
Published as a conference paper at ICLR 2023

ON THE PERFORMANCE OF TEMPORAL DIFFERENCE
LEARNING WITH NEURAL NETWORKS

Haoxing Tian, Ioannis Ch. Paschalidis, Alex Olshevsky
Department of Electrical and Computer Engineering
Boston University
Boston, MA 02215, USA
{tianhx, yannisp, alexols}@bu.edu

ABSTRACT

Neural Temporal Difference (TD) Learning is an approximate temporal difference
method for policy evaluation that uses a neural network for function approxima-
tion. Analysis of Neural TD Learning has proven to be challenging. In this paper
we provide a convergence analysis of Neural TD Learning with a projection onto
B(θ0, ω), a ball of fixed radius ω around the initial point θ0. We show an approx-
imation bound of O(ϵ + 1/

√
m) where ϵ is the approximation quality of the best

neural network in B(θ0, ω) and m is the width of all hidden layers in the network.

1 INTRODUCTION

Temporal difference (TD) learning is considered to be a major milestone of reinforcement learning
(RL). Proposed by Sutton (1988), TD Learning uses the Bellman error, which is a difference between
an agent’s predictions in a Markov Decision Process (MDP) and what it actually observes, to drive
the process of learning an estimate of the value of every state.

To deal with large state-spaces, TD learning with linear function approximation was introduced in
Tesauro (1995). A mathematical analysis was given in Tsitsiklis & Van Roy (1996), which shows the
process converges under appropriate assumptions on step-size and sampling procedure. However,
with nonlinear function approximation, TD Learning is not guaranteed to converge, as observed in
Tsitsiklis & Van Roy (1996) (see also Achiam et al. (2019) for a more recent treatment).

Nevertheless, TD with neural network approximation, referred to as Neural TD, is used in practice
despite the lack of strong theoretical guarantees. To our knowledge, rigorous analysis was only
addressed in the three papers Cai et al. (2019); Xu & Gu (2020); Cayci et al. (2021).

In Cai et al. (2019), a single hidden layer neural architecture was considered along with projection
on a ball around the initial condition; approximate convergence was proved to be an approximate sta-
tionary point of a certain function related to the linearization around the initial point. This result was
generalized to multiple hidden layers in Xu & Gu (2020), but this generalization required projection
on a ball of radius of ω ∼ m−1/2 around the initial point, where m is the width of the hidden layers.
Because the radius of this projection goes to zero with m, this effectively fixes the neural network
to a small distance from its initial condition. Both Cai et al. (2019); Xu & Gu (2020) additionally
required certain regularity conditions on the policy. Finally, Cayci et al. (2021) gave a convergence
result for a single hidden layer, also with a projection onto a radius of ω ∼ m−1/2 around the initial
point, but with the final objective being the representation error of neural approximation without
any kind of linearization. This result also required a condition on the representability of the value
function of the policy in terms of features from random initialization.

In this paper, we analyze Neural TD with a projection onto B(θ0, ω), a ball of fixed radius ω around
the initial point θ0. We show an approximation bound of O(ϵ+1/

√
m) where ϵ is the approximation

quality of the best neural network in B(θ0, ω). Our result improves on previous work because it does
not require taking the radius ω to decay with m, does not make any regularity or representability
assumptions on the policy, applies to any number of hidden layers, and bounds the error associated
with the neural approximation without any kind of linearization around the initial condition.

1

Published as a conference paper at ICLR 2023

The main technical difference between our paper and previous works is the choice of norm for
analysis. We will describe this at a more technical level in the main body of the paper, but we
use a norm introduced by Ollivier (2018), which is a convex combination of the usual l2-norm
weighted by the stationary distribution of the policy with the so-called Dirichlet semi-norm. The
later has previously been used in the convergence analysis of Markov chains (Diaconis & Saloff-
Coste (1996); Levin & Peres (2017)). It was shown in Ollivier (2018) that Neural TD is exactly
gradient descent on this convex combination of norms if the underlying policy is reversible.

In the case where the policy is not reversible, these results were partially generalized in Liu &
Olshevsky (2021), where it was shown that TD Learning with linear function approximation can be
viewed as a so-called gradient splitting, a process which is analogous to gradient descent. We build
heavily on that interpretation here. Our main technical argument is that Neural TD approximates
the gradient splitting process at each step so that despite the nonlinearity of the approximation, an
improvement in approximation quality can be guaranteed unless the system is already close to the
best possible approximation over the projection radius. Notably, our arguments do not imply that
the neural network stays close to its initialization and our empirical simulations show a significant
benefit from taking the projection radius ω not to decay with the width m.

2 PRELIMINARIES

2.1 MARKOV DECISION PROCESSES

In this section, we present key concepts from MDPs, mostly to introduce our notation.

A finite discounted-reward MDP can be described by a tuple (S,A, Penv, r, γ), where S =
{s1, s2, . . . , sn} is a finite state-space whose elements are vectors; A is a finite action space;
Penv = (Penv(s

′|s, a))s,s′∈S,a∈A is the transition probability matrix, where Penv(s
′|s, a) is the

probability of transitioning from s to s′ after taking action a; r : S×A → R is the reward function;
and γ ∈ (0, 1) is the discount factor. A policy π in an MDP is a mapping π : S × A → [0, 1] such
that

∑
a∈A π(s, a) = 1 for all s ∈ S, where π(s, a) is the probability that the agent takes action a

in state s. We will use n for the number of states, i.e., |S| = n.

Given a policy π, we define the corresponding transition probability matrix P = (P (s′|s))s,s′∈S as

P (s′|s) =
∑
a∈A

π(s, a)Penv(s
′|s, a).

We also define the state reward function as

r(s) =
∑
a

π(s, a)r(s, a).

Although P and r(s) depend on the policy π, throughout this paper the policy will be fixed and
hence we will suppress this dependence in the notation.

The stationary distribution µ corresponding to the policy π is defined to be a nonnegative vector
with coordinates summing to one and satisfying µT = µTP . The Perron-Frobenius theorem guar-
antees that such a µ exists and is unique subject to some conditions on P , e.g., aperiodicity and
irreducibility (Gantmacher (1964)). We use µ(s) to denote each entry of µ.

The value function of the policy π is defined as:

V ∗(s) = Es,a∼π

[
+∞∑
t=0

γtr(st)

]
,

where Es,a∼π stands for the expectation when the starting state is s and actions are taken according
to policy π, and st is the t’th state encountered. Note that this quantity depends on π, but once again
we suppress this dependence because the policy will be fixed throughout this paper. Moreover,
note that, despite the star superscript, V ∗ is not the optimal value function but rather the true value
function corresponding to policy π.

It is well known that this value function satisfies the Bellman equation,

V ∗ = R+ γPV ∗, (1)

2

Published as a conference paper at ICLR 2023

where V ∗ is a vector whose i’th element is V ∗(si) and R is a vector whose i’th element is r(si).

We will further assume that rewards are bounded in [−rmax, rmax] as in the following assumption.
Assumption 2.1. For any s, a ∈ S ×A, we have |r(s, a)| ≤ rmax.

This immediately implies that
|V ∗(s)| ≤ rmax

1− γ
, ∀s ∈ S. (2)

2.2 MARKOV CHAIN NOISE MODEL

There are two standard sampling models where policy evaluation methods are usually considered.
The simplest model involves i.i.d. sampling of st at each step from stationary distribution µ.

Alternatively, in the Markov model the states st are collected from a single path of Markov chain
transitioning according to P . It is still assumed in this case that the initial distribution is µ, so
that the distribution of each st is still µ, with the difference that the successive states are now not
independent. This can always be approximately satisfied by generating a sufficiently long path from
P and ignoring the initial states.

Assuming that the underlying Markov chain mixes with a geometric rate is common in many anal-
yses, like Bhandari et al. (2018); Liu & Olshevsky (2021). We will also make this assumption.
Formally, let P t denote the matrix P raised to the t’th power, P t

s,: be the row of P t corresponding
to state s, and || · ||TV the total variation distance.
Assumption 2.2. There exists constant C > 0 and β ∈ (0, 1) such that

max
s

||P t
s,: − µ||TV ≤ Cβt.

This assumption guarantees ”mixing”: no matter the initial distribution, the state will get closer
and closer to the stationary distribution µ as t increases. As pointed out in Levin & Peres (2017),
this assumption always holds when the Markov chain is irreducible and aperiodic. Another useful
quantity is the mixing time, τmix(ϵmix), defined as the smallest integer t such that

max
s

||P t
s,: − µ||TV ≤ ϵmix.

Note that Assumption 2.2 implies

τmix(ϵmix) = logβ
ϵmix

C
. (3)

For simplicity, we will use τmix without specifying its dependence on ϵmix throughout the paper.

2.3 D-NORM AND DIRICHLET NORM IN MDPS

We now introduce the so-called D-norm || · ||D and the Dirichlet semi-norm || · ||Dir associated with
a policy. While the former has long been used for the analysis of temporal difference learning dating
back to Tsitsiklis & Van Roy (1996), the latter has, to our knowledge, been introduced in the context
of RL relatively recently in Ollivier (2018).

Let D = diag(µ(s)) be the diagonal matrix whose elements are given by the entries of the stationary
distribution µ. Given a function f : S → R, its D-norm is defined as

||f ||2D = fTDf =
∑
s∈S

µ(s)f(s)2. (4)

The D-norm is similar to the Euclidean norm except each entry is weighted proportionally to the
stationary distribution. We also define the Dirichlet semi-norm of f :

||f ||2Dir =
1

2

∑
s,s′∈S

µ(s)P (s′|s)(f(s′)− f(s))2. (5)

A semi-norm satisfies the triangle inequality and absolute homogeneity, as any norm, but it is not a
norm as it may be equal to zero at a non-zero vector. Note that ||f ||Dir depends on the policy both
through the stationary distribution µ(s) as well as through the transition matrix P .

3

Published as a conference paper at ICLR 2023

Finally, following Ollivier (2018), the weighted combination of the D-norm and the Dirichlet semi-
norm is denoted as N (f) and defined as

N (f) = (1− γ)||f ||2D + γ||f ||2Dir.

Note that
√
N (f) is a valid norm: since N (f) is quadratic, we can write N (f) = fTNf for

some symmetric matrix N ; examining the first term in the definition of N (f) we see that N ⪰
(1− γ)diag(π1, . . . , πn) ≻ 0 by irreducibility and aperiodicity.

