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Abstract

We give superpolynomial statistical query (SQ) lower bounds for learning two-hidden-layer
ReLU networks with respect to Gaussian inputs in the standard (noise-free) model. No general
SQ lower bounds were known for learning ReLU networks of any depth in this setting: previous
SQ lower bounds held only for adversarial noise models (agnostic learning) [KK14, GGK20,
DKZ20] or restricted models such as correlational SQ [GGJ+20, DKKZ20].

Prior work hinted at the impossibility of our result: Vempala and Wilmes [VW19] showed
that general SQ lower bounds cannot apply to any real-valued family of functions that satisfies
a simple non-degeneracy condition.

To circumvent their result, we refine a lifting procedure due to Daniely and Vardi [DV21]
that reduces Boolean PAC learning problems to Gaussian ones. We show how to extend their
technique to other learning models and, in many well-studied cases, obtain a more efficient
reduction. As such, we also prove new cryptographic hardness results for PAC learning two-
hidden-layer ReLU networks, as well as new lower bounds for learning constant-depth ReLU
networks from label queries.

1 Introduction

In this paper we extend a central line of research proving representation-independent hardness
results for learning classes of neural networks. We will consider arguably the simplest possible
setting: given samples (x1, y1), . . . , (xn, yn) where for every i ∈ [n], xi is sampled independently
from some distribution D over R

d and yi = f(xi) for an unknown neural network f : Rd → R,
the goal is to output any function f̂ for which Ex∼D[(f(x) − f̂(x))2] is small. This model is often
referred to as the realizable or noise-free setting.

This problem has long been known to be computationally hard for discrete input distributions.
For example, if D is supported over a discrete domain like the Boolean hypercube, then we have
a variety of hardness results based on cryptographic/average-case assumptions [KS09, DLSS14,
DSS16, DV20, DV21].

Over the last few years there has been a very active line of research on the complexity of learning
with respect to continuous distributions, the most widely studied case being the assumption that D
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is a standard Gaussian in d dimensions. A rich algorithmic toolbox has been developed for the Gaus-
sian setting [JSA15, ZSJ+17, BG17, LY17, Tia17, GKM18, GLM18, BJW19, ZYWG19, DGK+20,
LMZ20, DK20, ATV21, CKM20, SZB21, VSS+22], but all known efficient algorithms can only han-
dle networks with a single hidden layer, that is, functions of the form f(x) =

∑k
i=1 λiσ(〈wi, x〉).

This motivates the following well-studied question:

Are there fundamental barriers to learning neural networks with two hidden layers? (1)

Two distinct lines of research, one using cryptography and one using the statistical query (SQ)
model, have made progress towards solving this question.

In the cryptographic setting, [DV21] showed that the existence of a certain class of pseudo-
random generators, specifically local pseudorandom generators with polynomial stretch, implies
superpolynomial lower bounds for learning ReLU networks with three hidden layers.

For SQ learning, work of [GGJ+20] and [DKKZ20] gave the first superpolynomial correlational
SQ (CSQ) lower bounds for learning even one-hidden-layer neural networks. Notably, however,
there are strong separations between SQ and CSQ [APVZ14, ADHV19, CKM20], and the question
of whether a general SQ algorithm exists remained an interesting open problem. In fact, Vempala
and Wilmes [VW19] showed that general SQ lower bounds might be impossible to achieve for
learning real-valued neural networks. For any family of networks satisfying a simple non-degeneracy
condition (see Section 1.1), they gave an algorithm that succeeded using only polynomially many
statistical queries. As such, the prevailing conventional wisdom was that noise was required in the
model to obtain full SQ lower bounds.

The main contribution of this paper is to answer Question 1 by giving both general SQ lower
bounds and cryptographic hardness results (based on the Learning with Rounding or LWR assump-
tion) for learning ReLU networks with two hidden layers and polynomially bounded weights.1 We
note that our SQ lower bound is the first of its kind for learning ReLU networks of any depth. We
also show how to extend our results to the setting where the learner has label query access to the
unknown network.

Reference Num. hidden layers Model of hardness

[DKKZ20, GGJ+20] 1 Correlational SQ

[DV21] 3
Cryptographic

(assuming existence of local PRGs)

This work 2 Full SQ

This work 2
Cryptographic

(assuming hardness of LWR)

Table 1: Summary of known and new superpolynomial lower bounds for learning noise-free shallow
ReLU networks over Gaussian inputs up to sufficiently small (but non-negligible) error. (Definitions
and terminology may be found in Section 2.)

SQ Lower Bound We state an informal version of our main SQ lower bound:

1Note that if the weights were allowed to be arbitrarily large, it is well-known to be trivial to obtain hardness
over Gaussian inputs from hardness over Boolean inputs: simply approximate the sign function arbitrarily well and
convert all but an arbitrarily small fraction of Gaussian inputs to bitstrings.
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Theorem 1.1 (Full SQ lower bound for two hidden layers (informal), see Theorem 4.1). Any SQ
algorithm for learning poly(d)-sized two-hidden-layer ReLU networks over N (0, Idd) up to squared
loss 1/poly(d) must use at least dω(1) queries, or have query tolerance that is negligible in d.

We stress that this bound holds unconditionally, independent of any cryptographic assump-
tions. This simultaneously closes the gap between the hardness result of [DV21] and the positive
results on one-hidden-layer networks [JSA15, ZSJ+17, GLM18, ATV21, DK20] and goes against the
conventional wisdom that one cannot hope to prove full SQ lower bounds for learning real-valued
functions in the realizable setting.

We also note that unlike previous CSQ lower bounds which are based on orthogonal function
families and crucially exploit cancellations specific to the Gaussian distribution, our Theorem 1.1
and other hardness results in this paper easily extend to any reasonably anticoncentrated and
symmetric product distribution over Rd; see Remark 3.11.

Cryptographic Lower Bound While Theorem 1.1 rules out almost all known approaches for
provably learning neural networks (e.g. method of moments/tensor decomposition [JSA15, ZSJ+17,
GLM18, BJW19, DGK+20, DK20, ATV21], noisy gradient descent [BG17, LY17, Tia17, GKM18,
ZYWG19, LMZ20], and filtered PCA [CKM20]), it does not preclude the existence of a non-SQ
algorithm for doing so. Indeed, a number of recent works [BRST21, SZB21, ZSWB22, DK21]
have ported algorithmic techniques like lattice basis reduction [LLL82], traditionally studied in the
context discrete settings like cryptanalysis, to learning problems over continuous domains for which
there is no corresponding SQ algorithm.

Our next result shows however that under a certain cryptographic assumption, namely hardness
of Learning with Rounding (LWR) with polynomial modulus [BPR12, AKPW13, BGM+16] (see
Section 2), no polynomial-time algorithm can learn two-hidden-layer neural networks from Gaussian
examples.

Theorem 1.2 (Cryptographic hardness result (informal), see Theorem 5.1). Suppose there exists a
poly(d)-time algorithm for learning poly(d)-sized two-hidden-layer ReLU networks over N (0, Idd)
up to squared loss 1/poly(d). Then there exists a quasipolynomial-time algorithm for LWR with
polynomial modulus.

Note that here we may actually improve the LWR hardness assumption required from quasipoly-
nomial to any mildly superpolynomial function of the security parameter (see Remark 5.2).

Under LWR with polynomial modulus, we also show the first hardness result for learning one
hidden layer ReLU networks over the uniform distribution on {0, 1}d (see Theorem 5.3).

In Section 2, we discuss existing hardness evidence for LWR as well as its relation to more
standard assumptions like Learning with Errors. From a negative perspective, Theorem 1.2 suggests
that the aforementioned lattice-based algorithms for continuous domains are unlikely to yield new
learning algorithms for two-hidden-layer networks, because even their more widely studied discrete
counterparts have yet to break LWR. From a positive perspective, in light of the prominent role
LWR and its variants have played in a number of practical proposals for post-quantum cryptography
[CKLS18, BGML+18, JZ16, DKRV18], Theorem 1.2 offers a new avenue for stress-testing these
schemes.

Query Learning Lower Bound One additional benefit of our techniques is that they are flexible
enough to accommodate other learning models beyond traditional PAC learning. To illustrate this,
for our final result we show hardness of learning neural networks from label queries. In this setting,
the learner is much more powerful: rather than sample or SQ access, they are given the ability to
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query the value f(x) of the unknown function f at any desired point x in R
d, and the goal is still

to output a function f̂ for which E[(f(x) − f̂(x))2] is small. The expectation here is with respect
to some specified distribution, which we will take to be N (0, Idd), though as before, our techniques
will apply to any reasonably anticoncentrated, symmetric product distribution over Rd.

In recent years, this question has received renewed interest from the security and privacy com-
munities in light of model extraction attacks, which attempt to reverse-engineer neural networks
found in publicly deployed systems [TJ+16, MSDH19, PMG+17, JCB+20, RK20, JWZ20, DG21].
Recent work [CKM21] has shown that in this model, there is an efficient algorithm for learning
arbitrary one-hidden-layer ReLU networks that is truly polynomial in all relevant parameters. We
show that under plausible cryptographic assumptions about the existence of simple pseudoran-
dom function (PRF) families (see Section 6) which may themselves be based on standard number
theoretic or lattice-based cryptographic assumptions, such a guarantee is impossible for general
constant-depth ReLU networks.

Theorem 1.3 (Label query hardness (informal), see Theorem 6.1). If either the decisional Diffie–
Hellman or the Learning with Errors assumption holds, then the class of poly(d)-sized constant-
depth ReLU networks from R

d to R is not learnable up to small constant squared loss ε over
N (0, Idd) even using label queries over all of Rd.

Note that the connection between PRFs and hardness of learning from label queries over discrete
domains is a well-known connection dating back to Valiant [Val84]. To our knowledge, however,
Theorem 1.3 is the first hardness result for query learning over continuous domains.

1.1 Discussion and Related Work

Hardness for learning neural networks. There are a number of works [BR89, Vu06, KS09,
LSSS14, GKKT17, DV20] showing hardness for distribution-free learning of various classes of neural
networks.

As for hardness of distribution-specific learning, several works have established lower bounds
with respect to the Gaussian distribution. Apart from the works [GGJ+20, DKKZ20, DV21] from
the introduction which are most closely related to the present work, we also mention the works of
[KK14, GKK19, GGK20, DKZ20] which showed hardness for agnostically learning halfspaces and
ReLUs, [Sha18] which showed hardness for learning periodic activations with gradient-based meth-
ods, [SVWX17] which showed lower bounds against SQ algorithms for learning one-hidden-layer
networks using Lipschitz statistical queries and large tolerance, and [SZB21] which showed lattice-
based hardness of learning one-hidden-layer networks when the labels yi have been perturbed by
bounded adversarially chosen noise. Our approach has similarities to the “Gaussian lift” as studied
by Klivans and Kothari [KK14]. Their approach, however, required noise in the labels, whereas we
are interested in hardness in the strictly realizable setting. We also remark that [DGKP20, AAK21]
showed correlational SQ lower bounds for learning random depth-ω(log n) neural networks over
Boolean inputs which are uniform over a halfspace.

There have also been works on hardness of learning from label queries over discrete domains
and for more “classical” concept classes like Boolean circuits [Fel09, CGV15, Val84, Kha95, AK95].

