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Abstract

Training data and model sizes are increasing ex-
ponentially. One way to reduce training time and
resources is to train with a carefully selected sub-
set of the full dataset. Prior work uses the gra-
dient signals obtained during a warm-up or “pre-
training” phase over the full dataset, for determin-
ing the core subset; if the pre-training phase is too
small, the gradients obtained are chaotic and un-
reliable. As a result, the pre-training phase itself
incurs significant time/resource overhead; prior
work has not gone beyond hyperparameter search
to reduce pre-training time. Our work explicitly
aims to reduce this pre-training tax in gradient-
based subset training. We develop a principled,
scalable approach for pre-training in a distributed
setup. Our approach is lightweight and minimizes
communication between distributed worker nodes.
It is the first to utilize the concept of model-soup
based distributed training at initialization. The
key idea is to minimally train an ensemble of
models on small, disjointed subsets of the data;
we further employ data-driven sparsity and data
augmentation for local worker training to boost
ensemble diversity. The centralized model, ob-
tained at the end of pre-training by merging the
per-worker models, is found to offer stabilized
gradient signals to select subsets, on which the
model is further trained. We have validated the
effectiveness of our method through extensive
experiments on CIFAR-10/100, and ImageNet,
using ResNet and WideResNet models. For exam-
ple, our approach is shown to achieve 15.4× pre-
training speedup and 2.8× end-to-end speedup on
CIFAR10 and ResNet18 without loss of accuracy.
Codes will be fully released.
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1. Introduction
In the era of deep learning, neural networks are consis-
tently getting bigger, and so are the dataset sizes (Gao et al.,
2021; Sun et al., 2020). Training with gigantic datasets
demands significant computation resources such as CPUs
and GPUs, and high-capacity memories are required to load
and process samples. When it comes to distributed train-
ing, large datasets also induce significant communication
between storage and compute nodes as well as between
worker nodes (e.g., to aggregate gradients).

Subset (or coreset) training has been explored as a potential
workaround to the large dataset explosion (Agarwal et al.,
2005; Maalouf et al., 2019). The key idea is to train on a
small, but important, subset instead of the full dataset; this
reduces both training time and resource use. Researchers
have proposed a variety of algorithms to select the most valu-
able data (e.g., based on Shapley value (Tripathi et al., 2020),
geometric distance (Sener & Savarese, 2017), and submod-
ular functions (Wei et al., 2014a; 2015; 2014b; Iyer et al.,
2021)). Among these, the recently proposed gradient-based
methods (Toneva et al., 2018; Paul et al., 2021; Killamsetty
et al., 2021a; Mirzasoleiman et al., 2020; Killamsetty et al.,
2021b) have demonstrated state-of-the-art accuracy. These
approaches generally use gradient signals for data valuation.
Score-based methods (Toneva et al., 2018; Paul et al., 2021)
give an importance value to each data item based on its
gradients and select items with high values for subset train-
ing. Gradient-matching-based methods (Killamsetty et al.,
2021a; Mirzasoleiman et al., 2020) pick the data subset
whose weighted gradients can best match the full training
(or validation) set’s gradients.

Gradient-based subset training methods run into a well-
known issue: since early-stage gradients obtained from
nearly untrained models are chaotic and unreliable, they
can deteriorate the quality of the chosen subset. Most prior
works hence introduce a default “pre-training” or warm-
up stage and later perform subset selection using the pre-
trained model gradients. The typical pre-training approach
is to train a model using the entire data over several epochs
(Section 3.1). Despite effectively boosting the accuracy,
this pre-training convention is clearly not free of cost: it
can incur significant time/resource overhead; prior work
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did not seek to optimize this cost beyond doing ad-hoc
hyperparameter search to reduce the number of epochs in
pre-training (Killamsetty et al., 2021a). There is a pressing
need for work on systematically exploring how to further
lower the “pre-training tax” in a principled, scalable, and
resource-efficient manner.

1.1. Our Contributions

We present an efficient end-to-end training framework
for gradient-based subset training algorithms. We explic-
itly optimize the pre-training tax by developing a novel
“distributed-friendly” lightweight pre-training approach,
which forms the primary emphasis of our paper. Our ap-
proach spreads pre-training work across multiple workers,
yet with two unique targets to ensure we “lower the tax”:

• Workers do not have to synchronize nor communicate
during pre-training. Ideally, we only perform local
training at each worker and then conduct a “one-shot”
aggregation of results at a central worker (which will
continue the main training) by the end of pre-training.

