PhysRevB.98.224305
https://link.aps.org/doi/10.1103/PhysRevB.98.224305
https://link.aps.org/doi/10.1103/PhysRevX.8.031086
https://link.aps.org/doi/10.1103/PhysRevX.8.031086
https://link.aps.org/doi/10.1103/PhysRevA.84.022326
https://link.aps.org/doi/10.1103/PhysRevA.84.022326
https://doi.org/10.1038/s42254-021-00348-9
http://arxiv.org/abs/2107.02789v2
http://arxiv.org/abs/2004.02836v2
https://doi.org/10.1038%2Fs41534-019-0241-0
https://doi.org/10.1038%2Fs41534-019-0241-0


MCTS-QAOA

Mogens Dalgaard, Felix Motzoi, and Jacob Sherson. Predicting quantum dynamical cost landscapes
with deep learning. Physical Review A, 105(1):012402, 2022.

Alexandre GR Day, Marin Bukov, Phillip Weinberg, Pankaj Mehta, and Dries Sels. Glassy phase
of optimal quantum control. Physical review letters, 122(2):020601, 2019. doi: 10.1103/
PhysRevLett.122.020601.

Olivier Delalleau, Maxim Peter, Eloi Alonso, and Adrien Logut. Discrete and continuous action
representation for practical rl in video games. arXiv preprint arXiv:1912.11077, 2019.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
arXiv preprint arXiv:1808.05377v3, Aug 2018. URL http://arxiv.org/abs/1808.
05377v3. Journal of Machine Learning Research 20 (2019) 1-21.

Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A Quantum Approximate Optimization Al-
gorithm. arXiv preprint arXiv:1411.4028, 2014. URL https://arxiv.org/pdf/1411.
4028.pdf.
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oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Guoming Wang, Dax Enshan Koh, Peter D Johnson, and Yudong Cao. Bayesian inference with en-
gineered likelihood functions for robust amplitude estimation. arXiv preprint arXiv:2006.09350,
2020a.

Hanrui Wang, Yongshan Ding, Jiaqi Gu, Zirui Li, Yujun Lin, David Z. Pan, Frederic T. Chong,
and Song Han. Quantumnas: Noise-adaptive search for robust quantum circuits. arXiv preprint
arXiv:2107.10845v5, Jul 2021a. URL http://arxiv.org/abs/2107.10845v5.

Hanrui Wang, Jiaqi Gu, Yongshan Ding, Zirui Li, Frederic T. Chong, David Z. Pan, and Song
Han. Roqnn: Noise-aware training for robust quantum neural networks. arXiv preprint
arXiv:2110.11331v1, Oct 2021b. URL http://arxiv.org/abs/2110.11331v1.

Linnan Wang, Rodrigo Fonseca, and Yuandong Tian. Learning search space partition for black-box
optimization using monte carlo tree search. arXiv preprint arXiv:2007.00708, 2020b.

Matteo M Wauters, Emanuele Panizon, Glen B Mbeng, and Giuseppe E Santoro. Reinforce-
ment learning assisted quantum optimization. Phys. Rev. Research, 2:033446, 2020. doi:
10.1103/PhysRevResearch.2.033446. URL https://link.aps.org/doi/10.1103/
PhysRevResearch.2.033446.

Phillip Weinberg and Marin Bukov. Quspin: a python package for dynamics and exact diagonalisa-
tion of quantum many body systems part i: spin chains. SciPost Phys, 2(1), 2017.

Phillip Weinberg and Marin Bukov. Quspin: a python package for dynamics and exact diagonalisa-
tion of quantum many body systems. part ii: bosons, fermions and higher spins. SciPost Phys., 7
(arXiv: 1804.06782):020, 2019.

Re-Bing Wu, Xi Cao, Pinchen Xie, and Yu-xi Liu. End-to-end quantum machine learning with
quantum control systems. arXiv preprint arXiv:2003.13658, 2020a. URL https://arxiv.
org/abs/2003.13658.

Yadong Wu, Zengming Meng, Kai Wen, Chengdong Mi, Jing Zhang, and Hui Zhai. Active learning
approach to optimization of experimental control. arXiv preprint arXiv:2003.11804, 2020b.

