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Abstract

Meta-learning owns unique effectiveness and swiftness in
tackling emerging tasks with limited data. Its broad appli-
cability is revealed by viewing it as a bi-level optimization
problem. The resultant algorithmic viewpoint however, faces
scalability issues when the inner-level optimization relies on
gradient-based iterations. Implicit differentiation has been
considered to alleviate this challenge, but it is restricted to an
isotropic Gaussian prior, and only favors deterministic meta-
learning approaches. This work markedly mitigates the scal-
ability bottleneck by cross-fertilizing the benefits of implicit
differentiation to probabilistic Bayesian meta-learning. The
novel implicit Bayesian meta-learning (iBaML) method not
only broadens the scope of learnable priors, but also quan-
tifies the associated uncertainty. Furthermore, the ultimate
complexity is well controlled regardless of the inner-level op-
timization trajectory. Analytical error bounds are established
to demonstrate the precision and efficiency of the generalized
implicit gradient over the explicit one. Extensive numerical
tests are also carried out to empirically validate the perfor-
mance of the proposed method.

1 Introduction

Over the past decade, deep learning (DL) has garnered huge
attention from theory, algorithms, and application view-
points. The underlying success of DL is mainly attributed to
the massive datasets, with which large-scale and highly ex-
pressive models can be trained. On the other hand, the stim-
ulus of DL, namely data, can be scarce. Nevertheless, in sev-
eral real-world tasks, such as object recognition and concept
comprehension, humans can perform exceptionally well
even with very few data samples. This prompts the natural
question: How can we endow DL with human’s unique in-
telligence? By doing so, DL’s data reliance can be alleviated
and the subsequent model training can be streamlined. Sev-
eral trials have been emerging in those “stimulus-lacking”
domains, including speech recognition (Miao, Metze, and
Rawat 2013), medical imaging (yang et al. 2016), and robot
manipulation (Hansen and Wang 2021).

A systematic framework has been explored in recent years
to address the aforementioned question, under the terms
learning-to-learn or meta-learning (Thrun 1998). In brief,
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meta-learning extracts task-invariant prior information from
a given family of correlated (and thus informative) tasks.
Domain-generic knowledge can therein be acquired as an
inductive bias and transferred to new tasks outside the set of
given ones (Thrun and Pratt 2012; Grant et al. 2018), mak-
ing it feasible to learn unknown models/tasks even with min-
imal training samples. One representative example is that of
an edge extractor, which can act as a common prior owing to
its presence across natural images. Thus, using it can prune
degrees of freedom from a number of image classification
models. The prior extraction in conventional meta-learning
is more of a hand-crafted art; see e.g., (Schmidhuber 1993;
Bengio, Bengio, and Cloutier 1995; Schmidhuber, Zhao, and
Wiering 1996). This rather “cumbersome art” has been grad-
ually replaced by data-driven approaches. For parametric
models of the task-learning process (Santoro et al. 2016;
Mishra et al. 2018), the task-invariant “sub-model” can then
be shared across different tasks with prior information em-
bedded in the model weights. One typical model is that of
recurrent neural networks (RNNs), where task-learning is
captured by recurrent cells. However, the resultant black-
box learning setup faces interpretability challenges.

As an alternative to model-committed approaches, model-
agnostic meta-learning (MAML) transforms task-learning
to optimizing the task-specific model parameters, while the
prior amounts to initial parameters per task-level optimiza-
tion, that are shared across tasks and can be learned through
differentiable meta-level optimization (Finn, Abbeel, and
Levine 2017). Building upon MAML, optimization-based
meta-learning has been advocated to ameliorate its perfor-
mance; see e.g. (Li et al. 2017; Bertinetto et al. 2019; Flen-
nerhag et al. 2020; Abbas et al. 2022). In addition, perfor-
mance analyses have been reported to better understand the
behavior of these optimization-based algorithms (Franceschi
et al. 2018; Fallah, Mokhtari, and Ozdaglar 2020; Wang,
Sun, and Li 2020; Chen and Chen 2022).

Interestingly, the learned initialization can be approxi-
mately viewed as the mean of an implicit Gaussian prior
over the task-specific parameters (Grant et al. 2018). In-
spired by this interpretation, Bayesian methods have been
advocated for meta-learning to further allow for uncer-
tainty quantification in the model parameters. Different
from its deterministic counterpart, Bayesian meta-learning
seeks a prior distribution over the model parameters that



best explains the data. Exact Bayesian inference however,
is barely tractable as the posterior is often non-Gaussian,
which prompts pursuing approximate inference methods;
see e.g., (Yoon et al. 2018; Grant et al. 2018; Finn, Xu, and
Levine 2018; Ravi and Beatson 2019).

MAML and its variants have appealing empirical perfor-
mance, but optimizing the meta-learning loss with back-
propagation is challenging due to the high-order derivatives
involved. This incurs complexity that grows linearly with
the number of task-level optimization steps, which renders
the corresponding algorithms barely scalable. For this rea-
son, scalability of meta-learning algorithms is of paramount
importance. One remedy is to simply ignore the high-
order derivatives, and rely on first-order updates only (Finn,
Abbeel, and Levine 2017; Nichol, Achiam, and Schulman
2018). Alternatively, the so-termed implicit (i)MAML re-
lies on implicit differentiation to eliminate the explicit back-
propagation. However, the proximal regularization term in
iMAML is confined to be a simple isotropic Gaussian prior,
which limits model expressiveness (Rajeswaran et al. 2019).

In this paper, we develop a novel implicit Bayesian meta-
learning (iBaML) approach that offers the desirable scala-
bility, expressiveness, and performance quantification, and
thus broadens the scope and appeal of meta-learning to real
application domains. The contribution is threefold.

i) iBaML enjoys complexity that is invariant to the num-
ber K of gradient steps in task-level optimization. This
fundamentally breaks the complexity-accuracy trade-
off, and makes Bayesian meta-learning affordable with
more sophisticated task-level optimization algorithms.

ii) Rather than an isotropic Gaussian distribution, iBaML
allows for learning more expressive priors. As a
Bayesian approach, iBaML can quantify uncertainty of
the estimated model parameters.

iii) Through both analytical and numerical performance
studies, iBaML showcases its complexity and accuracy
merits over the state-of-the-art Bayesian meta-learning
methods. In a large K regime, the time and space com-
plexity can be reduced even by an order of magnitude.

2 Preliminaries and problem statement

This section outlines the meta-learning formulation in the
context of supervised few-shot learning, and touches upon
the associated scalability issues.

2.1 Meta-learning setups

Suppose we are given datasets D; := {(x},y7)})*,, each
of cardinality |D;| = N; corresponding to a task indexed by
t € {1,...,T}, where X} is an input vector, and 3} € R
denotes its label. Set D is disjointly partitioned into a train-
ing set DI and a validation set D}?!, with |D{*| = N
and |D}*| = Ny for Vt. Typically, Ny is limited, and of-
ten much smaller than what is required by supervised DL
tasks. However, it is worth stressing that the number of tasks
T can be considerably large. Thus, Zthl Ny can be suffi-
ciently large for learning a prior parameter vector shared by
all tasks; e.g., using deep neural networks.

A key attribute of meta-learning is to estimate such a
task-invariant prior information parameterized by the meta-
parameter 6 based on training data across tasks. Subse-
quently, 6 and D}" are used to perform task- or inner-level
optimization to obtain the task-specific parameter 8, € R
The estimate of ; is then evaluated on D}®! (and potentially
also DY*) to produce a validation loss. Upon minimizing this
loss summed over all the training tasks w.r.t. 8, this meta- or
outer-level optimization yields the task-invariant estimate of
6. Note that the dimension of 6, is not necessarily identical
to that of 0; see e.g. (Li et al. 2017; Bertinetto et al. 2019;
Lee et al. 2019). As we will see shortly, this nested structure
can be formulated as a bi-level optimization problem. This
formulation readily suggests application of meta-learning to
settings such as hyperparameter tuning that also relies on a
similar bi-level optimization (Franceschi et al. 2018).