• We do not ship the full data to each worker (too heavy
for both communication and per-worker local training).
Ideally, we send only a tiny random subset to each
worker, and the union across all workers is just a small
subset of the entire data (rather than full coverage).

Correspondingly to achieve the two goals, we empower our
distributed pre-training recipe with two tailored ideas:

• We introduce a model-soup-inspired (Wortsman et al.,
2022b) efficient ensembling strategy to pre-training,
that eliminates communication between distributed
models before the pretraining completes. While recent
works (Li et al., 2022; Wortsman et al., 2022a) already
demonstrate similar ideas for data-parallel multi-node
finetuning of large pre-trained models without com-
munication, to our best knowledge, we are the first to
reveal the “model-soup” idea to effectively work for
distributed training at initialization (for our customized
purpose of subset selection).

• To strengthen local worker training effectiveness over
tiny random subsets, we leverage data-driven sparsity
as well as aggressive data augmentation as two regular-
ization ways to mitigate local overfitting, which also
boosts the ensemble diversity.

After the distributed pre-training is completed, the central-
ized worker collects and aggregates all local models into
one pre-trained model, to then generate gradients used for
selecting the subset (which can be done by any off-the-shelf
algorithm). After that, the main training continues.

Our result shows that the proposed framework reduces the
variance of subset training using extremely low time and

data costs, as well as improving the final accuracy. We
have validated the effectiveness of our method through
extensive experiments on CIFAR-10/100, and ImageNet,
using ResNet and WideResNet models. For example, it
reduces the pre-training time by up to 15.4× compared to
the baseline subset selection algorithm and 2.8× compared
to the full dataset baseline without compromising accuracy
in ResNet18 and CIFAR10.

2. Background
2.1. Subset selection algorithms

Coreset is a promising approach that reduces computation
and memory cost during training (Mirzasoleiman et al.,
2020). One representative approach is using Shapley
value (Tripathi et al., 2020), which represents the marginal
contribution of a sample measured by leaving the sample
out of the original set. This approach is intuitive, yet hard
to measure in large-scale data. Other approaches use the ge-
ometric distance between data items, or submodular greedy
approximation (Sener & Savarese, 2017; Sinha et al., 2020).

Recent works tend to use error or loss during the training as
their metric for valuation. Forgetting events (Toneva et al.,
2018) counts how many times each data item is misclassified
or forgotten during training. The authors concluded that
unforgettable examples can be removed from the training set
without hurting generalization. GraNd score measures the
expected loss of gradient norm in early epochs of training,
approximated by the error ℓ2 norm (Paul et al., 2021).

More directly, a subset can be selected to minimize the
difference between gradients from the subset and the gradi-
ents from the original dataset (Mirzasoleiman et al., 2020).
Gradient-matching can happen regularly during the training
as well (Killamsetty et al., 2021a) to dynamically update
importance samples in the subset. However, to infer a reli-
able importance value of each data item, gradients need to
be stabilized before the valuation - that often cannot be met
for the early-stage gradients from severely under-trained
weights. Most prior works hence introduce a default “pre-
training” or warm-up stage on the full dataset; then perform
subset selection using pre-trained model gradients.

Despite effectively boosting the final accuracy, the pre-
training incurs non-negligible, even significant time /re-
source overhead. For example, the pre-training of recent
works can take 15∼40 epochs (Guo et al., 2022; Killam-
setty et al., 2021a; Toneva et al., 2018). To our best knowl-
edge, limited work explicitly focused on optimizing this
“pre-training tax” issue. GradMatch (Killamsetty et al.,
2021a) did an ad-hoc hyper-parameter search to determine
the epoch number allocation between pre-training and main
training, but their objective was to boost the test accuracy
instead of reducing the pre-training or end-to-end time cost.
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2.2. Model ensembling for large pre-trained models

As large-scale pre-trained models became prevalent, re-
searchers put efforts into fine-tuning the pre-trained model
with different hyper-parameters to achieve the best accuracy
for downstream tasks (Kolesnikov et al., 2020; Girshick
et al., 2014). As a common fine-tuning process, each pre-
trained model is optimized with different hyper-parameters
separately, and one model that performs the best is picked.
However, more recent work showed that instead of discard-
ing the rest, an ensemble of fine-tuned models trained with
different hyper-parameters outperforms a single model’s ac-
curacy and improves model robustness because of increased
diversity in the ensemble (Wang et al., 2020).