2.4 NEURAL NETWORK BASED APPROXIMATION

In this section we closely follow the notation from the previous works in Cai et al. (2019); Allen-Zhu
et al. (2019); Liu et al. (2020); Ollivier (2018) on neural approximations. We define a multi-layer
fully connected neural network by the following recursion:

x(k) =
1√
m
σ
(
θ(k)x(k−1)

)
, for k ∈ {1, . . . ,K},

where σ is an activation function and the input is state of the MDP: x(0) ∈ S. Next, we define

V (s, θ) =
1√
m
bTx(K),

to be the output with no activation function on the output. We assume that each entry of θ(k) are
initialized from N(0, 1) and each entry of the vector b satisfies |br| ≤ 1, ∀r. We further assume that
all the hidden layers have the same width which we denote by m, i.e., all the matrices θ(k) have first
dimension of m. Note that the total number of layers in the neural network is denoted by K.

We will stack up the weights of different layers into a column vector θ consisting of the entries of
the matrices θ(1), . . . , θ(K), with norm defined by

||θ||2 =

K∑
k=1

||θ(k)||2F ,

where || · ||F is the Frobenius norm. During the training process, only the weights θ will be updated
while the weights b will be left to their initial value.

This particular definition of a neural network, as well as the decision to leave b fixed, is used by
many papers on both TD Learning (i.e., Xu & Gu (2020)) and Deep Neural Network (i.e., Liu et al.
(2020)) analysis. Although there is not an explicit bias term above, this definition does allow each
layer to have different bias. This can be reached by setting the last entry of x(0) to be 1 and last row
of each θ(k) to be (0, . . . , 0, 1).

We can view this neural network as mapping the parameters θ to a vector with as many entries as
the number of states. Specifically, we can define the vector V (θ) whose i’th entry is

[V (θ)]i = V (si, θ), ∀i ∈ 1, 2, . . . , n.

Note that n in the above equation denotes the number of states in the MDP, i.e., |S|. We remark that
this vector will never be actually used in the execution of any algorithms we discuss due to its large
size, but its use is still useful conceptually. The Jacobian of V (θ) is then the matrix

∇θV (θ) =

∇θV (s1, θ)
...

∇θV (sn, θ)

 ,

where, abusing standard notation, ∇θV (s, θ) are defined to be row vectors.

A standard assumption made to simplify the analysis is the following.

Assumption 2.3. Suppose for any i ∈ {1, 2, . . . , n}, ||si|| ≤ 1 where || · || stands for the l2-norm.

4

Published as a conference paper at ICLR 2023

Assumption 2.3 can always be satisfied by scaling, as we typically have control of how we choose
to represent the states of the MDP. It is also a common assumption that appears in many previous
works (e.g., Cai et al. (2019); Allen-Zhu et al. (2019)).

A function f is called L-Lipschitz if
|f(x)− f(y)| ≤ L|x− y|, ∀x, y.

And a differentiable function f : R → R is c0-smooth if
|f ′(x)− f ′(y)| ≤ c0|x− y|, ∀x, y,

where f ′ stands for the derivative of f . We find it helpful to make the following assumption:
Assumption 2.4. The activation function σ is l-Lipschitz and c0-smooth.

The smoothness condition implies that our results below are not directly applicable to popular func-
tions like ReLU. However, many activation functions are twice differentiable (e.g., sigmoid, tanh,
arctan, softplus) and one could always use a smooth approximation to a ReLU activation (e.g., GeLU
or ELU). We do need the smoothness of the input-to-output map as we will use the result from Liu
et al. (2020), which claims the neural network is O(1√

m
)-smoothness with respect to its parameters.

The following assumption is also required to implement their result:
Assumption 2.5. For any k ∈ {1, 2, . . . ,K}, given i ∈ {1, 2, . . . ,m}, there exists some constant
c(k) > 0, such that |x(k)

i | = Õ(1) at initialization. Here, x(k)
i means the i’th entry of x(k).

2.5 NEURAL TD

In this section, we introduce (projected) neural TD learning. At each time step t, this algorithm
samples state s from the stationary distribution from either of two sampling models discussed earlier,
generates the next state s′ in the MDP, and computes the temporal difference error, defined as

δt = r(s) + γV (s′, θt)− V (s, θt).

Defining g(θt) as
g(θt) = ∇θV (s, θt)δt,

projected neural TD updates the weights as
θt+1/2 = θt + αtg(θt),

θt+1 = Proj(θt+1/2),
(6)

where the projection is onto a ball of radius ω around the initial condition:
Proj(θ) = arg min

x:||x−θ0||≤ω
||x− θ||.

Projection is a common tool in neural TD and neural Q-learning to try to stabilize the iterates, since
divergence can occur (Achiam et al. (2019); Van Hasselt et al. (2018)). Most analyses of TD learning
proceed by comparing the evolution of TD to the mean-path update, defined as

θt+1/2 = θt + αtḡ(θt),

θt+1 = Proj(θt+1/2),

where
ḡ(θt) = E[g(θt)|θt]

=
∑
s

µ(s)∇θV (s, θt)Es′|s[r(s) + γV (s′, θt)− V (s, θt)]

= ∇θV (θt)
TD(R+ γPV (θt)− V (θt)).

It is convenient to rewrite ḡ(θt) in terms of the difference between V (θt) and V ∗, which can be done
by subtracting Eq.(1) with the result being

ḡ(θt) = ∇θV (θt)
TD(γP − I)(V (θt)− V ∗). (7)

For simplicity, for the rest of paper we will define Θ to be the set onto which we are projecting:
Θ = B(θ0, ω) = {θ | ||θ − θ0|| ≤ ω}.

Finally, we will say that V̂ ∗ is an ϵ-approximation to the true value function V ∗ if
max
s∈S

|V̂ ∗(s)− V ∗(s)| ≤ ϵ. (8)

We will denote θ̂∗ to be the point where the function V (θ̂∗) = V̂ ∗ is the ϵ-approximation of V ∗.

5

Published as a conference paper at ICLR 2023

3 OUR MAIN RESULT

We can now state the main contribution of this paper, which is a performance result for Neural TD.
We will require an assumption to the effect that the initialization is not too large.

Assumption 3.1. For all k ∈ {1, 2, . . . ,K}, ||θ(k)0 || ≤ O(
√
m).

This is a common assumption: theoretical justification can be found in Liu et al. (2020). In particular,
this assumption holds with high probability for a random Gaussian initialization if, for example, K
(the depth) grows slower than exponentially in m (the width).

Now we are ready to state our result.
Theorem 3.1. Suppose Assumption 2.1, 2.2, 2.3, 2.4, 2.5, 3.1 hold, θt is generated by projected
Neural TD with the constant step-size αt = α, and C, β come from the Assumption 2.2.

(a) Under i.i.d. sampling, we have

1

T

T−1∑
t=0

E[N (V (θt)− V (θ̂∗))] ≤
||θ0 − θ̂∗||2

2αT
+O

(
ϵ+

1√
m

)
+O

(
αϵ2
)
+

1

(1− γ)2
O (α) .

In particular, if α = T−1/2 and ϵ ≤ 1, we have

1

T

T−1∑
t=0

E[N (V (θt)− V (θ̂∗))] ≤
||θ0 − θ̂∗||2

2
√
T

+O

(
ϵ+

1√
m

)
+

1

(1− γ)2
O

(
1√
T

)
.

(b) Under Markov sampling, we have

1

T

T−1∑
t=0

E[N (V (θt)− V (θ̂∗))] ≤ ||θ0 − θ̂∗||2

2αT
+O

(
ϵ+

1√
m

)
+O

(
αϵ2
)
+

1

(1− γ)2
O (α)

+O

(
α
log C

α

1− β
ϵ2

)
+

1

(1− γ)2
O

(
α
log C

α

1− β

)
,

In particular, if α = T−1/2 and ϵ ≤ 1, we have

1

T

T−1∑
t=0

E[N (V (θt)− V (θ̂∗))] ≤ ||θ0 − θ̂∗||2

2
√
T

+O

(
ϵ+

1√
m

)
+

1

(1− γ)2
O

(
1√
T

)

+
1

(1− γ)2
O

(
1

1− β

log(C
√
T)√

T

)
.

Figure 1: Key
property of gradient
splitting: h(θ) has
the same inner
product with a − θ
as (1/2)∇f(θ).

In all O(·) notations above, we treat factors that do not depend on
T, ϵ,m, α, β, θ0 as constants.

As mentioned earlier, the key distinguishing feature of this theorem is the
choice of norm. The left-hand side of all the equations measures the differ-
ence between V (θt) and the best possible V (θ̂∗) within B(θ0, ω) by taking
the N (·) norm.

We note that since, trivially, ||f ||2D ≤ N (f)/(1 − γ), where γ is the dis-
count factor, one can simply replace the left-hand sides of all the equations by
||f ||2D to obtain results that look more similar to the previous literature on TD,
which usually proceeds based on an analysis in the D-norm (e.g., Tsitsiklis
& Van Roy (1996)).

As is common in analyses of SGD, the performance measure is the average
of performance measures from 1 to T . If a particular θt′ is sought that satis-
fies the bounds obtained, a standard trick is to choose t′ to be uniform from
1, . . . , T . In that case, the expectation E[N (V (θt′) − V (θ̂∗)] is exactly the
left-hand side of all the bounds in the theorem.

6

Published as a conference paper at ICLR 2023

Looking at the right-hand sides of all the equations, the theorem guarantees
a final error of O(ϵ + 1/

√
m), with a convergence rate that scales as Õ(1/

√
T). The difference

between the two cases is that that the Markov sampling case contains an additional term containing
the mixing time. As a result of this extra term, the convergence time in the Markov case is worse by
a factor of O(log

√
T).

(a) Mountaincar, 3 (b) Mountaincar, 5 (c) Mountaincar, 7

(d) Cartpole, 3 (e) Cartpole, 5 (f) Cartpole, 7

(g) Acrobot, 3 (h) Acrobot, 5 (i) Acrobot, 7

Figure 2: Averaged Bellman error.

We now revisit
the discussion of
the novelty of this
paper. First, in
contrast to previous
work, we do not
assume the projec-
tion radius ω has
to decay with m,
nor do we restrict
our analysis to a
single hidden layer
case. In our proof,
the projection ra-
dius appears as a
constant in the O(·)
notation, which
is why we need
to assume it is a
constant. Second,
the left-hand side of
the equations is a
measure of the error
V (θt) − V (θ̂∗),
which can be
thought of the dif-
ference between the
error of the neural
network and the
best possible error in B(θ0, ω). Moreover, as already discussed, the left-hand side of the equations
above is greater than the quantity

(1− γ)||V (θt)− V (θ̂∗)||2D = (1− γ)
∑
s

µ(s)(V (s, θt)− V (s, θ̂∗))
2,

which is a natural measure of the average error. The point is that the network is not being linearized
around the initial condition in any sense. Finally, no additional assumptions on the policy are being
made here; in particular, no assumptions that the policy is regular or that it is representable are neces-
sary. As outlined in the Introduction, out of the four potentially undesirable elements discussed here
(small projection radius, linearization around the initial condition, assumptions on policy, restriction
to single layer case) all previous papers suffered from at least three.

