
GARNET: Reduced-Rank Topology Learning for Robust and

Scalable Graph Neural Networks

Chenhui Deng
Cornell University

cd574@cornell.edu

Xiuyu Li
UC Berkeley

xiuyu@berkeley.edu

Zhuo Feng
Stevens Institute of Technology

zfeng12@stevens.edu

Zhiru Zhang
Cornell University

zhiruz@cornell.edu

Abstract

Graph neural networks (GNNs) have been increasingly deployed in various ap-
plications that involve learning on non-Euclidean data. However, recent studies
show that GNNs are vulnerable to graph adversarial attacks. Although there are
several defense methods to improve GNN robustness by eliminating adversarial
components, they may also impair the underlying clean graph structure that con-
tributes to GNN training. In addition, few of those defense models can scale to
large graphs due to their high computational complexity and memory usage. In this
paper, we propose GARNET1, a scalable spectral method to boost the adversarial
robustness of GNN models. GARNET first leverages weighted spectral embedding
to construct a base graph, which is not only resistant to adversarial attacks but also
contains critical (clean) graph structure for GNN training. Next, GARNET further
refines the base graph by pruning additional uncritical edges based on probabilistic
graphical model. GARNET has been evaluated on various datasets, including a
large graph with millions of nodes. Our extensive experiment results show that
GARNET achieves adversarial accuracy improvement and runtime speedup over
state-of-the-art GNN (defense) models by up to 10.23% and 14.7×, respectively.

1 Introduction

Recent years have witnessed a surge of interest in graph neural networks (GNNs), which incorpo-
rate both graph structure and node attributes to produce low-dimensional embedding vectors that
maximally preserve graph structural information [1]. GNNs have achieved promising results in
various real-world applications, such as recommendation systems [2], self-driving car [3], and chip
placements [4]. However, recent studies have shown that adversarial attacks on graph structure ac-
complished by inserting, deleting, or rewiring edges in an unnoticeable way, can easily fool the GNN
models and drastically degrade their accuracy in downstream tasks (e.g., node classification) [5, 6].

In literature, one of the most effective ways to defend GNNs is to purify the graph by removing
adversarial graph structures. Entezari et al. [7] observe that adversarial attacks mainly affect high-
rank graph properties; thus they propose to first construct a low-rank graph by performing truncated
singular value decomposition (TSVD) on the graph adjacency matrix, which can then be exploited
for training a robust GNN model. Later, Jin et al. [8] propose Pro-GNN to jointly learn a new graph
and a robust GNN model with the low-rank constraints imposed by the graph structure. While
prior methods using low-rank approximation largely eliminate adversarial components in the graph
spectrum, they involve dense adjacency matrices during GNN training, leading to a much higher
time/space complexity and prohibiting their applications in large-scale graph learning tasks.

1Source code of GARNET is freely available at: github.com/cornell-zhang/GARNET.

C. Deng et al., GARNET: Reduced-Rank Topology Learning for Robust and Scalable Graph Neural Networks.
Proceedings of the First Learning on Graphs Conference (LoG 2022), PMLR 198, Virtual Event, December
9±12, 2022.

GARNET: Reduced-Rank Topology Learning for Robust and Scalable Graph Neural Networks

2 Background

2.1 Undirected Probabilistic Graphical Models

Consider an n-dimensional random vector x that follows a multivariate Gaussian distribution x ∼
N(0,Σ), where Σ = E[xx⊤] ≻ 0 represents the covariance matrix, and Θ = Σ−1 represents

the precision matrix (inverse covariance matrix). Given a data matrix X ∈ Rn×d that includes
d i.i.d (independent and identically distributed) samples X = [x1, ..., xd], where xi ∼ N(0,Σ)
has an n-dimensional Gaussian distribution with zero mean, the goal of probabilistic graphical
models (PGM) is to learn a precision matrix Θ that corresponds to an undirected graph structure G
for encoding the conditional dependence between variables of the observations on columns of X
[12, 13]. Specifically, the classical graphical Lasso method aims at estimating a sparse Θ through
maximum likelihood estimation (MLE) of f(x) leveraging convex optimization [13]. In this work,
we focus on one increasingly popular type of Gaussian graphical models, which is also known
as attractive Gaussian Markov random fields (GMRFs). Attractive GMRFs restrict the precision
matrix to be a Laplacian-like matrix Θ = L + I

σ2 , where L = D − A denotes the set of valid
graph Laplacian matrices with D and A representing the diagonal degree matrix and adjacency
matrix of the underlying undirected graph, respectively, I denotes the identity matrix, and σ2 is a
constant denoting prior data variance. Similar to the graphical Lasso method [13], recent methods for
estimating attractive GMRFs leverage emerging graph signal processing (GSP) techniques to solve
the following convex problem [9, 14±17]:

max
Θ

log detΘ− 1

d
tr(XXTΘ)− α∥Θ∥1 (1)

where det(·) and tr(·) denote the determinant and trace operators, respectively, α is a hyperparameter
to control the regularization term. The first two terms together can be interpreted as log-likelihood
under a GMRF. The last ℓ1 regularization term is to enforce Θ (and the corresponding graph) to
be sparse. If X is non-Gaussian, Equation 1 can be regarded as Laplacian estimation based on
minimizing the Bregman divergence between positive definite matrices induced by the function
Θ 7→ − log det(Θ) [18].

2.2 Graph Adversarial Attacks

Most existing graph adversarial attacks aim at degrading the accuracy of GNN models by insert-
ing/deleting edges in an unnoticeable way (e.g., maintaining node degree distribution) [19]. The
most popular graph adversarial attacks fall into the following two categories: (1) targeted attack,
(2) non-targeted attack. The targeted attacks attempt to mislead a GNN model to produce a wrong
prediction on a target sample (e.g., node), while the non-targeted attacks strive to degrade the overall
accuracy of a GNN model for the whole graph data set. Dai et al. [20] first formulate the targeted
attack as a combinatorial optimization problem and leverages reinforcement learning to insert/delete
edges such that the target node is misclassified. Zügner et al. [5] propose another targeted attack
called Nettack, which produces an adversarial graph by maximizing the training loss of GNNs.
Zügner and Günnemann [6] further introduce Metattack, a non-targeted attack that treats the graph
as a hyperparameter and uses meta-gradients to perturb the graph structure. It is worth noting that
graph adversarial attacks have two different settings: poison (perturb a graph prior to GNN training)
and evasion (perturb a graph after GNN training). As shown by Zhu et al. [21], the poison setting is
typically more challenging to defend, as it changes the graph structure that fools GNN training. Thus,
we aim to improve model robustness against attacks under the poison setting.

2.3 Graph Adversarial Defenses

To defend GNN against adversarial attacks, Entezari et al. [7] first observe that Nettack, a strong
targeted attack, only changes the high-rank information of the adjacency matrix. Thus, they propose
to construct a low-rank graph by performing truncated SVD to undermine the effects of adversarial
attacks. Later, Jin et al. [8] propose Pro-GNN that adopts a similar idea yet encourages nodes with
similar attributes to be connected when jointly learning the low-rank graph and GNN model. Although
those low-rank approximation based methods achieve state-of-the-art results on several datasets,
they produce dense adjacency matrices that correspond to complete graphs, which would limit their
applications for large graphs. Moreover, they only preserve a small region of the graph spectrum and
thus may lose too much important information corresponding to the clean graph structure in the spatial

3

GARNET: Reduced-Rank Topology Learning for Robust and Scalable Graph Neural Networks

domain, which limits the performance of GNN training. Recently, Chang et al. [22] exploit Laplacian
eigenpairs to guide GNN training, which produces a robust model with quadratic time complexity
and is thus not scalable to large graphs. In addition to the aforementioned spectral-based defense
methods, GCNJaccard [23] and RS-GNN [24] purify the adversarial graph by connecting nodes with
similar attributes or same labels. However, those defense methods explicitly (or implicitly) assume
the underlying graph to be homophilic, which results in rather poor performance when defending
GNN models on heterophilic graphs. In contrast to the prior arts, GARNET achieves highly robust
yet scalable performance on both homophilic and heterophilic graphs under adversarial attacks by
leveraging a novel graph purification scheme based on spectral embedding and graphical model.