Jonathan Wurtz and Peter J Love. Counterdiabaticity and the quantum approximate optimization
algorithm. arXiv preprint arXiv:2106.15645, 2021.

Jiahao Yao, Marin Bukov, and Lin Lin. Policy gradient based quantum approximate optimization
algorithm. In Mathematical and Scientific Machine Learning, pages 605–634. PMLR, 2020a.

Jiahao Yao, Paul Köttering, Hans Gundlach, Lin Lin, and Marin Bukov. Noise-robust end-to-end
quantum control using deep autoregressive policy networks. arXiv preprint arXiv:2012.06701,
2020b.

23

http://arxiv.org/abs/2107.10845v5
http://arxiv.org/abs/2110.11331v1
https://link.aps.org/doi/10.1103/PhysRevResearch.2.033446
https://link.aps.org/doi/10.1103/PhysRevResearch.2.033446
https://arxiv.org/abs/2003.13658
https://arxiv.org/abs/2003.13658


YAO LI BUKOV LIN YING

Jiahao Yao, Lin Lin, and Marin Bukov. Reinforcement learning for many-body ground state
preparation based on counter-diabatic driving. arXiv preprint arXiv:2010.03655, 2020c. URL
https://arxiv.org/abs/2010.03655.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
with limited data. arXiv preprint arXiv:2111.00210v2, Oct 2021. URL http://arxiv.org/
abs/2111.00210v2.

Shi-Xin Zhang, Chang-Yu Hsieh, Shengyu Zhang, and Hong Yao. Neural predictor based quantum
architecture search. arXiv preprint arXiv:2103.06524v1, Mar 2021. URL http://arxiv.
org/abs/2103.06524v1.

Shi-Xin Zhang, Chang-Yu Hsieh, Shengyu Zhang, and Hong Yao. Differentiable quantum ar-
chitecture search. Quantum Science and Technology, 7(4):045023, Aug 2022. URL https:
//doi.org/10.1088/2058-9565/ac87cd.

Hui Zhou, Yunlan Ji, Xinfang Nie, Xiaodong Yang, Xi Chen, Ji Bian, and Xinhua Peng. Experimen-
tal realization of shortcuts to adiabaticity in a nonintegrable spin chain by local counterdiabatic
driving. Physical Review Applied, 13(4):044059, 2020a.

Xiangzhen Zhou, Yuan Feng, and Sanjiang Li. A monte carlo tree search framework for quantum
circuit transformation. arXiv preprint arXiv:2008.09331v2, Aug 2020b. URL http://arxiv.
org/abs/2008.09331v2.

Linghua Zhu, Ho Lun Tang, George S Barron, Nicholas J Mayhall, Edwin Barnes, and Sophia E
Economou. An adaptive quantum approximate optimization algorithm for solving combinatorial
problems on a quantum computer. arXiv preprint arXiv:2005.10258, 2020. URL https://
arxiv.org/abs/2005.10258.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In 5th In-
ternational Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.
net/forum?id=r1Ue8Hcxg.

24

https://arxiv.org/abs/2010.03655
http://arxiv.org/abs/2111.00210v2
http://arxiv.org/abs/2111.00210v2
http://arxiv.org/abs/2103.06524v1
http://arxiv.org/abs/2103.06524v1
https://doi.org/10.1088/2058-9565/ac87cd
https://doi.org/10.1088/2058-9565/ac87cd
http://arxiv.org/abs/2008.09331v2
http://arxiv.org/abs/2008.09331v2
https://arxiv.org/abs/2005.10258
https://arxiv.org/abs/2005.10258
https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg


MCTS-QAOA

Appendix A. Related works

Hybrid optimization: The generalized QAOA ansatz introduces a discrete and continuous control
problem: the discrete degrees of freedom are the gates/unitaries that define the control protocol,
while the continuous degrees of freedom are the gate duration. Most reinforcement learning algo-
rithms (Lillicrap et al., 2016; Bertsekas, 2019; Trabucco et al., 2021) typically deal with the control
of either discrete or continuous degree of freedom, and hardly consider the discrete and continuous
control simultaneously in the policy. Even though the continuous control can always be discretized,
it is always beneficial and desirable to consider discrete and continuous variables together, without
loss of the flexibility of continuous control. Furthermore, the idea of continuous and discrete opti-
mization can be quite general, and shows up in real world application like robotics (Neunert et al.,
2020; Delalleau et al., 2019) and strategic games (Vinyals et al., 2019). Combining the discrete and
continuous control together, the control capability of the algorithm can be quickly enhanced. In
general, the discrete variables are usually chosen as the categories of actions, and the continuous
variables will are naturally given by the strength for each specific action. Our work aims to shed
light on the hybrid control in the field of quantum control, and we also hope it will accelerate the
research of hybrid discrete-continuous optimization algorithms in the wider community.