4 DISTINGUISHING FEATURE OF OUR ANALYSIS

The main technical difference between our work and the previous papers is the use of the function
N (·) to measure the approximation error. Here, we follow Ollivier (2018); Liu & Olshevsky (2021)
which explained why this function is the “right” function to analyze policy evaluation.

In Ollivier (2018) it was shown that if the matrix P corresponds to a reversible Markov chain, then
E[ḡ(θt)] = ∇θN (f) for some f . This makes neural TD very easy to analyze, as it can be viewed
as gradient descent. Unfortunately, in practice policies are almost never reversible.

In Liu & Olshevsky (2021), it was shown how to further use the function N (·) to analyze TD with
linear approximation when the policy is not necessarily reversible. The key idea was the notion of a

7

Published as a conference paper at ICLR 2023

gradient splitting: a linear function h(θ) is said to be a gradient splitting of a convex quadratic f(θ)
minimized at θ = a if

1

2
∇f(θ)T (a− θ) = h(θ)T (θ − a). (9)

(a) Mountaincar, 3 (b) Mountaincar, 5 (c) Mountaincar, 7

(d) Cartpole, 3 (e) Cartpole, 5 (f) Cartpole, 7

(g) Acrobot, 3 (h) Acrobot, 5 (i) Acrobot, 7

Figure 3: Distance to initialization divided by the projection radius.

In other words, h(θ)
has exactly the same
inner product with
the “direction to the
optimal solution”
as the true gradient
of f(θ) (up to the
factor of 1/2). The
significance of this
is that it allows
many analyses of
gradient descent
to be modified to
analyze TD with
linear approxima-
tion, since the key
step in analyses of
gradient descent is
usually to argue that
the left-hand side of
Eq. (9) is negative,
signifying that
gradient descent
“makes progress”
towards the optimal
solution. In Liu &
Olshevsky (2021)
it was shown that
for TD with linear
approximation, ḡ(θ)
is exactly the gradient splitting of N (f). We build on that idea in this paper as follows. We use
recent NTK-style bounds from Liu et al. (2020) to argue that with increasing width, the neural
approximation gets more linear. For finite m, we can then modify existing techniques for analyzing
gradient descent with errors in the gradient evaluations to analyze the neural TD update, which we
view as gradient splitting with error in the evaluations.

It should be stressed that the most interesting “regime” to which we expect these results to be ap-
plicable is when m is only moderately large. Intuitively, when m is too large, the network will be
very close to linear, and the benefit over taking random linear features will be small. In terms of
our bounds, in this case we would expect the ϵ term in Theorem 3.1 to be large. On the other hand,
when m is too small, the error bound scaling with width of m−1/2 will not be very attractive. On
the other hand, our results can be applied to the “middle range” – say m ∼ 100 – where, depend-
ing on the context of the problem, an ∼ m−1/2 error is acceptable. Informally, in this regime the
network will be sufficiently linear to converge well, but not so linear to lose approximation quality.
Our simulations confirm this, as we verify good approximations for networks of approximately this
width on several open AI benchmarks.

5 SIMULATIONS

It might be objected that many analysis of neural network training in the large-width regime proceed
by arguing that the neural network stays around its initial point (e.g., Chizat et al. (2019); Telgarsky
(2020)). If so, then the part of our results dealing with avoiding a projection radius that goes to zero
with m would not make much of a difference in practice. Here, we show empirically that, setting
the projection radius ω to be a constant rather than ω ∼ m−1/2 does make a substantial difference.

8

Published as a conference paper at ICLR 2023

We produce simulations on Open AI Gym tasks: Mountaincar, Cartpole and Acrobot. In each
task, a trained policy is used to sample data to train a fully connected neural network for policy
evaluation using Projected Neural TD learning. The policy in Mountaincar and Cartpole is trained
by Proximal Policy Optimization (PPO) (Schulman et al. (2017)) while in Acrobot it is trained by
Deep Q-Learning (DQN) (Mnih et al. (2015)). Both algorithms are implemented through the Stable
Baselines package Raffin et al. (2021).

(a) Mountaincar, 3 (b) Mountaincar, 5 (c) Mountaincar, 7

(d) Cartpole, 3 (e) Cartpole, 5 (f) Cartpole, 7

(g) Acrobot, 3 (h) Acrobot, 5 (i) Acrobot, 7

Figure 4: Gradient differences ||∇θV (st, θt) − ∇θV (st, θ0)|| as a measure
of nonlinearity of the neural network.

We run a total
of 2000 (5000
in Acrobot task)
steps on each task,
computing the y
value during the
training process
every 20 (50 in
Acrobot task) step.
Different widths
m are chosen for
each task. In each
figure, the x-axis
plots time steps
while the y-axis
plots the averaged
Bellman error, the
distance to initial-
ization (given by
||θt−θ0||

ω), and the
difference between
gradients (given by
||∇θV (st, θt) −
∇θV (st, θ0)||),
respectively. Each
subtitle of each fig-
ure suggests which
task is performed
on and how many
hidden layers are
used. It is clear
from the figures that
the networks we use are nonlinear. It is also clear that networks with a decaying projection radius
are significantly outperformed by networks with a constant projection radius.

6 CONCLUSIONS

We have provided an analysis of Projected Neural TD for policy evaluation. We have shown that if
the projection set is a ball of constant radius B(θ0, ω) around the initial point θ0, the final approx-
imation error is O(ϵ + 1/

√
m), where ϵ is the approximation quality of the best neural network in

B(θ0, ω) and m is the width of all hidden layers in the network. Our result improves on previous
works because it does not require taking the radius ω to decay with m, does not make any regularity
or representability assumptions on the policy, applies to any number of hidden layers, and bounds
the error associated with the neural approximation without any kind of linearization around the ini-
tial condition. We conjecture that unprojected neural TD converges to the optimal solution with high
probability provided it begins within a radius of O(

√
m) away from a point which exactly describes

the true value function. This conjecture is proved for single hidden layer networks. Finally, we have
demonstrated empirically that these changes can make a substantial difference in performance.

9

Published as a conference paper at ICLR 2023

REFERENCES

Joshua Achiam, Ethan Knight, and Pieter Abbeel. Towards characterizing divergence in deep Q-
learning. arXiv preprint arXiv:1903.08894, 2019.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pp. 242–252. PMLR, 2019.

Jalaj Bhandari, Daniel Russo, and Raghav Singal. A finite time analysis of temporal difference
learning with linear function approximation. In Conference on learning theory, pp. 1691–1692.
PMLR, 2018.

Qi Cai, Zhuoran Yang, Jason Lee, and Zhaoran Wang. Neural temporal-difference learning con-
verges to global optima. 2019.

Semih Cayci, Siddhartha Satpathi, Niao He, and R Srikant. Sample complexity and overparam-
eterization bounds for temporal difference learning with neural network approximation. arXiv
preprint arXiv:2103.01391, 2021.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
Advances in Neural Information Processing Systems, 32, 2019.

Persi Diaconis and Laurent Saloff-Coste. Logarithmic Sobolev inequalities for finite Markov chains.
The Annals of Applied Probability, 6(3):695–750, 1996.

FR Gantmacher. The theory of matrices. New York, 1964.

David A Levin and Yuval Peres. Markov chains and mixing times, volume 107. American Mathe-
matical Soc., 2017.

Chaoyue Liu, Libin Zhu, and Misha Belkin. On the linearity of large non-linear models: when
and why the tangent kernel is constant. Advances in Neural Information Processing Systems, 33:
15954–15964, 2020.

Rui Liu and Alex Olshevsky. Temporal difference learning as gradient splitting. In International
Conference on Machine Learning, pp. 6905–6913. PMLR, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Yann Ollivier. Approximate temporal difference learning is a gradient descent for reversible policies.
arXiv preprint arXiv:1805.00869, 2018.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

Walter Rudin. Principles of mathematical analysis, volume 3. McGraw-Hill New York, 1976.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Tao Sun, Yuejiao Sun, and Wotao Yin. On markov chain gradient descent. Advances in neural
information processing systems, 31, 2018.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3
(1):9–44, 1988.

Matus Telgarsky. Deep learning theory (Lecture Notes), 2020.

Gerald Tesauro. Temporal difference learning and TD-Gammon. Communications of the ACM, 38
(3):58–68, 1995.

10

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

Published as a conference paper at ICLR 2023

John Tsitsiklis and Benjamin Van Roy. Analysis of temporal-diffference learning with function
approximation. Advances in neural information processing systems, 9, 1996.

Hado Van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph Mo-
dayil. Deep reinforcement learning and the deadly triad. arXiv preprint arXiv:1812.02648, 2018.

David Williams. Probability with martingales. Cambridge university press, 1991.

Pan Xu and Quanquan Gu. A finite-time analysis of Q-learning with neural network function ap-
proximation. In International Conference on Machine Learning, pp. 10555–10565. PMLR, 2020.

11

Published as a conference paper at ICLR 2023

A PROOF FOR THE MAIN RESULT

A.1 USEFUL LEMMAS

Before we go into details, we first introduce the following lemmas.

Recall we have defined N (f) as

N (f) = (1− γ)||f ||2D + γ||f ||2Dir.

The first lemma implies an important property of N (·).
Lemma A.1. For any function f defined on the state space S, the following equation holds:

−N (f) = fTD(γP − I)f.

Proof. We can perform the following sequence of manipulations:

||f ||2Dir =
1

2

∑
s,s′

µ(s)P (s′|s)[f(s)− f(s′)]2

=
1

2

∑
s

µ(s)f(s)2 +
1

2

∑
s,s′

µ(s)P (s′|s)f(s′)2 −
∑
s,s′

µ(s)P (s′|s)f(s)f(s′)

=
1

2

∑
s

µ(s)f(s)2 +
1

2

∑
s′

µ(s′)f(s′)2 −
∑
s,s′

µ(s)P (s′|s)f(s)f(s′)

= ||f ||2D −
∑
s,s′

µ(s)P (s′|s)f(s)f(s′),

where the first equation uses Eq.(5) and the forth equation uses Eq.(4). Thus,

fTD(γP − I)f = −fTDf + γfTD(Pf)

= −||f ||2D + γ
∑
s

µ(s)f(s)
∑
s′

P (s′|s)f(s′)

= −(1− γ)||f ||2D − γ||f ||2Dir

= −N (f).

The following lemmas are some variations of the mean-value theorem. In this lemma and below, we
adopt the notation that gradients are row vectors.

Lemma A.2. (a). Let h : R → R be any differentiable function. For any x, y ∈ R, there exists
λ ∈ (0, 1) and z = λx+ (1− λ)y such that

h(y)− h(x) = h′(z)(y − x).