3 The GARNET Approach

Phase 1: Base Graph Construction Phase 2: Graph Refinement via Edge Pruning

Phase 3: Downstream GNN Training

2

3

4

5

6

1
7

2

3

4

5

6

1
7

Gaussian

Graphical Model

2

3

4

5

6

1
7

!!,#

!!,$

!%,&!#,'

!$,(

!',%

!%,(

!(,&

!#,$

!$,'

!!,# =

#! − ## $

$

%! − %# $

$

2

3

4

5

6

1
7

Prune edge
if !!,# < #

2

3

4

5

6

1
7

Spectral Embedding
Distortion

, : Node w/ train label

: Adversarial edge

2

3

4

5

6

1
7

kNN

Graph
2

3

4

5

6

1
7

2

3

4

5

6

1
7

Spectral
Embedding "

Spectral
Embedding !

Base Graph

Adversarial Graph

Refined

Base Graph

Refined

Base Graph

Figure 2: An overview of the three major phases of GARNET.

Recently, Entezari et al. [7] and Jin et al. [8] have shown that the well-known graph adversarial
attacks (e.g., Nettack and Metattack) are essentially high-rank attacks, which increase graph rank by
enlarging the smallest singular values of adjacency matrix when perturbing the graph structure, while
rest of the graph spectrum remains almost the same. Consequently, a natural way for improving GNN
robustness is to find the low-rank approximation of the adversarial adjacency matrix.

Low-rank topology learning (prior work). Given an adversarial adjacency matrix Aadv ∈ Rn×n,
Entezari et al. [7] propose to reconstruct a low-rank approximated adjacency matrix via performing

TSVD: Â = UΣV T , where Σ ∈ Rr×r is a diagonal matrix consisting of r largest singular values
of Aadv. U ∈ Rn×r and V ∈ Rn×r contain the corresponding left and right singular vectors,
respectively. As the largest singular values are hardly affected by graph adversarial attacks, the

reconstructed low-rank adjacency matrix Â is resistant to adversarial attacks.

However, due to the high computational cost of TSVD, Â is typically computed by only using top r
largest singular values and their corresponding singular vectors, where r is a relatively small number

(e.g., r = 50). Consequently, the rank of Â is only r = 50, which is two orders of magnitude
smaller than the rank of the clean graph, as shown in Figure 1(a). Since these low-rank methods are

overly aggressive in reducing the graph rank, Â may lose too much important spectral information
corresponding to the clean graph structure. As shown in Figure 1(c), the clean accuracy of the
TSVD-based method is largely improved by increasing the graph rank r, which indicates the low-rank
graph obtained with a small r loses the key graph structure contributing to GNN training. Note that
the adversarial and clean graphs share most of the graph structure, as adversarial attacks perturb the
clean graph in an unnoticeable way. Consequently, losing those important clean graph structures will
also limit the performance of GNN on the adversarial graph.

Reduced-rank topology learning (this work). Given the adversarial graph Gadv and its adjacency
matrix Aadv, our goal is to learn a reduced-rank graph, which slightly reduces the rank of Gadv to
mitigate the effects of adversarial attacks, while retaining most of the important graph spectrum

4

GARNET: Reduced-Rank Topology Learning for Robust and Scalable Graph Neural Networks

corresponding to the clean graph structure. As adversarial attacks mainly affect the least dominant
singular components of Aadv [7], one straightforward way for constructing such a reduced-rank graph
is to utilize all the singular components except those least dominant ones via TSVD. Nonetheless,
computing such a large number of singular components is computationally expensive [25], and is
thus not scalable to large graphs.

To learn the reduced-rank graph in a scalable way, in this work, we leverage only the top few (e.g.,
50) dominant singular components of Aadv to restore its important graph spectrum, via recovering
the corresponding clean graph structure with the aid of PGM. Figure 2 gives an overview of our
proposed approach, GARNET, which consists of three major phases. The first phase constructs a
base graph by exploiting spectral embedding and a scalable nearest-neighbor graph algorithm. The
second phase further refines the base graph by pruning noncritical edges based on PGM. The last
phase trains existing GNN models on the refined base graph to improve their robustness. Next, we
will first describe our notion of clean graph recovery via PGM as well as the scalability issue of prior
PGM-based work in Section 3.1, which motivates us to develop scalable GARNET kernels described
in Sections 3.2 and 3.3. We further provide the overall complexity of GARNET in Section 3.4.

3.1 Graph Recovery via Graphical Model

A general philosophy behind PGM is that there exists an underlying graph G, whose structure
determines the joint probability distribution of the observations on the data entities, i.e., columns of a
data matrix X ∈ Rn×d, where n is the number of data points, d the dimension per data point. To
recover the underlying graph structure from the data matrix X , one common way is to leverage MLE
by solving Equation 1 in Section 2.1. As the top few dominant singular components of the adjacency
matrix capture the corresponding graph structure, we can naturally construct the data matrix X based
on those dominant singular components, and then adopt PGM to recover an underlying graph via
MLE. To this end, we define a weighted spectral embedding matrix as follows:
Definition 3.1. Given the top r smallest eigenvalues λ1, λ2, ..., λr and their corresponding eigen-

vectors v1, v2, ..., vr of normalized graph Laplacian matrix Lnorm = I − D− 1

2AD− 1

2 , where
I and A are the identity matrix and graph adjacency matrix, respectively, and D is a diag-

onal matrix of node degrees, the weighted spectral embedding matrix is defined as V
def
=

[

√

|1− λ1|v1, ...,
√

|1− λr|vr
]

, whose i-th row Vi,: is the weighted spectral embedding of the

corresponding i-th node in the graph.

Proposition 3.2. Given a normalized graph adjacency matrix Anorm = D− 1

2AD− 1

2 and weighted

spectral embedding matrix V of an undirected graph, let Â be the rank-r approximation of Anorm

via TSVD. If the top r dominant eigenvalues of Anorm are non-negative, then we have Â = V V T .

Our proof for Proposition 3.2 is available in Appendix A. Proposition 3.2 shows the connection

between weighted spectral embedding and the low-rank adjacency matrix Â obtained by TSVD.
Specifically, the weighted spectral embedding matrix V can be viewed as an eigensubspace matrix
consisting of a few dominant singular components of the corresponding adjacency matrix. Thus,
we can use V to recover the underlying clean graph via PGM. However, obtaining V requires the
knowledge of the clean graph structure, which seems to create a chicken and egg problem.

Fortunately, since the dominant singular components are hardly affected by adversarial attacks [7],
the weighted spectral embedding is therefore also resistant to adversarial attacks, indicating that the
underlying clean graph Gclean and its corresponding adversarial graph Gadv share almost the same
weighted spectral embeddings. As a result, we can exploit the weighted spectral embedding matrix V
of Gadv to represent that of Gclean. By replacing the data matrix X with V in Equation 1, we have
the following objective function:

max
Θ

F := log detΘ− 1

r
tr(V V TΘ)− α∥Θ∥1 (2)

More discussions on Equation 2 are available in Appendix Q. By finding the optimizer Θ∗ , we can
recover the underlying graph that maximizes the likelihood given the observation on the weighted
spectral embedding V . However, solving Equation 2 requires at least O(n2) time/space complexity
per iteration with the most efficient algorithms, which thus cannot scale to large graphs [13, 26, 27].

As Θ is constrained to be a Laplacian-like matrix, finding the optimizer Θ∗ in Equation 2 is equivalent
to searching for critical edges from a complete graph, which would involve all possible (i.e., O(n2))

5

GARNET: Reduced-Rank Topology Learning for Robust and Scalable Graph Neural Networks

edges. Here we say an edge is critical (noncritical) if including it to the graph significantly increases
(decreases) F in Equation 2. Hence we can recover the underlying graph by pruning noncritical edges
from the complete graph. However, storing a complete graph is still expensive. To have a near-linear
algorithm for clean graph recovery, instead of searching in the complete graph, we limit our search
within an initial base graph Gbase that is much sparser but containing sufficient information for
identifying the candidate edges critical to recover the clean graph. Subsequently, the final graphical
model (graph Laplacian) can be obtained by further pruning noncritical edges from Gbase.

3.2 Base Graph Construction

During the first phase of GARNET (shown in Figure 2), our goal is to build a base graph Gbase, which
greatly reduces the search space by not constructing a complete graph while preserving the critical
candidate edges that are key to clean graph recovery. To this end, we give the following theorem:

Theorem 3.3. Given a graph G = (V, E) and its normalized Laplacian matrix LG , let Vi denote
the weighted spectral embedding of node i by using top r eigenpairs of LG . Suppose a relatively
small r is picked such that λr ≤ 1, where λr is the r-th smallest eigenvalue of LG , then we have
∑

(i,j)∈E ∥Vi − Vj∥22 ≤ 0.25r.