Lastly, we remark on how our results relate to [CKM20], which gives the only known upper
bound for learning neural networks over Gaussian inputs beyond one hidden layer. They showed
that learning ReLU networks of arbitrary depth is “fixed-parameter tractable” in the sense that
there is a fixed function g(k, ε) in the size k of the network and target error ε for which the time
complexity is at most g(k, ε)·poly(d), and their algorithm can be implemented in SQ. That said, this

4



does not contradict our lower bounds for two reasons: 1) their algorithm only applies to networks
without biases, 2) in our lower bound constructions, k scales polynomially in d.

SQ lower bounds for real-valued functions. A recurring conundrum in the literature on SQ
lower bounds for supervised learning has been whether one can show SQ hardness for learning real-
valued functions. SQ lower bounds for Boolean functions are typically shown by lower bounding
the statistical dimension of the function class, which essentially corresponds to the largest possible
set of functions in the class which are all approximately pairwise orthogonal. Indeed, the content of
the hardness results of [GGJ+20, DKKZ20] was to prove lower bounds on the statistical dimension
of one-hidden-layer networks. Unfortunately, for real-valued functions, statistical dimension lower
bounds only imply CSQ lower bounds. As discussed in [GGJ+20], the class of d-variate Hermite
polynomials of degree-ℓ is pairwise orthogonal and of size dO(ℓ), which translates to a CSQ lower
bound of dΩ(ℓ). Yet there exist SQ algorithms for learning Hermite polynomials in far fewer queries
[APVZ14, ADHV19].

Further justification for the difficulty of proving SQ lower bounds for real-valued functions came
from [VW19], which observed that for any real-valued learning problem satisfying a seemingly
innocuous non-degeneracy assumption—namely that for any pair of functions f, g in the class,
the probability under the input distribution D that f(x) = g(x) is zero—there is an efficient
“cheating” SQ algorithm (see Proposition 4.1 therein). The SQ lower bound shown in the present
work circumvents this proof barrier by exhibiting a family of neural networks for which any pair of
networks agrees on a set of inputs with Gaussian measure bounded away from zero.

Open questions While our results settle Question 1, a number of intriguing gaps between our
lower bounds and existing upper bounds remain open:

• General one-hidden-layer networks. Despite the considerable amount of work on learning
one-hidden-layer networks over Gaussian inputs, all known positive results that run in polynomial
time in all parameters (input dimension d, network size k, inverse error 1/ε) still need to make
various assumptions on the structure of the network. Remarkably, it is even open whether
one-hidden-layer ReLU networks with positive output layer weights (i.e. “sums of ReLUs”) can

be learned in polynomial time, the best known guarantee being the (k/ε)log
2 k · poly(d/ε)-time

algorithm of [DK20]. As for general one-hidden-layer ReLU networks, it is still open whether
they can even be learned in time dO(k) ·poly(1/ε), the best known guarantee being the kpoly(k/ε) ·
poly(d)-time algorithm of [CKM20].

• Query learning shallow networks. While Theorem 1.3 establishes that above a certain
constant depth, ReLU networks cannot be learned even from label queries over the Gaussian
distribution. It would be interesting to close the gap between this and the positive result of
[CKM21] which only applies to one-hidden-layer networks, although fully settling this seems
closely related to the question of what are the shallowest possible Boolean circuits needed to
implement pseudorandom functions, a longstanding open question in circuit complexity.

1.2 Technical Overview

Our work will build on a recent approach of Daniely and Vardi [DV21], who developed a simple
and clever technique for lifting discrete functions to the Gaussian domain entirely in the realizable
setting. Our main contributions are to (1) make their lifting procedure more efficient so that two
hidden layers suffice and (2) show how to apply the lift in a variety of models beyond PAC. For the
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purposes of this overview we will take the domain of our discrete functions to be {0, 1}d, but our
techniques extend to Z

d
q with q = poly(d).

Daniely–Vardi (DV) lift. At a high level, the DV lift is a transformation mapping a Boolean
example (x, y) labeled by a hard-to-learn Boolean function f to a Gaussian example (z, ỹ) labeled
by a (real-valued) ReLU network fDV that behaves similarly to f in that fDV(z) approximates
f(sign(z)), where for us sign(t) denotes 1[t > 0] and is applied elementwise. The key idea is to use
a continuous approximation s̃ign of the sign function, and to pair it with a “soft indicator” function
bad : Rd → R+ that is large whenever sign(z) 6= s̃ign(z), and that can be implemented as a one-
hidden-layer network independent of the target function. One can show that whenever f is realizable
as an L-hidden-layer network over {0, 1}d, the function fDV(z) = ReLU(f(s̃ign(z)) − bad(z)) can
be implemented as an (L+ 2)-hidden-layer network satisfying

fDV(z) = ReLU(f(sign(z))− bad(z)).

This property allows us to generate synthetic Gaussian labeled examples (z, fDV(z)) from Boolean
labeled examples (x, f(x)), and thereby reduce the problem of learning f to that of learning fDV.
For a fuller overview, see Section 3.1.

Improving the DV lift. Our first technical contribution is to introduce a more efficient lift which
only requires one extra hidden layer. Our starting point is to observe that a variety of hard-to-learn
Boolean functions f like parity and LWR take the form f(x) = σ(h(x)) for some ReLU network h
whose range T over Boolean inputs is a discrete subset of [0,poly(d)] of polynomially bounded size,
and for some function σ : T → [0, 1]. For such compressible functions (see Definition 3.1), one can
write f(x) = σ(h(x)) =

∑
t∗∈T σ(t∗)1[h(x) = t∗]. Again, we would like to implement lifted function

f△ : Rd → R using s̃ign and bad so that it approximates f(sign(z)) except when bad indicates that
s̃ign 6= sign. To this end, we might hope to implement, say,

f△(z) =
∑

t∗∈T

σ(t∗)1[h(s̃ign(z)) = t∗]1[∀j : bad(zj) ≪ 1].

Here we now view bad as a univariate function, and whenever it is small, we can be sure s̃ign =
sign. Suppose that we could build a one-hidden-layer network N(s1, . . . , sd; t) that behaves like
1[t = 0]1[∀j : sj ≪ 1]. Then we could realize f△ as an (L+ 1)-hidden-layer network:

f△(z) =
∑

t∗∈T

σ(t∗)N(bad(z1), . . . ,bad(zd); h(s̃ign(z))− t∗).

While many natural attempts to build such an N run into difficulties, we construct a suitably
relaxed version of N that turns out to suffice for the reduction. To gain some intuition for our
construction, the starting observation is that the following inclusion-exclusion type formula vanishes
identically whenever any of the sj is 1:

ψ(s1, s2, s3)− ψ(1, s2, s3)− ψ(s1, 1, s3)− ψ(s1, s2, 1)

+ ψ(s1, 1, 1) + ψ(1, s2, 1) + ψ(s1, 1, 1) − ψ(1, 1, 1).

For a suitable choice of ψ, one might hope to buildN out of such a formula by taking sj = bad(zj) for
every j. But the natural generalization of this expression to d inputs would have size 2d, which runs
the risk of rendering the resulting SQ lower bounds vacuous. Our final construction (Lemma 3.10)
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instead resembles a truncated inclusion-exclusion type formula of only quasipolynomial size, which
may be of independent interest. Since the SQ lower bounds for Boolean functions that we build on
are exponential, by a simple padding argument we still obtain a superpolynomial SQ lower bound
for our lifted functions.

Hard one-hidden-layer Boolean functions and LWR. To use this lift for Theorems 1.1
and 1.2, we need one-hidden-layer networks that are compressible and hard to learn over uniform
Boolean inputs. For SQ lower bounds, we can simply start from parities, for which there are
exponential SQ lower bounds, and which turn out to be easily implementable by compressible
one-hidden-layer networks. For cryptographic hardness, Daniely and Vardi [DV21] used certain
one-hidden-layer Boolean networks that arise from the cryptographic assumption that local PRGs
exist (see Section A.4.1 therein). Unfortunately, these functions are not compressible. For this
reason, we work instead with LWR: it turns out that the LWR functions are compressible and,
conveniently, the hardness assumption directly involves uniform discrete inputs.

Hardness beyond PAC. While the DV lift is a priori only for showing hardness of example-
based PAC learning, we can extend it to the SQ and label query models by simple simulation
arguments.

2 Preliminaries

2.1 Notation

We use Unif(S) to denote the uniform distribution over a set S. We use Ud as shorthand for
Unif{0, 1}d. We use N (0, Idd) (or sometimes Nd for short) to denote the standard Gaussian, and
|N (0, Idd)| (or |Nd| for short) to denote the positive standard half-Gaussian (i.e., g ∼ |N (0, Idd)| if
g = |z| for z ∼ N (0, Idd)). We use [n] to denote {1, . . . , n}.

For q > 0, Zq will denote the integers modulo q, which we will identify with {0, . . . , q − 1}. We
use Zq/q to denote {0, 1/q, . . . , (q − 1)/q}. Our discrete functions will in general have domain Z

d
q

for some q. The q = 2 case, namely Boolean functions, have domain {0, 1}d. For the purposes
of this paper, sign : R → {0, 1} is defined as sign(t) = 1[t > 0]. We will extend this to Zq by
defining thresq : R → Zq in terms of a certain partition of R into q intervals I0, . . . , Iq−1 (formally
defined later) as the piecewise constant function that takes on value k on Ik for each k ∈ Zq. Scalar
functions and scalar arithmetic applied to vectors act elementwise. We say a quantity is negligible
in a parameter n, denoted negl(n), if it decays as 1/nω(1).

A one-hidden-layer ReLU network mapping R
d to R is a linear combination of ReLUs, that is,

a function of the form
F (x) = W1ReLU

(
W0x+ b0

)
+ b1,

where W0 ∈ R
k×d, W1 ∈ R

1×k, b0 ∈ R
k, and b1 ∈ R. A two-hidden-layer ReLU network mapping

R
d to R is a linear combination of ReLUs of one-hidden-layer networks, that is, a function of the

form
F (x) = W2ReLU

(
W1 ReLU

(
W0x+ b0

)
+ b1

)
+ b2,

where W0 ∈ R
k0×d, W1 ∈ R

k1×k0 , W2 ∈ R
1×k1 , b0 ∈ R

k0 , b1 ∈ R
k1 , and b2 ∈ R. Our usage of the

term hidden layer thus corresponds to a nonlinear layer.
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2.2 Learning models

Let C be a function class mapping R
d to R, and let D be a distribution on R

d. We consider various
learning models where the learner is given access in different ways to labeled data (x, f(x)) for an
unknown f ∈ C and must output a (possibly randomized) predictor that achieves (say) squared
loss ε for any desired ε > 0. In the traditional PAC model, access to the data is in the form of iid
labeled examples (x, f(x)) where x ∼ D, and the learner is considered efficient if it succeeds using
poly(d, 1/ǫ) time and sample complexity. In the Statistical Query (SQ) model [Kea98, Rey20],
access to the data is through an SQ oracle. Given a bounded query φ : Rd × R → [−1, 1] and a
tolerance τ > 0, the oracle may respond with any value v such that |v − Ex∼D[φ(x, f(x))]| ≤ τ .
A correlational query is one that is linear in y, i.e. of the form φ(x, y) = φ̃(x)y for some φ̃,
and a correlational SQ (CSQ) learner is one that is only allowed to make CSQs. An SQ learner
is considered efficient if it succeeds using poly(d, 1/ǫ) queries and tolerance τ ≥ 1/poly(d, 1/ǫ).
Finally, in the label query model, the learner is allowed to request the value of f(x) for any desired
x, and is considered efficient if it succeeds using poly(d, 1/ǫ) time and queries.

2.3 Learning with Rounding

The Learning with Rounding (LWR) problem [BPR12] is a close cousin of the well-known Learning
with Errors (LWE) problem [Reg09], except with deterministic rounding in place of random additive
errors.