Counter diabatic driving: Counter diabatic driving (Sels and Polkovnikov, 2017; Hegade et al.,
2022), an example of a shortcut to adiabaticity (STA), introduces an extra auxiliary counter-diabatic
(CD) Hamiltonian to suppress transitions (or excitations) between instantaneous eigenvalues.

For a given quantum state |ψ⟩ evolving under a time dependent Hamiltonian H0(λ(t)), the
Schrödinger equation reads as

iℏ∂t |ψ⟩ = H0(λ(t)) |ψ⟩ ,
|ψi⟩ = |ψGS(λ = 0)⟩ , |ψ∗⟩ = |ψGS(λ = 1)⟩ . (A.1)

In the rotating frame, Hamiltonian remains stationary under the unitary transformationU(λ(t)), i.e. in
the instantaneous eigenbasis of Hamiltonian H0(λ). The wave function |ψ̃⟩ = U(λ)|ψ⟩ in the ro-
tating frame satisfies the following Schrödinger equation:

iℏ∂t|ψ̃⟩ =
(
H̃0(λ(t))− λ̇Ãλ

)
|ψ̃⟩, (A.2)

where H̃0(λ(t)) = U †H0(λ(t))U, Ãλ = iU †∂λU . Specifically, instead of being diagonalized, the
original Hamiltonian picks up an extra contribution due to the change in the parameter λ(t), and the
effective Hamiltonian becomes

Heff
0 = H̃0 − λ̇Ãλ. (A.3)

The idea of the CD driving is to evolve the system with the counterdiabatic Hamiltonian

HCD(t) = H0+λ̇Aλ. (A.4)

Importantly, in the moving frame Heff
CD(t) = H̃0 is stationary and no transitions occur.

However, in practice, the precise counter-diabatic Hamiltonian is intractable and usually ap-
proximated by different methods. A good number of prior works (Passarelli et al., 2020; Hartmann
and Lechner, 2019; Hegade et al., 2022, 2021a; Zhou et al., 2020a; Wurtz and Love, 2021; Hegade
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et al., 2021b) are based on the concept of a variational approximation to the CD Hamiltonian (Sels
and Polkovnikov, 2017). Most of these works typically make use of an analytically computed ex-
pression available for few-qubit systems; they first derive the continuous form of the variational
gauge potential, and then discretize the underlying dynamics using the Trotter-Suzuki formula In
this work, we aim to bypass these constraints by applying the variational generalized QAOA ansatz
using additional gates, generated by terms that occur in the approximation to the variational adi-
abatic gauge potential. These extra gates can provide a shortcut to the preparation of the ground
state, compared to the original alternating QAOA ansatz. Physically, this shortcut results in shorter
circuit simulation times, which provices a significant advantage on noisy NISQ devices.

AutoML and neural architecture search: Automatic machine learning or AutoML has recently
attracted lots of attentions as it reduces human efforts in designing the neural architecture from ex-
perience and instead leverage the computational power to search the best configuration. One of the
most pronounced examples are neural architecture search (NAS) and their variants (Zoph and Le,
2017; Elsken et al., 2018; Liu et al., 2019; Cai et al., 2018; Real et al., 2020), where reinforcement
learning or evolutionary strategies are used to find a better network architecture. Inspired by the
success of AutoML, the architecture of quantum circuits can also be improved by machine learning
algorithms, such as the quantum version of Neural Architecture Search (Wang et al., 2021a,b; Zhang
et al., 2021, 2022; Kuo et al., 2021). These prior works interpret the problem as quantum compiling
problems, which assembles quantum gates in the low level. Instead of exposing a huge number of
choice alternatives for the search algorithms, our work specially uses the variational gauge poten-
tials as the Hamiltonian pool for the search algorithm in a computation-efficient way. Compared
with QAOA, MCTS-QAOA has more degree of freedom to approximate the unitary operator; com-
pared with the quantum compiling, it does not search gates in the low level due to the constraint of
computations. From this perspective, our method hits the sweet spot between the expressivity and
efficiency.