One issue of conventional ensembling is that it requires ad-
ditional processing during inference (Breiman, 1996; 2001).
To resolve this issue, recent work explore merging multiple
models by weight averaging. The notable idea of “Model
Soup” (Wortsman et al., 2022b) merged models fined-tuned
from the same pre-trained model for the same downstream
task, but with different hyper-parameters, without incur-
ring any additional inference or memory costs at inference.
Their obtained model provides significant improvements
over the best model in a hyperparameter sweep on Ima-
geNet. In a similar vein, model recycling (Ramé et al., 2022)
merged the weights of fine-tuned models optimized for di-
verse auxiliary tasks. This simple technique improved both
in-distribution and out-of-distribution test accuracy without
increasing inference latency. BTM and lo-fi (Li et al., 2022;
Wortsman et al., 2022a) extended the models soup idea to a
distributed fine-tuning setting, merging models fine-tuned
independently with different data distributions without any
communication during the training.

Note, though, that all “model soup”-type ideas explored so
far (Wortsman et al., 2022b; Li et al., 2022; Wortsman et al.,
2022a; Ramé et al., 2022) are focused on the fine-tuning
setting (one or multiple downstream tasks; centralized or
distributed) from a large pre-trained model. Meanwhile,
applying the same idea to training from scratch looks quite
risky if not daunting, since there is no guarantee that mod-
els trained independently from random initialization would
organically stay in the same solution basin (Ainsworth et al.,
2022) or linearly connected mode (Frankle et al., 2020) (a
commonly believed prerequisite for model merging).

Yet, we empirically discover in this paper, that the model
soup idea at least works well in a constrained context for
“training from scratch”: if our goal is not to obtain a highly
performant model directly, but rather a model whose gra-
dients are reliable enough for indicating the data sample
importance. We leverage this finding to pre-train efficiently
in a distributed setup, and the weight-averaged model pro-
vides consistent and robust gradients for data valuation. To
our best knowledge, our work is the first to effectively ex-

ploit the “model-soup” idea in pre-training from scratch.

3. Method
3.1. Overview of the Framework

We propose a lightweight and scalable end-to-end training
framework that provides robust initialization for gradient-
based subset algorithms at low cost. Figure 1 overviews
our subset training framework which is divided into three
stages: pre-training, subset selection, and main training.

The objective of our framework is to reduce the end-to-end
cost. End-to-end cost consists of 1) pre-training cost, 2)
subset selection cost, and 3) main training cost. Pre-training
cost is the time taken in training an initial model to get
the initial gradient. Subset selection cost is the time taken
in running a subset algorithm. Subset selection time is a
one-time cost and varies by different algorithms. The main
training time is the time taken in training a model with the
selected subset. Our work mainly focuses on reducing pre-
training costs, or the “pretraining tax”, and the main training
time, with minimal loss of accuracy.

In our framework, the subset training pipeline starts from
scratch. For a given dataset, we could train a random initial
model with less than three epochs to get an initial model
(the “initialization” stage). In prior work, the pre-trained
phase takes 15–40 epochs even for small datasets (e.g., CI-
FAR10) (Guo et al., 2022; Killamsetty et al., 2021a; Toneva
et al., 2018). However, this corresponds to 20–40% of the
entire training time considering 180–200 epochs of main
training is common in CIFAR10/CIFAR100 and 90–100
epochs is common in ImageNet-1K (He et al., 2016).