(b). Let ξ : Ra → R be any differentiable function. For any x, y ∈ Ra, there exists λ ∈ (0, 1)
and z = λx+ (1− λ)y such that

ξ(y)− ξ(x) = ξ′(z)(y − x).

(c). Let f : Ra → Rb be any differentiable function and e ∈ Rb be any vector. For any
x, y ∈ Ra, there exists λ ∈ (0, 1) and z = λx+ (1− λ)y such that

eT (f(y)− f(x)) = eT f ′(z)(y − x),

where f ′(z) is the Jacobian at z.

Proof. (a). This is a direct result of the well-known mean value theorem (Theorem 5.10 in
Rudin (1976)).

12

Published as a conference paper at ICLR 2023

(b). Define h : R → R such that h(w) = ξ(x + w(y − x)). Using the above fact, for any
u, v ∈ R, there exists λ ∈ (0, 1) such that

h(v)− h(u) = h′(λu+ (1− λ)v)(v − u).

By letting v = 1 and u = 0,

ξ(y)− ξ(x) = ξ′(λx+ (1− λ)y)(y − x).

(c). Define ξ : Ra → R such that ξ = eT f . Using the above fact, for any vectors x, y ∈
Ra,there exists λ ∈ (0, 1) and z = λx+ (1− λ)y such that

ξ(y)− ξ(x) = ξ′(z)(y − x).

Notice that in this case, ξ(y)− ξ(x) = eT (f(y)− f(x)) and ξ′(z) = eT f ′(z). So for any
vectors x, y, there exists z = λx+ (1− λ)y such that

eT f(y)− eT f(x) = eT f ′(z)(y − x),

which is exactly what needs to be proved.

Lemma A.3. Let f : Ra → Rb be any differentiable function. For any x, y ∈ Ra, there exists
λ ∈ (0, 1) and z = λx+ (1− λ)y such that

||f(y)− f(x)|| ≤ ||f ′(z)|| ||y − x||.

Proof. Let us take e = f(y)− f(x) in Lemma A.2. We thus have

(f(y)− f(x))T (f(y)− f(x)) = (f(y)− f(x))T f ′(z)(y − x).

We now apply Cauchy-Schwarz inequality on the right hand side to obtain,

||f(y)− f(x)||2 ≤ ||f(y)− f(x)|| · ||f ′(z)(y − x)||,

and finally using the definition of matrix norm,

||f(y)− f(x)|| ≤ ||f ′(z)(y − x)|| ≤ ||f ′(z)|| · ||y − x||.

The next lemma shows how the mean-value theorem can help to analyze Neural TD Learning.

Lemma A.4. The Projected Neural TD Learning with a mean-path update can be rewritten as

θt+1 = Proj(θt + αt(ḡ1(θt) + ḡ2(θt) + ḡ3(θt)))

with ḡ1(θt), ḡ2(θt), ḡ3(θt) defined as follows:

ḡ1(θt) = ∇θV (θmid
1)TD(γP − I)(V (θt)− V (θ̂∗)), (10)

ḡ2(θt) = (∇θV (θt)−∇θV (θmid
1))TD(γP − I)(V (θt)− V (θ̂∗)), (11)

ḡ3(θt) = ∇θV (θt)
TD(γP − I)(V̂ ∗ − V ∗), (12)

where λ ∈ [0, 1] is a scalar and θmid
1 = λθt + (1− λ)θ̂∗ is a vector such that

(θt−θ̂∗)
T∇θV (θmid

1)TD(γP−I)(V (θt)−V (θ̂∗)) = (V (θt)−V (θ̂∗))
TD(γP−I)(V (θt)−V (θ̂∗)).

(13)

Proof. By Eq. (7),

ḡ(θt) =∇θV (θt)
TD(γP − I)(V (θt)− V ∗)

=∇θV (θt)
TD(γP − I)(V (θt)− V (θ̂∗)) +∇θV (θt)

TD(γP − I)(V̂ ∗ − V ∗).
(14)

13

Published as a conference paper at ICLR 2023

Now let D(γP − I)(V (θt)−V (θ̂∗)) be the vector e in Lemma A.2. There exists a scalar λ ∈ (0, 1)

and a vector θmid
1 = λθt + (1− λ)θ̂∗ such that

(θt−θ̂∗)
T∇θV (θmid

1)TD(γP−I)(V (θt)−V (θ̂∗)) = (V (θt)−V (θ̂∗))
TD(γP−I)(V (θt)−V (θ̂∗)).

This gives the reason to divide Eq.(14) into two parts as follows:

∇θV (θt)
TD(γP − I)(V (θt)− V (θ̂∗))

=∇θV (θmid
1)TD(γP − I)(V (θt)− V (θ̂∗))

+ (∇θV (θt)−∇θV (θmid
1))TD(γP − I)(V (θt)− V (θ̂∗)).

The following lemma builds the relationship between xTDy and expectation.

Lemma A.5. Let x, y be two vectors and x(i), y(i) denote their i’th entries, respectively. Let x̄, ȳ
be two scalars such that |x(i)| ≤ x̄ and |y(i)| ≤ ȳ hold for all i. The following results hold:

xTDy = yTDx ≤ x̄ȳ,

xTDPy ≤ x̄ȳ,

yTDPx ≤ x̄ȳ.

Proof. We expand xTDy, xTDPy and yTDPx as follows:

xTDy = yTDx =
∑
i

µ(si)x(i)y(i) ≤
∑
i

µ(si)x̄ȳ ≤ x̄ȳ,

xTDPy =
∑
i

µ(si)x(i)
∑
j

P (sj |si)y(j) ≤ x̄ȳ
∑
i

µ(si)
∑
j

P (sj |si) ≤ x̄ȳ,

yTDPx =
∑
i

µ(si)y(i)
∑
j

P (sj |si)x(j) ≤ x̄ȳ
∑
j

∑
i

µ(si)P (sj |si) ≤ x̄ȳ.

The following lemmas implies two important properties of neural network approximation: Lips-
chitzness and smoothness.

Lemma A.6. For all k ∈ {1, 2, . . . ,K},

||θ(k)|| ≤ O(
√
m).

Proof.

||θ(k)|| ≤ ||θ(k) − θ
(k)
0 ||+ ||θ(k)0 ||

≤ ω + ||θ(k)0 ||
≤ O(

√
m),

where the second inequality is by projection and the last inequality uses Assumption 3.1 and the fact
ω is constant to m.

Lemma A.7. For all k ∈ {1, 2, . . . ,K},

||x(k)|| ≤ O(
√
m).

14

Published as a conference paper at ICLR 2023

Proof. From Assumption 2.3, ||x(0)|| ≤ 1. By Lemma A.6,

||x(1)||2 =

∣∣∣∣∣∣∣∣ 1√
m
σ(θ(1)x(0))

∣∣∣∣∣∣∣∣2
≤ 1

m
l2||θ(1)||2||x(0)||2 + |σ(0)|2

≤ O(m).

By induction, suppose ||x(k)||2 ≤ O(m). By Lemma A.6,

||x(k+1)||2 = || 1√
m
σ(θ(k+1)x(k))||2

≤ 1

m
l2||θ(k+1)||2||x(k)||2 + |σ(0)|2

≤ O(m).

Lemma A.8. For all k ∈ {1, 2, . . . ,K},

||∇x(k−1)x(k)|| ≤ O(1).

Proof.

∇x(k−1)x(k)(i, j) =
1√
m
σ′

∑
j

θ(k)(i, j)x(k−1)(j)

 θ(k)(i, j),

which implies

||∇x(k−1)x(k)||2 = sup
||v||=1

m∑
i=1

∑
j

∇x(k−1)x(k)(i, j)vj

2

= sup
||v||=1

1

m
||Σ′θ(k)v||2

≤ 1

m
||Σ′||2 · ||θ(k)||2

≤ O(1).

where Σ′ is a diagonal matrix with Σ′(i, i) = σ′(
∑

j θ
(k)(i, j)x(k−1)(j)). The last inequality holds

because of Lemma A.6.

Lemma A.9. For all k ∈ {1, 2, . . . ,K},

||∇θ(k)x(k)|| ≤ O(1)

Here, ∇θ(k)x(k) is defined to be a matrix whose (i, (j−1)m+h)’th entry ∇θ(k)x(k)(i, j, h) is given
by

∇θ(k)x(k)(i, j, h) =
∂x(k)(i)

∂θ(k)(j, h)
.

Proof.

∇θ(k)x(k)(i, j, j′) =
1√
m
1{i = j}σ′

(∑
h

θ(k)(i, h)x(k−1)(h)

)
x(k−1)(j′).

We can write this as

∇θ(k)x(k)(i, j, j′) =
1√
m
1{i = j}ξ(i)x(k−1)(j′)

15

Published as a conference paper at ICLR 2023

which implies

||∇θ(k)x(k)||2 = sup
||V ||F=1

m∑
i=1

∑
j,j′

∇θ(k)x(k)(i, j, j′)Vj,j′

2

=
1

m
sup

||V ||F=1

m∑
i=1

∑
j,j′

1{i = j}ξ(i)x(k−1)(j′)Vj,j′

2

=
1

m
sup

||V ||F=1

m∑
i=1

∑
j

1{i = j}ξ(i)[V xk−1]j

2

=
1

m
sup

||V ||F=1

m∑
i=1

ξ(i)2
[
V xk−1

]2
i

= sup
||V ||F=1

1

m
||Σ′V x(k−1)||2

≤ 1

m
||Σ′||2 · ||x(k−1)||2

≤ O(1).

The last inequality holds because of Lemma A.7.

Lemma A.10. For all s ∈ S and θ,

||∇θV (s, θ)|| ≤ O(1).

with respect to m.

Proof. Since each entry of b satisfies |br| ≤ 1, it is easy to see that

||∇x(K)V (s, θ)|| = 1√
m
||b|| ≤ 1.

By Lemma A.8, Lemma A.9, and the chain rule,

||∇θ(k)V (s, θ)|| = ||∇x(K)V (s, θ)∇x(K−1)x(K) · · · ∇x(k)x(k+1)∇θ(k)x(k)|| ≤ O(1).

It follows:

||∇θV (s, θ)||2 = sup
||V ||F=1

K∑
k=1

(∇θ(k)V (s, θ)Vk)
2 ≤ O(1).

Lemma A.11. The Hessian matrix, which is ∇2
θV (s, θ), has a norm of O(m−0.5). In other words,

||∇2
θV (s, θ)|| ≤ O(m−0.5).

This is a direct result of Theorem 3.2 in Liu et al. (2020). Notice that since we assume Assump-
tion 3.1 and2.5 (which correspond to Lemma G.1 and Lemma G.4 in Liu et al. (2020)) holds with
probability 1, Lemma A.11 also holds with probability 1.

