Fixing and Mechanizing the Security Proof of
Fiat-Shamir with Aborts and Dilithium

Manuel Barbosa! @, Gilles Barthe? @, Christian Doczkal? @, Jelle Don?,
Serge Fehr34, Benjamin Grégoire® @, Yu-Hsuan Huang®, Andreas Hiilsing® @,
Yi Lee?™®, and Xiaodi Wu”

! University of Porto (FCUP) and INESC TEC, Portugal
2 Max Planck Institute for Security and Privacy, Germany
3 Centrum Wiskunde & Informatica, The Netherlands
4 Leiden University, The Netherlands
® Inria Centre at Université Céte d’Azur
6 Eindhoven University of Technology
" University of Maryland, United States
mbb@fc.up.pt, {gilles.barthe, christian.doczkal}@mpi-sp.org,
{jelle.don, serge.fehr, yhh}@cwi.nl, benjamin.gregoire@inria.fr,
andreas@huelsing.net, {ylee1228, xiaodiwu}@umd.edu

Abstract. We extend and consolidate the security justification for the
Dilithium signature scheme. In particular, we identify a subtle but crucial
gap that appears in several ROM and QROM security proofs for signa-
ture schemes that are based on the Fiat-Shamir with aborts paradigm,
including Dilithium. The gap lies in the CMA-to-NMA reduction and was
uncovered when trying to formalize a variant of the QROM security proof
by Kiltz, Lyubashevsky, and Schaffner (Eurocrypt 2018). The gap was
confirmed by the authors, and there seems to be no simple patch for it.
We provide new, fixed proofs for the affected CMA-to-NMA reduction,
both for the ROM and the QROM, and we perform a concrete secu-
rity analysis for the case of Dilithium to show that the claimed security
level is still valid after addressing the gap. Furthermore, we offer a fully
mechanized ROM proof for the CMA-security of Dilithium in the Easy-
Crypt proof assistant. Our formalization includes several new tools and
techniques of independent interest for future formal verification results.

1 Introduction

Modern cryptographic standards, including AES and SHA3, are often selected
through open, multi-year cryptographic competitions. An important goal of these
competitions is to increase confidence in the schemes selected for standardiza-
tion. To this end, candidate schemes are exposed to scrutiny by the cryptography
community. This scrutiny generally yields a combination of cryptanalytic attacks

Authors are listed in alphabetical order; see https://www.ams.org/profession/
leaders/culture/JointResearchandItsPublicationfinal.pdf.

https://orcid.org/0000-0002-6848-5564
https://orcid.org/0000-0002-3853-1777
https://orcid.org/0000-0002-4450-0184
https://orcid.org/0000-0001-6650-9924
https://orcid.org/0000-0003-2215-4134
https://orcid.org/0000-0003-3742-3296
https://orcid.org/0000-0001-8877-9802
https://www.ams.org/profession/leaders/culture/JointResearchandItsPublicationfinal.pdf
https://www.ams.org/profession/leaders/culture/JointResearchandItsPublicationfinal.pdf

and provable security claims. The former leads to schemes being abandoned, nar-
rowing the choice of candidates, while the latter plays a fundamental role in the
selection of the remaining candidates. Overall, competitions increase confidence
in selected standards. However, competitions are not infallible. In particular,
flaws in candidate designs may go undetected by public scrutiny far into the
standardization process. These “near misses” beg for complementary methods
for validating provable security claims of widely used standards.

PosT-QUANTUM CRYPTOGRAPHY AND DILITHIUM. In 2016, NIST initiated a
competition for standardizing cryptographic algorithms that could withstand
quantum adversaries. The competition recently reached an important milestone
with the selection of four standards: one KEM (Kyber) and three signature al-
gorithms (Dilithium, Falcon, SPHINCS+). These algorithms were chosen out
of 69 candidates, some of which may still be selected during a fourth round.
The selected candidates will form the backbone of quantum-resistant cryptogra-
phy. Given the stakes, there is ample motivation for supporting all the selected
candidates with computer-aided security proofs.