Definition 2.1. Fix moduli p, q ∈ N, where p < q, and let n be the security parameter. For any
w ∈ Z

n
q , define fw : Zn

q → Zp/p by

fw(x) =
1

p
⌊w · x⌉p =

1

p
⌊
p

q
(w · x mod q)⌉,

where ⌊t⌉ is the closest integer to t. In the LWRn,p,q problem, the secret w is drawn randomly from
Z
n
q , and we must distinguish between labeled examples (x, y) where x ∼ Z

n
q and either y = fw(x) or

y is drawn independently from Unif(Zp/p). The LWEn,q,B problem is similar, except that y ∈ Zq/q
is either 1

q ((w · x + e) mod q) for some e ∈ Zq sampled from a carefully chosen distribution, e.g.
discrete Gaussian, such that |e| ≤ B except with negl(n) probability, or is drawn from Unif(Zq/q).

Remark 2.2. Traditionally the LWR problem is stated with labels lying in Zp instead of Zp/p,
although both are equivalent since the moduli p, q may be assumed to be known to the learner.
The choice of Zp/p is simply a convenient way to normalize labels to lie in [0, 1]. For consistency,
we similarly normalize LWE labels to lie in Zq/q.

It is known that LWEn,q,B is as hard as worst-case lattice problems when q = poly(n) and
B = q/poly(n) (see e.g. [Reg10, Pei16] for surveys). Yet this is not known to directly imply the
hardness of LWRn,p,q in the regime in which p, q are both poly(n), which is the one we will be
interested in as p, q will dictate the size of the hard networks that we construct in the proof of our
cryptographic lower bound.

Unfortunately, in this polynomial modulus regime, it is only known how to reduce from LWE

to LWR when the number of samples is bounded relative to the modulus [AKPW13, BGM+16]. For
instance, the best known reduction in this regime obtains the following hardness guarantee:

Theorem 2.3 ([BGM+16]). Let n be the security parameter, let p, q ≥ 1 be moduli, and let m,B ≥
0. Assuming q ≥ Ω(mBp), any distinguisher capable of solving LWRn,p,q using m samples implies
an efficient algorithm for LWEn,q,B.
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For our purposes, Theorem 2.3 is not enough to let us base our Theorem 1.2 off of LWE, as we
are interested in the regime where the learner has an arbitrary polynomial number of samples.

LWR with polynomial modulus and arbitrary polynomial samples is nevertheless conjectured to
be as hard as worst-case lattice problems [BPR12] and has already formed the basis for a number
of post-quantum cryptographic proposals [DKRV18, CKLS18, BGML+18, JZ16]. We remark that
one piece of evidence in favor of this conjecture is a reduction from a less standard variant of LWE in
which the usual discrete Gaussian errors are replaced by errors uniformly sampled from the integers
{−q/2p, . . . , q/2p} [BGM+16].

Note also that for our purposes we require quasipolynomial-time hardness (or T (n)-hardness
for T (n) being any other fixed, mildly superpolynomial function of the security parameter) of
LWR. While slightly stronger than standard polynomial-time hardness, this remains a reasonable
assumption since algorithms for worst-case lattice problems are still believed to require at least
subexponential time.

2.4 Partial assignments

Let α ∈ {0, 1, ⋆}d be a partial assignment. We refer to S(α) : {i ∈ [d] : αi = ⋆} ⊆ [d] as the set of
free variables and [d]\S(α) as the set of fixed variables. Given two partial assignments α, β, let the
resolution α ց β denote the partial assignment γ obtained by substituting α into β. That is,

γi =





⋆ i ∈ S(α) ∩ S(β)

βi i ∈ [d]\S(β)

αi i ∈ S(β)\S(α)

In this case we say that γ is a refinement of β that is the result of applying α. We write
γ ∈ App(α) to denote that γ is a result of applying α. Note that the set of refinements of β consists
of all 3|S(β)| partial assignments γ ∈ {0, 1, ⋆}d which agree with β on all fixed variables of β.

Given α, let w(α) denote |{i : αi = 1}|, that is, the Hamming weight of its fixed variables. Note
that w(α ց β) ≤ w(α) + w(β).

Given a function h : Rd → R and partial assignment γ, we use hγ : Rd → R to denote its partial
restriction given by substituting in γi into the i-th input coordinate if γi ∈ {0, 1}. Note that given
two partial restrictions α, β,

(hβ)α = hαցβ (2)

We say that α is sorted if the restriction of α to its fixed variables is sorted in nonincreasing order,
e.g. α = (1, ⋆, 1, ⋆, ⋆, 0, 0) is sorted, but α = (1, ⋆, 0, ⋆, ⋆, 0, 1) is not. Given α which is not necessarily
sorted, denote its sorting by α. In general, we will use overline notation to denote sorted partial
assignments.

3 Compressing the Daniely–Vardi Lift

In this section we show how to refine the lifting procedure of Daniely and Vardy [DV21] such that
whenever the underlying discrete functions satisfy a property we term compressibility, we obtain
hardness under the Gaussian for networks with just one extra hidden layer.

Definition 3.1. Let q > 0 be a modulus.2 We call an L-hidden-layer ReLU network f : Zd
q → [0, 1]

compressible if it is expressible in the form f(x) = σ(h(x)), where

2Our results are stronger when q is taken to be a large polynomial in the dimension, but the Boolean q = 2 case
is illustrative of all the main ideas.

9



• h : Zd
q → T is an (L− 1)-hidden-layer network such that |h(x)| ≤ poly(d) for all x;

• h has range T = h(Zd
q) such that T ⊆ Z and |T | ≤ poly(d); and

• σ : T → [0, 1] is a mapping from h’s possible output values to [0, 1].

Remark 3.2. To see why such an f is an L-hidden-layer network in z, consider the function σ :
T → R. Because T ⊆ Z and |T | ≤ poly(d), σ is expressible as (the restriction to T of) a piecewise
linear function on R whose size and maximum slope are poly(d), and hence as a poly(d)-sized
one-hidden-layer ReLU network from R to R. By composition, x 7→ σ(h(x)) can be represented by
an L-hidden-layer network.

We now formally state a theorem which captures our “compressed” version of the DV lift. The
version of this theorem for L + 2 layers is implicit in [DV21]. In technical terms, our improve-
ment consists of removing the single outer ReLU present in their construction. Thus, while our
construction still has three linear layers, it has only two non-linear layers.

Theorem 3.3 (Compressed DV lift). Let q = poly(d) be a modulus. Let C be a class of compressible
L-hidden-layer poly(d)-sized ReLU networks mapping Z

d
q to [0, 1]. Let m = m(d) = ωd(1) be a size

parameter that grows slowly with d. There exists a class C△ of (L + 1)-hidden-layer dΘ(m)-sized
ReLU networks mapping R

d to [0, 1] such that the following holds:
Suppose there is an efficient algorithm A capable of learning C△ over N (0, Idd) up to squared

loss d−Θ(m). Then there is an efficient algorithm B capable of weakly predicting C over Unif(Zd
q)

with advantage d−Θ(m) over guessing the constant 1/2 in the following sense: given access to labeled
examples (x, f(x)) for x ∼ Unif(Zd

q) and an unknown f ∈ C, B satisfies

E
[(
B(x)− f(x)

)2]
< E

[(1
2
− f(x)

)2]
− d−Θ(m),

where the probability is taken over both x and the internal randomness of B. We refer to C△ as the
lifted class corresponding to C.

By a standard padding argument, we obtain the following corollary which lets us work with
polynomial-sized neural networks.

Corollary 3.4 (Compressed DV lift with padding). Let q, m and d be as above, and let d′ = dm.
View C and C△ as function classes on Z

d′
q and R

d′ respectively, defined using only the first d

coordinates, so that C△ is now a poly(d′)-sized class over Rd′ . Then an algorithm capable of learning
C△ over Nd′ up to squared loss 1/poly(d′) implies a weak predictor for C over Unif(Zd′

q ) with
advantage 1/poly(d′).

3.1 The DV Lift

Before proceeding to the proof of Theorem 3.3, we first outline the idea of the original DV lift
in the setting of Boolean functions (q = 2). The goal is to approximate any given f ∈ C by a
ReLU network fDV : Rd → R in such a way that fDV under Nd behaves similarly to f under Ud.
As a first attempt, one might consider the function f⋆(z) = f(sign(z)) (also studied in [KK14]),
where recall that sign(t) = 1[t > 0]. We could implement the following reduction: given a random
example (x, y) where x ∼ Ud and y = f(x), draw a fresh half-Gaussian g ∼ |Nd| and output
((2x − 1)g, y) (where the arithmetic in defining the vector (2x − 1)g is done elementwise). Since
2x−1 is distributed uniformly over {±1}d, the marginal is exactly Nd, and the labels are consistent
with f⋆ since sign((2x− 1)g) = x and so f(sign((2x− 1)g)) = f(x). However, the issue is that the
sign function is discontinuous, and so f⋆ is not realizable as a ReLU network.

10



Daniely and Vardi address this concern by devising a clever construction for fDV that interpo-
lates between two desiderata:

• For all but a small fraction of inputs, an initial layer successfully “Booleanizes” the input. In
this case, one would like fDV(z) to simply behave as f(sign(z)).

• For the remaining fraction of inputs, we would ideally like fDV to output an uninformative
value such as zero, but this would violate continuity of fDV.

The trick is to use a continuous approximation of the sign function, N1, that interpolates linearly
between 0 and 1 on an interval [−δ, δ] (see Fig. 1a), and to pair it with a “soft indicator” function
N2 : R → R for the region where N1 6= sign. Concretely, N2(t) is constructed as a one-hidden-layer
ReLU network that (a) is always nonnegative, (b) equals 0 when |t| ≥ 2δ, and (c) equals 1 when
|t| ≤ δ (see Fig. 1b). Now let N ′

2(z) =
∑

j N2(zj), and define

fDV(z) = ReLU(f(N1(z)) −N ′
2(z)). (3)

One can show that fDV satisfies fDV(z) = ReLU(f(sign(z)) − N ′
2(z)), since N ′

2 “zeroes out” fDV

whereverN1 6= sign for any coordinate. This lets us perform the following reduction: given examples
(x, y) where x ∼ Ud and y = f(x), draw a fresh g ∼ |Nd| and output (z, ỹ) = ((2x− 1)g,ReLU(y−
N ′

2((2x − 1)g))). The marginal is again Nd, and the labels are easily seen to be consistent with
fDV. Correctness of the reduction can be established by using Gaussian anticoncentration to argue
that fDV is a good approximation of f . Formally, one can prove the following theorem.

Theorem 3.5 (Original DV lift, implicit in [DV21]). Let C be a class of L-hidden-layer poly(d)-
sized ReLU networks mapping {0, 1}d to [0, 1]. There exists a class CDV of (L + 2)-hidden-layer
poly(d)-sized ReLU networks mapping R

d to [0, 1] such that the following holds. Suppose there is
an efficient algorithm A capable of learning CDV over N (0, Idd) up to squared loss 1

64 . Then there
is an efficient algorithm B capable of weakly predicting C over Unif{0, 1}d with squared loss 1

16 .

−δ′ δ′

1

(a) N1 : R → [−1, 1]

−2δ′ −δ′ δ′ 2δ′

1

(b) N2 : R → [0, 1]

Figure 1: Schematic plots of N1 and N2 in the q = 2 case, where N ′
2(z) may be realized as∑

j∈[d]N2(zj). Here, δ
′ = Θ(δ) where δ is the parameter from Lemmas 3.6 and 3.7.
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We now show how to construct the gadgets N1 and N2, extending them to make them suitable
for working with Zq for general q as opposed to just {0, 1}. These constructions utilize the simple
but important property that piecewise linear functions on the real line are readily and efficently
realized as linear combination of ReLUs.