Our proof for Theorem 3.3 is available in Appendix B. Note that r is a small constant, which is
independent of the graph size. Thus, Theorem 3.3 indicates that, if an edge connects nodes i and j
in the clean graph, then the Euclidean distance between the weighted spectral embeddings of these
two nodes will be small, which motivates us to build a k-nearest neighbor (kNN) graph as Gbase to
incorporate those clean edges.

Concretely, we first obtain the weighted spectral embedding matrix V of the input adversarial graph
Gadv to represent that of the underlying clean graph Gclean, as V consists of dominant singular
components that are shared by Gadv and Gclean [7]. We then leverage V to construct a kNN graph,
where each node is connected to its k most similar nodes based on the Euclidean distance between
their spectral embeddings. Note that V can be further concatenated with node feature matrix for
constructing the kNN graph. A thorough discussion on incorporating node feature information is
available in Appendix L. In this work, we exploit an approximate kNN algorithm for constructing the
graph, which has O(|V| log |V|) complexity and thus can scale to very large graphs [28]. By choosing
a proper k (e.g., k = 50), Gbase is likely to cover edges in the underlying clean graph. Thus, Gbase
can serve as a reasonable search space for identifying critical edges in the next step.

3.3 Graph Refinement via Edge Pruning

For the second phase of GARNET shown in Figure 2, we refine Gbase by aggressively pruning
noncritical edges from Gbase, such that the refined graph only preserves the most important edges
that contribute most to the log-likelihood F in Equation 2.

To identify critical (noncritical) edges that can most effectively increase (decrease) F , we exploit

the update of Θ based on gradient ascent: Θ← Θ+ η ∂F
∂Θ , where η is the step size. As mentioned in

Section 2.1, Θ is constrained to be L+ I
σ2 , which means the off-diagonal elements in Θ correspond

to negative of edge weights in the underlying graph, i.e., Θi,j = −wi,j . Thus, the update of Θi,j

during gradient ascent can be viewed as:

Θi,j ← Θi,j + η(
∂F

∂Θ
)i,j = Θi,j − η

∂F

∂wi,j
(3)

Equation 3 means that, if ∂F
∂wi,j

is large and positive, Θi,j will become more negative, which

corresponds to increasing the edge weight in the underlying graph. Similarly, if ∂F
∂wi,j

is small and

negative, Θi,j will be less negative, corresponding to decreasing the edge weight. In other words,

the edge weight wi,j with a large (small) ∂F
∂wi,j

should be increased (decreased) to maximize the

log-likelihood F , meaning the corresponding edge is critical (noncritical). Thus, we can identify the

critical edges once we know ∂F
∂wi,j

. By setting α = 0 in Equation 2 (as GARNET naturally produces

a sparse graph) and taking the partial derivative with respect to an edge weight wi,j , we have:

∂F

∂wi,j
=

n
∑

k=1

1

λk + 1/σ2

∂λk

∂wi,j
− ∥V

T ei,j∥22
r

(4)

6

GARNET: Reduced-Rank Topology Learning for Robust and Scalable Graph Neural Networks

Table 1: Statistics of datasets used in our experiments.

Dataset Type Homophily Score Nodes Edges Classes Features

Cora Homophily 0.80 2, 485 5, 069 7 1, 433
Pubmed Homophily 0.80 19, 717 44, 324 3 500
Chameleon Heterophily 0.23 2, 277 62, 792 5 2, 325
Squirrel Heterophily 0.22 5, 201 396, 846 5 2, 089
ogbn-arxiv Homophily 0.66 169, 343 1, 166, 243 40 128
ogbn-products Homophily 0.81 2, 449, 029 61, 859, 140 47 100

where λk, ∀k = 1, 2, ..., n are the Laplacian eigenvalues of Gbase (the initial graph for edge pruning),
ei,j = ei − ej , and ei denotes the vector with all zero entries except for the i-th entry being 1.

Theorem 3.4 (Feng [17]). Let λk and uk be the k-th eigenvalue and the corresponding eigenvector
of the Laplacian matrix, respectively. The spectral perturbation δλk due to the increase of an edge
weight wi,j can be estimated by δλk = δwi,j(u

T
k ei,j)

2.

The proof for Theorem 3.4 is available in Feng [17]. According to Theorem 3.4 and Equation 4, we

can estimate ∂F
∂wi,j

≈ ∥UT ei,j∥22 − 1
r∥V T ei,j∥22, where U = [u1√

λ1+1/σ2
, ..., ur√

λr+1/σ2
], λi is the

i-th smallest Laplacian eigenvalue of Gbase, and ui is the corresponding eigenvector. Consequently,
an edge (i, j) is critical if ∥UT ei,j∥22 ≫ 1

r∥V T ei,j∥22. As V and U are the spectral embeddings on the
input adversarial graph and the base graph, respectively, we define the spectral embedding distortion

si,j =
∥UT ei,j∥

2

2

∥V T ei,j∥2

2

to measure the edge importance. Consequently, we prune edges in the base graph

Gbase that have small spectral embedding distortion, i.e., si,j < γ, where γ is a hyperparameter to
control the sparsity of the refined graph. We further provide a strategy to simplify the distortion
metric for edge pruning in Appendix S. Hence, the refined base graph G′base largely recovers the
underlying clean graph structure from the input adversarial graph. Since G′base is constructed by only
leveraging the top few dominant singular components of Gadv, it ignores the high-rank adversarial
components and thus robust to adversarial attacks. As a result, we can train a given GNN model on
G′base to improve its robustness, which is the last phase of GARNET.

3.4 Complexity of GARNET

The first phase of GARNET requires O(r|E|) time for computing top r Laplacian eigenpairs [25],
and O(|V| log |V|) time for kNN graph construction [28]. The second phase involves O(rk|V|) time
for computing spectral embeddings and edge pruning on the kNN graph. Thus, the overall time
complexity for graph purification is O(r(|E| + k|V|) + |V| log |V|), where |V| (|E|) denotes the
number of nodes (edges) in the adversarial graph, and k is the averaged node degree in the kNN
graph. Our systematic approach of choosing r and the space complexity analysis are in Appendix F.

4 Experiments

We have conducted comparative evaluation of GARNET against state-of-the-art defense GNN models
under targeted attack (Nettack) [5] and non-targeted attack (Metattack) [6] on both homophilic
and heterophilic datasets. Besides, we also evaluate GARNET robustness against adaptive attacks.
In addition, we further show the scalability of GARNET by comparing its run time with prior
defense methods and evaluating GARNET on ogbn-products, which consists of more than 2 million
nodes [11]. Finally, we conduct ablation studies to understand the effectiveness of GARNET kernels.

Experimental Setup. Table 1 shows the statistics of the datasets used in our experiments. We fol-
low Zhu et al. [10] to compute the homophily score per dataset (lower score means more heterophilic).
More details of datasets are available in Appendix C. We choose as baselines two state-of-the-art
defense methods based on graph purification: TSVD [7] and Pro-GNN [8]. Besides, we evaluate
training based defense methods GCN-LFR [22] and GNNGuard [29] on homophilic and heterophilic
graphs, respectively. Moreover, we use GCN [30] and GPRGNN [31] as the backbone GNN models
for defense on homophilic datasets (i.e., Cora and Pubmed). As GCN performs poorly on heterophilic
datasets [10, 32], we choose GPRGNN as the backbone model on Chameleon and Squirrel datasets.
Due to the space limit, we provide defense results with H2GCN [10] as the backbone model in
Appendix J. For all baselines, we tune their hyperparameters against adversarial attacks with a

7

GARNET: Reduced-Rank Topology Learning for Robust and Scalable Graph Neural Networks

Table 2: Averaged node classification accuracy (%) ± std under targeted attack (Nettack) and
non-targeted attack (Metattack) on homophilic graphs Ð We bold and underline the first and second
highest accuracy of each backbone GNN model, respectively. OOM means out of memory.