A negative consequence of naively reducing pre-training
epochs is the deteriorated quality of gradients for the subset
selection. We hence refer to distributed training for ac-
celerating and potentially scaling up pre-training for subset
selection, which was unexplored by prior arts yet: n dif-
ferent workers train in parallel from the same initial model
θ∗ and then ensemble their trained models, which shall ex-
pect to gain us a more stable pre-trained model compared
to a single worker using the same amount of clock time.
However, distributed training inherently has challenges of
increased latency due to communication and asynchronic-
ity. In the following sections, we will discuss the detailed
challenges and mitigations to resolve the issues. Each dis-
tributed worker performs local training with a random subset
(Section 3.3) for K steps, regularized by data-driven spar-
sity as well as random augmentations. Then, locally trained
models (θ0∼θn−1) are aggregated with model-soup based
ensembling (Section 3.2) to get a pre-trained model θp.

The framework then runs a subset selection algorithm using
the gradients from the pre-trained model θp. We can use any
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Figure 1. Our Proposed Subset Training Framework Overview. Pre-training starts from the initial model θ∗, which is distributed to
different workers (θ∗,0 ∼ θ∗,n−1) as the common initialization. Each worker weakly trains it with a different small subset from the full
dataset, and leverages model sparsification as well as data augmentation to increase model diversity while reducing overfitting. The
trained local models (θ0 ∼ θn−1), termed jigsaw weak learners, will be merged into a dense model in the end, by averaging their weights.
With the merged pre-trained model θp to supply gradients, the subset selection algorithm can run and return a selected subset S from the
full dataset D. Using the subset S and the pre-trained model θp, we continue the main training stage to obtain the final model θf .

subset selection algorithm that is based on gradients or task
loss. Particularly, many gradient-based algorithms (Mirza-
soleiman et al., 2020; Killamsetty et al., 2021b;a) perform
re-selection during the main training to further improve the
accuracy even with a lower fraction of data. With reselec-
tion, the most recently updated gradient during the main
training can be used for periodically updating the subset. In
our experiment, we also follow the reselection mechanism
to update the subset every 20 epochs, and we find it to boost
our performance too.

3.2. Model-Soup Inspired Efficient Ensembling

One of the main challenges of distributed training is the
high communication cost of sending a large dataset. This
adds significant latency in the training pipeline and becomes
a major bottleneck. Communication of parameters between
works may also cause synchronization problems.

To tackle these challenges and make the initial training scal-
able, we set two regimes. First, we do not synchronize nor
communicate between workers during the training but only
allow local training of workers. Second, we do not ship the
entire dataset to workers; we select a small, random subset,
break it into disjoint parts, and send one part to each worker.
We kill those two birds with the same stone: an efficient
ensemble initialization inspired by recent work (Wortsman
et al., 2022b;a; Ramé et al., 2022).

Following (Wortsman et al., 2022b), we propose to create
n instances of the same θ∗ at the central worker, and send
each to n distributed workers, which train them indepen-
dently in isolation. Different from the original model soup
(Wortsman et al., 2022b), we do not vary the hyperparam-
eter configuration across workers, but instead leverage the

natural randomness perturbations by data dispatching. We
send only a small random subset to each worker instead
of sending the full dataset: i.e., during the local training,
each local model (θ∗,0∼θ∗,n−1) is trained with its own pos-
sessed M (hyperparameter of choice) minibatches of data;
each worker iterates over its minibatches for K steps (an-
other hyperparameter of choice). We maintain the assigned
minibatches to not overlap across different models, and the
amount of the entire data sent out across all constitutes
only 2∼25% of the full dataset. That serves dual purposes:
(i) create more diverse local models that will robustify the
model soup averaging, and (ii) avoid the high communica-
tion costs and latency incurred by moving larger subsets or
the full dataset.

The local training will be performed without any commu-
nication between workers, similarly to (Wortsman et al.,
2022a). Its main challenges lie in how to effectively train
from scratch with very few-shot data per worker - which
we will address in the next section. Once all local models
are trained and sent back to the central worker, the aggre-
gation follows the greedy interpolation soup procedure as
described in (Wortsman et al., 2022b). Namely, we sequen-
tially add each local model as a potential “ingredient in the
soup”, and only keep the model in the soup if it leads to
improving performance on the validation set. For merging
two ingredients, we perform a search for an optimal interpo-
lation ratio α ∈ [0, 1] that helps in performance gain, or else
the ingredient is discarded. Eventually, the outcome of the
pre-training stage is a model to supply stabilized gradients.