Start by letting I0, I1, . . . , Iq−1 be a partition of R into q consecutive intervals each of mass
1/q under N (0, 1) (e.g., when q = 2, I0 = (−∞, 0) and I1 = (0,∞)). Note that these intervals
will have differing lengths, and the shortest ones will be the ones closest to the origin. Still, by
Gaussian anti-concentration, we know that each |Ij | ≥ Θ(1/q). Let thresq : R → Zq be the piecewise
constant function that takes on value k on Ik. Clearly, when t ∼ N (0, 1), thresq(t) ∼ Unif(Zq).
Let R1, . . . , Rq be intervals such that Rk ⊆ Ik−1 ∪ Ik and Rk contains the boundary point between
Ik−1 and Ik, and such that each Rk has mass δ/q for some δ ≪ 1 to be picked later. Let S1, . . . , Sq

be slightly larger intervals such that Rk ⊂ Sk for each k ∈ [q − 1], and each Sk has mass 2δ/q. By
Gaussian anti-concentration again, each |Sk| ≥ Θ(δ/q). Notice that by construction, Pz∼N (0,1)[z ∈
∪kRk] = δ and Pz∼N (0,1)[z ∈ ∪kSk] = 2δ.

Lemma 3.6. Let δ > 0, q > 0, and intervals Ik, Rk, Sk for k ∈ Zq be as above. There exists a
one-hidden-layer ReLU network N1 : R → R with O(q) units and weights of magnitude O(q/δ) such
that N1(t) = thresq(t) if t /∈ ∪kRk.

Proof. This can be done by considering the piecewise linear function that approximates the function
thresq by matching it exactly on R \ ∪kRk, and interpolating linearly between values k − 1 and k
on the interval Rk for each k ∈ [q − 1].

Lemma 3.7. Let δ > 0, q > 0, and intervals Ik, Rk, Sk for k ∈ Zq be as above. There exists a
one-hidden-layer ReLU network N2 : R → [0, 1] with O(q) units and weights of magnitude O(q/δ)
such that

N2(t) is





= 1 if t ∈ ∪kRk

= 0 if t ∈ R \ ∪kSk

≥ 0 otherwise

.

Proof. Consider the piecewise linear function that is 0 on R \ ∪kSk, is 1 on ∪kRk, and interpolates
linearly between 0 and 1 (or 1 and 0) on Sk \Rk for every k ∈ [q− 1]. Put differently, the graph of
N2 consists of a trapezoid on each Sk that achieves its maximum value of 1 on Rk.

3.2 Saving One Hidden Layer via Compressibility

The starting point for exploiting compressibility to avoid a hidden layer in the lift is as follows.
Compressibility lets us express f(x) as σ(h(x)) for some h : Zd

q → T with a poly(d)-sized range
T ⊆ Z, and some σ : T → [0, 1]. So we can write

f(x) = σ(h(x)) =
∑

t∗∈T

σ(t∗)1[h(x) = t∗].

We would like a lifted function f△ : Rd → R (where we introduce f△ as notation to distinguish
our lift from the original DV lift, denoted fDV) such that f△(z) behaves like σ(h(thresq(z))) except
when N2 indicates that N1 6= thresq, in which case we want f△(z) = 0. To this end, we might hope
to write

f△(z) =
∑

t∗∈T

σ(t∗)1[h(N1(z)) = t∗]1[∀j : N2(zj) < 1].

12



Suppose that we could build a one-hidden-layer network N3(s1, . . . , sd; t) that behaves like 1[t =
0]1[∀j : sj < 1]. Then we could realize f△ as

f△(z) =
∑

t∗∈T

σ(t∗)N3(N2(z1), . . . , N2(zd); h(N1(z)) − t∗).

Notice that whenever N2(zj) = 1 for any coordinate j, this expression vanishes. Otherwise, we
know that h(N1(z)) = h(thresq(z)), which takes values in T , so that only the summand with
t∗ = h(thresq(z)) survives and the expression simplifies to f(thresq(z))N3(N2(z1), . . . , N2(zd); 0).
It is not hard to show that this is sufficient to let us complete the required reduction. Moreover,
because N3 is a one-hidden-layer network in its arguments, and because both h ◦N1 and N2 have
at most L hidden layers (for h ◦N1, one comes from N1 and L− 1 from h; for N2, it itself has just
one hidden layer), this implementation of f△ would have only L+ 1 hidden layers.

Slightly more generally, one can show that it would suffice to build a one-hidden-layer network
N3 with the following properties:

N3(s1, . . . , sd; t) =





0 if ∃j : sj = 1

0 if t ∈ Z \ {0}

1 if ∀j : sj = 0 and t = 0

(4)

Unfortunately, most natural attempts to constructN3 with such ideal properties — in particular,
all formulations of N3 purely as a function of two variables,

∑
j sj and t, which was the approach

taken in [DV21] — run into difficulties and appear to require two hidden layers (see Appendix A for
discussion). One approach that does almost work, however, comes at the cost of exponential size.
Let ψ(s1, . . . , sd; t) be any function that vanishes whenever t ∈ Z \ {0} (for all s1, . . . , sd ∈ [0, 1]d).
For simplicity, let us consider the d = 3 case. Consider the following expression that resembles the
inclusion-exclusion formula:

ψ(s1, s2, s3; t)− ψ(1, s2, s3; t)− ψ(s1, 1, s3; t)− ψ(s1, s2, 1; t) (5)

+ ψ(s1, 1, 1; t) + ψ(1, s2, 1; t) + ψ(s1, 1, 1; t) − ψ(1, 1, 1; t)

Notice that whenever any sj = 1, this expression vanishes identically. Moreover, for any t ∈ Z\{0}
(and any s1, . . . , sd), the expression vanishes again because each summand vanishes. Thus the first
two properties are satisfied; the third property turns out to be more subtle, and we will ignore it
for the moment. The natural generalization of this expression to general d can be stated in the
language of partial assignments.

Lemma 3.8. Let ψ : R
d → R be any function. Let Pi denote the set of partial assignments

γ ∈ {1, ⋆}d with i 1s. The expression

d∑

i=0

∑

γ∈Pi

(−1)iψγ (6)

vanishes whenever any sj = 1. (We may view t as an additional parameter that is always left free,
as in Eq. (5))

Proof. For concreteness, suppose s1 = 1. Let P⋆
i (resp. P1

i ) denote the set of γ ∈ Pi with s1 = ⋆
(resp. s1 = 1). For every i ∈ {0, . . . , d− 1}, we can form a bijection between P⋆

i and P1
i+1 using the

map γ 7→ γ′ where γ′ = (1, γ2, . . . , γd). When s1 = 1, for every such pair (γ, γ′), we have ψγ = ψγ′ ,
and moreover they occur in (6) with opposite signs. Thus the entire expression vanishes.
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Let us assume for now that ψ is picked suitably and the rest of the reduction goes through with
this construction (as one can verify when we come to the proof of Theorem 3.3, this would indeed
be the case). This construction has size 2d, meaning that the resulting lifted functions would have
size S = poly(2d). But by Theorem 4.5, the SQ lower bound for the LWR functions over Z

n
q with

n = d and q = poly(n) scales as qΩ(n) = 2Ω(d log d) = SΩ(log logS), which is still superpolynomial
in S. Thus after padding the dimension to d′ = 2d, this construction would actually still yield a
superpolynomial SQ lower bound for two-hidden-layer ReLU networks over Rd′ .

Instead of pursuing this route, however, we give a more efficient construction that has size
only slightly superpolynomial in d. The key idea is to restrict attention to those possibilities for
(s1, . . . , sd) = (N2(z1), . . . , N2(zd)) that are the most likely. Specifically, if m = ωd(1) is the size
parameter from Theorem 3.3, then by setting δ in Lemmas 3.6 and 3.7 appropriately, we can
ensure that with overwhelming probability over z ∼ N (0, Id), no more than m of the N2(zj) are
simultaneously 1. Accordingly, we focus on constructing N3 such that

N3(s1, . . . , sd; t) =





0 if between 1 and m of the si are 1

0 if t ∈ Z \ {0}

1 otherwise

.

We now describe a dΘ(m)-sized construction for N3 that satisfies the first and second properties
exactly, and “approximately” satisfies the third in the sense that it takes on a nonzero value with
nonnegligible probability over its inputs. As we will see later, this turns out to be enough for the
reduction to go through. The construction retains the spirit of using a linear combination of partial
restrictions.

Lemma 3.9 (Main lemma). Let m = m(d) = ωd(1) be a size parameter. Let A denote the set of
all partial assignments α ∈ {0, 1, ⋆}d for which |S(α)| = m and w(α) = 1. Let B denote the set
of all sorted partial assignments given by refining some element of A and sorting. Given i, j ≥ 0,
let Bi,j denote the set of β ∈ B for which |S(β)| = i and w(β) = j. For any symmetric function
ψ : Rd → R, define the function

ψ∗ , ψ −
m∑

i=0

m+1−i∑

j=1

(−1)m−i · λi+j

∑

β∈Bi,j

ψβ, for λk ,

(
d− k − 1

m− k + 1

)

Then

(a) |B| ≤
( d
m

)
(d−m) · 3m

(b) ψ∗ is symmetric

(c) ψ∗
α : Rd → R is the identically zero function for all α ∈ A.

Lemma 3.10. Let

ψ(s1, . . . , sd; t) =

d∑

i=1

ReLU

(
t−

(
si −

1

d− 1

∑

j 6=i

sj

))
− ReLU(dt),

viewed as a function of s1, . . . , sd parameterized by t, and let ψ∗ be as above. Define N3(s1, . . . , sd; t) =
ψ∗(s1, . . . , sd; t). Then

(a) N3(s1, . . . , sd; t) = 0 for any t ∈ R if between 1 and m of the sj are 0
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(b) N3(s1, . . . , sd; t) = 0 for any s1, . . . , sd ∈ [0, 1]d if t ∈ Z \ {0}

(c) N3 has size at most d2m

(d) N3(0, . . . , 0︸ ︷︷ ︸
d−1

, s; 0) = s for any s ∈ [0, 1d ].

Before proceeding to the proofs of Lemmas 3.9 and 3.10, let us see how to use them to prove
Theorem 3.3.

Proof of Theorem 3.3. For each f ∈ C given by f = σ ◦ h, let f△ ∈ C△ be given by

f△(z) =
∑

t∗∈T

σ(t∗)N3(N2(z1), . . . , N2(zd); h(N1(z)) − t∗), (7)

where N1 and N2 are from Lemmas 3.6 and 3.7, with the δ parameter set to d−10m, and N3 is
from Lemma 3.10. This is an (L+ 1)-hidden layer network since h ◦N1 and N2 each have at most
L hidden layers, and N3 adds an additional layer. By Lemma 3.10(c), the size of this network is
S = dΘ(m). Note that whenever z is such that N2(z1), . . . , N2(zd) < 1, then:

• N1(z) = thresq(z), and so h(N1(z)) = h(thresq(z)) takes only integer values in T = h(Zd
q);

and

• the only t∗ for which one of the summands in Eq. (7) is potentially nonzero is the one given
by t∗ = h(thresq(z)).