Cora (Nettack) Cora (Metattack) Pubmed (Nettack) Pubmed (Metattack)

Model Clean Adversarial Clean Adversarial Clean Adversarial Clean Adversarial

GCN-Vanilla 80.96± 0.95 55.66± 1.95 81.35± 0.66 56.28± 1.19 87.26± 0.51 66.67± 1.34 87.16± 0.09 77.20± 0.27
GCN-TSVD 72.65± 2.29 60.30± 2.25 73.86± 0.53 62.44± 1.16 87.03± 0.48 79.56± 0.48 84.53± 0.08 84.30± 0.08
GCN-ProGNN 80.54± 1.21 65.38± 1.65 78.56± 0.36 72.28± 1.67 88.14± 1.44 71.89± 1.56 84.62± 0.11 83.89± 0.32
GCN-LFR 80.07± 0.95 53.73± 2.17 77.23± 2.61 65.38± 3.71 87.20± 1.24 68.49± 2.44 81.91± 0.26 78.32± 0.69
GCN-GARNET 81.08± 2.05 67.04± 2.05 79.64± 0.75 73.89± 0.91 87.96± 0.58 86.12± 0.86 85.37± 0.20 85.14± 0.23

GPR-Vanilla 83.04± 2.05 62.89± 1.95 83.05± 0.42 74.27± 2.11 90.05± 0.73 76.99± 1.16 87.35± 0.13 84.18± 0.15
GPR-TSVD 81.68± 1.78 63.52± 3.27 81.61± 0.54 78.50± 1.20 OOM OOM OOM OOM
GPR-ProGNN 82.04± 1.33 63.74± 2.57 82.04± 0.90 76.29± 1.46 OOM OOM OOM OOM
GPR-GARNET 82.77± 1.89 71.45± 2.73 82.67± 1.89 81.34± 0.79 90.99± 0.52 89.52± 0.45 86.86± 0.57 85.69± 0.26

Table 3: Averaged node classification accuracy (%) ± std on heterophilic graphs Ð We bold and
underline the first and second highest accuracy, respectively. The backbone GNN model is GPRGNN.

Chameleon (Nettack) Chameleon (Metattack) Squirrel (Nettack) Squirrel (Metattack)

Model Clean Adversarial Clean Adversarial Clean Adversarial Clean Adversarial

Vanilla 71.46± 1.92 66.26± 1.71 61.36± 1.00 53.20± 0.88 41.36± 2.87 39.45± 2.36 39.51± 1.64 35.22± 1.20
TSVD 62.12± 3.04 60.37± 2.86 47.29± 1.63 45.12± 1.34 32.98± 2.36 31.20± 1.84 31.36± 1.87 23.91± 1.40
ProGNN 58.80± 1.72 57.07± 1.82 48.39± 0.68 46.69± 0.61 31.81± 1.72 27.27± 1.87 31.64± 2.87 29.36± 3.61
GNNGuard 64.87± 2.62 62.21± 1.94 58.01± 1.57 49.89± 1.34 34.17± 2.33 33.41± 1.82 37.46± 0.56 32.69± 0.59
GARNET 72.89± 2.65 71.83± 2.11 61.11± 2.46 59.96± 0.84 44.91± 1.53 43.64± 1.53 43.43± 1.14 41.97± 1.02

small perturbation, and keep the same hyperparameters for larger adversarial perturbations. Detailed
hyperparameter settings of baselines and GARNET are available in Appendix D. Our hardware
information is provided in Appendix E.

4.1 Robustness of GARNET

Defense on homophilic graphs. We first evaluate the model robustness on homophilic graphs against
the targeted attack (Nettack) and the non-targeted attack (Metattack). Specifically, Nettack aims to
fool a GNN model to misclassify some target nodes with a few structure (edge) perturbations. The
goal of Metattack is to drop the overall accuracy of the whole test set with a given perturbation ratio
budget (i.e., the number of adversarial edges over the number of total edges). Due to the space limit,
we only show defense results under Nettack and Metattack with 5 perturbed edges per target node
and 20% perturbation ratio, respectively. Results with other perturbation budgets are in Appendix I.

Table 2 reports the average accuracy over 10 runs on Cora and Pubmed. It shows that GARNET,
with either a backbone GNN model (GCN or GPRGNN), outperforms defense baselines in terms of
both clean and adversarial accuracy in most cases. We attribute the large accuracy improvement to
GARNET’s strengths in recovering key structures of the clean graph while ignoring the high-rank
adversarial components during graph purification. Moreover, as both TSVD and ProGNN involve
dense matrices during GNN training, they run out of GPU memory even on Pubmed, a graph with
only 20k nodes. In contrast, GARNET is not only robust to adversarial attacks, but also scalable to
large graphs, as empirically shown in Section 4.2.

Defense on heterophilic graphs. We report the averaged accuracy over 10 runs on heterophilic
graphs in Table 3, which shows that all defense baselines fail to defend GPRGNN on heterophilic
graphs and even degrade the accuracy of the vanilla GPRGNN by a large margin. The reason why
ProGNN performs poorly is that it follows the graph homophily assumption for improving GNN
robustness, which contradicts the property of heterophilic graphs. For the TSVD-based defense
method, the low-rank graph generated by TSVD contains negative edge weights, which degrade the
performance of GPRGNN for adapting its graph filter on heterophilic graphs [31]. Although Zhang
and Zitnik [29] have shown GNNGuard can improve model robustness on synthetic heterophillic
graphs, our results indicate that it fails to defend GNN models on realistic heterohilic graphs. We
attribute it to that the quality of graphlet degree vectors used in GNNGuard is degraded by structural
perturbations induced via adversarial attacks. In contrast, GARNET largely recovers the clean graph
structure based on Theorem 3.3 without the assumption on whether adjacent nodes have similar

8

GARNET: Reduced-Rank Topology Learning for Robust and Scalable Graph Neural Networks

References

[1] William L Hamilton. Graph representation learning. Synthesis Lectures on Artifical Intelligence
and Machine Learning, 14(3):1±159, 2020. 1

[2] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 974±983, 2018. 1

[3] Sergio Casas, Cole Gulino, Renjie Liao, and Raquel Urtasun. Spagnn: Spatially-aware graph
neural networks for relational behavior forecasting from sensor data. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pages 9491±9497. IEEE, 2020. 1

[4] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen
Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, et al. A graph placement
methodology for fast chip design. Nature, 594(7862):207±212, 2021. 1

[5] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural
networks for graph data. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 2847±2856, 2018. 1, 2, 3, 7, 20

[6] Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neural networks via meta
learning. arXiv preprint arXiv:1902.08412, 2019. 1, 2, 3, 7

[7] Negin Entezari, Saba A Al-Sayouri, Amirali Darvishzadeh, and Evangelos E Papalexakis. All
you need is low (rank) defending against adversarial attacks on graphs. In Proceedings of the
13th International Conference on Web Search and Data Mining, pages 169±177, 2020. 1, 3, 4,
5, 6, 7, 9, 20

[8] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph
structure learning for robust graph neural networks. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 66±74, 2020. 1, 3, 4,
7, 10, 15

[9] Xiaowen Dong, Dorina Thanou, Michael Rabbat, and Pascal Frossard. Learning graphs from
data: A signal representation perspective. IEEE Signal Processing Magazine, 36(3):44±63,
2019. 2, 3

[10] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra.
Beyond homophily in graph neural networks: Current limitations and effective designs. arXiv
preprint arXiv:2006.11468, 2020. 2, 7, 18, 22

[11] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
arXiv preprint arXiv:2005.00687, 2020. 2, 7, 15

[12] Onureena Banerjee, Laurent El Ghaoui, and Alexandre d’Aspremont. Model selection through
sparse maximum likelihood estimation for multivariate gaussian or binary data. The Journal of
Machine Learning Research, 9:485±516, 2008. 3

[13] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation
with the graphical lasso. Biostatistics, 9(3):432±441, 2008. 3, 5

[14] Xiaowen Dong, Dorina Thanou, Pascal Frossard, and Pierre Vandergheynst. Learning laplacian
matrix in smooth graph signal representations. IEEE Transactions on Signal Processing, 64
(23):6160±6173, 2016. 3

[15] Hilmi E Egilmez, Eduardo Pavez, and Antonio Ortega. Graph learning from data under laplacian
and structural constraints. IEEE Journal of Selected Topics in Signal Processing, 11(6):825±841,
2017.

[16] Vassilis Kalofolias and Nathanaël Perraudin. Large scale graph learning from smooth signals.
International Conference on Learning Representations (ICLR 2019), 2019.