This bi-level optimization is outlined next for both deter-
ministic and probabilistic Bayesian meta-learning variants.

Optimization-based meta-learning. For each task ¢, let
L£ir(0,) and L£}*(6;) denote the losses over DI and Dy,
respectively. Further, let @ be the meta-parameter estimate,

and ’R(@7 0;) the regularizer of the learning cost per task ¢.
Optimization-based meta-learning boils down to

T
6 =argmin »  L£}(6,(6)) (1)
6 t=1

s.to 0,(0) = argmin L (0,) + R(6,0,), t =1,...,T.
0,

The regularizer R can be either implicit (as in iMAML)
or explicit (as in MAML). Further, the task-invariant meta-
parameter is calibrated by R in order to cope with over-
fitting. Indeed, an over-parameterized neural network could
easily overfit D" to produce a tiny £!* yet a large £},

As reaching global minima can be infeasible especially
with highly nonconvex neural networks, a practical alterna-
tive is an estimator 6, produced by a function At(H) rep-
resenting an optimization algorithm, such as gradient de-
scent (GD), with a prefixed number K of iterations. Thus,
a tractable version of (1) is

T
0 =argmin Y L£}"(6,(0)) 2)
o t=1

sto 0,(0) = A(0), t=1,...,T

As an example, Ay, can be an one-step gradient descent ini-
tialized by @ with implicit priors (R(0,8;) = 0) (Finn,
Abbeel, and Levine 2017; Grant et al. 2018), which yields
the per task parameter estimate

0, = A(0)=0—aVLE@®), t=1,....T (3)

where « is the learning rate of GD, and we use the compact
gradient notation VL (0) := vgtﬁgr(et)bt:e hereafter.
For later use, we also define A} the (unknown) oracle func-
tion that generates the global optimum 6;.



Bayesian meta-learning. The probabilistic approach to
meta-learning takes a Bayesian view of the (now ran-
dom) vector 6, per task ¢. The task-invariant vector 0 is
still deterministic, and parameterizes the prior probabil-
ity density function (pdf) p(0;;0). Task-specific learning
seeks the posterior pdf p(@:|y"; X%, 0), where X!T :=

tr tr
xi,...,x0 0] and yt* = [y},...,u7" )T (7 denotes
transposition), while the objective per task ¢ is to maxi-
mize the conditional likelihood p(y}®!|y!; X2l Xir 9) =
[ p(yy64; Xy p(6: |yt Xi¥, 6)d6;. Along similar lines
followed by its deterministic optimization-based counter-
part, Bayesian meta-learning amounts to

T
6 = argmax [ / p(yy™104 X7 )p(0:lyi's X}, 0)d6,
] _

s.t0 p(B:]y;"; X4, 0) o p(yi'104: X )p(6:50), Vi (4)

where we used that datasets are independent across tasks,
and Bayes’ rule in the second line. Through the posterior
p(0:]yt; X!, 8), Bayesian meta-learning quantifies the un-
certainty of task-specific parameter estimate 6, thus assess-
ing model robustness. When the posterior of Ot is replaced
by its maximum a posteriori point estimator 0 , meaning

p(6,|y; X, 0) = 6p[6,—0, ] with 6 denoting Dirac’s
delta, it turns out that (4) reduces to (1).

Unfortunately, the posterior in (4) can be intractable
with nonlinear models due to the difficulty of finding an-
alytical solutions. To overcome this, we can resort to the
widely adopted approximate variational inference (VI); see
e.g. (Finn, Xu, and Levine 2018; Ravi and Beatson 2019;
Nguyen, Do, and Carneiro 2020). VI searches over a family
of tractable distributions for a surrogate that best matches the
true posterior p(0;|y:"; Xt ). This can be accomplished
by minimizing the KL-divergence between the surrogate pdf
q(0¢;vy) and the true one, where v; determines the varia-
tional distribution. Considering that the dimension of 8; can
be fairly high, both the prior and surrogate posterior are of-
ten set to be Gaussian (') with diagonal covariance matri-
ces. Specifically, we select the prior as p(60;; 0) = N(m, D)
with covariance D = diag(d) and @ := [m',d"]T € R x
R¢ ,, and the surrogate posterior as q(6;; v;) = N (m;, D;)
with D; = diag(d;) and v; := [m,/,d;]" € R? x RZ.

To ensure tractable numerical integration over g(6;v:),
the meta-learning loss is often relaxed to an upper bound
of Zthl —log p(yy2|yt; Xyal, X @). Common choices
include applying Jensen’s inequality (Nguyen, Do, and
Carneiro 2020) or an extra VI (Finn, Xu, and Levine 2018;
Ravi and Beatson 2019) on (4). For notational convenience,
here we will denote this upper bound by £}*!(v¢, 8). With
VI and a relaxed (upper bound) objective, (4) becomes

T

0 = argmin > _ L}*(v}(6),0) )
C—

s.to vy () = argmin KL (q(04; v¢) ||p(0: |y ;s X[, 0)) Vt,

where £}?! depends on @ in two ways: i) via the intermediate
variable vy; and, ii) by acting directly on E;’al. Note that (5)

is general enough to cover the case where £}?! is constructed
using both D,‘{al and Dﬁr; see e.g., (Ravi and Beatson 2019).
Similar to optimization-based meta-learning, the difficulty
in reaching global optima prompts one to substitute v; with

a sub-optimum V; obtained through an algorithm A, (0);i.e.,

T
6 = argmin » L} (¥,(6),6)
o t=1

sto vi(0) = A(0), t=1,...,T. (6)

2.2 Scalability issues in meta-learning

Delay and memory resources required for solving (2) and
(6) are arguably the major challenges that meta-learning
faces. Here we will elaborate on these challenges in the
optimization-based setup, but the same argument carries
over to Bayesian meta-learning too.

Consider minimizing the meta-learning loss in (2) us-
ing gradient-based iteration such as Adam (Kingma and Ba
2015). In the (r+1)-st iteration, gradients must be computed

forabatch B” C {1,...,T} of tasks. Letting Ot = A,(6 ),

AT
where 68 denotes the meta-parameter in the r-th iteration,
the chain rule yields the so-termed meta-gradient

oLy (8;(0))| = VAO VL@, teB (D)

where VAt(éT) contains high-order derivatives. When A,
is chosen as the one-step GD (cf. (3)), the meta-gradient is

VAO) =1, — aV2L¥ (), teB. (8)
Fortunately, in this case the meta-gradient can still be com-
puted through the Hessian-vector product (HVP), which in-
curs spatio-temporal complexity O(d).