The following lemma implies that the update during each step will not be too large.

Lemma A.12. We have the following bound for ||g(θt)||:

||g(θt)||2 ≤ O(ϵ2) +
1

(1− γ)2
O(1).

16

Published as a conference paper at ICLR 2023

Proof. Recall that Eq. (1) tell us the property V ∗ satisfies, and it can be rewritten as

V ∗(s) = r(s) + γ
∑
s′′

P (s′′|s)V ∗(s′′).

Moreover, recall that g(θt) is defined to be

g(θt) = ∇θV (s, θt) [r(s) + γV (s′, θt)− V (s, θt)]

. This immediately implies that g(θt) is actually a random variable and implicitly relies on the state
s. This allows g(θt) to be rewritten as

g(θt) =∇θV (s, θt) [r(s) + γV (s′, θt)− V (s, θt)]

=∇θV (s, θt)

[
V ∗(s)− V (s, θt) + γ

∑
s′′

P (s′′|s)(V (s′, θt)− V ∗(s′′))

]

=∇θV (s, θt)

[(
V (s, θ̂∗)− V (s, θt)

)
+
(
V ∗(s)− V (s, θ̂∗)

)
+ γ

∑
s′′

P (s′′|s)
(
V (s′, θt)− V (s′, θ̂∗) + V (s′, θ̂∗)− V ∗(s′) + V ∗(s′)− V ∗(s′′)

)]
=∇θV (s, θt)

[
f̂(s) +

(
V ∗(s)− V (s, θ̂∗)

)
+ γ

∑
s′′

P (s′′|s)
(
−f̂(s′) + V (s′, θ̂∗)− V ∗(s′) + V ∗(s′)− V ∗(s′′)

)]
.

where, for simplicity, we denote f̂(s) = V (s, θ̂∗)− V (s, θt). Now, ||g(θt)||2 can be bounded as

||g(θt)||2 ≤5||∇θV (s, θt)||2
[
f̂(s)2 +

(
γ
∑
s′′

P (s′′|s)f̂(s′)

)2

+
(
V ∗(s)− V (s, θ̂∗)

)2
+

(
γ
∑
s′′

P (s′′|s)(V (s′, θ̂∗)− V ∗(s′)

)2

+

(
γ
∑
s′′

P (s′′|s)(V ∗(s′)− V ∗(s′′))

)2]
.

There are five different terms, and now we will bound them respectively. By Lemma A.10 which
says f̂(s) is O(1)-Lipschitz and the fact that ||θt − θ̂∗|| ≤ ω,

f̂(s)2 ≤ O(1).

Using the above fact, [
γ
∑
s′′

P (s′′|s)f̂(s′)

]2
= γ2f̂(s′)2 ≤ γ2O(1).

Using Eq.(8) , we can derive [
V ∗(s)− V (s, θ̂∗)

]2
≤ O(ϵ2).

Using the above fact,[
γ
∑
s′′

P (s′′|s)(V (s′, θ̂∗)− V ∗(s′))

]2
= γ2

[
V (s′, θ̂∗)− V ∗(s′)

]2
≤ γ2O(ϵ2).

Using Eq.(2) and Jensen’s inequality,[
γ
∑
s′′

P (s′′|s)(V ∗(s′)− V ∗(s′′))

]
≤ γ2

∑
s′′

P (s′′|s)
(
2rmax

1− γ

)2

=
γ2

(1− γ)2
O(1).

17

Published as a conference paper at ICLR 2023

Combine the above five facts, and we have the bound for ||g(θt)||2:

||g(θt)||2 ≤5||∇θV (s, θt)||2
[
f̂(s)2 +

(
γ
∑
s′′

P (s′′|s)f̂(s′)

)2

+
(
V ∗(s)− V (s, θ̂∗)

)2
+

(
γ
∑
s′′

P (s′′|s)(V (s′, θ̂∗)− V ∗(s′)

)2

+

(
γ
∑
s′′

P (s′′|s)(V ∗(s′)− V ∗(s′′))

)2]
≤5||∇θV (s, θt)||2

(
O(1) + γ2O(1) +O(ϵ2) + γ2O(ϵ2) +

γ2

(1− γ)2
O(1)

)
≤(1 + γ2)O(1 + ϵ2) +

γ2

(1− γ)2
O(1)

(15)
where the last inequality uses Lemma A.10. Since 0 ≤ γ ≤ 1, we can simplify the bound as

||g(θt)||2 ≤ O(ϵ2) +
1

(1− γ)2
O(1).

A.2 PROOF FOR THE MAIN RESULT

Proof. Consider Projected Neural TD Learning, it is easy to see

||θt+1 − θ̂∗||2 = ||Proj(θt + αtg(θt))− θ̂∗||2

≤ ||θt − θ̂∗ + αtg(θt)||2

= ||θt − θ̂∗||2 + 2αt(θt − θ̂∗)
T g(θt) + α2

t ||g(θt)||2

= ||θt − θ̂∗||2 + 2αt(θt − θ̂∗)
T ḡ(θt) + α2

t ||g(θt)||2 + 2αt(θt − θ̂∗)
T (g(θt)− ḡ(θt)).

(16)

First, we consider 2αt(θt − θ̂∗)
T ḡ(θt). Lemma A.4 allows us to divide it into several parts and

bound them respectively as follows:

2αt(θt − θ̂∗)
T ḡ(θt) = 2αt(θt − θ̂∗)

T (ḡ1(θt) + ḡ2(θt) + ḡ3(θt)).

To bound (θt − θ̂∗)
T ḡ1(θt),

(θt − θ̂∗)
T ḡ1(θt)

=(θt − θ̂∗)
T∇θV (θmid

1)TD(γP − I)(V (θt)− V (θ̂∗))

=(V (θt)− V (θ̂∗))
TD(γP − I)(V (θt)− V (θ̂∗))

=−N (V (θt)− V (θ̂∗)),

where the first equality is by Eq.(10), the second equality is by Eq. (13), and the third equality is by
setting f = V (θt)− V (θ̂∗) in Lemma A.1.

To bound (θt−θ̂∗)
T ḡ2(θt), we first notice that Lemma A.11 means V (s, θ) is O(m−0.5)-smoothness

with respect to θ. Hence,

||∇θV (s, θt)−∇θV (s, θmid
1)|| ≤ O(m−0.5) · ||θt − θmid

1 || = O(m−0.5),

where the inequality is by Lemma A.11 and the equality is because both θt and θmid
1 are in B(θ0, ω).

Similarly, Lemma A.10 tells us that V (s, θ) is O(1)-Lipschitz. This means

||V (s, θt)− V (s, θ̂∗)|| ≤ O(1) · ||θt − θ̂∗|| = O(1),

where the inequality is by Lemma A.10 and the equality is because both θt and θ̂∗ lie in B(θ0.ω).
These two facts imply that each entry of (∇θV (θt) − ∇θV (θmid

1))(θt − θ̂∗) is upper-bounded by

18

Published as a conference paper at ICLR 2023

O(m−0.5) and each entry of V (θt)− V (θ̂∗) is upper-bounded by O(1). With this fact,

(θt − θ̂∗)
T ḡ2(θt)

=(θt − θ̂∗)
T (∇θV (θt)−∇θV (θmid

1))TD(γP − I)(V (θt)− V (θ̂∗))

≤(1 + γ)O(m−0.5)

≤O(m−0.5).

where the equality is by Eq.(11) and the first inequality is by setting x to be (∇θV (θt) −
∇θV (θmid

1))(θt − θ̂∗), y to be V (θt)− V (θ̂∗) in Lemma A.5.

To bound (θt − θ̂∗)
T ḡ3(θt),

(θt − θ̂∗)
T ḡ3(θt)

=(θt − θ̂∗)
T∇θV (θt)

TD(γP − I)(V̂ ∗ − V ∗)

≤(1 + γ)O(ϵ)

≤O(ϵ),

where the equality is by Eq.(12) and the first inequality is by setting x to be ∇θV (θt)(θt − θ̂∗), y to
be V̂ ∗ − V ∗in Lemma A.5, as each entry of ∇θV (θt)(θt − θ̂∗) is bounded by O(1) using Lemma
A.10 and each entry of V̂ ∗ − V ∗ is bounded by ϵ using Assumption 8.

Combining the above facts,

2αt(θt − θ̂∗)
T ḡ(θt) ≤ −2αtN (V (θt)− V (θ̂∗)) +O(αt(m

−0.5 + ϵ)),

which is the bound of the first part in Eq.(16).

Second, we consider α2
t ||g(θt)||2. By Lemma A.12,

α2
t ||g(θt)||2 ≤ O(α2

t ϵ
2) +

1

(1− γ)2
O(α2

t).

The above facts are all we need to establish the result when each st is sampled i.i.d. from µ. In
summary,

2αt(θt − θ̂∗)
T ḡ(θt) + α2

t ||g(θt)||2 ≤− 2αtN (V (θt)− V (θ̂∗))

+O(αt(m
−0.5 + ϵ)) +O(α2

t ϵ
2) +

1

(1− γ)2
O(α2

t),

which just simply combines the bound for 2αt(θt − θ̂∗)
T ḡ(θt) and α2

t ||g(θt)||2 we obtained earlier.

Given θt, taking expectation on both sides of Eq.(16):

E[||θt+1 − θ̂t||2]
≤||θt − θ̂∗||2 + 2αt(θt − θ̂∗)ḡ(θt) + E[α2

t ||g(θt)||2] + 2αt(θt − θ̂∗)E[g(θt)− ḡ(θt)]

=||θt − θ̂∗||2 + 2αt(θt − θ̂∗)ḡ(θt) + E[α2
t ||g(θt)||2]

≤||θt − θ̂∗||2 − 2αtN (V (θt)− V (θ̂∗)) +O(αt(m
−0.5 + ϵ)) +O(α2

t ϵ
2) +

1

(1− γ)2
O(α2

t),

where the equality uses the condition that given st are sampled i.i.d. from µ, which will lead to
E[g(θt)− ḡ(θt)] = 0. From now on we fix αt = α, and this leads to

E[||θt+1 − θ̂∗||2]
2α

−E[||θt − θ̂∗||2]
2α

≤ −E[N (V (θt)−V (θ̂∗))]+O(m−0.5+ϵ)+O(αϵ2)+
1

(1− γ)2
O(α).

Telescoping a sum from 1 to T and dividing both sides by T , we establish the result in i.i.d. case.

To continue with the non i.i.d. case, we need to consider 2α(θt − θ̂∗)
T (g(θt) − ḡ(θt)) in Eq.(16)

which is no longer 0. We will use τmix, the mixing time defined in Eq.(3), to split it into two terms
and bound them separately. This idea is from Sun et al. (2018).