Appendix B. Setup of physical models

We first give a brief review on the physical models used in the numerical experiments. In all ex-
periments, we choose the target state as the ground state of the Hamiltonian H , denoted |ψGS(H)⟩.
The spin-1/2 matrices describing spin i are denoted by Xi, Yi, Zi. In contrast to the models consid-
ered in (Yao et al., 2020b,c), the Hamiltonians used in this work is normalized by its operator norm
∥H∥, i.e., we use H/∥H∥ instead of the original Hamiltonian H . The reason for introducing the
normalized Hamiltonian is as follows. For generic Hamiltonians H (e.g., sparse matrices), the cost
of performing a Hamiltonian evolution e−iHα on a quantum device is Ω(∥H∥α) (Berry et al., 2007;
Low and Chuang, 2017). Due to the potential differences between the Hamiltonian norms in the
Hamiltonian pool A, using a normalized Hamiltonian H/∥H∥ (the corresponding duration param-
eter α is thus multiplied by ∥H∥) can lead to a more realistic estimate of the cost of the quantum
simulation. Due to this multiplication factor, the duration shown in the results below is larger than
that presented in (Yao et al., 2020b,c).

One-dimensional (1D) Ising model
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The spin-1/2 Ising Hamiltonian reads as:

H = H1+H2, H1=

N∑
i=1

JZi+1Zi+hzZi, H2 =

N∑
i=1

hxXi,

where N is the number of qubits and the parameters are set as hz/J =0.4523 and hx/J =0.4045
(Kim and Huse, 2013). These parameters are close to the critical line of the model in the thermody-
namic limit, where the quantum phase transition occurs. They are also reported in Ref. (Matos et al.,
2021) to be in the most challenging parameter region using QAOA. We use periodic boundary con-
ditions here. The initial state for this experiment is given by z-polarized product state, i.e. |ψinit⟩=
|↑ · · · ↑⟩.

For the Hamiltonian pool, we use A=
{
J H1

||H1|| , J
H2

||H2|| , J
A1

||A1|| , J
A2

||A2|| , J
A3

||A3||

}
, where A1 =∑N

i=1 Yi, A2 =
∑N

i=1XiYi + YiXi, A3 =
∑N

i=1 ZiYi + YiZi. The operators Aj are precisely the
first three terms in the expansion for the adiabatic gauge potential of the translation-invariant 1D
Ising model (Yao et al., 2020c).

Two-dimensional (2D) Ising model

The 2D spin-1/2 transverse-field Ising model reads:

H=H1+H2, H1=J
∑
⟨i,j⟩

ZiZj + hz
∑
j

Zj , H2 =
∑
j

hxXj ,

where ⟨i, j⟩ denotes nearest neighbors on the square lattice. The model parameters are set as hz/J=
2 and hx/J=3. The initial state is |ψinit⟩= |↑⟩, i.e. z-polarized product state on 2D lattice.

For the Hamiltonian pool, we use A=
{
J H1

||H1|| , J
H2

||H2|| , J
A1

||A1|| , J
A2

||A2|| , J
A3

||A3||

}
, where A1 =∑

j Yj , A2=
∑

⟨i,j⟩XiYj + YiXj , A3=
∑

⟨i,j⟩ ZiYj + YiZj .

Lipkin-Meshkov-Glick (LMG) model

The Lipkin-Meshkov-Glick (LMG) model (Lipkin et al., 1965) reads:

H=H1+H2, H1=−
J

N

N∑
i,j=1

XiXj , H2 = h
N∑
j=1

(
Zj +

1

2

)
,

where J is the interactions trength, and h stands for the magnetic field strength. The LMG model
preserves the total spin, and the ground state is contained in an N+1 dimensional subspace due to
this symmetry. This makes the LMG model particularly interesting because it allows us to simulate
its dynamics for a large number of spins, where many-body effects, such as collective phenomena,
dominate the physics of the system.