Thus in this case f△ simplifies to

f△(z) = σ(h(thresq(z))) N3(N2(z1), . . . , N2(zd); 0)

= f(thresq(z)) N3(N2(z1), . . . , N2(zd); 0). (8)

Further, for z such that between 1 andm of theN2(zj) are 1, we know that ψ(N2(z1), . . . , N2(zd); t) =
0 identically (for all t ∈ R), so in this case f△(z) = 0. And finally, for z such that more than m of
the N2(zj) are 1, we have no guarantees on the behavior of f△, but as we now show, we have set
parameters such that this case occurs only with negligible probability, and we can pretend that 0 is
still a valid label in this case. Indeed, by standard Gaussian anti-concentration, for each coordinate
zj we have Pzj [N2(zj) = 1] = Pzj [zj ∈ ∪kRk] = δ = d−10m. The number of coordinates j for
which N2(zj) = 1 thus follows a binomial distribution B(d, d−10m), which has a decreasing pdf
with unique mode at ⌊(d+ 1)d−10m⌋ = 0. Thus the probability of having at least m 1s is at most

d∑

i=m

(
d

i

)
(d−10m)i(1− d−10m)d−i ≤ (d−m+ 1)

(
d

m

)
d−10m2

≤ ddmd−10m2
≤ d−9m2

(9)

for sufficiently large d. This is negligibly small not only in d but in the size of the network,
S = dΘ(m).

We now describe the reduction. For each labeled example (x, y) that the discrete learner B
receives, where x ∼ Unif(Zd

q) and y = f(x) for an unknown f ∈ C, B forms a labeled example
(z, ỹ) for the Gaussian learner A as follows. For each coordinate j ∈ [d], zj is drawn from N (0, 1)
conditioned on zj ∈ Ixj . Notice that this way thresq(z) = x, and the marginal distribution on z is
exactly Nd. The modified label is given by

ỹ = ỹ(y, z) =





0 if more than m of the N2(zj) are 1

0 if between 1 and m of the N2(zj) are 1

y N3(N2(z1), . . . , N2(zd); 0) otherwise

(10)
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Note that in the bottom two cases, ỹ = f△(z) exactly; in the top case ỹ is in general inconsistent with
f△, but as we have seen, this case occurs with negl(S) probability. In particular, with overwhelming
probability, no poly(S)-time algorithm will ever see non-realizable samples.

So B can feed these new labeled examples (z, ỹ) to A. Suppose A outputs a hypothesis f̂ :
R
d → R such that Ez∼Nd

[(f̂(z) − f△(z))2] ≤ ε. We need to show B can convert this hypothesis
into a nontrivial one for its discrete problem. We first define a “good region” G ⊆ R

d where
f△ is guaranteed to be nonzero and nontrivially related to the original f by saying z ∈ G iff
N2(z1), . . . , N2(zd−1) = 0, and N2(zd) ∈ ( 1

2d ,
1
d). Observe that when z ∈ G, by Eq. (8) and

Lemma 3.10(d) we have

f△(z) = f(thresq(z))N3(N2(z1), . . . , N2(zd−1), N2(zd); 0)

= f(x)N3(0, . . . , 0, N2(zd); 0)

= yN2(zd), (11)

where we use the fact that thresq(z) = x, so that f(thresq(z)) = f(x) = y. Let us compute the
probability mass ofG. For coordinates j ∈ [d−1], note that P[N2(zj) = 0] = P[zj /∈ ∪kSk] = 1−2δ =
1− d−Θ(m). For zd, we need a lower bound on the probability that N2(zd) ∈ ( 1

2d ,
1
d). Consider the

behavior of N2 on just the interval Sk that is closest to the origin (which will be k = ⌈q/2⌉): it
changes linearly from 0 to 1 (and again from 1 to 0) on Sk \Rk. It is not hard to see that N2 takes
values in ( 1

2d ,
1
d) on a O(1/d) fraction of Sk. Since the Gaussian pdf will be at least some constant

on all of Sk, the probability that zd lands in this fraction of Sk is Ω(|Sk|/d) = Ω(δ/qd) ≥ d−Θ(m).
Overall, we get that

P[z ∈ R] = P

[
N2(zd) ∈

( 1

2d
,
1

d

)] ∏

j∈[d−1]

P[N2(zj) = 0] ≥ (1− d−Θ(m))d−1d−Θ(m) = d−Θ(m),

which is still 1/poly(S) and hence non-negligible in the size S of the network.
The discrete learner B can now adapt f̂ as follows. Given a fresh test point x ∼ Unif(Zd

q),
the learner forms z such that for each coordinate j ∈ [d], zj is drawn from N (0, 1) conditioned on
zj ∈ Ixk

; for brevity, we shall denote the random variable z conditioned on x (formed in this way)

by z|x. If z ∈ G, then B predicts ŷ = f̂(z)
N2(zd)

(recall that when z ∈ z, N2(zd) >
1
2d ), and otherwise
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it simply predicts ỹ = 1
2 . The square loss of this predictor is given by

E
x∼Unif(Zd

q )
[(ŷ − f(x))2] = E

x
E
z|x

[(ŷ − f(x))2]

= E
x,z|x

[(ŷ − f(x))2 | z ∈ G]P[z ∈ G] + E
x,z|x

[(ŷ − f(x))2 | z /∈ G]P[z /∈ G]

= E
x,z|x

[( f̂(z)

N2(zd)
− f(x)

)2
| z ∈ G

]
P[z ∈ G] + E

x,z|x

[(1
2
− f(x)

)2
| z /∈ G

]
P[z /∈ G]

= E
x,z|x

[( f̂(z)

N2(zd)
−

f△(z)

N2(zd)

)2
| z ∈ G

]
P[z ∈ G] + E

x

[(1
2
− f(x)

)2]
P[z /∈ G]

(by Eq. (11), when z ∈ G, f△(z) = f(x)N2(zd))

< 4d2 E
z
[(f̂(z)− f△(z))2 | z ∈ G]P[z ∈ G] + E

x

[(1
2
− f(x)

)2]
P[z /∈ G]

(when z ∈ G, N2(zd) >
1
2d )

≤ 4d2 E
z
[(f̂(z)− f△(z))2] + E

x

[(1
2
− f(x)

)2]
P[z /∈ G]

≤ 4d2ε+ E
x

[(1
2
− f(x)

)2]
P[z /∈ G]

= E
x

[(1
2
− f(x)

)2]
+ 4d2ε− E

x

[(1
2
− f(x)

)2]
P[z ∈ G].

In the case of the hard classes C that we consider, we may assume without loss of generality that
Ex∼Unif(Zd

q )
[(12 − f(x))2] ≥ 1/poly(d), since otherwise the problem of learning C is trivial (in fact,

in our applications we will have Ex∼Unif(Zd
q )
[(12 − f(x))2] = Θ(1)). This means that by taking

ε = P[z ∈ G]/poly(d) = d−Θ(m)/poly(d) = d−Θ(m)

sufficiently small (but still 1/poly(S)), we may ensure that the square loss of the discrete learner
B is at most Ex∼Unif(Zd

q )
[(12 − f(x))2]− d−Θ(m), as desired.

Remark 3.11. The only property of the Gaussian N (0, Idd) used crucially in the proof above is
that it is a product distribution P = ⊗i∈[d]Pi where each Pi is suitably anti-concentrated. By some
simple changes to the parameters of N1, N2 and N3 (depending on P ), the proof can be made to
work more generally for such distributions P .

3.3 Proofs of Lemmas 3.9 and 3.10

We now detail the proofs involved in the construction of the gadget N3.

Proof of Lemma 3.9. Note that |A| =
( d
m

)
(d − m). Any partial assignment β has at most 3|S(β)|

refinements, and B is a subset of all refinements of partial assignments from A, so |B| ≤
( d
m

)
(d −

m) · 3m.
For the remaining parts of the lemma, it will be useful to observe that B consists exactly of

all partial assignments with i free variables and j 1s for any 0 ≤ i ≤ m and j ≥ 1 satisfying
i+ j ≤ m+ 1.

To prove the second part of the lemma, it suffices to show that

∑

β∈Bi,j

hβ (12)
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is symmetric for all i, j. As transpositions generate the symmetric group on d elements, it suffices
to show that (12) is invariant under swapping two input coordinates, call them a, b ∈ [d]. For all
β ∈ Bi,j for which a, b are either both present or both absent in S(β), this clearly does not affect
the value of hβ . Now consider the set Sa (resp. Sb) of partial assignments β ∈ Bi,j for which only

a (resp. only b) is present in S(β). There is a clear bijection f : Sa → Sb: given β ∈ Sa, swap the
a- and b-th entries, and vice-versa, and for any β ∈ Sa, the function hβ +hf(β) is unaffected by the
swapping of input coordinates a, b. This concludes the proof of the second part of the lemma.

Finally, to prove the third part of the lemma, it suffices to verify it for a single α ∈ A, as h∗ is
symmetric. So consider α = {1, 0, · · · , 0, ⋆, · · · , ⋆}. We apply (2) to get

h∗α = hα −
m∑

i=0

m+1−i∑

j=1

(−1)m−i · λi+j

∑

β∈Bi,j

hαցβ

= hα −
∑

γ∈B∩App(α) sorted

hγ ·
m∑

i=0

m+1−j∑

j=1

(−1)m−i · λi+j

∑

β∈Bi,j

1[α ց β = γ] (13)

Note that for γ = α, the only β ∈ B for which α ց β = γ is β = α. Indeed, for β to be such

that α ց β = α, it must have S(β) = S(α) and exactly one 1, from which it follows that β = α.
Since α ∈ Bm,1, its coefficient in (13) is given by

(−1)m−m · λm+1 = 1,

and so the hα in (13) cancels with the γ = α-th summand in (13).
In the rest of the proof, we can thus focus on sorted γ ∈ B ∩ App(α)\{α}. Note that such γ

satisfy
|S(γ)| < m. (14)

To see this, recall that any γ ∈ B with |S(γ)| = m must have exactly one 1, and since γ ∈ App(α)
it must be that γ must have S(γ) = S(α) and so γ = α.

Observe that we must have γ1 = 1. Indeed, it cannot be 0 because γ is sorted and has at least

one 1. It also cannot be ⋆. To see this, consider any β for which α ց β = γ. If we had β1 6= ⋆,

then clearly γ1 6= ⋆. If we had β1 = ⋆, then (α ց β)1 = 1 (as α1 = 1), so γ = α ց β must also
have first entry given by 1.

We are now ready to calculate the coefficient of hγ (for each γ ∈ B ∩ App(α)\{α}) in (13) by
adding the coefficients of all the β ∈ B for which

α ց β = γ. (15)

First let us consider the contribution of β ∈ B for which β1 = 1. Observe that such β must
have exactly w(γ) 1s. Furthermore, such a β is an element of B if and only if it has at most
m + 1 − w(γ) free variables, and the set of free variables in β must be S(γ) ∪ V where V is any
subset of [d]\({1} ∪ S(α)). The contribution of all such β to the coefficient of hγ in (13) is thus

m+1−w(γ)∑

i=|S(γ)|

(−1)m−i · λi+w(γ) ·

(
d−m− 1

i− |S(γ)|

)
, (16)

where here the index i denotes the total number of free variables in β, and the factor of
(
d−m−1
i−|S(γ)|

)

is the number of ways to choose V .
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It remains to consider the contribution from β ∈ B for which β1 6= 1. First note that clearly we
cannot have β1 = 0, as β is sorted and has at least one 1 because it lies in B. The only possibility
is β1 = ⋆, which we split into two cases based on w(γ).