19

Published as a conference paper at ICLR 2023

Our first step is to divide it into two terms:

2α(θt − θ̂∗)(g(θt)− ḡ(θt)) = 2α(θt − θt−τmix
)(g(θt)− ḡ(θt)) + 2α(θt−τmix

− θ̂∗)(g(θt)− ḡ(θt)),
(17)

To bound 2α(θt − θt−τmix)(g(θt) − ḡ(θt)), notice that Lemma A.12 implies ||g(θt)|| ≤ O(ϵ) +
1

1−γO(1). As a consequence of Eq.(6), we have

||θt − θt−τmix || ≤||θt−1 − θt−τmix + αg(θt−1)||
≤||θt−2 − θt−τmix

+ α [g(θt−1) + g(θt−2)] ||
≤ · · ·
≤||θt−τmix − θt−τmix + α [g(θt−1) + g(θt−2) + · · ·+ g(θt−τmix)] ||

≤
[
O(ϵ) +

1

1− γ
O(1)

]
ατmix.

Further, the same upper bound that g(θt) has holds for ḡ(θt) since ḡ(θt) = E[g(θt)]. These obser-
vations imply that

2α(θt − θt−τmix)(g(θt)− ḡ(θt)) ≤ α2τmix

[
O(ϵ2) +

1

(1− γ)2
O(1)

]
.

To bound 2α(θt−τmix − θ̂∗)(g(θt) − ḡ(θt)), observe that, conditioned on θt−τmix , the quantity
θt−τmix

− θ̂∗ is deterministic, and E[g(θt)− ḡ(θt)|θt−τmix] can be bounded by

E[g(θt)− ḡ(θt)|θt−τmix
] ≤

[
O(ϵ) +

1

1− γ
O(1)

]
max

s
||P τmix

s,: − µ||TV

≤
[
O(ϵ) +

1

1− γ
O(1)

]
ϵmix.

The first inequality follows because, conditional on st−τmix
, the random variable st has the distribu-

tion of one row of P τmix . Thus, the second term in Eq.(17) can be bounded as

E[2α(θt−τmix
− θ̂∗)(g(θt)− ḡ(θt))] = E[E[2α(θt−τmix

− θ̂∗)(g(θt)− ḡ(θt))|θt−τmix
]]

≤
[
O(ϵ) +

1

1− γ
O(1)

]
αϵmix.

Thus, coming back to Eq.(17), we obtain that

E[2α(θt− θ̂∗)(g(θt)− ḡ(θt))] ≤ α2τmix

[
O(ϵ2) +

1

(1− γ)2
O(1)

]
+

[
O(ϵ) +

1

1− γ
O(1)

]
αϵmix.

Now let ϵmix = α, by the definition of τmix, τmix =
log α

C

log β . Using the fact that log x ≤ x−1, ∀x > 0,
we derive

log α
C

log β
≤

log α
C

β − 1
=

log C
α

1− β
,

where the first inequality is because log β ≤ β − 1 < 0 and log α
C ≤ 0. The bound can be rewritten

as

E[2αt(θt − θ̂∗)(g(θt)− ḡ(θt))] ≤ α2 log
C
α

1− β

[
O(ϵ2) +

1

(1− γ)2
O(1)

]
+

[
O(ϵ) +

1

1− γ
O(1)

]
α2.

Now we are ready to consider Eq.(16). Taking expectation on both sides,

E[2α(θt − θ̂∗)
T g(θt) + α2||g(θt)||2]

≤− 2αN (V (θt)− V (θ̂∗)) +O(α(m−0.5 + ϵ)) +O(α2ϵ2) +
1

(1− γ)2
O(α2)

+ α2 log
C
α

1− β

[
O(ϵ2) +

1

(1− γ)2
O(1)

]
+

[
O(ϵ) +

1

1− γ
O(1)

]
α2

=− 2αN (V (θt)− V (θ̂∗)) +O(α(m−0.5 + ϵ)) +O(α2ϵ2) +
1

(1− γ)2
O(α2)

+O(α2 log
C
α

1− β
ϵ2) +

1

(1− γ)2
O(α2 log

C
α

1− β
).

20

Published as a conference paper at ICLR 2023

Rewrite this inequality as

E[||θt+1 − θ̂∗||2]
2α

− E[||θt − θ̂∗||2]
2α

=−N (V (θt)− V (θ̂∗)) +O(m−0.5 + ϵ) +O(αϵ2) +
1

(1− γ)2
O(α)

+O(α
log C

α

1− β
ϵ2) +

1

(1− γ)2
O(α

log C
α

1− β
).

Telescoping a sum from 1 to T and dividing both sides by T , we establish the result in non the i.i.d.
case.

21

Published as a conference paper at ICLR 2023

B ANALYSIS OF UNPROJECTED TD LEARNING – PROOF OF OUR
CONJECTURE FOR THE SINGLE HIDDEN LAYER CASE

B.1 RESULT WITHOUT PROJECTION

Here we prove that when the distance from the optimal solution is O(
√
m), unprojected TD learning

converges with high probability. We begin by standardizing notation.

Recall g(θt) is defined by
g(θt) = ∇θV (s, θt)δt,

where
δt = r(s) + γV (s′, θt)− V (s, θt).

Without projection, there is only one step in the algorithm, which is

θt+1 = θt + αtg(θt).

We call this algorithm Non Projected Neural TD Learning. Similarly to the way we proceeded
earlier in this paper, Non Projected Neural TD Learning with mean-path update is given by

θt+1 = θt + αtḡ(θt).

We will need to make the following assumption on exact approximation, which is stronger than what
we assumed in the projected case.
Assumption B.1. There exists some θ∗ such that V (θ∗) = V ∗.

Now, for simplicity of notations, we also introduce the following notation. Remember the smallest
eigenvalue λmin of some matrix A is defined as

λmin(A) = argmin
x

||Ax||
||x||

.

A similar way can be applied to define the smallest 2, D eigenvalue σ2,D
min of a matrix A:

σ2,D
min(A) = argmin

x

||Ax||D
||x||

.

For simplicity, we will use σ2,D
min to denote the 2, D eigenvalue of ∇θV (θ∗).

We will always suppose each st is sampled i.i.d. from µ. We now introduce the following result.
Theorem B.1. In the Non Projected Neural TD learning using a one hidden layer neural network,
smooth and Lipschitz activation function, suppose each st are sampled i.i.d from µ, and stepsize is
chosen to be αt =

1
λ(t+1) . Further, let A be the event

A =

{
sup
t

Xt <
2(1− γ)(σ2,D

min)
2λ− 3l4(1 + γ2)

4(1 + γ)c0l
m0.5,

}
and assume

E
[
||θ0 − θ∗||2

]
<

(
2(1− γ)(σ2,D

min)
2λ− 3l4(1 + γ2)

)2
64(1 + γ)2c20l

2λ2
mδ − 2.

Then, A happens with probability at least 1− δ and the sequence
{
E
[
||θt − θ∗||2|A

]}
converges to

0.

B.2 USEFUL LEMMAS

Lemma B.1. (θt − θ∗)
T ḡ(θt) can be rewritten as

(θt − θ∗)
T ḡ(θt) = ḡ1(θt) + ḡ2(θt) + ḡ3(θt),

where ḡ1(θt), ḡ2(θt), ḡ3(θt) are defined as follows:

ḡ1(θt) = (θt − θ∗)
T∇θV (θ∗)

TD(γP − I)∇θV (θ∗)(θt − θ∗), (18)

22

Published as a conference paper at ICLR 2023

ḡ2(θt) = (θt − θ∗)
T (∇θV (θt)−∇θV (θ∗))

TD(γP − I)(V (θt)− V (θ∗)), (19)
ḡ3(θt) = (θt − θ∗)

T∇θV (θ∗)
TD(γP − I)(∇θV (θmid

2)−∇θV (θ∗))(θt − θ∗). (20)
Here, λ2 ∈ [0, 1] is a scalar and θmid

2 = λ2θt + (1− λ2)θ∗ is a vector such that

(θt−θ∗)
T∇θV (θ∗)

TD(γP−I)∇θV (θmid
4)(θt−θ∗) = (θt−θ∗)

T∇θV (θ∗)
TD(γP−I)(V (θt)−V (θ∗)).

Proof. First, we divide (θt − θ∗)
T ḡ(θt) into two parts,

(θt − θ∗)
T ḡ(θt) = (θt − θ∗)

T∇θV (θt)
TD(γP − I)(V (θt)− V (θ∗))

= (θt − θ∗)
T∇θV (θ∗)

TD(γP − I)(V (θt)− V (θ∗))

+ (θt − θ∗)
T (∇θV (θt)−∇θV (θ∗))

TD(γP − I)(V (θt)− V (θ∗))

= (θt − θ∗)
T∇θV (θ∗)

TD(γP − I)(V (θt)− V (θ∗)) + ḡ2(θt)

where the first equality is by the definition of ḡ(θt) in Eq.(7). Now let (θt−θ∗)
T∇θV (θ∗)

TD(γP −
I) be the vector e in Lemma A.2. There exists a scalar λ2 ∈ [0, 1] and a vector θmid

2 = λ2θt + (1−
λ2)θ∗ such that

(θt−θ∗)
T∇θV (θ∗)

TD(γP−I)∇θV (θmid
2)(θt−θ∗) = (θt−θ∗)

T∇θV (θ∗)
TD(γP−I)(V (θt)−V (θ∗)).

Using this fact, (θt − θ∗)
T∇θV (θ∗)

TD(γP − I)(V (θt)− V (θ∗)) can be divided by

(θt − θ∗)
T∇θV (θ∗)

TD(γP − I)(V (θt)− V (θ∗))

= (θt − θ∗)
T∇θV (θ∗)

TD(γP − I)∇θV (θ∗)(θt − θ∗)

+ (θt − θ∗)
T∇θV (θ∗)

TD(γP − I)(∇θV (θmid
2)−∇θV (θ∗))(θt − θ∗)

= ḡ1(θt) + ḡ3(θt).

Lemma B.2. If the activation function is l-Lipschitz and c0-smooth, for any s, θ1 and θ2, the in-
equalities

||∇θV (s, θ1)−∇θV (s, θ2)|| ≤ c0m
−0.5||θ1 − θ2||,

||∇θV (s, θ1)|| ≤ l

hold where c1 is a scalar that is independent of m and θ.

Proof. Using the definition of neural network in Section 2.4, one hidden layer neural network would
be simplified as

V (s, θ) =
1√
m

m∑
r=1

brσ(θ
rT s).

It is easy to see that

∇θV (s, θ) =
1√
m
[b1σ

′(θ1
T
s)sT , · · · , bmσ′(θmT s)sT]T .