[17] Zhuo Feng. Sgl: Spectral graph learning from measurements. arXiv preprint arXiv:2104.07867,
2021. 3, 7, 23

[18] Martin Slawski and Matthias Hein. Estimation of positive definite m-matrices and structure
learning for attractive gaussian markov random fields. Linear Algebra and its Applications, 473:
145±179, 2015. 3

11

GARNET: Reduced-Rank Topology Learning for Robust and Scalable Graph Neural Networks

[19] Lichao Sun, Yingtong Dou, Carl Yang, Ji Wang, Philip S Yu, Lifang He, and Bo Li. Adversarial
attack and defense on graph data: A survey. arXiv preprint arXiv:1812.10528, 2018. 3

[20] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial attack
on graph structured data. In International conference on machine learning, pages 1115±1124.
PMLR, 2018. 3

[21] Jiong Zhu, Junchen Jin, Michael T Schaub, and Danai Koutra. Improving robustness of graph
neural networks with heterophily-inspired designs. arXiv preprint arXiv:2106.07767, 2021. 3

[22] Heng Chang, Yu Rong, Tingyang Xu, Yatao Bian, Shiji Zhou, Xin Wang, Junzhou Huang, and
Wenwu Zhu. Not all low-pass filters are robust in graph convolutional networks. In A. Beygelz-
imer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information
Processing Systems, 2021. URL https://openreview.net/forum?id=bDdfxLQITtu. 4, 7

[23] Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming Zhu. Ad-
versarial examples on graph data: Deep insights into attack and defense. arXiv preprint
arXiv:1903.01610, 2019. 4, 9

[24] Enyan Dai, Wei Jin, Hui Liu, and Suhang Wang. Towards robust graph neural networks for
noisy graphs with sparse labels. In Proceedings of the Fifteenth ACM International Conference
on Web Search and Data Mining, pages 181±191, 2022. 4

[25] James Baglama and Lothar Reichel. Augmented implicitly restarted lanczos bidiagonalization
methods. SIAM Journal on Scientific Computing, 27(1):19±42, 2005. 5, 7

[26] Cho-Jui Hsieh, Matyas A Sustik, Inderjit S Dhillon, and Pradeep Ravikumar. Sparse inverse
covariance matrix estimation using quadratic approximation. arXiv preprint arXiv:1306.3212,
2013. 5

[27] Cho-Jui Hsieh, Mátyás A Sustik, Inderjit S Dhillon, Pradeep Ravikumar, et al. Quic: quadratic
approximation for sparse inverse covariance estimation. J. Mach. Learn. Res., 15(1):2911±2947,
2014. 5

[28] Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs. IEEE transactions on pattern analysis and
machine intelligence, 42(4):824±836, 2018. 6, 7, 16

[29] Xiang Zhang and Marinka Zitnik. Gnnguard: Defending graph neural networks against
adversarial attacks. arXiv preprint arXiv:2006.08149, 2020. 7, 8

[30] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016. 7, 18

[31] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized
pagerank graph neural network. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=n6jl7fLxrP. 7, 8, 15, 18

[32] Derek Lim, Felix Matthew Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Prasad
Bhalerao, and Ser-Nam Lim. Large scale learning on non-homophilous graphs: New bench-
marks and strong simple methods. In Advances in Neural Information Processing Systems,
2021. 7

[33] Yizhen Wang, Somesh Jha, and Kamalika Chaudhuri. Analyzing the robustness of nearest
neighbors to adversarial examples. In International Conference on Machine Learning, pages
5133±5142. PMLR, 2018. 9

[34] Simon Geisler, Tobias Schmidt, Hakan ËSirin, Daniel Zügner, Aleksandar Bojchevski, and
Stephan Günnemann. Robustness of graph neural networks at scale. Advances in Neural
Information Processing Systems, 34, 2021. 9, 15

[35] Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU press, 2013. 14

[36] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning
with graph embeddings. In International conference on machine learning, pages 40±48. PMLR,
2016. 15

[37] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding.
Journal of Complex Networks, 9(2):cnab014, 2021. 15

[38] Yaxin Li, Wei Jin, Han Xu, and Jiliang Tang. Deeprobust: A pytorch library for adversarial
attacks and defenses. arXiv preprint arXiv:2005.06149, 2020. 15

12

GARNET: Reduced-Rank Topology Learning for Robust and Scalable Graph Neural Networks

[39] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395±416,
2007. 16, 23

[40] Chenhui Deng, Zhiqiang Zhao, Yongyu Wang, Zhiru Zhang, and Zhuo Feng. Graphzoom:
A multi-level spectral approach for accurate and scalable graph embedding. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=r1lGO0EKDH. 22

[41] Wuxinlin Cheng, Chenhui Deng, Zhiqiang Zhao, Yaohui Cai, Zhiru Zhang, and Zhuo Feng.
Spade: A spectral method for black-box adversarial robustness evaluation. In International
Conference on Machine Learning, pages 1814±1824. PMLR, 2021. 22

[42] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs.
IEEE Transactions on Big Data, 7(3):535±547, 2019. 22

13

GARNET: Reduced-Rank Topology Learning for Robust and Scalable Graph Neural Networks

A Proof for Proposition 3.2

Proof. As the graph is undirected, we can perform eigendecomposition on both Anorm and Lnorm

to obtain their real eigenvalues and the corresponding eigenvectors. Let λi, λ̂i, and σi, i = 1, 2, ..., r
denote the r smallest eigenvalues of Lnorm, r largest eigenvalues of Anorm, and r largest singular
values of Anorm, respectively. Since Anorm = I − Lnorm, Anorm and Lnorm share the same set of

eigenvectors while their eigenvalues satisfy: λ̂i = 1− λi, i = 1, 2, ..., r. Moreover, since we assume

that the r largest magnitude eigenvalues of Anorm are non-negative, we have σi =
∣

∣

∣
λ̂i

∣

∣

∣
= λ̂i, i =

1, 2, ..., r. Thus, we have:

V V T = [v1, ..., vr]







|1− λ1|
. . .

|1− λr|






[v1, ..., vr]

T

= [v1, ..., vr]











∣

∣

∣
λ̂1

∣

∣

∣

. . .
∣

∣

∣
λ̂r

∣

∣

∣











[v1, ..., vr]
T

= [v1, ..., vr]







σ1

. . .

σr






[v1, ..., vr]

T

= Â

B Proof for Theorem 3.3

Proof. Since the weighted embedding matrix V is defined as V
def
=

[

√

|1− λ1|v1, ...,
√

|1− λr|vr
]

,

where λ1, λ2, ..., λr and v1, v2, ..., vr are the top r smallest eigenvalues and the corresponding

eigenvectors of normalized graph Laplacian matrix Lnorm = I −D− 1

2AD− 1

2 , we have:

∑

(i,j)∈E

∥Vi − Vj∥22 =
r

∑

k=1

∑

(i,j)∈E

|1− λk| (vk,i − vk,j)
2

=

r
∑

k=1

|1− λk|
∑

(i,j)∈E

(vk,i − vk,j)
2

=

r
∑

k=1

|1− λk| vTk Lnormvk

=
r

∑

k=1

(1− λk)λk

≤
r

∑

k=1

0.25

= 0.25r

The fourth equation above is based on Courant-Fischer Theorem [35] with the assumption that λr ≤ 1
and the Laplacian eigenvectors are normalized (i.e., ∥vk∥2 = 1, ∀k = 1, ..., r). The inequality is
derived by arithmetic mean-geometric mean (AM-GM) inequality.

14

GARNET: Reduced-Rank Topology Learning for Robust and Scalable Graph Neural Networks

C Dataset Details

As in Jin et al. [8], we extract the largest connected components of the original Cora and Pubmed
datasets [36] for the adversarial evaluation, with the same train/validation/test split. For Chameleon
and Squirrel [37], we keep the same split setting as Chien et al. [31]. Finally, we follow the split
setting of Open Graph Benchmark (OGB) [11] on ogbn-arxiv and ogbn-products. Note that all data
used in our experiments do not contain personally identifiable information or offensive content.

In addition, we follow Jin et al. [8] for the selection of target nodes on Cora and Pubmed under
Nettack. For the Chameleon and Squirrel datasets under Nettack, we choose target nodes that have
degrees within the range of [20, 50] and [20, 140], respectively. In regard to non-targeted attacks (i.e.,
Metattack), we choose nodes in the test set as target nodes for all datasets. We implement all the
adversarial attacks based on the DeepRobust library [38].

D Hyperparameters Settings

D.1 Backbone GNN Models

GCN. We choose the GCN hyperparameters based on the DeepRobust library [38].