In general, A; is a K-step GD for some K > 1, which

gives rise to high-order derivatives {V* £t (6")}X*! in the
meta-gradient. The most efficient computation of the meta-
gradient calls for recursive application of HVP K times,
what incurs an overall complexity of O(Kd) in time, and
O(Kd) in space requirements. Empirical wisdom however,
favors a large K because it leads to improved accuracy in ap-
proximating the true meta-gradient Vo L} (A% (0 ’ o—
Hence, the linear increase of complexity with /K will 1mpede
the scaling of optimization-based meta-learning algorithms.
When computing the meta-gradient, it should be under-
scored that the forward implementation of the K-step GD
function has complexity O(K d). However, the constant hid-
den in the O is much smaller compared to the HVP com-
putation in the backward propagation. Typically, the con-
stant is 1/5 in terms of time and 1/2 in terms of space;
see (Griewank 1993; Rajeswaran et al. 2019). For this rea-
son, we will focus on more efficient means of obtaining the
meta-gradient function VgL£}?'(A;(8)) for Bayesian meta-
learning. It is also worth stressing that our results in the next
section will hold for an arbitrary vector € R? x RZ  in-

stead of solely the variable 6" of the r-th iteration. Thus, we
will use the general vector 8 when introducing our approach,
while we will take its value at the point 6 = 6" when pre-
senting our meta-learning algorithm.



3 Implicit Bayesian meta-learning

In this section, we will first introduce the proposed implicit
Bayesian meta-learning (iBaML) method, which is built on
top of implicit differentiation. Then, we will provide theo-
retical analysis to bound and compare the errors of explicit
and implicit differentiation.

3.1 Implicit Bayesian meta-gradients

We start with decomposing the meta-gradient in Bayesian
meta-learning (6) (henceforth referred to as Bayesian meta-
gradient) using the chain rule

VoL (v4(0),0) = VA(0)V1L (v, 0)
+ Vo LY (¥4, 0), t=1,...,T (9)

where V; and V5 denote the partial derivatives of a function
w.r.t. its first and second arguments, respectively. The com-
putational burden in (9) comes from the high-order deriva-
tives present in the Jacobian V.4, (0).

The key idea behind implicit differentiation is to express
VA, (0) as a function of itself, so that it can be numerically
obtained without using high-order derivatives. The follow-
ing lemma formalizes how the implicit Jacobian is obtained
in our setup. All proofs can be found in the Appendix.

Lemma 1. Consider the Bayesian meta-learning problem
in (5), and let v, := [m,,d;|" be a local minimum of
the task-level KL-divergence generated by A4(0). Also, let
LT (ve) = Eqo,v)[—logp(yi"|0s; X{")] denote the ex-
pected negative log-likelihood (nll) on D*. If Hy(vy) =
_ D! 0g4
2 ptr :

VLI (v + { 04 1(D7!+2diag (vdtzgr(vf,)))r‘} g
invertible, then it holds for ¥t € {1,...,T} that

VAL(6) =

D Ot H (%), (10)
—dlag (thﬁgr(vt))Dil %DiQ t ¢

Two remarks are now in order regarding the technical
assumption, and connections with iMAML. For notational
brevity, define the block matrix

Gi(v1) == D 0 | ()
BT — diag (Vi £i7(v,))D™E AD72 )

Remark 1. The invertibility of H,(¥,) in Lemma 1 is as-
sumed to ensure uniqueness of V.4,(0). Without this as-
sumption, it turns out that v, can be a singular point, be-
longing to a subspace where any point is also a local mini-
mum. The Bayesian meta-gradients (9) of the points in this
subspace form a set

G = {Guv) (H} (V) V1L (v1,6) + u)
+ Vo Ly(9,,0) | Vu e Null(Ht(Vt))} (12)
where T represents pseudo-inverse, and Null(-) stands for the

null space. Upon replacing H; *(v;) with HJ (v;), one can
generalize Lemma 1, and forgo the invertibility assumption.

Algorithm 1: Implicit Bayesian meta-learning (iBaML)

1: Inputs: tasks {1,...,7} with their D!* and D}*!, and
meta-learning rate 3.

T C e . ~0 . .
Initialization: initialize 6 randomly, and iteration

2:
counter r = 0.

3: repeat

4:  Sample a batch B” C {1,...,T} of tasks;

5. forte B do o

6: Compute task-level sub-optimum v} = A;(6 ) us-
ing e.g. K-step GD;

7: Approximate @} ~ H; ' (¥v1)V L} (¥7, 97) with
L-step CG;

8: Compute meta-level gradient g = G:(v])a] +

VoLy(¥7,0") using (17);
9: end for T
10 Update® =6 — ﬁﬁ Y ienr &F:
I: r=r+1;
12: until convergence
13: Output: 0.

Remark 2. To recognize how Lemma 1 links iBaML with
iMAML (Rajeswaran et al. 2019), consider the special case
where the covariance matrices of the prior and local mini-
mum are fixed as D = A\7'I; and D; = 0, for some con-
stant \. Sinced = [A™!, ..., A7!] € R%is a constant vector,
Lemma 1 boils down to

VinAi(6) = D1 (V2L (V) +D7 1)~
— (AR L) 1) (13)

which coincides with Lemma 1 of (Rajeswaran et al. 2019).
Hence, iBaML subsumes iMAML whose expressiveness is
confined because d is fixed, while iBaML entails a learn-
able covariance matrix in the prior p(6;; ). In addition, the
uncertainty of iIMAML’s training posterior p(6;|y:"; X!*, 0)
can be more challenging to quantify than that in iBaML.

1

An immediate consequence of Lemma 1 is the so-called
generalized implicit gradients. Suppose that Ay involves a
K sufficiently large for the sub-optimal point v, to be close
to a local optimum v;. The Bayesian meta-gradient (9) can
then be approximated through

VoLl}™(v:(6),6) (14)
~ Gi(V)H, (V) VLY (1, 0) + Vo L™ (94, 6), Vi.
The approximate implicit gradient in (14) is computation-
ally expensive due to the matrix inversion H; ' (¥;), which
incurs complexity O(d?). To relieve the computational bur-
den, a key observation is that H; ' (¥,)V1 £} (¥, 8) is the

solution of the optimization problem

1
argmin §uTHt(\7t)u — uTvlﬁZal(f/h@). (15)
u

Given that the square matrix H;(v;) is by definition sym-
metric, problem (15) can be efficiently solved using the con-
jugate gradient (CG) iteration. Specifically, the complexity



of CG is dominated by the matrix-vector product H;(v;)p
(for some vector p € R2%), given by

H,(V)p = V2L}'(Vi)p (16)
D! 04
+ 1 —1 : tr(y; 2| P
0 3(D7!'+2diag (Vatﬁt (¥4)))
The first term on the right-hand side of (16) is an HVP, and
the second is the multiplication of a diagonal matrix with
a vector. Note that with the diagonal matrix, the latter term
boils down to a dot product, implying that the complexity
of each CG iteration is as low as O(d). In practice, a small
number of CG iterations suffices to produce an accurate es-
timate of H; * (¥;)V1L}* (v, 8) thanks to its fast conver-
gence rate (Van der Sluis and van der Vorst 1986; Winther
1980). In order to control the total complexity of iBaML, we
set the maximum number of CG iterations to a constant L.
Having obtained an apprommatlon of the matrix-
inverse-vector product H, ' (V4)V1L}* (¥4, 0), we pro-
ceed to estimate the Bayesmn meta-gradient. Let 0; :=

[0/ 1,0/ 4] T be the output of the CG method with subvec-

tors Ug,m, Ord € R<. Then, it follows from (14) that

Vo L™ (V(6),0)
~ Gt( )ﬁ + V2£V l(vt,B)

D™ ut m
—diag (vmt'ct (Vt))D Uy, m + D 2ut d

+ Vo ly(34,0) =g, t=1,...,T

where we also used the definition (11). Again, the diagonal-
matrix-vector products in (17) can be efficiently computed
through dot products, which incur complexity O(d). The
step-by-step pseudocode of the iBaML is listed under Al-
gorithm 1.