3.3. Local Training with More Robustness and Diversity

Sending only a small subset of data to each worker causes
a data-scarce environment that is prone to casing model
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overfitting. We apply two additional techniques during the
local training: data-driven sparsification as a model regular-
ization, and more aggressive random data augmentations.
They also serve dual purposes: to combat the overfitting at
local training, and to increase diversity across local models.

Data-driven model sparsity. We first apply data-driven
sparsity as a regularizer to reduce overfitting while increas-
ing model heterogeneity. In this work, we adopt the gradual
magnitude pruning (GMP) (Han et al., 2015) approach, due
to its simplicity and low overhead. We keep removing the
smallest-magnitude weights until reaching a pre-set target
sparsity rato. Instead of one uniform ratio for all workers,
we further set a random sparsity ratio per worker to add
another level of local diversity. In our experiments, we
keep target sparsity mild for all workers, which would be
drawn from a uniform distribution between [0.85, 0.95] (this
means the percentage of remaining nonzero weights). We
empirically find heavier sparsity to start incurring too noisy
gradients, especially after strong data augmentations.

Note that the main purpose of sparsity is not model com-
pression or acceleration here - although we slightly benefit
from that, as a side effect, in lowering the communication
load when we transmit the trained local model back to the
central worker. The main role that sparsity plays here is to
reduce overfitting, as recent works (Varma et al.; Chen et al.,
2021) demonstrate it to a powerful regularizer in few-shot
learning or generation. Another bonus here of using data-
driven sparsity is that local models will form different sparse
masks due to training over different, non-overlapped data
subsets, further increasing the diversity of sparse models in
the ensemble. We name each local model as weak jigsaw
learner since we are merging models of different sparse ar-
chitectures, and trained weakly on small and non-overlapped
subsets, to obtain a single dense pre-trained model.

Stronger random data augmentation. Data augmentation
is another common effective technique to combat overfit-
ting. Different from hand-crafted augmentations, RandAug-
ment (Cubuk et al., 2020) effectively searches for an optimal
augmentation tailored for different models and datasets. We
adopt RandAugment (e.g., its searched augmentation pol-
icy on CIFAR-10/100, ImageNet, etc.) to our local worker
training and observe it to bring ever larger gains when the
local subset becomes smaller (down to only 1∼10 mini-
batches). It effectively enriches the local dataset without
communicating more real data, and also adds to worker
randomness/diversity.

Two key hyperparameters matter for RandAugment: the
number of augmentation types used, and how strong mag-
nitude each augmentation takes. Through experiments, we
find that stronger data augmentations would benefit this
situation more: our final RandAugment picked random aug-
mentation from 14 different policies of strength 9: those are

clearly heavier than and replacing the default augmentations
(such as random crop or random horizontal flip).

4. Experiment Results
In this section, we evaluate the effectiveness of our subset
training framework. We aim to answer four questions:

1. Does the framework help reduce the end-to-end train-
ing time required for training?

2. How does our framework compare to prior work when
training with small fractions of the dataset?

3. How does each technique used in the framework con-
tribute to the total performance?

4. How do the hyper-parameters affect the results?

We employ three widely-used models, ResNet-18 (He
et al., 2016), Wide-ResNet-28-10, and Wide-ResNet-50-
2 (Zagoruyko & Komodakis, 2016), and three datasets, CI-
FAR10/100 (Krizhevsky et al., 2009), and ImageNet (Rus-
sakovsky et al., 2015) in our evaluation. Further details
about the results can be found in the appendix.

4.1. End-to-end training time

Approach Pre-training (s)
Main

training (s) Total (s)

Full set 0 2,476 2,476
GraNd 346 523 869
This work 22 284 306

Table 1. End-to-end training times for different training ap-
proaches. Our framework reduces total time for training by 87%
compared to training on the full dataset, and by 65% compared to
prior work on subset training.

Table 4.1 compares three approaches to training ResNet18
on the CIFAR10 dataset to state-of-the-art accuracy. The
first is the traditional approach, training without any sub-
set selection on the full dataset. The second is using the
GraNd (Paul et al., 2021) subset selection algorithm. Train-
ing uses 20% of the dataset. Finally, our framework also
runs the GraNd algorithm but uses only 10% of the dataset
to train to accuracy. Despite using the same subset algo-
rithm, our framework results in 2.8× speedup in end-to-end
training time, with 15× reduction in pre-training time. Com-
pared to training on the full dataset, our framework reduces
end-to-end training time by 87%, while reaching the same
accuracy. These results demonstrate the efficacy of the tech-
niques used in our framework.
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4.2. Accuracy with small data

Next, we evaluate how our framework performs when train-
ing with small fractions of data. For this experiment, we
evaluate different subset-based approaches when they train
on the same amount of data, and evaluate the Top-1 accuracy
(%) obtained.