Case 1: w(γ) = 1. In this case, we claim that there are no β ∈ B simultaneously satisfying (15)
and β1 = ⋆. Suppose to the contrary. Then such a β1 must have at least one 1 in some other entry
(as β ∈ B), but this would imply that the resolution α ց β has at least two 1s, a contradiction.
The total coefficient of hγ in this case is thus exactly given by (16). Upon substituting w(γ) = 1,
this simplifies to

m+1−w(γ)∑

i=|S(γ)|

(−1)m−i · λi+1 ·

(
d−m− 1

i− |S(γ)|

)
=

m+1−w(γ)∑

i=|S(γ)|

(−1)m−i ·

(
d− i− 2

d−m− 2

)
·

(
d−m− 1

i− |S(γ)|

)
= 0,

where in the last step we use Lemma B.1 (which we can apply because of (14)).

Case 2: w(γ) > 1. Observe that we must have w(β) = w(γ)− 1 (as the only entry of α equal to 1
is the first entry, and the first entry of β is ⋆). As w(γ)− 1 > 0 in the current case, such a β is an
element of B if and only if it has at most m+ 2− w(γ) free variables, and the set of free variables
in β must be {1} ∪ S(γ) ∪ V where V is any subset of [d]\({1} ∪ S(α)). Thus in this second case,
the contribution of all β with β1 = ⋆ to the coefficient of hγ in (13) is

m+2−w(γ)∑

i=|S(γ)|+1

(−1)m−i ·λi+w(γ)−1 ·

(
d−m− 1

i− |S(γ)| − 1

)
=

m+1−w(γ)∑

j=|S(γ)|

(−1)m−j−1 ·λj+w(γ) ·

(
d−m− 1

j − |S(γ)|

)
, (17)

where here the index i denotes the total number of free variables in β, the factor of
( d−m−1
i−|S(γ)|−1

)
is

the number of ways to choose V (note that |V | = i− |S(γ)| − 1), and in the second expression we
made the change of variable j = i− 1. We conclude that in this case, the coefficient of hγ in (13)
is given by the sum of (16) and (17), which is 0.

Overall, we conclude that the entire RHS of (13) vanishes for α ∈ A, proving the third part of
the lemma.

The next lemma formally constructs N3 and verifies that it has the required properties, is of
acceptable size, and that it takes on nonzero values on a significant part of its domain.

Proof of Lemma 3.10. Part (a) follows directly from Lemma 3.9(c). Part (b) follows by verifying
that for any t ∈ Z\{0}, ψ(s1, . . . , sd; t) = 0 for any s1, . . . , sd ∈ [0, 1]d; this means that ψ∗, which is
a combination of partial restrictions of ψ, also vanishes for such t. First suppose that t is a positive
integer. Observe that t ≥ 1 while si −

1
d−1

∑
j 6=i sj ∈ [−1, 1], so each ReLU in the definition of ψ is

activated and we get

ψ(s1, . . . , sd; t) =

d∑

i=1


t−


si −

1

d− 1

∑

j 6=i

sj




− dt = −

d∑

i=1


si −

1

d− 1

∑

j 6=i

sj


 = 0.

Next suppose that t is a negative integer. Then t ≤ −1 while si −
1

d−1

∑
j 6=i sj ∈ [−1, 1], so each

ReLU in the definition of h is inactive and we get ψ(s1, . . . , sd; t) = 0.
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For part (c), observe that by the size bound in Lemma 3.9(a) and the fact that ψ contains O(d)
ReLUs, the size of N3 may be bounded by

S ≤ O(d) · (

(
d

m

)
(d−m) · 3m + 1) ≤ O(d)(

dm+1 · 3m

m!
+ 1) ≤ dm+2 ≤ d2m

for m larger than some absolute constant.
It remains to prove part (d). For brevity, we will omit the parameter t and just refer to

ψ(0, . . . , 0, s; t) and ψ∗(0, . . . , 0, s; t) as ψ(0, . . . , 0, s) and ψ∗(0, . . . , 0, s). We first compute ψ(0, . . . , 0, s):
for s ∈ [0, 1],

ψ(0, . . . , 0, s) = ReLU(−s) + (d− 1)ReLU(
1

d− 1
· s) = s.

Next, for any β ∈ B, if w(β) = j for some 0 ≤ j ≤ m+ 1, then if βd = ⋆,

ψβ(0, . . . , 0, s)

= ψ(1, . . . , 1︸ ︷︷ ︸
j

, 0, · · · 0︸ ︷︷ ︸
d−j−1

, s)

= j · ReLU

(
−1 +

1

d− 1
(j − 1 + s)

)
+ (d− j − 1) · ReLU

(
1

d− 1
· j +

1

d− 1
· s

)

+ReLU

(
−s+

1

d− 1
· j

)

=
d− j − 1

d− 1
· (j + s) + ReLU

(
−s+

1

d− 1
· j

)

Note that when s ∈ [0, 1/(d − 1)], because j ≥ 1 (as β ∈ B) this simplifies to

=
(d− j − s)j

d− 1
.

On the other hand, if βd ∈ {0, 1}, then

ψβ(0, . . . , 0, s) = ψ(1, . . . , 1︸ ︷︷ ︸
j

, 0, · · · 0︸ ︷︷ ︸
d−j

)

= j · ReLU

(
−1 +

1

d− 1
(j − 1)

)
+ (d− j) · ReLU

(
1

d− 1
· j

)
=

(d− j)j

d− 1
.

As there are
(
d−1
i−1

)
(resp.

(
d−1
i

)
) partial assignments in Bi,j for which βd = ⋆ (resp. βd ∈ {0, 1}),

we can thus explicitly compute h∗(0, . . . , 0, s) for s ∈ [0, 1/(d − 1)] to be

ψ(0, . . . , 0, s)−
m∑

i=0

m+1−i∑

j=1

(−1)m−i

(
d− i− j − 1

m− i− j + 1

)((
d− 1

i− 1

)
·
(d− j − s)j

d− 1
+

(
d− 1

i

)
·
(d− j)j

d− 1

)
.

By Lemma B.2, the double sum is equal to sero, so h∗(0, . . . , 0, s) = h(0, . . . , 0, s) = s for s ∈
[0, 1/(d − 1)] as claimed.
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4 Statistical Query Lower Bound

We prove a superpolynomial SQ lower bound (for general queries as opposed to only correlational or
Lipschitz queries) for weakly learning two-hidden-layer ReLU networks under the standard Gaus-
sian.

Theorem 4.1. Fix any α ∈ (0, 1). Any SQ learner capable of learning poly(d)-sized two-hidden-
layer ReLU networks under N (0, Idd) up to squared loss ε (for some sufficiently small ε = 1/poly(d))

using bounded queries of tolerance τ ≥ 2−(log d)2−α
must use at least Ω(22

(log d)α

τ2) = dω(1)τ2 such
queries.

For instance, taking α = 1
2 gives a slightly subexponential (but super-quasipolynomial) in d

query lower bound for queries of tolerance at least inverse quasipolynomial in d.
This theorem is proven using the following key reduction, which adapts the compressed DV lift

(Theorem 3.3) to the SQ setting.

Theorem 4.2. Let q = poly(d) be a modulus, and let m = m(d) = ωd(1) be a size parameter.
Let C be a class of compressible L-hidden-layer poly(d)-sized ReLU networks mapping Z

d
q to [0, 1],

and let C△ be the lifted class of (L+1)-hidden-layer dΘ(m)-sized ReLU networks corresponding to C,
mapping R

d to R (as in Theorem 3.3). Suppose there is an SQ learner A capable of learning C△ over
N (0, Idd) up to squared loss d−Θ(m) using queries of tolerance τ , where τ ≥ d−Θ(m2). Then there is
an SQ learner B that, using the same number of queries of tolerance τ/2, produces a weak predictor
B̃ for C over Unif(Zd

q) with advantage d−Θ(m) over guessing the constant 1/2 (in expectation over

both the data and the internal randomness of B̃).

Proof. Recall that B is given SQ access to a distribution of pairs (x, y) where x ∼ Unif(Zd
q ) and

y = f(x) for an unknown f ∈ C. A can request estimates E[φ(x, y)] ± τ for arbitrary bounded
queries φ : Zd

q × [0, 1] → [−1, 1] and any desired τ . We know that given (x, y), the distribution
of (z, ỹ), where z = z(x) is defined by drawing each zj from N (0, 1) conditioned on zj ∈ Ixj and
ỹ = ỹ(y, z) is as in Eq. (10)), is consistent with some f△ ∈ C△ except on a region of probability
mass at most d−9m2

(recall Eq. (9)). Suppose we could simulate SQ access to the distribution
of (z, f△(z)) using only SQ access to that of (x, f(x)). Then by the argument in Theorem 3.3,
simulating A on the (z, f△(z)) distribution would give us a weak predictor B̃ for the distribution
of (x, f(x)), satisfying

E
[(
B̃(x)− f(x)

)2]
< E

[(1
2
− f(x)

)2]
− d−Θ(m).

What we must describe is how B can simulate A’s statistical queries. Say A requests an estimate
Ez[φ(z, f

△(z))]± τ for some query φ : Rd×R → [−1, 1]. Consider the query φ̃ : Zd
q × [0, 1] → [−1, 1]

given by φ̃(x, y) = Ez(x)[φ(z(x), ỹ(y, z(x)))]. This function can be computed without any additional
SQs, since the distribution of (z, ỹ) = (z(x), ỹ(y, z(x))), given (x, y), is fully determined and known
to B. Observe that

E
x,y

φ̃(x, y) = E
x,z(x)

[φ(z(x), ỹ(y, z(x)))] = E
z,ỹ

[φ(z, ỹ)]. (18)

We must also account for the difference between Ez[φ(z, f
△(z))] and Ez,ỹ[φ(z, ỹ)]. But because the

distributions only differ on a region of mass d−9m2
and φ is bounded, we have

∣∣∣E
z
[φ(z, f△(z))] − E

z,ỹ
[φ(z, ỹ)]

∣∣∣ ≤ Θ(d−9m2
) ≤

τ

2
(19)

since we assumed τ ≥ d−Θ(m2). Putting together (18) and (19), we see that B can simulate A’s
query φ to within tolerance τ by querying φ̃ with tolerance τ/2.
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Again, by a padding argument we can obtain a corollary similar to Corollary 3.4, for which we
omit the formal statement. We will use such an argument in the proof of Theorem 4.1.

4.1 SQ lower bound via parities

We can obtain an SQ lower bound for two-hidden-layer ReLU networks by lifting the problem
of learning parities under Ud, which is well-known to require exponentially many queries. More
precisely, we show that an SQ learner for two-hidden-layer ReLU networks would yield an SQ
algorithm for the problem of distinguishing an unknown parity from random labels.

Theorem 4.3 ([Kea98, BFJ+94]). Consider an SQ algorithm given SQ access either to the dis-
tribution of labeled pairs (x, y) where x ∼ Ud and y = χS(x) for an unknown parity χS or to the
randomly labeled distribution Ud ×Unif{0, 1}. Any algorithm capable of distinguishing between the
two cases with probability 2/3 using queries of tolerance τ requires at least Ω(2dτ2) such queries.

Lemma 4.4. For every S ⊆ [d], the parity function χS : {0, 1}d → {0, 1} can be implemented as a
compressible one-hidden-layer ReLU network of poly(d) size.

Proof. Recall that χS(x) evaluates to 1 if the Hamming weight of the bits of x in S is odd, and 0
otherwise, so that χS(x) = σ(

∑
j∈S xj). This satisfies the definition of a compressible one-hidden-

layer network with the inner depth-0 network being x 7→
∑

j∈S xj and σ(t) = 1[t is odd].