GPRGNN. We follow the hyperparameter settings provided at github.com/jianhao2016/GPRGNN
with slightly different dropout rates (chosen from 0.3, 0.5, 0.7) and learning rates (chosen from
0.01, 0.05, 0.1). Specifically, we provide the complete choices of dropout rates and learning rates
across all datasets and attack settings below:

• Cora-Nettack: dropout of 0.5 and learning rate of 0.01.

• Cora-Metattack: dropout of 0.5 and learning rate of 0.01.

• Pubmed-Nettack: dropout of 0.5 and learning rate of 0.01.

• Pubmed-Metattack: dropout of 0.5 and learning rate of 0.01.

• Chameleon-Nettack: dropout of 0.5 and learning rate of 0.05.

• Chameleon-Metattack: dropout of 0.3 and learning rate of 0.05.

• Squirrel-Nettack: dropout of 0.5 and learning rate of 0.1.

• Squirrel-Metattack: dropout of 0.5 and learning rate of 0.1.

H2GCN. We train a three-layer model in full batch, with a learning rate of 0.01, dropout of 0.5,
hidden dimension of 64, and 300 epochs for both Chameleon and Squirrel datasets.

D.2 Defense Baselines

TSVD. We use the same r eigenvectors in TSVD as those used in GARNET, which is shown in
Table 6.

GCNJaccard. We choose the GCNJaccard hyperparameters based on the DeepRobust library [38].

GNNGuard. We set edge pruning threshold (the only hyperparameter in GNNGuard) to be P0 = 0.1.

Soft Median GDC. We strictly follow the hyperparameter setting suggested by Geisler et al. [34]. In
particular, we choose temperature T of 5.0 for soft median, α of 0.1 (0.15) and k of 64 (32) for GDC
on ogbn-arxiv (ogbn-products).

ProGNN. We find out its performance is very sensitive to hyperparameters. Thus we strictly follow the
tuned hyperparameters available at github.com/ChandlerBang/Pro-GNN/scripts. As GCN-ProGNN
training is very slow on Pubmed (estimated time is 30 days for 10 runs), we follow the suggestion
from ProGNN authors to replace ªsvdº with ªtruncated svdº in the ProGNN implementation.

D.3 GARNET

We run all GNN training with a full batch way and show the hyperparameters of GARNET on different
datasets under Nettack (1 perturbation per node), Metattack (10% perturbation ratio), and GR-BCD
(25% perturbation ratio) in Table 6. Note that we provide our strategy of choosing r in Appendix F,

15

GARNET: Reduced-Rank Topology Learning for Robust and Scalable Graph Neural Networks

Table 6: Summary of hyperparameters in GARNETÐ We denote the number of eigenpairs for
spectral embedding and nearest neighbors for base graph construction by r and k , respectively.

Dataset r k

Cora-Nettack 50 30
Cora-Metattack 50 30
Pubmed-Nettack 50 50
Pubmed-Metattack 50 50
Chameleon-Nettack 50 50
Chameleon-Metattack 50 50
Squirrel-Nettack 50 50
Squirrel-Metattack 50 50
ogbn-arxiv-GRBCD 500 50
ogbn-products-GRBCD 500 50

which avoids conducting hyperparameter tuning on r per dataset. Besides, we set the prior data
variance σ2 to be positive infinity for all graphs (i.e., ignore self-loops of Θ in Equation 2). Last but not
least, we refer readers to our official configuration files at github.com/cornell-zhang/GARNET/configs
for the detailed choices of the threshold γ for edge pruning.

E Hardware Information

We conduct all experiments on a Linux machine with an Intel Xeon Gold 5218 CPU (8 cores @
2.30GHz), 8 NVIDIA RTX 2080 Ti GPU (11 GB memory per GPU), and 1 RTX A6000 GPU (48
GB memory).

F Complexity Analysis of GARNET

F.1 Time Complexity ± Choice of r

We choose r based on the number of classes per dataset, which depends on the downstream task
rather than number of nodes in the graph. Specifically, suppose λr is the r-th largest eigenvalue, an
appropriate r is chosen if there is a large gap between λr and λr+1 (i.e., a large eigengap) in the
graph spectrum. According to [39], the eigengap is highly related to the number of clusters in the
graph. In this work, we approximate r by r ≈ 10c to cover the large eigengap, where c denotes
the number of classes/clusters. As shown in Tables 1 and 6, the number of classes in small (large)
graphs is around 5 (50), so we use r = 50 (r = 500) in experiments. As a result, GARNET has the
near-linear time complexity O(r(|E|+ k|V |) + |V |log|V |) = O(c(|E|+ k|V |) + |V |log|V |).

F.2 Space Complexity

GARNET involves forming a sparse kNN graph by building hierarchical navigable small world
(HNSW) graphs [28] that contain O(|V | log |V |) nodes in total and each node connects to a fixed
number of neighbors. Thus, the space complexity of storing the HNSW graphs is O(|V | log |V |). In
addition, GARNET also needs to store the input adversarial graph and the produced kNN graph. As
a result, the total space complexity of GARNET is O(|V | (log |V | + k) + |E|), where |V| and |E|
denote the number of nodes and edges in the adversarial graph, respectively, and k is the averaged
node degree in the kNN graph.

Apart from the complexity analysis, we further provide the algorithms of GARNET and TSVD
below for comparison. For GARNET algorithm, the embedding matrix V at line 3 can be further
concatenated with the node feature matrix, which may improve the quality of Gbase as discussed in
Appendix L. Moreover, lines 5 and 6 are optional as illustrated in Appendix S.

16

GARNET: Reduced-Rank Topology Learning for Robust and Scalable Graph Neural Networks

Table 7: Averaged node classification accuracy (%) ± std under targeted attack (Nettack) with
different perturbation ratio Ð We denote the evaluated dataset by its name with the number of
perturbations (e.g., Cora-0 means the clean Cora graph and Cora-1 denotes there is 1 adversarial edge
perturbation per target node). As GCN is not designed for heterophilic graphs, we only show results
of defense methods with GPRGNN as the backbone model on Chameleon and Squirrel. We bold and
underline the first and second highest accuracy of each backbone GNN model, respectively. OOM
means out of memory.

GCN GPRGNN

Dataset Vanilla TSVD ProGNN GARNET Vanilla TSVD ProGNN GARNET

Cora-0 80.96± 0.95 72.65± 2.29 80.54± 1.21 81.08± 2.05 83.04± 2.05 81.68± 1.78 82.04± 1.33 82.77± 1.89
Cora-1 70.06± 0.81 71.36± 1.63 81.65± 0.59 79.75± 2.35 81.68± 2.18 79.36± 2.23 80.56± 1.71 82.17± 1.95
Cora-2 68.60± 1.81 70.66± 2.76 79.83± 1.10 79.69± 1.50 74.34± 2.41 76.26± 2.34 76.12± 2.43 78.55± 2.11
Cora-3 65.04± 3.31 68.20± 1.93 72.08± 1.20 74.42± 2.06 70.96± 2.00 70.90± 3.89 73.74± 2.73 79.40± 1.35
Cora-4 61.69± 1.48 65.34± 3.46 67.83± 1.87 69.60± 2.67 65.90± 1.61 65.51± 3.27 68.94± 3.25 72.77± 2.16
Cora-5 55.66± 1.95 60.30± 2.25 65.38± 1.65 67.04± 2.05 62.89± 1.95 63.52± 3.27 63.74± 2.57 71.45± 2.73

Pubmed-0 87.26± 0.51 87.03± 0.48 88.14± 1.44 87.96± 0.58 90.05± 0.73 OOM OOM 90.99± 0.52
Pubmed-1 84.29± 0.68 86.46± 0.28 85.75± 1.23 87.03± 0.68 89.30± 0.54 OOM OOM 90.91± 0.47
Pubmed-2 82.17± 0.67 83.68± 0.46 81.23± 1.21 86.92± 0.45 87.42± 0.28 OOM OOM 90.75± 0.55
Pubmed-3 81.13± 0.53 81.34± 0.68 80.65± 1.39 86.50± 0.45 84.46± 0.53 OOM OOM 90.70± 0.37
Pubmed-4 75.48± 0.52 82.41± 0.54 78.46± 1.11 86.44± 0.64 81.72± 0.72 OOM OOM 90.11± 0.57
Pubmed-5 66.67± 1.34 79.56± 0.48 71.89± 1.56 86.12± 0.86 76.99± 1.16 OOM OOM 89.52± 0.45