In a nutshell, the implicit Bayesian meta-gradient com-
putation consumes O(Ld) time, regardless of the optimiza-

tion algorithm A;. One can even employ more compli-
cated algorithms such as second-order matrix-free optimiza-
tion (Martens and Grosse 2015; Botev, Ritter, and Barber
2017). In addition, as the time complexity does not depend
on K, one can increase K to reduce the approximation error
in (14). The space complexity of iBaML is only O(d) thanks
to the iterative implementation of CG steps. These consider-
ations explain how iBaML addresses the scalability issue of
explicit backpropagation.

3.2 Theoretical analysis

This section deals with performance analysis of both explicit
and implicit gradients in Bayesian meta-learning to further
understand their differences. Similar to (Rajeswaran et al.
2019), our results will rely on the following assumptions.

Assumption 1. Vector v, = A;(0) is a local minimum of

the KL-divergence in (5).

Assumption 2. The meta-loss function L} (v, 0) is A;-
Lipschitz and Bi-smooth w.r.t. v while its partial gradient
VoL (vy, 0) is Cy-Lipschitz w.rt. vy.

Assumption 3. The expected nll function Li*(vy) is Dy-
smooth, and has a Hessian that is E.-Lipschitz.

Assumption 4. Matrices H(V;) and Hy(V;) are both
non-singular; that is, their smallest singular value oy =
min {Umin (Ht (‘A’t)) y Omin (Ht (vt)) } > 0.
Assumption 5. Prior variances are positive and bounded,
meaning 0 < Dyin < [d]; < Diax, 1 =1,...,d.

Based on these assumptions, we can establish the follow-
ing result.

Theorem 1 (Explicit Bayesian meta-gradient error bound).
Consider the Bayesian meta-learning problem (6). Let
e = ||[Vi — V|2 be the task-level opnmlzatlon
error, and &, = ||VA(0) — Gy(v,)H; (%12
the error in the Jacobian. Upon defining pt =
max { || Ve, L (Vi) oos Vo, L (Vi)|loo }. and with As-
sumptions 1-5 in effect, it holds fort € {1,...,T} that

[VoLi™ (v+(6),8) — VoLli™ (v+(6),6)],
< Freg + Ay (17)
where Fy is a constant dependent on p,.

Theorem 1 asserts that the /5 error of the explicit Bayesian
meta-gradient relative to the true depends on the task-level
optimization error as well as the error in the Jacobian, where
the former captures the Euclidean distance of the local min-
imum Vv, and its approximation v, while the latter charac-
terizes how the sub-optimal function A, influences the Ja-
cobian. Both errors can be reduced by increasing K in the
task-level optimization, at the cost of time and space com-
plexity for backpropagating V./th(B). Ideally, one can have
d¢ = 0 when ¥, is a local optimum, and ¢; = 0 when choos-
ing Vi = \A’t.

Next, we derive an error bound for implicit differentiation.
Theorem 2 (Implicit Bayesian meta-gradient error bound).
Consider the Bayesian meta-learning problem (6). Let €; :=
Ve — Vi||2 be the task-level optimization error, and &, :=
|G — H; * (V¢) V1LY (v, 8) | the CG error. Upon defining
pr = max { ||V, L8 (V) lloo, | Ve, L8 (Vi) [|oo |, and with
Assumptions 1-5 in effect, it holds for t € {1,...,T} that

|& — VoLi™ (v4(6),0)], < Fle: + G;, (18)
where F and G}, are constants dependent on py.

While the bound on implicit meta-gradient also depends
on the task-level optimization error, the difference with The-
orem 1 is highlighted in the CG error. The fast convergence
of CG leads to a tolerable ¢; even with a small L. As aresult,
one can opt for a large K to reduce task-level optimization
error €4, and a small L to obtain a satisfactory approximation
of the meta-gradient.

It is worth stressing that v; in Theorems 1 and 2 can de-
note any local optimum. It further follows by definition that
both §; and d; do not rely on the choice of local optima, yet
¢; does. One final remark is now in order.

Remark 3. Theorems 1 and 2 can be further simplified un-
der the additional assumption that £{*(v;) is H¢-Lipschitz.
In such a case, we have p; < Hy, and thus the scalars F}, F}
and G boil down to task-specific constants.



4 Numerical tests

Here we test and showcase on synthetic and real data the
analytical novelties of this contribution. Our implementation
relies on the PyTorch (Paszke et al. 2019), and experiments
are run on a server equipped with an Intel Core i7-6700K
CPU (4.00GHz), and an NVIDIA TITAN X GPU.

4.1 Synthetic data

Here we experiment on the errors between explicit and im-
plicit gradients over a synthetic dataset. The data are gener-
ated using the Bayesian linear regression model

y;n = <0tyx?>+6;n7 Vn, t=1,...,T (19)

where {0;}_, are i.i.d. samples drawn from a distribu-

tion p(0;0) that is unknown during meta-training, and
ey is the additive white Gaussian noise (AWGN) with
known variance 2. Although the current training posterior
p(0:|y*; XIT, 0) becomes tractable, we still focus on the VI
approximation for uniformity. Within this rudimentary lin-
ear case, it can be readily verified that the task-level opti-
mum v; := [m;T,d;T]T of (5)is given by

mi = (XX T+ D7) (D m o o Xyy)
(20a)

X o trxrtry T -1\

dt:(ﬁdmg(Xt (X)) +d ) L t=1...,T
(20b)

where diag(M) is a vector collecting the diagonal en-
tries of matrix M. The true posterior in the linear case is

T r * r r _1\ 1
p(8.]y§": XI,8) = N (my, (55 (X¥(X{)T) +d1) 7,
implying that the posterior covariance matrix is essen-
tially approximated by its diagonal counterpart D} in VL

Lemma 1 and (9) imply that the oracle meta-gradient is

VoLi™ (v} (9),6) 1)
= G (v))H (V) V1L (v], 0) + VL7 (vi,0), Vit

As a benchmark meta-learning algorithm, we selected the
amortized Bayesian meta-learning (ABML) in (Ravi and
Beatson 2019). The metric used for performance assess-
ment is the normalized root-mean-square error (NRMSE)
between the true meta-gradient Vo £y (v} (0),6), and the
estimated meta-gradients Vo £}2!(¥4(0), ) and g;; see also
the Appendix for additional details on the numerical test.

Figure 1 depicts the NRMSE as a function of K for the

first iteration of ABML, that is at the point 8 = @O. For ex-
plicit and implicit gradients, the NRMSE decreases as K in-
creases, while the former outperforms the latter for K < 5,
and the vice-versa for X' > 5. These observations con-
firm our analytical results. Intuitively, factors Fie; and F}e;
caused by imprecise task-level optimization dominate the
upper bounds for small K, thus resulting in large NRMSE.
Besides, implicit gradients are more sensitive to task-level
optimization errors. One conjecture is that iBaML is devel-
oped based on Lemma 1, where the matrix inversion can
be sensitive to v;’s variation. Despite that the conditioning
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0.034 === implicit, L=5 | ]
0.0335 f;
® 0033 [{;
=
4
Z 0.0325 [\
0.032
0.0315
== [ ———
) i S ——
10 20 30 40 50

Number K of GD steps
Figure 1: Gradient error comparison on synthetic dataset.

number x of X!' takes on a large value purposely so that ¢;
decreases slowly with K, a small K suffices to capture ac-
curately implicit gradients. The main reason is that the CG
error §; can become sufficiently small even with only L = 2
steps, while J; remains large because GD converges slowly.