Suppose the activation function σ is c0-smooth. That is, for any x and y,

||σ′(x)− σ′(y)|| ≤ c0||x− y||.
This means

||∇θV (s, θ1)−∇θV (s, θ2)||2 =
1

m
||[b1(σ′(θ11

T
s)− σ′(θ12

T
s))sT , · · · , bm(σ′(θm1

T s)− σ′(θm2
T s))sT]||2

≤ 1

m

∑
r

||s||2(σ′(θr1
T s)− σ′(θr2

T s))2

≤ 1

m

∑
r

||s||2c20(θr1
T s− θr2

T s)2

≤ 1

m

∑
r

||s||4c20||θr1 − θr2||2

=
c20
m
||θ1 − θ2||2

23

Published as a conference paper at ICLR 2023

which proves the first part of the lemma. Now let us move on to the second part of the lemma. By
Lipschitzness,

||∇V (s, θ1)||2 =
1

m
||[b1σ′(θ11

T
s)sT , · · · , bmσ′(θm1

T s)sT]||2

≤ 1

m

∑
r

||s||2(σ′(θr1
T s))2

≤ 1

m

∑
r

l2

= l2.

Now we finish the second part of the lemma.

Lemma B.3. The following inequality holds:

N (∇θV (θ∗)(θ − θ∗))

||θt − θ∗||2
≥ (1− γ)(σ2,D

min)
2.

Proof. To begin with, the definition of N is

N (∇θV (θ∗)(θ − θ∗)) = (1− γ)||∇θV (θ∗)(θ − θ∗)||2D + γ||∇θV (θ∗)(θ − θ∗)||2Dir

≥ (1− γ)||∇θV (θ∗)(θ − θ∗)||2D.

Using the definition of σ2,D
min,

N (∇θV (θ∗)(θ − θ∗))

||θ − θ∗||2
≥ (1− γ)

||∇θV (θ∗)(θ − θ∗)||2D
||θ − θ∗||2

≥ (1− γ)(σ2,D
min)

2,

which establishes the result.

Lemma B.4. If a non negative sequence {Xt} satisfies

Xt+1 ≤ (1− c

t+ 1
)Xt +

b

(t+ 1)2
,

for some b, c > 0, then the sequence {Xt} converges to 0.

Proof. Recursively applying the relation between Xt+1 and Xt, we can derive the following:

Xt ≤
b

t2
+

t−1∑
i=1

b

i2

t∏
j=i+1

(1− c

j
) +

t∏
j=1

(1− c

j
)X0. (21)

The first term in Eq.(21) definitely goes to 0 as t goes to infinity. Now let us consider the term∏t
j=i+1(1−

c
j). A logarithm usually helps us to convert it into a sum, so we perform the following

manipulations:
t∑

j=i+1

ln(1− c

j
) ≤ −

t∑
j=i+1

c

j
≤ c(ln(i+ 1)− ln(t+ 1)),

where the first inequality uses the fact ln(1 + x) ≤ x and the second inequality uses
∑t

j=i+1
1
j ≥

ln(t+ 1)− ln(i+ 1). So,

t∏
j=i+1

(1− c

j
) = e

∑t
j=i+1 ln(1− c

j) ≤ ec ln
i+1
t+1 =

(i+ 1)c

(t+ 1)c
.

24

Published as a conference paper at ICLR 2023

By setting i = 0, this means the third term in Eq.(21) goes to 0 as t goes to infinity. Now consider∑t−1
i=1

b
i2

∏t
j=i+1(1−

c
j), we obtain

t−1∑
i=1

b

i2

t∏
j=i+1

(1− c

j
) ≤ b

(t+ 1)c

t−1∑
i=1

(i+ 1)c

i2

≤ 4b

(t+ 1)c

t−1∑
i=1

(i+ 1)c−2

≤ 4b

(t+ 1)c
+

4b

(t+ 1)c

∫ t

1

(i+ 1)c−2di,

where the second inequality uses the fact (i+1)2

i2 ≤ 4 for all positive integer i, and the third inequality
combine the two facts

∑t−1
i=2(i + 1)c−2 ≤

∫ t

2
(i + 1)c−2di ≤

∫ t

1
(i + 1)c−2di given c ≥ 2 and∑t−1

i=2(i+ 1)c−2 ≤
∫ t−1

1
(i+ 1)c−2di ≤

∫ t

1
(i+ 1)c−2di given c ≤ 2. If c ̸= 1, then

t−1∑
i=1

b

i2

t∏
j=i+1

(1− c

j
) ≤ 4b

(t+ 1)c
+

4b

(t+ 1)c
· (t+ 1)c−1 − 2c−1

c− 1
.

If c = 1, then
t−1∑
i=1

b

i2

t∏
j=i+1

(1− c

j
) ≤ b

t
(1 + ln(t+ 1)− ln 2).

Under both cases, we can easily argue that the second term in Eq. (21) goes to 0.

Now, we have proved that all three terms in the right hand side of Eq.(21) go to 0 as t goes to infinity.
This directly implies {Xt} converges to 0.

Lemma B.5. (Optional Stopping Theorem) Suppose {Xt} is a super martingale and T is a stop-
ping time. If there exists a constant c such that |Xτ∧T | ≤ c holds for all τ , then we have

E[Xτ] ≤ E[X0].

This is also called Doob’s Optional Stopping Theorem. See Theorem 10.10 of Williams (1991).

B.3 PROOF OF LEMMA B.1

Consider Non Projected Neural TD Learning,

||θt+1 − θ∗||2 = ||θt − θ∗ + αtg(θt)||2

= ||θt − θ∗||2 + 2αt(θt − θ∗)
T g(θt) + α2

t ||g(θt)||2.

Given θt, the only randomness is from st. Taking expectation on both side and using the fact that
E[g(θt)] = ḡ(θt) (since we assume st are sampled i.i.d. from µ), we obtain

E
[
||θt+1 − θ∗||2|θt

]
= ||θt − θ∗||2 + 2αt(θt − θ∗)

T ḡ(θt) + α2
tE
[
||g(θt)||2|θt

]
. (22)

First, we consider 2αt(θt − θ∗)
T ḡ(θt). Lemma B.1 allows us to divide it into several parts and thus

we can bound them respectively:

2αt(θt − θ∗)
T ḡ(θt) = 2αt(ḡ1(θt) + ḡ2(θt) + ḡ3(θt)).

To bound ḡ1(θt),

ḡ1(θt) =(θt − θ∗)
T∇θV (θ∗)

TD(γP − I)∇θV (θ∗)(θt − θ∗)

=−N (∇θV (θ∗)(θt − θ∗))

≤− (1− γ)(σ2,D
min)

2,

where the first equality is because the definition of ḡ1(θt) in Eq.(18), the second equality is by setting
f = ∇θV (θ∗)(θt − θ∗) in Lemma A.1, and the inequality is by Lemma B.3.

25

Published as a conference paper at ICLR 2023

To bound ḡ2(θt),

ḡ2(θt) =(θt − θ∗)
T (∇θV (θt)−∇θV (θ∗))

TD(γP − I)(V (θt)− V (θ∗))

≤
∣∣∣γ(θt − θ∗)

T (∇θV (θt)−∇θV (θ∗))
TDP (V (θt)− V (θ∗))

∣∣∣
+
∣∣∣(θt − θ∗)

T (∇θV (θt)−∇θV (θ∗))
TD(V (θt)− V (θ∗))

∣∣∣
≤(1 + γ)c0lm

−0.5||θt − θ∗||3,
where the equality is because the definition of ḡ2(θt) in Eq.(19), the first inequality is by triangle
inequality which says |x+y| ≤ |x|+ |y|, and the second inequality is by setting x to be (∇θV (θt)−
∇θV (θ∗))(θt − θ∗), y to be V (θt) − V (θ̂∗) in Lemma A.5 with each entry of x, y bounded by
c0m

−0.5||θt − θ∗||2, l||θt − θ∗|| respectively using Lemma B.2.

To bound ḡ3(θt),

ḡ3(θt) =(θt − θ∗)
T∇θV (θ∗)

TD(γP − I)(∇θV (θmid
2)−∇θV (θ∗))(θt − θ∗)

≤
∣∣∣γ(θt − θ∗)

T∇θV (θ∗)
TDP (∇θV (θmid

2)−∇θV (θ∗))(θt − θ∗)
∣∣∣

+
∣∣∣(θt − θ∗)

T∇θV (θ∗)
TD(∇θV (θmid

2)−∇θV (θ∗))(θt − θ∗)
∣∣∣

≤(1 + γ)c0lm
−0.5||θt − θ∗||3,

where the equality is because of the definition of ḡ3(θt) in Eq.(20), the first inequality is because of
the triangle inequality, and the second inequality is by setting x to be (∇θV (θmid

2)−∇θV (θ∗))(θt−
θ∗), y to be ∇θV (θ∗)(θt−θ∗) in Lemma A.5 with each entry of x, y bounded by c0m

−0.5||θt−θ∗||2,
l||θt − θ∗|| respectively using Lemma B.2.

Combine the above facts and we now have the bound for the second term in the right hand side of
Eq.(22),

2αt(θt − θ∗)
T ḡ(θt) ≤ −2αt(1− γ)(σ2,D

min)
2||θt − θ∗||2 + 4αt(1 + γ)c0lm

−0.5||θt − θ∗||3.

Second, we consider E[α2
t ||g(θt)||2|θt] in Eq.(22). For simplicity, define f(s) = V (s, θ∗)−V (s, θt).

Since we are using one hidden layer neural network to approximate V (s, θ),

|f(s)|2 = |V (s, θ∗)− V (s, θt)|2

=
1

m

∣∣∣∣∣∑
r

br(σ(θ
r
t s)− σ(θr∗s))

∣∣∣∣∣
2

≤
∑
r

b2r||σ(θrt s)− σ(θr∗s)||2

≤
∑
r

l2||θrt s− θr∗s||2

≤
∑
r

l2||θrt − θr∗||2

= l2||θt − θ∗||2.

Recall that V (s, θ∗) satisfies Eq.(1), which is

V (s, θ∗) = r(s) + γ
∑
s′′

P (s′′|s)V (s′′, θ∗),

and g(θt) is defined to be g(θt) = ∇θV (s, θt) [r(s) + γV (s′, θt)− V (s, θt)]. This latter immedi-
ately implies that g(θt) is actually a random variable and implicitly relies on the state s. Using these
facts, we obtain

g(θt) = ∇θV (s, θt) [r(s) + γV (s′, θt)− V (s, θt)]

= ∇θV (s, θt)

[
f(s)− γ

∑
s′′

P (s′′|s)f(s′) + γ
∑
s′′

P (s′′|s) (V (s′, θ∗)− V (s′′, θ∗))

]
.

26

Published as a conference paper at ICLR 2023

By Eq.(2) we can obtain the following quick result:

|V (s′, θ∗)− V (s′′, θ∗)| ≤
2rmax

1− γ
.