For instance, in the thermodynamic limit N → ∞, the LMG model exhibits a quantum phase
transition at hc/J = 1 (Botet and Jullien, 1983). The transition is between a ferromagnetic (FM)
order in the ground state in the x-direction (h/J ≪ 1), and the paramagnetic order (h/J ≫ 1).
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For the Hamiltonian pool, we use A=
{
J H1

||H1|| , J
H2

||H2|| , J
A1

||A1|| , J
A2

||A2|| , J
A3

||A3||

}
, where

A1 =
N∑
j=1

Yj ,

A2 =
1

N

 N∑
j=1

Yj

 N∑
j=1

Xj

+
1

N

 N∑
j=1

Xj

 N∑
j=1

Yj

,
A3 =

1

N

 N∑
j=1

Yj

 N∑
j=1

(
Zj +

1

2

)+
1

N

 N∑
j=1

(
Zj +

1

2

) N∑
j=1

Yj

. (B.1)

Appendix C. Noise models

An essential part of our study is the performance of the algorithms in the presence of noise.
As mentioned in the main text, noise sets the current bottle neck for reliable quantum computation.
Therefore, it is of primary importance for the near-term utility of quantum computers to develop
stable and noise-robust manipulation algorithms.

We use the following three noise models in our numerical experiments: (i) classical measure-
ment noise, (ii) quantum measurement error which micmic the situation on present-day NISQ de-
vices, and (iii) gate rotation error noise.

Classical measurement Gaussian noise is added to the cost function according to

Lγ(θ) = L(θ) + ϵγ ,

where ϵγ ∼ N (0, γ2) and γ denotes the noise strength, and N is the normal distribution. Gaussian
noise models various kinds of uncertainty present in experiments using an additive Gaussian random
variable, which follows from the Central Limit theorem.

Quantum measurement noise:
LQ(θ) = L(θ) + ϵQ,

where the noise strength depends on the strength of the energy quantum fluctuations

∆E = N−1
√
⟨ψ(T )|H2|ψ(T )⟩ − ⟨ψ(T )|H|ψ(T )⟩2,

and ϵQ is randomly sampled from N (0,∆E2). Quantum noise models the uncertainty arising from
quantum measurements. For instance, quantum fluctuations are large when the evolved quantum
state is far away from the target, while they decrease when the final state approaches the target
ground state.

Gate rotation error noise:

Lδ(θ) = L(θ′), θ′ = ({αi + αiϵi}qi=1, τ )

where gate error strengths are multiplicative and the corresponding ratios are ϵi ∼ N (0, δ2) for
some simulation parameter δ which controls the noise strength. Gate rotation errors (Sung et al.,
2020) present yet another common noise source, which arises due to imperfections or lack of cali-
bration in the quantum computer hardware.
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Appendix D. Details for the natural policy gradient with entropy regularization

For a general d-dimensional Gaussian distribution N (µ,Σ), the Shannon entropy is defined as
E(− log(p(x))), where p(x) = (2π)−

d
2 |Σ|− 1

2 exp
(
−1

2(x− µ)⊤Σ−1(x− µ)
)
. Hence

E(− log(p(x))) = −E log

[
(2π)−

d
2 |Σ|− 1

2 exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)]
= E

[
d

2
log 2π +

1

2
log |Σ|+ 1

2
(x− µ)⊤Σ−1(x− µ)

]
=
d

2
log 2π +

1

2
log |Σ|+ 1

2
E(x− µ)⊤Σ−1(x− µ)

=
d

2
log 2π +

1

2
log |Σ|+ 1

2
ETr

(
(x− µ)⊤Σ−1(x− µ)

)
=
d

2
log 2π +

1

2
log |Σ|+ 1

2
ETr

(
Σ−1(x− µ)(x− µ)⊤

)
=
d

2
log 2π +

1

2
log |Σ|+ d

2
.

Omitting the constants, it is equivalent to take the entropy as 1
2 log |Σ|. For the model used, the

probability distribution is a product of normal distribution, i.e., Σ is a diagonal matrix with length q
and diagonal elements σi, so the corresponding entropy function is E(− log(p(x))) =

∑q
i=1 log σi.