4.2 Real data

Next, we conduct tests to assess the performance of iBaML
on real datasets. We consider one of the most widely used
few-shot dataset for classification minilmageNet (Vinyals
et al. 2016). This dataset consists of natural images catego-
rized in 100 classes, with 600 samples per class. All images
are cropped to have size of 84 x 84. We adopt the dataset
splitting suggested by (Ravi and Larochelle 2017), where
64, 16 and 20 disjoint classes are used for meta-training,
meta-validation and meta-testing, respectively. The setups
of the numerical test follow from the standard W -class S**-
shot few-shot learning protocol in (Vinyals et al. 2016). In
particular, each task has W randomly selected classes, and
each class contains S* training images and S** valida-
tion images. In other words, we have N* = SYI and
Nval = §valji/ We further adopt the typical choices with
W =5, 8% € {1,5}, and S&! = 15. It should be noted that
the training and validation sets are also known as support
and query sets in the context of few-shot learning.

We first empirically compare the computational complex-
ity (time and space) for explicit versus implicit gradients on
the 5-class 1-shot minilmageNet dataset. Here we are only
interested in backward complexity, so the delay and memory
requirements for forward pass of Ay is excluded. Figure 2(a)
plots the time complexity of explicit and implicit gradients
against K. It is observed that the time complexity of explicit
gradient grows linearly with K, while the implicit one in-
creases only with L but not K. Moreover, the explicit and
implicit gradients have comparable time complexity when
K = L. As far as space complexity, Figure 2(b) illustrates
that memory usage with explicit gradients is proportional
to K. In contrast, the memory used in the implicit gradi-
ent algorithms is nearly invariant across K values. Such a
memory-saving property is important when meta-learning
is employed with models of growing degrees of freedom.
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Figure 2: Time and space complexity comparisons for meta-gradients computation on 5-class 1-shot minilmageNet dataset.

Method nll accuracy

MAML, K =5 0.967+0.017 63.14+0.92%
ABML, K =5 0.957+0.016 62.84+0.74%
iBaML, K =5  0.965+0.018 63.24+0.74%
iBaML, K =10 0.9474+0.017 64.0 +£0.75%
iBaML, K =15 0.943+0.017 64.0 +0.74%

Table 1: Test negative log-likelihood (nll) and accuracy com-
parison on 5-class 5-shot minilmageNet dataset. The =+ sign
indicates the 95% confidence interval.

Furthermore, one may also notice from both figures that
MAML and iMAML incur about 50% time/space complex-
ities of ABML and iBaML. This is because non-Bayesian
approaches only optimize the mean vector of the Gaussian
prior, whose dimension is d, while the probabilistic methods
cope with both the mean and diagonal covariance matrix of
the pdf with corresponding dimension 2d. This increase in
dimensionality doubles the space-time complexity in gradi-
ent computations.

Next, we demonstrate the effectiveness of iBaML in re-
ducing the Bayesian meta-learning loss. The test is con-
ducted on the 5-class 5-shot minilmageNet. The model
is a standard 4-layer 32-channel convolutional neural net-
work, and the chosen baseline algorithms are MAML (Finn,
Abbeel, and Levine 2017) and ABML (Ravi and Beatson
2019); see also the Appendix for alternative setups. Due to
the large number of training tasks, it is impractical to com-
pute the exact meta-training loss. As an alternative, we adopt
the ‘test nll’ (averaged over 1, 000 test tasks) as our metric,
and also report their corresponding accuracy. For fairness,
we set L = 5 when implementing the implicit gradients
so that the time complexity is similar to explicit one with
K = 5. The results are listed in Table 1. It is observed that
both nll and accuracy improve with K, implying that the
meta-learning loss can be effectively reduced by trading a
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Figure 3: Calibration errors on 5-class 1-shot minilmageNet.

small error in gradient estimation.

To quantify the uncertainties embedded in state-of-the-art
meta-learning methods, Figure 3 plots the expected/maxi-
mum calibration errors (ECE/MCE) (Naeini, Cooper, and
Hauskrecht 2015). It can be seen that iBaML is once again
the most competitive among tested approaches.

5 Conclusions

This paper develops a novel so-termed iBaML approach to
enhance the scalablity of Bayesian meta-learning. At the
core of iBaML is an estimate of meta-gradients using im-
plicit differentiation. Analysis reveals that the estimation er-
ror is upper bounded by task-level optimization and CG er-
rors, and these two can be significantly reduced with only
a slight increase in time complexity. In addition, the re-
quired computational complexity is invariant to the task-
level optimization trajectory, what allows iBaML to deal
with complicated task-level optimization. Besides analytical
performance, extensive numerical tests on synthetic and real
datasets are also conducted and demonstrate the appealing
merits of iBaML over competing alternatives.



Acknowledgments

This work was supported in part by NSF grants 2220292,
2212318, 2126052, and 2128593.

References

Abbas, M.; Xiao, Q.; Chen, L.; Chen, P.-Y.; and Chen, T.
2022. Sharp-MAML: Sharpness-Aware Model-Agnostic
Meta Learning. In Proceedings of the 39th International

Conference on Machine Learning, volume 162 of Proceed-
ings of Machine Learning Research, 10-32. PMLR.

Bengio, S.; Bengio, Y.; and Cloutier, J. 1995. On the Search
for New Learning Rules for ANNs. Neural Processing Let-
ters, 2(4): 26-30.

Bertinetto, L.; Henriques, J. F.; Torr, P; and Vedaldi,
A. 2019. Meta-learning with Differentiable Closed-Form
Solvers. In Proceedings of International Conference on
Learning Representations.

Botev, A.; Ritter, H.; and Barber, D. 2017. Practical Gauss-
Newton Optimisation for Deep Learning. In Proceedings
of the 34th International Conference on Machine Learning,

volume 70 of Proceedings of Machine Learning Research,
557-565. PMLR.

Chen, L.; and Chen, T. 2022. Is Bayesian Model-Agnostic
Meta Learning Better than Model-Agnostic Meta Learning,
Provably? In Proceedings of The 25th International Con-
ference on Artificial Intelligence and Statistics, volume 151
of Proceedings of Machine Learning Research, 1733-1774.
PMLR.

Fallah, A.; Mokhtari, A.; and Ozdaglar, A. 2020. On
the Convergence Theory of Gradient-Based Model-Agnostic
Meta-Learning Algorithms. In Proceedings of the Twenty
Third International Conference on Artificial Intelligence
and Statistics, volume 108, 1082—-1092. PMLR.

Finn, C.; Abbeel, P.; and Levine, S. 2017. Model-Agnostic
Meta-Learning for Fast Adaptation of Deep Networks. In
Proceedings of the 34th International Conference on Ma-
chine Learning, volume 70, 1126-1135. PMLR.

Finn, C.; Xu, K.; and Levine, S. 2018. Probabilistic Model-
Agnostic Meta-Learning. In Advances in Neural Informa-
tion Processing Systems, volume 31. Curran Associates, Inc.
Flennerhag, S.; Rusu, A. A.; Pascanu, R.; Visin, F.; Yin, H.;
and Hadsell, R. 2020. Meta-Learning with Warped Gradi-
ent Descent. In Proceedings of International Conference on
Learning Representations.

Franceschi, L.; Frasconi, P.; Salzo, S.; Grazzi, R.; and Pon-
til, M. 2018. Bilevel Programming for Hyperparameter Op-
timization and Meta-Learning. In Proceedings of the 35th
International Conference on Machine Learning, volume 80,
1568-1577. PMLR.

Grant, E.; Finn, C.; Levine, S.; Darrell, T.; and Griffiths, T.
2018. Recasting Gradient-Based Meta-Learning as Hierar-
chical Bayes. In Proceedings of International Conference
on Learning Representations.