Chameleon-0 71.46± 1.92 62.12± 3.04 58.80± 1.72 72.89± 2.65
Chameleon-1 71.02± 1.57 61.34± 2.93 58.05± 1.90 72.68± 1.89
Chameleon-2 70.71± 1.12 61.09± 2.80 57.44± 1.67 72.20± 2.31
Chameleon-3 70.30± 1.28 60.98± 2.82 57.19± 1.83 72.17± 2.07
Chameleon-4 69.87± 1.29 60.85± 3.31 57.44± 1.63 72.06± 2.94
Chameleon-5 66.26± 1.71 60.37± 2.86 57.07± 1.82 71.83± 2.11

Squirrel-0 41.36± 2.87 32.98± 2.36 31.81± 1.72 44.91± 1.53
Squirrel-1 41.27± 3.16 32.63± 0.87 30.54± 2.45 43.55± 1.79
Squirrel-2 41.09± 2.14 32.05± 1.05 30.73± 2.13 44.09± 2.35
Squirrel-3 40.98± 2.72 32.00± 1.66 30.25± 1.98 44.18± 2.26
Squirrel-4 40.25± 2.82 31.45± 1.38 29.09± 2.33 43.73± 1.62
Squirrel-5 39.45± 2.36 31.20± 1.84 27.27± 1.87 43.64± 1.53

Table 8: Averaged node classification accuracy (%) ± std under non-targeted attack (Metattack) with
different perturbation ratio Ð We denote the evaluated dataset by its name with the perturbation
ratio (e.g., Cora-0 means the clean Cora graph and Cora-10 denotes there are 10% adversarial edges).
As GCN is not designed for heterophilic graphs, we only show results of defense methods with
GPRGNN as the backbone model on Chameleon and Squirrel. We bold and underline the first and
second highest accuracy of each backbone GNN model, respectively. OOM means out of memory.

GCN GPRGNN

Dataset Vanilla TSVD ProGNN GARNET Vanilla TSVD ProGNN GARNET

Cora-0 81.35± 0.66 73.86± 0.53 78.56± 0.36 79.64± 0.75 83.05± 0.42 81.61± 0.54 82.04± 0.90 82.67± 1.89
Cora-10 69.50± 1.46 69.45± 0.69 77.90± 0.69 77.78± 0.53 80.37± 0.65 81.08± 0.52 80.31± 1.23 82.17± 0.69
Cora-20 56.28± 1.19 62.44± 1.16 72.28± 1.67 73.89± 0.91 74.27± 2.11 78.50± 1.20 76.29± 1.46 81.34± 0.79

Pubmed-0 87.16± 0.09 84.53± 0.08 84.62± 0.11 85.37± 0.20 87.35± 0.13 OOM OOM 86.86± 0.57
Pubmed-10 81.16± 0.13 84.56± 0.10 84.09± 0.12 85.22± 0.13 85.52± 0.14 OOM OOM 86.24± 0.20
Pubmed-20 77.20± 0.27 84.30± 0.08 83.89± 0.32 85.14± 0.23 84.18± 0.15 OOM OOM 85.69± 0.26

Chameleon-0 61.36± 1.00 47.29± 1.63 48.39± 0.68 61.11± 2.46
Chameleon-10 57.55± 1.26 47.07± 1.21 47.80± 0.91 60.96± 1.22
Chameleon-20 53.20± 0.88 45.12± 1.34 46.69± 0.61 59.96± 0.84

Squirrel-0 39.51± 1.64 31.36± 1.87 31.64± 2.87 43.43± 1.14
Squirrel-10 38.27± 0.83 28.25± 1.66 30.33± 3.29 42.62± 1.09
Squirrel-20 35.22± 1.20 23.91± 1.40 29.36± 3.61 41.97± 1.02

Table 9: Averaged node classification accuracy (%) ± std on heterophilic graphs Ð We bold and
underline the first and second highest accuracy, respectively. The backbone GNN model is H2GCN.

Chameleon (Nettack) Chameleon (Metattack) Squirrel (Nettack) Squirrel (Metattack)

Model Clean Adversarial Clean Adversarial Clean Adversarial Clean Adversarial

Vanilla 78.43± 2.09 62.20± 1.99 68.45± 0.57 52.73± 1.72 55.36± 2.91 29.55± 3.09 61.23± 0.71 44.84± 0.89
TSVD 67.07± 1.15 63.17± 1.61 61.75± 1.09 54.06± 1.66 32.45± 1.87 31.64± 2.09 46.66± 1.71 40.56± 1.41
GARNET 78.78± 1.84 76.10± 1.92 66.63± 1.05 61.12± 0.59 54.09± 1.73 53.27± 1.50 59.67± 0.83 50.08± 1.92

19

GARNET: Reduced-Rank Topology Learning for Robust and Scalable Graph Neural Networks

K Broader Impact

Zügner et al. [5] have shown that graph adversarial attacks can drastically degrade the performance
of GNN models for downstream applications. For instance, an attacker can attack a GNN-based
recommender system on Facebook social network or Amazon co-purchasing network, via creating a
fake account and make some connections to other users or items. Those connections can be viewed
as adversarial edges in the graph. As a result, the attacker can deliberately enforce a GNN model to
recommend some irrelevant or even harmful contents to other users. Thus, improving adversarial
robustness of GNN models has the potential for positive societal benefit.

We hope that this paper provides insight on the robustness and scalablity limitations of prior defense
methods. Moreover, we believe that the proposed GARNET can largely overcome these two limi-
tations and produce a robust GNN model against adversarial attacks on large-scale graph datasets.
Nevertheless, we have to admit that GARNET may potentially provide the attacker with some hints
about developing an even more powerful and scalable adversarial attack than all existing attacks,
which is a possible negative consequence.

L Discussion on Node Features

L.1 Graph Construction with Node Features

Table 10: Averaged node classification accuracy (%) ± std under targeted attack (Nettack) and
non-targeted attack (Metattack) on Cora and Pubmed Ð We bold and underline the first and second
highest accuracy, respectively. ªNodeFeatº denotes the kNN graph constructed from node features
is used for GNN training. ªGARNET w/ NodeFeatº denotes the kNN graph constructed from the
concatenation of dominant singular components and node features. The backbone model is GCN.

Cora (Nettack) Cora (Metattack) Pubmed (Nettack) Pubmed (Metattack)

Model Clean Adversarial Clean Adversarial Clean Adversarial Clean Adversarial

Vanilla 80.96± 0.95 55.66± 1.95 81.35± 0.66 56.28± 1.19 87.26± 0.51 66.67± 1.34 87.16± 0.09 77.20± 0.27
NodeFeat 52.65± 2.69 52.65± 2.69 56.44± 1.04 56.44± 1.04 83.01± 0.99 83.01± 0.99 78.66± 0.15 78.66± 0.15
GARNET 81.08± 2.05 67.04± 2.05 79.64± 0.75 73.89± 0.91 87.96± 0.58 86.12± 0.86 85.37± 0.20 85.14± 0.23

GARNET w/ NodeFeat 83.73± 1.17 64.35± 2.98 81.93± 0.44 71.97± 0.95 88.76± 0.40 86.56± 0.62 86.16± 0.16 84.88± 0.34

As GARNET purifies the adversarial graph by building a kNN graph based on dominant singular
components, a natural question is whether the kNN graph constructed from node features can also
achieve similar performance. We answer this question by comparing the results of GARNET graph
and the node feature graph in Table 10. Note that the clean and adversarial accuracy are the same on
the graph constructed from node features, since node features are unchanged after graph adversarial
attack. Besides, we only show results on homophilic graphs as the kNN graph constructed from node
features naturally falls into this category. Table 10 shows that the node feature graph performs much
worse than GARNET graph. This further confirms that the method proposed in this work is critical to
improve the robustness of GNN models.

Apart from constructing the kNN graph purely from node features, we can also concatenate node
features with dominant singular components for kNN graph construction, which may further improve
the accuracy of GARNET. Note that we only adopt this notion for homophilic graphs, as this approach
implicitly assumes that the graph is homophilic (nodes with similar features are adjacent in the kNN
graph). The results in Table 10 indicate that augmenting GARNET with node features can further
improve the accuracy in several cases.