In the implementation, we adopt the parameterization σi = exp(ti) to assure that σi is positive.
Then for the distribution N (µi, σi), we have

log pi(x) = −
(x− µi)2

2σ2i
− log σi −

1

2
log(2π) = −1

2
(x− µi)2e−2ti − ti −

1

2
log(2π),

and
∇ log pi(x) = ((x− µi)e−2ti , (x− µi)2e−2ti − 1)⊤,

where the gradient is taken with respect to the parameters. Since {δi}qi=1 are independent, the Fisher
information matrix is a block diagonal matrix with the i-th block equal to

Fi = E∇ log pi(x)∇ log pi(x)
⊤ = E

 (x−µi)
2

σ4
i

(x−µi)
3

σ3
i
− (x−µi)

σi

(x−µi)
3

σ3
i
− (x−µi)

σi

(x−µi)
4

σ4
i
− 2(x−µi)

2

σ2
i

+ 1

 =

[
1
σ2
i

0

0 2

]
.

Recall that for a fixed gate sequence τ , we set R(δ) = −E
({

Tg(δj)∑
k g(δk)

}q

j=1
, τ

)
/N , where g

denotes the sigmoid function, and

J ({µj , σj}qj=1)= Eδj∼N (µj ,σj)R(δ) + β−1
S

q∑
j=1

log σj .

Hence the gradient of J is

ER(δ)∇ log p(δ) + β−1
S ∇

q∑
j=1

log σj ,
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where the gradient is taken with respect to the parameters, and p(δ) =
∏q

i=1 pi(δi). Therefore, the
unbiased estimators for the variables are[

∂J
∂µj
∂J
∂tj

]
←
[

R(δ)ξj/σj
R(δ)(ξ2j − 1) + β−1

S

]
,

where ξj are independent standard normal variables and δj = σjξj + µj . As a result, the unbiased
estimators for the natural gradient direction become

F−1
j

[
∂J
∂µj
∂J
∂tj

]
←
[

σjR(δ)ξj
1
2R(δ)(ξ

2
j − 1) + 1

2β
−1
S

]
,

since F is a block diagonal matrix with the j-th block given by Fj .

Appendix E. Additional experiment results

In Section 5.1, we have presented a comparison between the RL-QAOA method and MCTS-
QAOA for three different physics models with the quantum noise. In this section, we report the test
results with the other types of noise, namely the results with the Gaussian noise, the results with the
gate rotation error, and the results when no noise is considered (cf. Appendix C). We can observe
from the comparison that MCTS-QAOA’s performance is much more stable and accurate.

From Figure 6, one can observe similar behavior the two methods as in Section 5.1, i.e., MCTS-
QAOA outperforms RL-QAOA in all settings and the gaps grow larger in the regime of large total
gate durations. The raw data for the energy ratio obtained by MCTS-QAOA is summarized in
Table 2 (highlighted in bold), which offers a more visually and quantitatively convenient comparison
across different models.

Appendix F. Additional numerical results on the energy landscape

In Section 5.2 we reported the discrete landscape of the generalized QAOA ansatz under the
condition that the continuous variables are solved with high quality with the improved NPG solver.
Here we include the landscape under another physical model, i.e. 2D Ising model. We consider
the case where (|A|, q) = (5, 8), and the total number of gate sequences is thus 81920. Similar to
the plots displayed in Section 5.2, the landscape with a longer total duration (JT = 50) features
a dominant cluster at the rightmost part of the histogram. When the total duration is smaller, the
number of clusters increases, and is shifted to the left.

Figure 8 shows the influence of the parameter h/J in the discrete landscape for the LMG model
with gate duration JT = 1500 and N = 100. When h/J = 0.8 and h/J = 0.99, the rightmost
peak in the energy ratio histogram gets close to 1, which means that reaching the ground state
would be a easy task in these two cases. The more difficult cases lies in between, for example
when h/J = 0.95. For the parameter h/J = 0.9 we choose in the main text, there is a bigger gap
(cf. Fig. 4(c)) between the rightmost peak of the energy ratio and 1, which means the problem we
choose to solve is relatively challenging.
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Gate rotation noise Quantum noise Gaussian noise No noise
JT

(E/EGS)