Griewank, A. 1993. Some bounds on the complexity of gra-
dients, Jacobians, and Hessians. In Complexity in numerical
optimization, 128—-162. World Scientific.

Hansen, N.; and Wang, X. 2021. Generalization in Rein-
forcement Learning by Soft Data Augmentation. In 2021
IEEFE International Conference on Robotics and Automation

(ICRA), 13611-13617.

Kingma, D. P; and Ba, J. 2015. Adam: A Method for
Stochastic Optimization. In Proceedings of International
Conference on Learning Representations.

Lee, K.; Maji, S.; Ravichandran, A.; and Soatto, S. 2019.
Meta-Learning With Differentiable Convex Optimization. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR).

Li, Z.; Zhou, F.; Chen, F.; and Li, H. 2017. Meta-sgd: Learn-
ing to learn quickly for few-shot learning. arXiv preprint
arXiv:1707.09835.

Martens, J.; and Grosse, R. 2015. Optimizing Neural Net-
works with Kronecker-factored Approximate Curvature. In
Proceedings of the 32nd International Conference on Ma-
chine Learning, volume 37 of Proceedings of Machine
Learning Research, 2408-2417. Lille, France: PMLR.

Miao, Y.; Metze, F.; and Rawat, S. 2013. Deep maxout net-
works for low-resource speech recognition. In 2013 IEEE
Workshop on Automatic Speech Recognition and Under-
standing, 398-403. IEEE.

Mishra, N.; Rohaninejad, M.; Chen, X.; and Abbeel, P. 2018.
A Simple Neural Attentive Meta-Learner. In International
Conference on Learning Representations.

Naeini, M. P.; Cooper, G.; and Hauskrecht, M. 2015. Obtain-
ing well calibrated probabilities using bayesian binning. In
Proceedings of the Twenty Ninth International Conference
on Artificial Intelligence and Statistics, 2901-2907. PMLR.

Nguyen, C.; Do, T.-T.; and Carneiro, G. 2020. Uncertainty
in Model-Agnostic Meta-Learning using Variational Infer-
ence. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV).

Nichol, A.; Achiam, J.; and Schulman, J. 2018. On
First-Order Meta-Learning Algorithms.  arXiv preprint
arXiv:1803.02999.

Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
Desmaison, A.; Kopf, A.; Yang, E.; DeVito, Z.; Raison, M.;
Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai, J.;
and Chintala, S. 2019. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In Advances in Neural
Information Processing Systems, volume 32. Curran Asso-
ciates, Inc.

Rajeswaran, A.; Finn, C.; Kakade, S. M.; and Levine, S.
2019. Meta-Learning with Implicit Gradients. In Advances
in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc.

Ravi, S.; and Beatson, A. 2019. Amortized Bayesian Meta-
Learning. In Proceedings of International Conference on
Learning Representations.

Ravi, S.; and Larochelle, H. 2017. Optimization as a Model

for Few-Shot Learning. In Proceedings of International
Conference on Learning Representations.



Santoro, A.; Bartunov, S.; Botvinick, M.; Wierstra, D.;
and Lillicrap, T. 2016. Meta-Learning with Memory-
Augmented Neural Networks. In Proceedings of the 33rd
International Conference on Machine Learning, volume 48,
1842-1850. New York, New York, USA: PMLR.

Schmidhuber, J. 1993. A Neural Network that Embeds its
Own Meta-Levels. In IEEE International Conference on
Neural Networks, 407-412 vol.1.

Schmidhuber, J.; Zhao, J.; and Wiering, M. 1996. Simple
Principles of Metalearning. Technical report IDSIA, 69: 1—
23.

Thrun, S. 1998. Lifelong Learning Algorithms, 181-209.
Boston, MA: Springer US. ISBN 978-1-4615-5529-2.

Thrun, S.; and Pratt, L. 2012. Learning to Learn. Springer
Science & Business Media.

Van der Sluis, A.; and van der Vorst, H. A. 1986. The rate
of convergence of conjugate gradients. Numerische Mathe-
matik, 48(5): 543-560.

Vinyals, O.; Blundell, C.; Lillicrap, T.; kavukcuoglu, k.; and
Wierstra, D. 2016. Matching Networks for One Shot Learn-
ing. In Advances in Neural Information Processing Systems,
volume 29. Curran Associates, Inc.

Wang, H.; Sun, R.; and Li, B. 2020. Global Convergence and
Generalization Bound of Gradient-Based Meta-Learning
with Deep Neural Nets. arXiv preprint arXiv:2006.14606.

Winther, R. 1980. Some Superlinear Convergence Results
for the Conjugate Gradient Method. SIAM Journal on Nu-
merical Analysis, 17(1): 14-17.

yang, y.; Sun, J.; Li, H.; and Xu, Z. 2016. Deep ADMM-Net
for Compressive Sensing MRI. In Advances in Neural Infor-
mation Processing Systems, volume 29. Curran Associates,
Inc.

Yoon, J.; Kim, T.; Dia, O.; Kim, S.; Bengio, Y.; and Ahn,
S. 2018. Bayesian Model-Agnostic Meta-Learning. In
Advances in Neural Information Processing Systems, vol-
ume 31. Curran Associates, Inc.



Appendix
A.1 Proof of Lemma 1

Lemma 1 (Restated). Consider the Bayesian meta-learning problem (5). Let v; := [m dT] be a local minimum of the
task-level KL-divergence generated by A;(0); and, Ly (vi) = Eqg,v,)[—logp(y* |0t,Xtr)] the expected negative log-
])_1 04

likelih ) D If Hy(v,) = V2L (v
ikelihood (nll) on Df*. If Hy(V}) V2LE (V) + [ 0, %(Dfl + 2 diag (Vatﬁgr({’t)))z

] is invertible, it then holds

fort € {1,...,T} that
D! 04 1,
(VD D] B

Proof. We first write out the evidence lower bound (ELBO) of the VI in (4).

. . q(@s;v
L(Q(etQVt)Hp(et‘yg éxi ) )) —/ at,Vt)IOg (0f|§,t;)£t)r 9) = /Q(0t§Vt)10g (y 6, Xt 9)
LIY L t t ’ t

(
(et;Vt) (vt X}, 0) . ¢ q(04;ve)
= 0;; 1 =E, 0, .v)[—1 e, X E, .. log — 2
/Q( t,Vt) og ( ‘thtr (0t7 ) q(et,vt)[ ng(yt | ty 4 )] + q(@t,vt)[ 0og p(gt;e)
)

+ Eqg(o,vo) log p(y (s X7, 0)] = L (vi) + KL (¢(04; v1)||p(0¢; 0)) + log p(y;"; Xi",8) = —ELBO + log p(y{*; X[, 0)

VA(6) = (22)

<9t7 Vt) (yt ) X§r7 0)

where ELBO := —L!"(vy) — ( (04; vy H p(0y; )) Minimizing the KL divergence amounts to maximizing the ELBO.
From the definitions @ := [m",d"]" and v; := A4,(0) = [m,,d/]", we can write the desired gradient as a block matrix
vmﬂlt vm§1t
S -

where with a slight abuse in notation VA (8) = [V, Vinds] and VA, (0) = [Vamy, Vad,] denote partial gradients.
The next step is to express Vi, A;(0) as a function of itself to leverage the implicit differentiation.
Since v; is a local minimum of KL (q(@t; Vi) H (O yir; X 0)), it maximizes the ELBO. The first-order necessary condi-
tion for optimality thus yields
—VL (%) — Vg, KL (q(64;v4)||p(6+;0)) = 0. (24)