And this leads to the following:

||g(θt)||2 =

∥∥∥∥∥∇θV (s, θt)

[
f(s)− γ

∑
s′′

P (s′′|s)f(s′) + γ
∑
s′′

P (s′′|s)(V (s′, θ∗)− V (s′′, θ∗))

]∥∥∥∥∥
2

≤3||∇θV (s, θt)||2
|f(s)|2 + ∣∣∣∣∣γ∑

s′′

P (s′′|s)f(s′)

∣∣∣∣∣
2

+

∣∣∣∣∣γ∑
s′′

P (s′′|s)(V (s′, θ∗)− V (s′′, θ∗))

∣∣∣∣∣
2


≤3||∇θV (s, θt)||2
[
|f(s)|2 + γ2

∑
s′′

P (s′′|s)|f(s′)|2 + γ2
∑
s′′

P (s′′|s)|V (s′, θ∗)− V (s′′, θ∗)|2
]

≤3(1 + γ2)l4||θt − θ∗||2 +
12γ2l2r2max

(1− γ)2
,

(23)

where the first inequality uses the fact that (a + b + c)2 ≤ 3(a2 + b2 + c2), the second inequality
is by Jensen’s inequality, and the third inequality simply uses Lemma B.2 to bound ||∇θV (s, θt)||.
Further,

α2
tE
[
||g(θt)||2|θt

]
≤ 3α2

t (1 + γ2)l4||θt − θ∗||2 +
12α2

tγ
2l2r2max

(1− γ)2
.

Now let us go back to Eq.(22), where the second and third terms on the right hand side can be
bounded by

2αt(θt − θ∗)
T g(θt) + α2

tE
[
||g(θt)||2|θt

]
≤− 2αt(1− γ)(σ2,D

min)
2||θt − θ∗||2 + 4αt(1 + γ)c0lm

−0.5||θt − θ∗||3

+ 3α2
t (1 + γ2)l4||θt − θ∗||2 +

12α2
tγ

2l2r2max

(1− γ)2

=
(
−2αt(1− γ)(σ2,D

min)
2 + 3α2

t (1 + γ2)l4
)
||θt − θ∗||2

+ 4αt(1 + γ)c0lm
−0.5||θt − θ∗||3 +

12α2
tγ

2l2r2max

(1− γ)2
.

This means

E
[
||θt+1 − θ∗||2|θt

]
≤
(
1− 2αt(1− γ)(σ2,D

min)
2 + 3α2

t (1 + γ2)l4
)
||θt − θ∗||2

+ 4αt(1 + γ)c0lm
−0.5||θt − θ∗||3 +

12α2
tγ

2l2r2max

(1− γ)2
.

(24)

27

Published as a conference paper at ICLR 2023

For simplicity, we define the following notations:

Xt =||θt − θ∗||,

C =
12γ2l2r2max

λ2(1− γ)2
,

αt =
1

λ(t+ 1)
,

at =2αt(1− γ)(σ2,D
min)

2 − 3α2
t (1 + γ2)l4,

bt =4αt(1 + γ)c0lm
−0.5,

ct =
12α2

tγ
2l2r2max

(1− γ)2
=

C

(t+ 1)2
,

dt =
C

t
(while d0 is defined to be d0 = 2).

We can rewrite Eq.(24) as

E
[
X2

t+1|Xt

]
≤ (1− at + btXt)X

2
t + ct,

while the condition E
[
||θ0 − θ∗||2

]
<

(2(1−γ)(σ2,D
min)

2λ−3l4(1+γ2))
2

64(1+γ)2c20l
2λ2 mδ − 2 is just

E[X2
0] ≤

a20
4b20

δ − d0.

Under such notations, an important fact is that

ct ≤ dt − dt+1.

This can be showed easily since 1
(t+1)2 ≤ 1

t −
1

t+1 .

If we define the stopping time T = inft{Xt ≥ a0

2b0
} and the sequence {Yt} to be

Yt =

{
X2

t + dt if t ≤ T

Yt−1 if t > T

Now we first claim that the sequence {Yt} is a super martingale. We show this as follows:

Suppose T = 0, and we find that Yt = Y0, ∀t. In this trivial case, obviously, {Yt} is a super
martingale. Now we assume T > 0.

When t = 0, we have

E[X2
1 |X0] ≤ (1− 1

2
a0)X

2
0 + c0 ≤ X2

0 + c0 ≤ X2
0 + d0 − d1.

which means E[Y1|Y0] ≤ Y0.

For t ≤ T , by the definition of T we know that Xt ≤ a0

2b0
, which implies that Xt ≤ at

2bt
(this is

because by the definition of at and bt, h(t) = at

2bt
is increasing with t). Hence,

E[X2
t+1|Xt] ≤ (1− 1

2
at)X

2
t + ct ≤ X2

t + ct ≤ X2
t + dt − dt+1.

which means E[Yt+1|Yt] ≤ Yt.

For t > T , by the definition of {Yt} we know that Yt = YT .

Hence, combine all the above facts and we conclude the sequence {Yt} is a super martingale.

Next, we claim that Xt <
a0

2b0
, ∀t holds with probability at least 1−δ. This can be shown as follows:

Let A be the event
{
supt Xt <

a0

2b0

}
=
{
X0 < a0

2b0
, X1 < a0

2b0
, · · ·

}
. To compute P (A), notice

that

P

(
X0 <

a0
2b0

, X1 <
a0
2b0

, · · ·
)

= P

(
Y0 <

a20
4b20

+ d0, Y1 <
a20
4b20

+ d1, · · ·
)
.

28

Published as a conference paper at ICLR 2023

We can easily check that T is also a stopping time for {Yt}. In order to use Lemma B.5, we need to
check the conditions that |YT | ≤ c for some constant c. We split it into two cases.

First, if τ < T , then |Yτ∧T | = |Yτ |. Because of the definition of T we know that

|Yτ | ≤
a20
4b20

+ dτ ≤ a20
4b20

+ 2,

where we use the fact that {dt} is a decreasing sequence and d0 = 2.

Second, if τ ≥ T , then |Yτ∧T | = |YT |. Recall that update of the algorithm is

θt+1 = θt + αtg(θt).

which implies
||θt+1 − θ∗|| ≤ ||θt − θ∗||+ αt||g(θt)||.

Now we let t = T − 1 and use Xt notations. The above fact can be rewritten as

|XT | ≤ |XT−1|+ αT−1||g(θT−1)||.

Because of the definition of T , we know that |XT−1| ≤ a0

2b0
. Moreover, Eq.(23) give us a bound for

||g(θT−1)||, which is ||g(θT−1)|| ≤
√
3(1 + γ2)l4X2

T−1 +
12γ2l2r2max

(1−γ)2 . Finally, αT−1 is set to be
1

λ(t+1) so it is obviously bounded. All these facts lead to the result that |YT | is bounded.

Combining the above two cases, we are now eligible to use Lemma B.5. Hence, we obtain

E[Yτ∧T] ≤ E[Y0].

On the other hand, E[Yτ∧T] can be expanded as

E[Yτ∧T] = E[Yτ∧T |T ≤ τ]P (T ≤ τ) + E[Yτ∧T |T > τ]P (T > τ)

= E[YT]P (T ≤ τ) + E[Yτ]P (T > τ).

Combining these two facts,

E[Y0] ≥ E[YT]P (T ≤ τ)

≥
(

a20
4b20

+ dT

)
P (T ≤ τ).

where the second inequality using the fact that Yt ≥ a2
0

4b20
+ dT . Hence,

P (T ≤ τ) ≤ E[Y0]
a2
0

4b20
+ dT

=
E[X2

0] + d0
a2
0

4b20
+ dT

≤ E[X2
0] + d0
a2
0

4b20

≤ δ.

where the equality is because E[Y0] = E[X2
0]+d0, the second inequality is because dt is nonnegtive,

and the third inequality is because of the condition E[X2
0] ≤

a2
0

4b20
δ − d0. Next, it is easy to see

P

(
Y0 <

a20
4b20

+ d0, Y1 <
a20
4b20

+ d1, · · · , Yτ <
a20
4b20

+ dτ

)
= P (T > τ)

= 1− P (T ≤ τ)

≥ 1− δ.

This result holds for all τ , so we can let τ → ∞ and obtain

P (A) ≥ 1− δ.

Actually, using h(t) = at

2bt
is monotonically increase with t again, event A implies Xt ≤ at

2bt
, ∀t.

With this fact,

E
[
X2

t+1|Xt, A
]
≤ (1− at + btXt)X

2
t + ct ≤ (1− 1

2
at)X

2
t + ct, ∀t.

29

Published as a conference paper at ICLR 2023

Plugging in at = 2αt(1− γ)(σ2,D
min)

2 − 3α2
t (1 + γ2)l4, ct =

12α2
tγ

2l2r2max

(1−γ)2 and αt =
1

λ(t+1) , we can
derive

E
[
X2

t+1|Xt, A
]
≤

[
1− (1− γ)(σ2,D

min)
2

λ(t+ 1)
+

3(1 + γ2)l4

2λ2(t+ 1)2

]
X2

t +
12γ2l2r2max

(1− γ)2λ2(t+ 1)2
.

Given that Xt ≤ a0

2b0
≤ (1−γ)m0.5(σ2,D

min)
2

2(1+γ)c0l
. Hence, we conclude

E
[
X2

t+1|Xt, A
]
≤

[
1− (1− γ)(σ2,D

min)
2

λ(t+ 1)

]
X2

t +
3(1− γ)2(1 + γ2)l2(σ2,D

min)
2m

8λ2(1 + γ)2c20(t+ 1)2
+

12γ2l2r2max

(1− γ)2λ2(t+ 1)2
.

Take expectation on both sides and we derive

E
[
X2

t+1|A
]
≤

[
1− (1− γ)(σ2,D

min)
2

λ(t+ 1)

]
E[X2

t |A]+
3(1− γ)2(1 + γ2)l2(σ2,D

min)
2m

8λ2(1 + γ)2c20(t+ 1)2
+

12γ2l2r2max

(1− γ)2λ2(t+ 1)2
.

By Lemma B.4, we conclude that the sequence
{
E
[
X2

t |A
]}

converges to 0.

30

	Introduction
	Preliminaries
	Markov Decision Processes
	Markov Chain Noise Model
	D-norm and Dirichlet Norm in MDPs
	Neural Network Based Approximation
	Neural TD

	Our main Result
	Distinguishing feature of our analysis
	Simulations
	Conclusions
	Proof for The Main Result
	Useful lemmas
	Proof for The Main Result

	Analysis of Unprojected TD Learning – Proof of our Conjecture for the Single Hidden Layer Case
	Result without Projection
	Useful Lemmas
	Proof of Lemma B.1