Data Fraction Glister This work Improvement

1% 27.04±1.3 47.50±1.7 +20.45%
5% 51.64±2.7 59.30±1.9 +7.66%

10% 62.75±2.6 67.74±1.8 +4.99%
20% 64.58±4.6 75.65±1.9 +11.07%

Table 2. Accuracy obtained when training with small fraction of
the dataset. Our framework consistently obtains higher accuracy.

Table 4.2 shows the result of this experiment. We vary the
fraction of the dataset used in training from 1% to 20%.
We compare our framework with the Glister subset training
algorithm (Killamsetty et al., 2021b). We choose Glister
because we observed that it used the least amount of data
compared to other subset algorithms.

We observe that our framework always achieves higher ac-
curacy than Glister, even when training on small fractions of
the subset. This is due to the use of data augmentation and
model merging in our pre-training stage, that yield robust
gradients for subset selection.

Reduction in the variance of accuracy. We also observed
that Glister results in higher variance among top1-accuracy
results than our framework. The variance in Glister’s results
changes with the subset size while remaining constant for
our framework. We can attribute this to the robust gradients
that result from our framework’s pre-training stage. The im-
provement from our framework is consistent over different
models and subset combinations.

Summary. Our framework achieves SOTA accuracy with
significantly lower end-to-end training time. Compared
to prior work on subset selection, our framework reduces
the pre-training time significantly. When training on small
amounts of data, our framework results in better accuracy.
Our framework also provides more stable results.

4.3. Overall Accuracy-I/O Cost

Figure 2 shows the Top-1 accuracy (%) measured
with/without our framework in different model and dataset
combinations over the amount of data used. We used Glis-
ter (Killamsetty et al., 2021b) for our baseline subset selec-
tion algorithm. Here, we do not apply reselection of the
dataset during subset training; instead, we used the same
subset selected after pre-training to measure the robustness
of the initial subset.

Note that the x-axis is a proxy for end-to-end training cost
that includes pre-training and main-training. By increas-
ing subset data fraction, the cost of end-to-end training
increases. The result shows that our framework effectively
boosts subset training for the same cost.

Saving cost under the same data fraction brings another
advantage: with the saved time (mostly in pre-training), we
can train more epochs during the main training to further
improve the accuracy for a given system cost.

Our experiment in Section 4.2 showed that we can dramati-
cally improve the accuracy and reduce the variance for small
fractions (<20%) of data. Figure 2 shows that the result is
consistent over different models, subset fractions and dataset
combinations. In particular, the variance in the lower subset
fraction cases is greatly reduced (as depicted by the shaded
region) – the more robust initial gradients from our approach
appear to have a greater impact in this regime. In the ap-
pendix, we show additional experimental results measuring
with different algorithms (e.g., GraNd (Paul et al., 2021),
Gradmatch (Killamsetty et al., 2021a)). We observed that
the improvement is significant over different algorithms.

4.4. Ablation Study

We now study the extent to which different techniques we
proposed – model merging, model pruning, and data aug-
mentation contribute to the overall accuracy. We study three
combinations and compare them with over overall approach:
➊) refers to just model merging, where, after initialization
(Figure 1) each distributed worker trains the same initialized
model using random mini-batches and without using data
augmentation. In ➊ + ➋, each worker trains a pruned model
(so there is model diversity across the workers), but no data
augmentation is used. In ➊ + ➌, each worker trains on the
same model obtained from initialization, but mini-batches
at a worker are combined with data augmentation.

Table 3 shows the Top-1 Accuracy (%) and standard devia-
tion of the final model trained with the different combina-
tions above as well as our final technique (➊ + ➋ + ➌). We
used Glister (Killamsetty et al., 2021b) as our main subset
selection algorithm and study the results for two different
subset fractions (10% and 70% of the dataset).