Upon defining D; := diag(d;), the KL-divergence of Gaussian distributions can be written as

o g — L -1 T - D]
L(q(@t,vt)Hp(Ot,O))—g(tr(D D) —n+ (m—m,) D} (m— mt)+log|Dt|>

 [dd, m]; — [m];)? -
- %Z ([[(Zt]]; -1+ (H[d][]) + log(d]; — log[dt]i)7 (25)

and after plugging (25) into (24) and rearranging terms, we arrive at
m; =m — Dthﬁir (\715) (26)

and

d; = (d—l + 2vatcgf(vt)) 27)

where we used v~ to represent the element-wise inverse of a general vector v.
Then, taking gradient w.r.t. # = [m',d"]T on both sides of (26), and employing the chain rule results in

Viay =1y — (Viamy V3, L8 (V) + Vind Vg, Vi, L1 (V1)) D (28)
and
Vam, = —diag (Vi L{' (V) — (Vam Vi, £ (V1) + Vadi Vg, Vi, L' (V4)) D. (29)
Applying the same operation to (27), yields
Vind: = =2(Vind; V3 L} (V1) + Va1, Vi, Vg, £ (v4)) D7 (30)
and B _ _
Vad; = —( = D72 +2Vad, V3 L] (v4) + 2Vam; Vi, Vg, L{ (V) ) D7 (31)

So far, we have written the four blocks of V.4;(8) as a function of themselves through implicit differentiation. Hence, the last
step is to solve for these four blocks from the linear equations (28)-(31).



Directly solving this linear system of equations will produce complicated results. The trick here is to reformulate them into
a compact matrix form:

V.A(0)
(] L 00 | _ [Vemy Vmdi] [ Vi LE(Ve) Vi,V Li'(V)] [D 04
~\ |- diag (Vin, L' (v¢)) -D7?| | Vam; Vadi| |Va,Vm LV(Ve) V3 LYE(Ve) | |00 —2I4
I. 0Oq4

x [od Df]
(] I 04 | i 2ptrc\ | D Oa I. 04
—(_—diag(vmtﬁgr(vt)) —p-2| ~VAOVLI) o, _ot,| ) o, D2
(T Ia 04 i 2 ptricy | D 0Od I; 04
= (_—diag (Vi L5 (%)) D—Q] —VAOVLI (V) o, o1,] ) |0, D2| (32)

Now, the matrix equation can be readily solved to obtain
_ -1

—_ B Id Od 2 str/— D Od Id Od

VALO) = | _ diag (Vm, 1 (91)) D—2] <V L5 o, 21, * o, D2

_ I 04 2 ptr D' 04 D o0,]\ "
~ |- diag (Vin, LI () D2] ((V Li(ve) + [ 0, iD;? ) 0, 21,

- D! 04 9 ptr/— D! 04 !
= |- diag (Ven, £7(¥1)) D ;D2] (V LiVO+ 1,  1p;

— D! 0q 2 ptr (o D! 04 -
= - diag (thﬁgr(‘—,t))D—l ;D_Q] (V »Ct (Vt) + 0, %(D71 + 2diag (vatﬁgr(vt)))2

_ D! 04 1,
- - diag(thﬁﬁr(\’/t))D*I §D2] Ht (Vt) (33)
where the fourth equality comes from (27).
O
A.2 Proof of Theorem 1
Theorem 1 (Explicit meta-gradient error bound, restated). Consider the Bayesian meta-learning problem in (6). Let €; =
V¢ — V¢||2 be the task-level optimization error, and §; = |V.A:(8) — G¢(¥)H; * (¥)||2 the error of the Jacobian. Upon

defining p; := max {[|V¢, L (V1) |loo, [| Vo, LI (Vi) || oo }» and with Assumptions 1-5 in effect, it holds fort € {1,...,T} that
[VoLi™ (¥:(6),0) — VoLi™ (v4(6),0)]|, < Fier + Asdy, (34)

where the scalar Fy depends on p;.

Proof. First, it follows by definition (9) of Bayesian meta-gradient that

[VeLi™ (v:(6),0) — Vo L™ (7:(6),0)],
< |VA(O) V1L (V,0) — VAL(O) VL™ (¥4, 0)||, + || V2Li™ (¥4, 0) — VoL (v4,0),
< |[VA(O)V1L™ (V,0) — VA(0)V1L™ (¥4, 0)]], + Crer
< ||VA(O)V1LY (¥4, 0) — VA(O) V1L (v, 0) ]|,
+ [|[VA(O)V1 L (V4,0) — VALO)V1 L™ (v1,0)||, + Crer
< ||[VAL(O) — VAL(O)||, || V1L (V1. 0)|, + | VALO) ||| VL™ (¥, 0) — V1LY (91, 0)]||, + Crey
< A||VA(6) — VAL(O)|, + Bier||VALO) ||, + Crer, (35)

where Assumption 2 was used in the second and last inequalities. What remains is to bound ||V.4;(6) — V.A;(8)]|> and

VA(0)]]2.



Using Lemma 1 with Assumption 1, we obtain

_ _ D! 04 .
VA(8) = [—diag (Vo L£47(¥)) D1 ;D—Q] H (V)
B D 041 't
= {2D2diag (Vo L5 (¥2)) ZDQ} H, " (V)

_ 2 ptr( g D Od
= (V LY (%) [2]32 diag (Vim, L (¥4)) QDQ}

N D! 04 D 0,1\
04 (D! +2diag (Vg L' (%)))"] [2D diag (Vi L{(V4))  2D?
_ 2 ptr/= D Od Id Od
= (V Li(ve) [Od QDQ} {diag (Va, L (V1)) Id:|

+ Id Od Id Od !
0, (I;-+2diag(Vg, E;r(vt))D)Q diag (Vam, LI (Vy)) Ia
= (VLI (v)Pi + QR:) (36)
where the third equality is from the definition of H; (V). Likewise, we also have

G870 = (V2560 (o 15 g (v e 1)

+ I, 0q4 9 I, 04 !
04 (Ls+ 2diag (VgL (¥:))D)”| |diag (Vin, L8 (¥2)) La
-1

= (V2L (9)P: + QiRy) (37)
Upon defining A := (Vflt(O)) - (Gt(\?t)H; 1(\7,&)) 71, and adding intermediate terms, we arrive at
18] = || (VA8)) " = V2L (v0)P = QuRe + V2L (V)P + QR — (Gu(vo)H; ! (%)) ||
= [LE @ (P~ Pr) + Qu(Re — R) + (VELE(v) = V2LE(3)) P+ (Qi — Q)R
< |[v2r @ - ) ‘2 + QR - o) + (V2L () = V2L () Py . |(@ - a)r, 69
Next, we will bound the four summands in (43). Using Assumption 3, it follows that
“V2£tr({, )(P _p )H V2L (%, 04 04
t ¢ t t Od 2D2 9 dlag (Vﬁ-lt l:;r(\i/t) — th [I;r(‘}t)) Od
< Dymax {DmaX7 2Dr2nax} ||Vﬁ1t£§r(‘_’t) - thﬁzr({’t)”oo
< D? max {Dmax, 2Dmax}||ﬁlt — 1]
< D} max { Dax, 2D% 0y Fer (39)
and
H(v2£tr(‘7 ) _ v2£tr(‘7 ))15 < ||v2£tr( v2£tr I, 0q4
LAY AR, = t Od 2D2 dlag mtﬁ“(vt)) L],
I, 04
< Eyegmax { Dinax, 2Dma"} H [dlag (Vi LI (V1)) Id:|

0 0
= D 208 (1+ g (012 50) 01

)
= Et max {DmaX7 2D12nax}(1 + Hvrhtﬁjtfr({’t)‘loo)et
< Et max {DmaX7 2Dmax} (1 + pt)6t~ (40)