(Model) (a) Ising 1D
10.0 −0.0208 (−0.0208) −0.0219 (−0.0238) −0.0225 (−0.0209) −0.0210 (−0.0207)
20.0 0.4907 (0.4884) 0.4862 (0.4863) 0.4903 (0.4905) 0.4907 (0.4908)
30.0 0.7849 (0.7844) 0.7830 (0.7796) 0.7825 (0.7833) 0.7850 (0.7850)
40.0 0.9481 (0.9486) 0.9521 (0.9477) 0.9512 (0.9513) 0.9516 (0.9527)
50.0 0.9503 (0.9499) 0.9499 (0.9564) 0.9505 (0.9581) 0.9559 (0.9574)
60.0 0.9489 (0.9614) 0.9526 (0.9540) 0.9576 (0.9560) 0.9570 (0.9621)
120.0 0.9424 (0.9495) 0.9543 (0.9548) 0.9606 (0.9524) 0.9548 (0.9602)
180.0 0.9495 (0.9415) 0.9486 (0.9502) 0.9582 (0.9556) 0.9514 (0.9543)

(Model) (b) Ising 2D
10.0 −0.1586 (−0.1586) −0.1645 (−0.1610) −0.1589 (−0.1614) −0.1587 (−0.1587)
20.0 0.2688 (0.2692) 0.2663 (0.2672) 0.2680 (0.2677) 0.2730 (0.2688)
30.0 0.7771 (0.7777) 0.7786 (0.7800) 0.7799 (0.7797) 0.7812 (0.7812)
40.0 0.9635 (0.9635) 0.9641 (0.9651) 0.9647 (0.9633) 0.9654 (0.9635)
50.0 0.9984 (0.9984) 0.9979 (0.9982) 0.9982 (0.9983) 0.9985 (0.9985)
60.0 0.9980 (0.9979) 0.9978 (0.9981) 0.9981 (0.9965) 0.9986 (0.9984)

(Model) (c) LMG
30.0 0.4775 (0.4774) 0.4762 (0.4729) 0.4766 (0.4770) 0.4776 (0.4774)
60.0 0.5828 (0.5828) 0.5792 (0.5803) 0.5818 (0.5815) 0.5828 (0.5828)
100.0 0.7471 (0.7467) 0.7447 (0.7468) 0.7459 (0.7460) 0.7472 (0.7471)
200.0 0.8591 (0.8592) 0.8561 (0.8568) 0.8583 (0.8587) 0.8591 (0.8591)
300.0 0.9093 (0.9098) 0.9091 (0.9077) 0.9095 (0.9093) 0.9101 (0.9104)
500.0 0.9312 (0.9368) 0.9349 (0.9363) 0.9367 (0.9367) 0.9372 (0.9371)
1000.0 0.9463 (0.9484) 0.9522 (0.9475) 0.9505 (0.9510) 0.9518 (0.9523)
1500.0 0.9474 (0.9436) 0.9385 (0.9336) 0.9444 (0.9524) 0.9499 (0.9453)
2000.0 0.9447 (0.9448) 0.9646 (0.9496) 0.9648 (0.9521) 0.9636 (0.9562)

Table 2: Energy ratio obtained by MCTS-QAOA: MCTS-QAOA using the Hamiltonian pool
without identity (bold, see Appendix B) and with identity operator (gray in the parenthesis,
see Appendix G). Sector (a): 1D spin-1/2 Ising chain (N = 8); Sector (b): 2D spin-1/2
Ising chain (N=3×3); Sector (c): LMG model (N=100) at h/J = 0.9. We use γ = 0.1
for Gaussian noise and δ = 0.1 for the gate rotation noise (see Appendix. C).
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Figure 6: (experiment with other types of noise models or without noise) comparison between
MCTS-QAOA and RL-QAOA. The physics setup is the same as that in Figure 2. (a-c):
Gaussian noise with γ = 0.1; (d-f): gate rotation noise with δ = 0.1; (g-i): experiments
without noise (cf. Appendix C).