The result shows that improvements from data augmenta-
tion and model pruning are consistent in both low and high
subset fractions. Compared to just model merging (➊), ac-
curacy can be improved and the variance can be reduced
with model pruning (➊ + ➋). Moreover, data augmentation
(➊ + ➌) dramatically amplifies the accuracy and stabilizes
the variance. This is mainly because we only assign a small
number of minibatches for each worker to control I/O cost
– 1 batch for CIFAR10, 5 batches for CIFAR100, and 10
batches for ImageNet (detailed configuration for the experi-
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Figure 2. Top 1 Accuracy (%) improvement vs. increasing amount of data used for the training with the proposed framework applied to
different models and datasets. From left to right, each point corresponds to training with 1%, 5%, 10%, 20%, 30%, ..., 90% subset of data,
and corresponding data usage is converted to GB. CIFAR10/CIFAR100 dataset size is 135.82MB, and the Imagenet dataset size is 138GB.
We used Glister (Killamsetty et al., 2021b) for our baseline subset selection.

Table 3. Ablation Study (Top-1 Accuracy (%))

METHOD
LOW FRACTION (10%) HIGH FRACTION (70%)

RESNET18 RESNET18 WRN28-10 WRN50-2 RESNET18 RESNET18 WRN28-10 WRN50-2
CIFAR10 IMAGENET CIFAR100 IMAGENET CIFAR10 IMAGENET CIFAR100 IMAGENET

FULL ACC 95.4 67.7 80.4 76.5 95.4 67.7 80.4 76.5
➊ 60.7±5.1 45.0±0.2 38.6±1.0 47.5±0.7 90.5±0.5 63.9±0.2 73.3±0.6 72.0±0.1
➊ + ➋ 62.2±3.6 45.2±0.2 38.7±0.9 48.2±0.5 90.7±0.5 64.1±0.1 73.9±0.3 72.4±0.1
➊ + ➌ 66.3±2.1 46.2±0.1 43.9±0.4 48.9±0.1 92.6±0.4 64.6±0.0 75.2±0.1 73.1±0.0
➊ + ➋ + ➌ 68.5±1.1 46.4±0.2 45.1±0.3 49.4±0.2 93.6±0.3 64.7±0.1 76.4±0.5 73.3±0.0

➊ MODEL MERGING ➋ MODEL PRUNING ➌ DATA AUGMENTATION

ment is given in the appendix) – and this has a significant
impact without data augmentation. To elaborate, when 10
jigsaw models obtain 1/5/10 batches without replacement,
the overall data usage corresponds to 5% / 25% / 2% of
the full dataset for CIFAR10 / CIFAR100 / ImageNet, re-
spectively. Using such small amount of data is efficient and
can be distributed-friendly, but can result in a data-scarce
environment for each jigsaw learner. The result shows that
the impact of the lack of data can be mitigated with data aug-
mentation without additional resource cost (no additional
real data is needed, so there is no extra I/O cost).

In our empirical study, we observed that the intermediate
accuracy right after the pruning at each weak jigsaw learner
is quite low at each worker. However, because the weak
learners help improve diversity and robustness when multi-
ple of them are merged the accuracy recovers significantly
(to the near levels shown in the table), the variance is also
lowered, and the final accuracy (after the main training) is
also good as a result.

Implications. Our work has important implications for
training models on large data sets. Viewing training from
a systems perspective, two typical bottlenecks are storage
(loading and processing data) and network communication
(communication between workers). Our work shows that
you can use extra computation (typically cheaper and more

plentiful than storage or network bandwidth) to reduce or
eliminate these bottlenecks; our framework uses data aug-
mentation and model pruning (both computational tasks) to
avoid processing the full subset of data, and uses ensembles
and model merging to avoid network communication. Over
the past five years, growth in total computational power (us-
ing GPUs) has been over 30×, while storage and network
bandwidth has grown by less than one order of magnitude.
Converting storage and network bottlenecks into computa-
tional tasks will prove useful in such a landscape.