Letting v2 denote the element-wise square of a general vector v, we have for the second term that

= — A d Od Od Od
| QR -2 <Hk h+2m%6h£(wDDf] [®%W%¢fwa—vmcww» w}
= max {1, |(La +2d - Vg, £5(9)) || | Ven £ (¥2) = Vi, L)
< max {1, ||1d +2d -V, L (v, Hoo}Dtht — 1y |0
< Dy(1 4 2max { Diax, 2D2 ., } 1) €, (41)
where for the fourth inequality we employed Assumption 3, and the definition 1,4 := [1,...,1]T € R<,
For the last term, it holds that
|(@i- QR
< Od 20d 2 Id Od
1104 (Ta+ 2diag (Vg,Li"(v:))D)” — (Is + 2diag (V4 L} (v¢)) D diag (Vi Li*(V¢)) Lg
= [[(a+2a- Vi, £57(9))" = (La+2a- v, £7 )| (1+ vatctf( )HOO)
< |[(La+2d- Va, £(v))" = (La+2d- V4, £56)°|_ (14 p0)
= 2010+ d- (Va, £ (%) + V4, £ (50) - 2(d wvaﬂ%w>—v¢¢%wnww“+””

< 4| 1o +d- (Va, L5 (%) + Vo L@ ||d - (Va, £ (¥2) — Vi L @) (1 + pe)
< A(1 + max { Dmax, 2D7,0 HIVa, £ (V) + Vg, £ (V1) lloo) max { Dinax, 2D5a HIVa, L1 (Ve) = Vg, L1 (Ve) oo (1 + 1)

(a) .
< 4(1 + 2max { Dyax, 2D2 ., } pr) max { Dinax, 2D2 . } Di||dy — d¢lloo (1 + pt)

max

< t max max + 2max max t + pt )€,
4D Do, 2D2, (1 +2 Dinax, 2D2 ) (14 p 42)

where (a) utilizes Assumption 3.
Combining (38)-(42), we arrive at

Al <{D} max { Dyax, 2D% ., } + E¢ max { Diax, 2D3 1 } (1 + pt) + Di(1 + 2max { Diax, 2D2 1 } 0t)°
4+ 4D; max {Dmax, 2Dfnax}(1 + 2max {Dmax, 2D? }pt)(l + pt)}et

max

= FPe,. (43)
Further, we can use Assumption 4 to establish one of the desired upper bounds
= D! 04 1/
Wm@usfd%(mwmnéDJQWtwm
04 D! 04 0__1
— diag thﬁ "(vy) Iy 0, D72,
1+ Vi, £ (V) ) mBLX{IId 1Hoo,||* lloctor !
1
< (1+ py)max {D_}, 2Dr;in}at_ , (44)
and likewise

1G(¥)Hy 1 (¥4)[[2 < (1 + py) max { Dy i, ~D;, o (45)

2 min
Through (43) and (45), we can also establish the other upper bound as
IVA(8) = VAB) |2 < [[VAUB) = Go(¥)Hy (V) |2 + |G (Vo) Hi  (¥0) — VA(O)2
=6 + [VA(O)AG, (¥ )H, (1) 2
<0+ [|VA(O) 2| A2/ G (Vo) Hy ' (Vo) |2
< 64 (1+ p)? min { Dyyin, 2D2,} 207 2FPe;. (46)

Finally, relating (44) and (46) to (35) completes the proof of the theorem. O



A.3 Proof of Theorem 2
Theorem 2 (implicit gradient error bound, restated). Consider the Bayesian meta-learning problem in (6). Let ¢, :=

V¢ — Vil|l2 be the task-level optimization error, and &, = ||, — H; ' (¥,)V1L}* (v, 0)| the CG error. Upon defining
pr = max { || Ve, LI (V1) |loos | Ve, LT (V1) || oo | and with Assumptions 1-5 in effect, it holds fort € {1,...,T} that
|& — VoL}™ (ve(6),0)|, < Fle: + G, (47)

where F] and G, are scalars not dependent on py.
Proof. From (9) and (17), we deduce that

8: — VoLy™ (v1(6).0)]

< ||Ge(¥)te — VAL(O)VL L (V4,0

M, + V2L (01,0) = V2L (v, 0)]

DH (V) V1L (v,
< (|G () (8 — 7 (34) WV“(w Nl
+ |G (Vo) Hy (%) VLM (¥4, 0) — VA(O)V1L7™ (v, 0)

= HGt Vt ﬁt +Ct€t

(a) _

< HGt \A’t U —V.A( )vlﬁval(‘—,t7 "2+Ct6t
Gi(v o),
H;

||2 + Cie

) _
< (1 + pt) max {Dmm, fDmm}(S’ + HGt v ) H (vt)VlL"”l(vt, 0) — V.At(O)Vlﬂ}/’al(\_ft, 0)

|, + Crer,  (48)
where (a) comes from Assumption 2, and (b) uses that
|Gl = o o
B2 — diag (VA Ly (vy)) D™t 3D2 |,
04 D! 04
—diag thﬁ (v )) 1, 0, iD7? )
(1+pt ma‘X{Dmer 2 mln} (49)

To bound |G (v,)H; 1 (v,) V1L (¥4, 0) — VA(8)V 1L (¥4, 0)||2, we again add intermediate terms to arrive at
|Ge(Ve)H, ' (V) V1L (34, 0) — VAL(O) V1LY (v, 0) |,

< |G )H () VL (¥4, 0) — G (V) H, ' (34) V1L (V4,6

+ |G (Vo) Hy (V) V1L (v, 0) — VA(O) VL3 (v, 0)

[

[

<G H ) ||, | V1L (¥, 0) — V1L (4, 0)||, + || Ge (V) H (V) — VAL(O)]], || V1L (v, 0)]
(1 + Pt max {Dm1n7 ; mln}at Btﬁt + (]. + Pt max {Dmln’ 1 mln}at F GtAt
(Bt(l + p¢) max {Dmm, Dmm}at + A(1+ pr) 2 max {D 1 } [2FA) (50)

min’ 4 II]lIl

where the third inequality follows from (45), (46) and Assumption 2.
Plugging (50) into (48) completes the proof of the theorem.
O

A.4 Detailed setups for numerical tests
Synthetic dataset Across all tests, the dimension d = 32, and the standard deviation of AWGN is 0 = 0.01. Matrix Xff is

randomly generated with condition number x = 20, and the linear weights are randomly sampled from the oracle distribution
p(64;0%) = N(04,1,). The size of the training and validation sets are fixed as |D{*| = 32 and |D}?!| = 64 fort € {1,...,T}.

The task-level optimization function A, is chosen to be the K- step GD with learning rate o = 0.01. To run Ay and compute
the meta-loss in (6), the number of Monte Carlo (MC) samples is set to 64.

MinilmageNet The numerical tests on minilmageNet follow the few-learning protocol described in (Vinyals et al. 2016; Finn,
Abbeel, and Levine 2017). For meta-level optimization, the total number of iterations is 40, 000 with batch size |B"| = 2 and
meta-learning rate 5 = 0.001. The meta-level prior of ABML is set to Gamma(14,0.01 % 14) according to (Ravi and Beatson
2019). For task-level optimization, the learning rate is « = 0.01. In addition, the number of MC runs is taken to be 5 for
meta-training, and 10 for evaluation.

Furthermore, to ensure that the entries [d]; and [d;]; of the variances are greater than 0, we instead optimize log[d]; and
log[d,];. This is possible because for a general d, it holds that Vg ¢ f(d) = ViegadVaf(d) = dV f(d).