L.2 Defense Against Node Feature Attack

GARNET can be extended to handle node feature attack, although this paper mainly focuses on
defending against graph structure attack, which we believe is more challenging than defending node
feature attack due to the discrete nature. Specifically, we can perform TSVD to obtain the low-rank
approximation of the node feature matrix, which can remove high-rank adversarial components
in node features [7]. The low-rank feature matrix is then concatenated to the weighted spectral
embeddings to produce the kNN base graph. In this way, the downstream GNN model will be able to
aggregate neighbors whose features are less perturbed during message passing.

20

GARNET: Reduced-Rank Topology Learning for Robust and Scalable Graph Neural Networks

N Acceleration of GARNET on Large Graphs

There are two major kernels in GARNET: (1) weighted spectral embedding (i.e., computing the
top r singular components or Laplacian eigenpairs), (2) kNN graph construction. For accelerating
weighted spectral embedding, we can leverage the notion of multi-level graph coarsening [40, 41] so
that we only need to perform TSVD on the coarsest graph. To speedup the process of kNN graph
construction, we can exploit Faiss to enable performing kNN on GPU [42].

O Homophily Score of GARNET Graph

Table 11: Graph homophily score.

Homophilic graphs Heterophilic graphs

Dataset Cora Pubmed Chameleon Squirrel

Clean graph 0.80 0.80 0.23 0.22
GARNET graph 0.75 0.72 0.25 0.26

We follow Zhu et al. [10] to compute the homophily score per dataset (lower score means more
heterophilic). As shown in Table 11, the GARNET graph is homophilic (heterophilic) if the cor-
responding clean graph is homophilic (heterophilic), which further confirms Theorem 3.3 that our
approach can effectively recover the clean graph structure. As a result, GARNET supports both
homophilic and heterophilic graphs.

P Accuracy of Clean Graph Recovery

Table 12: Averaged recall and precision of clean structure recovery over 5 (randomly picked) nodes.

Recall Precision

Cora (homophilic graph) 0.94 0.65
Chameleon (heterophilic graph) 0.87 0.59

Apart from visualizing GARNET graph in Figures 5 and 8, we further quantify how well GARNET
recovers the clean graph structure. Concretely, given a target node, we first extract nodes within its
2-hop neighbors in the clean graph and GARNET graph (under Metattack with 20% perturbation
ratio), respectively. By denoting the extracted nodes by Nclean for clean graph and Ngarnet for
GARNET graph, we define the recall score and precision score as follows:

Recall =
|Nclean ∩Ngarnet|

|Nclean|

Precision =
|Nclean ∩Ngarnet|
|Ngarnet|

Table 12 shows the averaged recall and precision over 5 nodes on Cora and Chameleon graphs. The
results show that the recall scores are very high for both graphs, which indicates GARNET is able to
accurately recover clean graph structure. The relatively low precision scores indicate that GARNET
also introduces new edges to the graph (i.e., |Ngarnet| > |Nclean|). We argue that those new edges
are likely to connect spectrally similar nodes that are far away in the original clean graph, which
enables GARNET to also incorporate global structural information. This explains why GARNET can
sometimes outperform vanilla GNN models on clean heterophilic graphs (shown in Table 3), where
global structural information is very critical for node prediction.

22

GARNET: Reduced-Rank Topology Learning for Robust and Scalable Graph Neural Networks

Q Further Discussion on Graph Recovery with PGM

Intuitively, if we use more (clean) Laplacian eigenpairs (i.e., a larger r) for constructing the embedding
matrix V based on Definition 3.1, the optimal solution for Equation 2 (i.e., Θ∗) will be closer to
the actual clean graph. In this section, we confirm this intuition based on graph resistance distances
between node pairs. Specifically, consider the following expression for calculating effective-resistance
distances between nodes p and q using all Laplacian eigenvalues/eigenvectors except λ1 = 0:

|V |
∑

i=2

(uT
i ep,q)

2

λi

Feng [17] has shown that the effective-resistance distance between any node pair on the learned graph
Θ∗ (when σ approaches infinity) will fully match the Euclidean distance between the corresponding
data samples (i.e., rows in weighted spectral embedding matrix V in our case). Moreover, it can be
shown that the Euclidean distance between the data samples in our case will match the effective-
resistance distance on the original graph when r = |V| (with proper normalization on Laplacian
eigenvectors). As a result, the resistance distances on the learned graph Θ∗ will be the same as
the ones on the original graph when r = |V|. Moreover, using a larger r value will lead to a more
accurate estimation of the learned (clean) graph.

In practice, if r satisfies that λr ≪ λr+1, dropping the terms with much larger eigenvalues (i.e., λr+1,
λr+2, ..., λ|V|) will not significantly impact the approximation accuracy. A proper r can be effectively
determined based on the strategy proposed in Appendix F. We leave the theoretical guarantee of other
metrics for graph comparison to our future work.

R Connection Between kNN Graph and TSVD Graph

Apart from the motivation of constructing a kNN graph as Gbase based on Theorem 3.3, we further
motivate the kNN graph construction from the perspective of improving the scalability of TSVD-
based defense methods. Concretely, as previous TSVD-based methods produce a dense (low-rank)

adjacency matrix Â, they involve dense matrices during GNN training, which has quadratic time/space

complexity and thus cannot scale to large graphs. A potential solution is to sparsify Â by preserving
the top k largest elements per row. However, naïvely selecting the largest elements of each row

in Â requires forming/storing Â first, which still has quadratic time/space complexity. In contrast,

we leverage the (approximate) kNN algorithm to construct the sparsified Â by taking as input the

weighted spectral embedding V (note that Â = V V T based on Proposition 3.2). Consequently, our
kNN graph construction step can also be viewed as a scalable way of sparsifying the dense adjacency

matrix Â generated by TSVD. Moreover, Theorem 3.3 theoretically guarantees that the sparsified
graph serves as a reasonable Gbase for edge pruning.

S Simplified Version of Spectral Embedding Distortion

To obtain si,j =
∥UT ei,j∥

2

2

∥V T ei,j∥2

2

, we have to compute both the top r Laplacian eigenpairs of Gbase (for

constructing U) and those of Gadv (for constructing V). However, as Gbase is relatively dense (a
large k used for kNN graph construction), computing its Laplacian eigenpairs is time-consuming,
especially on large graphs. Fortunately, Von Luxburg [39] has shown that the top r Laplacian
eigenvectors (corresponding to smallest eigenvalues) only vary a little across nodes in a dense graph
(i.e., they are smooth over the graph), which means ∥UT ei,j∥2 is very similar across different edges in

Gbase. Consequently, the term ∥V T ei,j∥2 becomes the dominant factor in si,j to identify (non)critical

edges: a large value of ∥V T ei,j∥2 means a small value of si,j , indicating the corresponding edge is

noncritical. As we empirically find out that exploiting ∥V T ei,j∥2 to prune noncritical edges does not
degrade the accuracy of GARNET, we adopt this simplified version of spectral embedding distortion
in our implementation.

23

	1 Introduction
	2 Background
	2.1 Undirected Probabilistic Graphical Models
	2.2 Graph Adversarial Attacks
	2.3 Graph Adversarial Defenses

	3 The GARNET Approach
	3.1 Graph Recovery via Graphical Model
	3.2 Base Graph Construction
	3.3 Graph Refinement via Edge Pruning
	3.4 Complexity of GARNET

	4 Experiments
	4.1 Robustness of GARNET
	4.2 Scalability of GARNET
	4.3 Ablation Analysis of GARNET
	4.4 Visualization

	5 Conclusions
	A Proof for Proposition 3.2
	B Proof for Theorem 3.3
	C Dataset Details
	D Hyperparameters Settings
	D.1 Backbone GNN Models
	D.2 Defense Baselines
	D.3 GARNET

	E Hardware Information
	F Complexity Analysis of GARNET
	F.1 Time Complexity – Choice of -
	F.2 Space Complexity

	G Ablation Study
	G.1 Choice of f for kNN Graph Construction
	G.2 Choice of f for edge pruning

	H Backbone GNN Models for Defense
	I Defense Results with Various Perturbation Budgets
	J Defense on H2GCN
	K Broader Impact
	L Discussion on Node Features
	L.1 Graph Construction with Node Features
	L.2 Defense Against Node Feature Attack

	M Additional Visualization Results
	N Acceleration of GARNET on Large Graphs
	O Homophily Score of GARNET Graph
	P Accuracy of Clean Graph Recovery
	Q Further Discussion on Graph Recovery with PGM
	R Connection Between kNN Graph and TSVD Graph
	S Simplified Version of Spectral Embedding Distortion