Appendix G. Physical models with the identity action

The generalized QAOA ansatz provides us the freedom of adding different Hamiltonians to the
Hamiltonian pool. One meaningful addition is the identity operator. Here, the identity operator
corresponds to the identity gate that does not move the quantum state. If we take H̃ = 0, then
its corresponding unitary gate will be identity, i.e. exp

(
−iH̃α̃

)
= I. This approach adds an extra

amount of freedom to the optimization since the quantum control no longer needs to figure out how
to exactly distribute the gate duration budgets to different gates so as to reach the ground state. In
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Figure 7: Discrete landscape of 2D Ising model: (a-c): Histograms of the energy ratio optimized
by the improved natural gradient solver for JT = 20, 30, 50, respectively. Nhist = 81920
samples are chosen from the discrete gate sequences of generalized QAOA with parame-
ters q = 8 and |A| = 5.
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Figure 8: Discrete landscape of LMG model with respect to different parameter h/J : (a-c):
Histograms of the energy ratio optimized by the improved natural gradient solver for
h/J = 0.8, 0.95, and 0.99, respectively with gate duration JT = 1500. Nhist = 81920
samples are chosen from the discrete gate sequences of generalized QAOA with parame-
ters q = 8, |A| = 5 and N = 100. For the LMG model, the gap between the right-most
peak and 1 is larger when h/J is between 0.8 and 0.99.
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other words, the original optimization problem (see Eqn. 4.2) becomes the relaxed form:

min
{αj}qj=1

E({αj}qj=1, τ ) :

q∑
j=1

αj≤T ; 0 ≤ αj ≤ T

 . (G.1)

With the identity action, the extended action space becomesA=
{
0, H1

||H1|| ,
H2

||H2|| ,
A1

||A1|| ,
A2

||A2|| ,
A3

||A3||

}
,

with the definitions shown in Appendix. B for three different physics models.

In this setting, a similar behavior is observed as in Figure 2 and Figure 6, which is shown in
Figure 9. We conclude that MCTS-QAOA outperforms RL-QAOA in all settings and MCTS-QAOA
still maintains a robust performance when that of RL-QAOA begins to deteriorate in the regime of
large total gate durations. The raw data of the energy ratio obtained by MCTS-QAOA is reported in
Table 2 (highlighted in gray), which also gives a direct comparison with the energy ratios obtained
without the identity action. It can be seen that the performance of MCTS-QAOA in this setting is
on par with the setting presented in the main text.

34



MCTS-QAOA

0 60 120 180
JT

0.0

0.2

0.4

0.6

0.8

1.0

E
/E

G
S

(a)

Ising 1D (N=8)

RL-QAOA

MCTS-QAOA

10 20 30 40 50 60
JT

−0.2

0.0

0.2

0.4

0.6

0.8

1.0 (b)

Ising 2D (N=3×3)

0 500 1000 1500 2000
JT

0.4

0.5

0.6

0.7

0.8

0.9

1.0
(c)

LMG (N=100)

0 60 120 180
JT

0.0

0.2

0.4

0.6

0.8

1.0

E
/E

G
S

(d)

Ising 1D (N=8)

RL-QAOA

MCTS-QAOA

10 20 30 40 50 60
JT

−0.2

0.0

0.2

0.4

0.6

0.8

1.0 (e)

Ising 2D (N=3×3)

0 500 1000 1500 2000
JT

0.4

0.5

0.6

0.7

0.8

0.9

1.0
(f)

LMG (N=100)

0 60 120 180
JT

0.0

0.2

0.4

0.6

0.8

1.0

E
/E

G
S

(g)

Ising 1D (N=8)

RL-QAOA

MCTS-QAOA

10 20 30 40 50 60
JT

−0.2

0.0

0.2

0.4

0.6

0.8

1.0 (h)

Ising 2D (N=3×3)

0 500 1000 1500 2000
JT

0.4

0.5

0.6

0.7

0.8

0.9

1.0
(i)

LMG (N=100)

0 60 120 180
JT

0.0

0.2

0.4

0.6

0.8

1.0

E
/E

G
S

(j)

Ising 1D (N=8)

RL-QAOA

MCTS-QAOA

10 20 30 40 50 60
JT

−0.2

0.0

0.2

0.4

0.6

0.8

1.0 (k)

Ising 2D (N=3×3)

0 500 1000 1500 2000
JT

0.4

0.5

0.6

0.7

0.8

0.9

1.0
(l)

LMG (N=100)

Figure 9: Comparison between MCTS-QAOA and RL-QAOA using the Hamiltonian pool with the
identity operation. The physics setup is the same as that in Figure 2. (a-c): quantum
measurement noise; (d-f): Gaussian noise with γ = 0.1; (g-i): gate rotation noise with
δ = 0.1; (k-l): experiments without noise (cf. Appendix C).
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