We can now supply one proof of Theorem 4.1.

First proof of Theorem 4.1. Let m = m(d) = logc d for c = 1
α − 1, and let d′ = dm = 2log

c+1 d,

so that d = 2log
1/(1+c) d′ . By Lemma 4.4, the class C of parities on {0, 1}d can be implemented

by compressible one-hidden-layer poly(d)-sized ReLU networks, and so the lifted class C△ can be
implemented by two-hidden-layer dΘ(m)-sized ReLU networks over Rd. A padding argument lets us
embed these classes into dimension d′. By using the predictor from Theorem 4.2 (with q = 2), we
could obtain an SQ algorithm capable of distinguishing parities from random labels using queries of

tolerance τ/2, assuming τ ≥ d−Θ(m2) = 2− log2c+1 d = 2− log
2c+1
c+1 d′ . By Theorem 4.3, the lower bound

for learning parities is Ω(2dτ2) = Ω(22
log1/(1+c) d′

τ2). Substituting α = 1
1+c gives the result.

But the SQ lower bound obtained this way via parities is somewhat unconvincing since there
is a non-SQ algorithm capable of learning the lifted function class obtained from parities. Indeed,
suppose we are given examples (z, f△(z)) where f is an unknown parity. We know that whenever
z lands in the “good region” G from the proof of Theorem 3.3 (which happens with non-negligible
probability), we have f△(z) = f(sign(z))N2(z) (recall Eq. (11)). This means we can simply filter
out all z /∈ G and form a clean data set of labeled points (sign(z), f(sign(z))). The unknown f (and
hence f△) can now be learnt by simple Gaussian elimination. In order to give a more convincing
lower bound, we now provide an alternative proof based on LWR.

4.2 SQ lower bound via the LWR functions

Here we provide an alternative proof of Theorem 4.1 using the LWR functions. The hard function
class obtained this way is not only unconditionally hard for SQ algorithms, it is arguably hard for
non-SQ algorithms as well, since LWR is believed to be cryptographically hard.

We begin by stating an SQ lower bound for the LWR functions. This theorem is proven in
Appendix C using a general formulation in terms of pairwise independent function families that
may be of independent interest, communicated to us by Bogdanov [Bog21].
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Theorem 4.5. Let CLWR denote the LWRn,p,q function class. Any SQ learner capable of learning
CLWR up to squared loss 1/16 under Unif(Zn

q ) using queries of tolerance τ requires at least Ω(qn−1τ2)
such queries.

The following lemma shows that the LWR functions may be realized as compressible one-hidden-
layer ReLU networks.

Lemma 4.6. For every w ∈ Z
n
q , the LWR function fw : Zn

q → Zp/p can be implemented as a
compressible one-hidden-layer ReLU network of size O(q2n).

Proof. By definition, we have fw(x) = 1
p⌊(w · x) mod q⌉p, which is a compressible one-hidden-

layer ReLU network with the inner depth-0 network (i.e., affine function) being w 7→ w · x and
σ(t) = 1

p⌊t mod q⌉p. The size bound follows by observing that for any x ∈ Z
n
q , the quantity w · x is

an integer in {0, . . . , q2n}.

We are ready for an alternative proof of Theorem 4.1.

Alternative proof of Theorem 4.1. Let n be the security parameter, and fix moduli p, q ≥ 1 such
that p, q = poly(n) and p/q = poly(n). Let d = n, so that the SQ lower bound from Theorem 4.5

is Ω(qn−1) = dΩ(d) = 2Ω̃(d). Let m = m(d) = logc d for c = 1
α − 1, and let d′ = dm = 2log

c+1 d,

so that d = 2log
1/(1+c) d′ . By Lemma 4.6, the LWRn,p,q function class CLWR is implementable by

one-hidden-layer ReLU networks over Z
d
q of size poly(n) = poly(d). The result now follows by

Theorem 4.2 and the same padding argument as in the proof based on parities.

5 Cryptographic Hardness Based on LWR

In this section we show hardness of learning two-hidden-layer ReLU networks over Gaussian inputs
based on LWR. This is a direct application of the compressed DV lift (Theorem 3.3) to the LWR

problem, which is by definition a hard learning problem over Unif(Zn
q ), or equivalently Unif(Zd

q)
with d = n.

Theorem 5.1. Let n be the security parameter, and fix moduli p, q ≥ 1 such that p, q = poly(n)
and p/q = poly(n). Let d = n. Let c > 0, m = m(d) = logc d and d′ = dm. Suppose there
exists a poly(d′)-time algorithm capable of learning poly(d′)-sized depth-2 ReLU networks under

N (0, Idd′) up to squared loss 1/poly(d′). Then there exists a poly(d′) = 2Θ(log1+c n) time algorithm
for LWRn,p,q.

Proof of Theorem 5.1. By Lemma 4.6, we know that the class CLWR is implementable by compress-
ible poly(d)-sized one-hidden-layer ReLU networks over Z

d
q , or, after padding, over Z

d′
q . Let C△

LWR

denote the corresponding lifted class of poly(d′)-sized two-hidden-layer ReLU networks, padded to
have domain R

d′ . Applying Corollary 3.4 to the assumed learner for C△
LWR

, we obtain a poly(d′)-
time weak predictor predictor for CLWR, which readily yields a corresponding distinguisher for the
LWRn,p,q problem. Using the facts that d′ = dm = 2log

1+c d and d = n, we may translate poly(d′)

into 2Θ(log1+c n), yielding the result.

Remark 5.2. Note that the choice of m = m(d) = logc d in Theorem 5.1 is purely for simplicity. By
picking m(d) = ωd(1) to be a suitably slow-glowing function of d, such as log∗ d, we can obtain a
running time for the final LWR algorithm that is as mildly superpolynomial as we like.
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In addition, as an immediate corollary of Lemma 4.6, we also obtain a hardness result for one-
hidden-layer networks under Unif{0, 1}d, improving on the hardness result of [DV21] (see Theorem
3.4 therein) for two-hidden-layer networks under Unif{0, 1}d. For this application, we let d =
n log q = Õ(n), so that we may identify the domain Z

n
q with {0, 1}d via the binary representation.

This also identifies Unif(Zn
q ) with Unif{0, 1}d.

Corollary 5.3. Let n, p, q be such that p, q = poly(n) and p/q = poly(n), and let d = n log q =
Õ(n). Suppose there exists an efficient algorithm for learning poly(d)-sized one-hidden-layer ReLU
networks under Ud up to squared loss 1/4. Then there exists an efficient algorithm for LWRn,p,q.

6 Hardness of Learning using Label Queries

The main result of this section is to show hardness of learning constant-depth ReLU networks over
Gaussians from label queries:

Theorem 6.1. Assume there exists a family of PRFs mapping {0, 1}d to {0, 1} implemented by
poly(d)-sized L-hidden-layer ReLU networks. Then there does not exist an efficient learner that,
given query access to an unknown poly(d)-sized (L+2)-hidden-layer ReLU network f : Rd → R, is
able to output a hypothesis h : Rd → R such that Ez∼N (0,Idd)[(h(z) − f(z))2] ≤ 1/16.

We first recall the classical connection between pseudorandom functions and learning from label
queries (also known as membership queries in the Boolean setting), due to Valiant [Val84] (see e.g.
[BR17, Proposition 12] for a modern exposition).

Lemma 6.2. Let C = {fs} be a family of PRFs from {0, 1}d to {0, 1} indexed by the key s. Then
there cannot exist an efficient learner L that, given query access to an unknown fs ∈ C, satisfies

P
x,s

[L(x) = fs(x)] ≥
1

2
+

1

poly(d)
,

where the probability is taken over the random key s, the internal randomness of A, and a random
test point x ∼ Unif{0, 1}d.

There exist multiple candidate constructions of PRF families in the class TC
0 of constant-

depth Boolean circuits built with AND, OR, NOT and threshold (or equivalently majority) gates.
Because the majority gate can be simulated by a linear combination of ReLUs similar to N1 from
Lemma 3.6, any TC

0
L (meaning depth-L) function f : {0, 1}d → {0, 1} may be implemented as

a poly(d)-sized L-hidden-layer ReLU network (see e.g. [VRPS21, Lemma A.3]3). Thus we may
leverage the following candidate PRF constructions in TC

0 for our hardness result:

• PRFs in TC
0
4 based on the decisional Diffie-Hellman (DDH) assumption [KL01] (improving

on [NR97]), yielding hardness for depth-6 ReLU networks

• PRFs in TC
0 based on Learning with Errors [BPR12, BP14], yielding hardness for depth-O(1)

ReLU networks

Note that depth 4 is the shallowest depth for which we have candidate PRF constructions based on
widely-believed assumptions, and the question of whether there exist PRFs in TC

0
3 is a longstanding

open question in circuit complexity [Raz92, HMP+93, RR97, KL01]. Under less widely-believed
assumptions, [BIP+18] have also proposed candidate PRFs in ACC

0
3.

We can now complete the proof of Theorem 6.1. Since pseudorandom functions are not neces-
sarily compressibile, we will simply use the original DV lift (Theorem 3.5).

3Note that what the authors term a depth-(L+1) network is in fact an L-hidden-layer network in our terminology.
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Proof of Theorem 6.1. Let fs : {0, 1}d → {0, 1} be an unknown L-hidden-layer ReLU network
obtained from the PRF family by picking the key s at random. Consider the lifted (L+2)-hidden-
layer ReLU network fDV

s : Rd → R from Eq. (3), given by fDV
s (z) = ReLU(fs(N1(z)) − N ′

2(z)),
where N1 and N2 are from Lemmas 3.6 and 3.7, and N ′

2(z) =
∑

j N2(zj). Suppose there were

an efficient learner A capable of learning functions of the form fDV
s using queries. By the DV lift

(Theorem 3.5), A yields an efficient predictor B achieving small constant error w.r.t. the unknown
fs, contradicting Lemma 6.2. We only need to verify that A’s query access to fDV

s can be simulated
by B. Indeed, suppose A makes a query to fDV

s at a point z ∈ R
d. Then B can make a query to fs

at the point sign(z) and return ReLU(fs(sign(z))−N ′
2(z)) = fDV

s (z), as this was the key property
satisfied by fDV

s . This completes the reduction and proves the theorem.

Acknowledgments. We would like to thank our anonymous reviewers for pointing out an issue
in the first version of our proof. Part of this work was completed while the authors were visiting
the Simons Institute for the Theory of Computing.
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A Barriers for constructing N3

We briefly discuss why one natural approach to constructing N3 satisfying the ideal properties in
Eq. (4) ultimately requires two hidden layers rather than one, unlike the construction we give in
Sections 3.2 and 3.3.

The most straightforward way to ensure that a function of s1, . . . , sd, t vanishes whenever there
exists j for which sj = 1 would be to threshold on

∑
sj, e.g. by taking ReLU(1 −

∑
j sj). While

this function is a one-hidden-layer ReLU network, it is unclear how to modify it to satisfy the
remaining desiderata in (4) while preserving the fact that it has only one hidden layer. We note
that [DV21] takes this approach of thresholding on

∑
j sj but uses two hidden layers.