4.5. Hyperparameter Sensitivity

As explained in Section 3, we have three important hyper-
parameters: the number of weak jigsaw models (n), the
number of minibatches used for pretraining for each jigsaw
model (M ), and the number of steps each jigsaw model
trains (K). We study sensitivity to these hyperparameters
by measuring the Top 1 accuracy (%) of ResNet18 trained
with a 10% subset of CIFAR100 using our framework. Fig-
ure 3 shows the sensitivity to different hyperparameters. In
general, the cost of pretraining increases monotonically with
each hyperparameter; a system would pick choices for these
hyperparameters based on the overall I/O cost budget. Our
results in this section show how such choices can be made
and their influence on accuracy.
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Figure 3. ResNet-18 trained with different hyperparameters with a 10% subset of CIFAR100. With increasing batches and steps, top-1
accuracy (%) increases so does the cost. For completeness, we also show trends without our techniques.

The leftmost figure shows the accuracy versus the number of
jigsaw models. Interestingly, we observe a non-monotonic
relationship between the numbers of models used to aver-
age the pre-trained model, and the final achieved accuracy
after the main training. If we view the latter as a surrogate
of the subset quality (and therefore, the quality of the pre-
trained model’s gradients), that tells us “the more the better”
is not necessarily a true quote for our customized “model
soup” ensembling for the pre-training purpose. Similar
“non-monotonic” trend was previously observed in classical
ensemble methods too (Zhou, 2012). Specifically, in our
case, we conjecture the following factors to be accountable:
our “model soup”-inspired averaging is a special ensembling
for neural networks that aggregate weights, not predictions
as commonly done. Meanwhile, convolutional neural net-
works are known to have a highly skewed/nearly sparse
distribution of their parameter magnitudes, which are con-
sidered as necessary to encode the hidden low-dimensional
structures of image features (Papyan et al., 2017) - that
is further reinforced in our pre-training stage when each
worker explicitly and independently enforces a sparse mask.
Therefore, when we directly average too many neural net-
works (each trained from scratch, unlike (Wortsman et al.,
2022b) which relies on a pre-trained model as a common
“anchor”) in their weight spaces, their vastly different sparse
patterns in parameters will inevitably conflict with and com-
promise each other, leading to “over-smoothed” averaged
weights that no longer preserves a meaningful sparse param-
eter/feature structure. Besides, prior works have also found
that just increasing ensemble diversity, without maintaining
the prediction accuracy of individual members, can quickly
harm the ensemble performance (Nam et al., 2021). That
explains why we cannot afford too high sparsity ratios nor
more aggressive data augmentation in local training.

Next, we study the effect of the number of minibatches
each weak jigsaw model trains on; the result is shown in the
middle figure. In this experiment, we used 256 as the batch
size and the CIFAR100 dataset. The full dataset contains

195 such batches. As expected, the more the minibatches,
the greater the final accuracy – due to less likely overfitting
as more data is used to train. Finally, the rightmost figure
shows the effect of the number of steps (K) for each jigsaw
model. We find that the accuracy plateaus after 10 steps, as
each jigsaw model is trained with a limited dataset (of M
minibatches for a small M ). Because there is a possibility
of overfitting from using a large number of steps, we limit
the maximum number of steps to 10 in all experiments.

Implications. Increasing the values of any hyperparame-
ters mentioned above leads to an increase in latency, mem-
ory usage, and I/O cost. Unlike other hyperparameters in
other training systems that require tuning via hyperparame-
ter search, the hyperparameters in our framework are easily
determined based on the overall system I/O cost budget.
For our experiments, we set the number of models to be
10, constrain the number of minibatches to be less than 10,
and the number of steps to be less than 10 as well for all
datasets. Even with these conservative settings that yield
low resource and I/O footprints, our accuracies could out-
perform the baselines.

5. Conclusion
We presented a lightweight, distribution-friendly pre-
training framework for gradient-based subset training. Al-
though training with a carefully selected subset showed
promise to reduce training time and resources, prior work
mainly focused on reducing the “main cost”, while over-
looking the “tax” at the essential pre-training stage. To re-
duce the pre-training tax and make the subset training more
scalable, our distributed pre-training leveraged model-soup
based ensembling to fully eliminate the communication be-
tween workers during the pre-training. The ensembling
approach is also accompanied by data-driven pruning and
random augmentation effectively to boost the diversity of the
ensemble while reducing local overfitting, thereby providing
robust gradients for subsequent subset selection algorithms.
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