Here we informally argue that such an approach inherently requires an extra hidden layer.
That is, we argue that no function N : R2 → R that takes as inputs s ,

∑
j sj and t and satisfies

(4) can be implemented as a one-hidden-layer network. Concretely, N(s, t) must vanish whenever
s ≥ 1 or t ∈ Z\{0}. Any function computed by a one-hidden-layer ReLU network of the form
(s, t) 7→

∑
iReLU(ais + bit − ci), unless if it is affine linear, must in general be nowhere smooth

(i.e. have a discontinuous gradient) along the entire line where a particular neuron of the network
vanishes. In our example, these are the lines {(s, t) : ais + bit = ci}. But this means that such a
line cannot intersect the region {(s, t) : s ≥ 1}, as otherwise it would be zero (hence smooth) on an
infinite segment of the line. This can only happen if bi = 0, i.e. none of the neurons of N depend
on t. Such a network clearly cannot satisfy (4).

B Supporting lemmas for Section 3

Lemma B.1. For any 0 ≤ S < m ≤ d,

m∑

i=S

(−1)m−i

(
d− i− 2

d−m− 2

)(
d−m− 1

i− S

)
= 0. (20)

Proof. We will show that for any integers j ≥ ℓ ≥ 1,

ℓ∑

k=0

(−1)k
(
j − k

ℓ− 1

)(
ℓ

k

)
= 0. (21)

We would like to substitute ℓ = d − m − 1 and j = d − 2 − S. Note that this is valid as we can
assume without loss of generality that d − m − 1 ≥ 1 (otherwise

(d−m−1
i−S

)
= 0 on the right-hand

side of (20)), and j ≥ ℓ by our assumption that S < m. We conclude the identity

0 =

d−m−1∑

k=0

(−1)k
(
d− 2− S − k

d−m− 2

)(
d−m− 1

k

)
=

d−m−1+S∑

i=S

(−1)i−S

(
d− i− 2

d−m− 2

)(
d−m− 1

i− S

)
,

(22)
where the second step is by the change of variable i = k+S. If d−m− 1+S ≥ m, then note that
all summands m < i ≤ d −m − 1 + S vanish because in that case d − i − 2 < d − m − 2 and so( d−i−2
d−m−2

)
= 0. If d−m− 1 + S < m, then note that all summands d−m− 1 + S < i ≤ m vanish
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because in that case d−m− 1 < i− S and so
(d−m−1

i−S

)
= 0. We conclude that (22) is equal, up to

a sign, to the left-hand side of (20), so we’d be done.
It remains to establish (21), which we do by following an argument due to [Ear19]. Observe

that the left-hand side of (21) is simply counting via inclusion-exclusion the number of subsets of
{1, . . . , j} of size ℓ − 1 which contain {1, . . . , ℓ}. Indeed, the k = 0 summand counts all subsets
of size ℓ − 1. The k = 1 summands subtract out the contribution, for every 1 ≤ x ≤ ℓ, from the
subsets of size ℓ − 1 which contain x. The k = 2 summands add back the contribution, for every
distinct 1 ≤ x < y ≤ ℓ, from the subsets of size ℓ− 1 which contain both of x, y, etc.

Lemma B.2. For any integers m ≥ 3 and a ∈ {0, 1, 2},

m∑

i=1

m+1−i∑

j=1

(−1)m−i

(
d− i− j − 1

m− i− j + 1

)(
d− 1

i− 1

)
· ja = 1[a = 0]

m∑

i=0

m+1−i∑

j=1

(−1)m−i

(
d− i− j − 1

m− i− j + 1

)(
d− 1

i

)
· ja = 0

Proof. By taking ℓ = i+ j, we can rewrite these sums as

Sa,m ,

m+1∑

ℓ=2

ℓ−1∑

i=1

(−1)m−i

(
d− 1− ℓ

m+ 1− ℓ

)(
d− 1

i− 1

)
(ℓ− i)a

Ta,m ,

m+1∑

ℓ=1

ℓ−1∑

i=0

(−1)m−i

(
d− 1− ℓ

m+ 1− ℓ

)(
d− 1

i

)
(ℓ− i)a

We proceed by induction on m. The base cases follow from a direct calculation. By the change of
variable ℓ′ = ℓ− 1, we can rewrite Sa,m+1 as

−
m+1∑

ℓ′=1

ℓ′∑

i=1

(−1)m−i

(
d− 1− ℓ′

m+ 1− ℓ′

)(
d− 1

i− 1

)
(ℓ′ + 1− i)a

= −
m+1∑

ℓ′=1

ℓ′∑

i=1

(−1)m−i

(
d− 1− ℓ′

m+ 1− ℓ′

)(
d− 1

i− 1

)
(ℓ′ − i)a

−
m+1∑

ℓ′=1

ℓ′∑

i=1

(−1)m−i

(
d− 1− ℓ′

m+ 1− ℓ′

)(
d− 1

i− 1

) a−1∑

b=0

(
a

b

)
(ℓ′ − i)b (23)
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Note that the first term on the right-hand side differs from Sa,m only in the summands given by
1 ≤ i = ℓ′ ≤ m + 1, and those summands clearly vanish. We conclude that the first term on the
right-hand side of (23) is exactly Sa,m. For the second term on the right-hand side of (23), the
part coming from any 0 < b ≤ a− 1 is also zero, so we thus get

= Sa,m −
m+1∑

ℓ′=1

ℓ′∑

i=1

(−1)m−i

(
d− 1− ℓ′

m+ 1− ℓ′

)(
d− 1

i− 1

)

= Sa,m − S0,m −
m+1∑

ℓ′=1

(−1)m−ℓ′
(
d− 1− ℓ′

m+ 1− ℓ′

)(
d− 1

ℓ′ − 1

)

= Sa,m − 1−
m+1∑

ℓ′=1

(−1)m−ℓ′
(
d− 1− ℓ′

m+ 1− ℓ′

)(
d− 1

ℓ′ − 1

)

= Sa,m = 1[a = 0], (24)

where the penultimate step follows e.g. by applying the identity in [PSP17]. This completes the
induction for Sa,m.

For Ta,m, note that by the change of variable i′ = i+ 1,

Ta,m = −
m+1∑

ℓ=1

ℓ∑

i′=1

(−1)m−i′
(
d− 1− ℓ

m+ 1− ℓ

)(
d− 1

i′ − 1

)
(ℓ− i′ + 1)a

= −
m+1∑

ℓ=2

ℓ−1∑

i′=1

(−1)m−i′
(
d− 1− ℓ

m+ 1− ℓ

)(
d− 1

i′ − 1

)
(ℓ− i′ + 1)a −

m+1∑

ℓ=1

(−1)m−ℓ

(
d− 1− ℓ

m+ 1− ℓ

)(
d− 1

ℓ− 1

)

= −
a∑

b=0

(
a

b

)
Sb,m + 1 = 0,

where in the second step we pulled out the summands corresponding to i′ = ℓ, in the third step we
used (24), and in the last step we used that for m ≥ 3, Sb,m = 1[b 6= 0] for 0 ≤ b ≤ 2.

C SQ lower bound for the LWR functions

Here we prove an SQ lower bound for the LWR functions (Theorem 4.5) using a general formulation
in terms of pairwise independent function families. To our knowledge, this particular formulation
has not appeared explicitly before in the literature, and was communicated to us by Bogdanov
[Bog21]. A variant of this argument may be found in [BR17, §7.7].

Definition C.1. Let C be a function family mapping X to Y, and let D be a distribution on X .
We call C an (1− η)-pairwise independent function family if with probability 1− η over the choice
of x, x′ drawn independently from D, the distribution of (f(x), f(x′)) for f drawn uniformly at
random from C is the product distribution Unif(Y)⊗Unif(Y).

Lemma C.2. Fix security parameter n and moduli p, q. The LWRn,p,q function class CLWR = {fw |
w ∈ Z

n
q } is (1− 2

qn−1 )-pairwise independent with respect to Unif(Zn
q ).

Proof. This follows from the simple observation that whenever x, x′ ∈ Z
n
q are linearly independent,

the pair (w · x mod q, w · x′ mod q) for w ∼ Unif{Zn
q } is distributed as Unif(Zq) ⊗ Unif(Zq). For

such x, x′, (fw(x), fw(x
′)) = (1p⌊w ·x mod q⌉p),

1
p⌊w ·x′ mod q⌉p) for fw ∼ Unif(CLWR) is distributed

33



as Unif(Zp/p) ⊗ Unif(Zp/p). The probability that x, x′ ∼ Unif(Zn
q ) are linearly dependent is at

most

P[x = 0] + P[x 6= 0]P[x′ is a multiple of x] ≤
1

qn
+

q

qn
≤

2

qn−1
.

We can now prove full SQ lower bounds for any (1 − η)-pairwise independent function family
as follows.

Lemma C.3. Let C mapping X to Y be a (1 − η)-pairwise independent function family w.r.t. a
distribution D on X . Let φ : X × Y → [−1, 1] be any bounded query function. Then

Var
f∼Unif(C)

E
x∼D

[φ(x, f(x))] ≤ 2η.

Proof. Denote Ex∼D[φ(x, f(x))] by φ[f ]. By some algebraic manipulations (with all subscripts
denoting independent draws),

Var
f∼Unif(C)

[φ[f ]] = E
f

[
φ[f ]2

]
−

(
E
f
[φ[f ]]

)2

= E
f
[φ[f ]φ[f ]]− E

f
[φ[f ]]E

f ′

[
φ[f ′]

]

= E
f,f ′

[
E
x
[φ(x, f(x))]E

x′
[φ(x′, f(x′))]− E

x
[φ(x, f(x))]E

x′
[φ(x′, f ′(x′))]

]

= E
x,x′

E
f,f ′

[
φ(x, f(x))φ(x′, f(x′))− φ(x, f(x))φ(x′, f ′(x′))

]
.

By (1− η)-pairwise independence of C, the inner expectation vanishes with probability 1− η over
the choice of x, x′ ∼ D, and is at most 2 otherwise. This gives the claim.

Theorem C.4. Let C mapping X to Y be a (1 − η)-pairwise independent function family w.r.t. a
distribution D on X . For any f ∈ C, let Df denote the distribution of (x, f(x)) where x ∼ D. Let
DUnif(C) denote the distribution of (x, y) where x ∼ D and y = f(x) for f ∼ Unif(C) (this can be
thought of as essentially D ⊗Unif(Y)). Any SQ learner able to distinguish the labeled distribution
Df∗ for an unknown f∗ ∈ C from the randomly labeled distribution DUnif(C) using bounded queries

of tolerance τ requires at least τ2

2η such queries.

Proof. Let φ : X × Y → [−1, 1] be any query made by the learner. For any f ∈ C, let φ[f ]
denote Ex∼D[φ(x, f(x))] = E(x,y)∼Df

[φ(x, y)]. Consider the adversarial strategy where the SQ

oracle responds to this query with φ = Ef∼Unif(C) φ[f ] = E(x,y)∼DUnif(C)
[φ(x, y)]. By Chebyshev’s

inequality and Lemma C.3,

P
f∼C

[∣∣φ[f ]− φ
∣∣ > τ

]
≤

Varf∼Unif(C)

[
φ[f ]

]

τ2
≤

2η

τ2
.

So each such query only allows the learner to rule out at most a 2η
τ2

fraction of C. Thus to distinguish

Df∗ from DUnif(C), the learner requires at least τ2

2η queries.

Theorem 4.5 now follows easily as a corollary.

Proof of Theorem 4.5. It is not hard to see that learning CLWR up to squared loss 1/16 certainly
suffices to solve the distinguishing problem in Theorem C.4. The claim now follows by Lemma C.2.
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Remark C.5. We remark that the argument in this section, specialized to the q = 2 case, recovers
the traditional SQ lower bound for parities (Theorem 4.3) without appealing to any notion of
statistical dimension.
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