Dilithium [1,2] is a lattice-based digital signature based on the Fiat-Shamir
with aborts (FSwA) paradigm introduced by Lyubashevsky [3,4]. Recall that
the classic Fiat-Shamir (FS) paradigm transforms an interactive identification
scheme (IDS) based on the standard commit-challenge-response structure into a
digital signature scheme. The FS transform takes an IDS scheme ID and a hash
function H (which is typically modelled as a random oracle) and sets the signa-
ture key pair to be that of ID. Then, to produce a signature on message m, the
signer generates a first message w, locally sets the challenge to be ¢ := H(w,m)
and completes the signature as o := (w,z), where z is the response gener-
ated by ID upon first message w and challenge c¢. A signature o = (w, z) is
valid if (w, H(w, m), z) is accepted by ID. The Fiat-Shamir with aborts (FSwA)
paradigm extends the FS transform to allow for the response generation proce-
dure to abort! — hence FS with aborts — which means that the signing algorithm
must now execute the IDS repeatedly until a valid trace (w,c,z) is produced.
We will denote this transformation by FSwA[ID, H].

The security of FSwA has been analyzed many times. In particular, the orig-
inal analysis in [4] (in the ROM) concludes that the resulting signature scheme
is secure down to the underlying lattice-based assumption. Later, Kiltz, Lyuba-
shevsky, and Schaffner [5] (KLS) developed a modular framework that follows
the structure of the FSwA transform and used it to extend the results of the se-
curity analysis to quantum attackers in the Quantum-accessible Random Oracle
Model (QROM).

COMPUTER-AIDED CRYPTOGRAPHY (CAC). CAC is an emerging approach
that develops computer tools for building and independently verifying provable
security claims [6]. CAC formal verification tools have been used to validate
the security claims for a number of cryptographic primitives and protocols, and

! This is necessary for a large class of lattice-based IDS, to avoid leaking the secret
key via biased responses z.

they have progressed to a point where they can be used to increase the level
of assurance in standardisation processes. The most outstanding application of
CAC to date is arguably the TLS (Transport Layer Security) protocol: the most
recent version, TLS 1.3, was designed under the coordination of the IETF with
the active involvement of formal verification experts, who used formal tools to
unveil logical flaws in previous versions of TLS and intermediate designs, and to
validate the security arguments [7-10].

In this paper we focus on EasyCrypt, a tool designed for machine-checking
code-based computational security proofs, and hence ideally suited for formally
verifying the security proofs for low-level primitives such as digital signature
and encryption schemes. EasyCrypt permits stating and proving computational
security goals using the same formalisms adopted in cryptographic papers. We
report the results of our efforts to formally verify the security proof for the
Dilithium signature scheme and provide further evidence that computer-aided
cryptography permits guraranteeing the absence of design flaws in cryptographic
standards to a much higher level of assurance than manual inspection.

Main Contributions. The main contributions of this paper are three-fold.
First, we identify a subtle but crucial gap that appears in several ROM and
QROM security proofs of Dilithium and other schemes based on FSwA, includ-
ing [4] and [5]. This gap was uncovered when formalizing a variant of the proof
in [5]. Second, we provide fixed proofs, both for the ROM and the QROM. Third,
we fully mechanize the ROM proof in the EasyCrypt proof assistant. Our for-
malization includes several new tools and techniques of independent interest for
future formal verification results.

We elaborate on these contributions below, but stress at this point two im-
portant take-aways: 1) our results extend and consolidate the security justifica-
tion for the Dilithium signature scheme and 2) the gap in the proof would have
been found earlier if any of the affected works, most prominently the Dilithium
submission to the NIST post-quantum competition, had been subject to formal
verification in the past.

THE GAP. The gap in the proof of FSwA occurs in the reduction from chosen
message attacks (CMA) to no-message attacks (NMA). In this step, signature
queries made by the considered CMA-attacker ASE™ which has access to a
singing oracle and the random oracle, must be answered without knowledge of
the secret key, replacing real signatures with fake ones produced by an Honest-
Verifier Zero Knowledge (HVZK) simulator associated with the IDS. To ensure
that the attacker cannot detect that it is being given fake signatures, it is also
necessary to reprogram the random oracle to be consistent with the transcripts
produced by the simulator. The crucial step boils down to replacing the oracle
Sign by the oracle Trans (see Fig. 1), where Resp is an algorithm that may
return .

Clearly, the adversary A can attempt to guess w and query H on w be-
fore calling Sign/Trans, and then detect the inconsistency introduced by the
reprogramming in case of Trans. However, even if the adversary makes no prior
H-queries, the distribution of the random oracle changes, and this is where the

Sign(m): Trans(m):

1: repeat 1: repeat

2: (w,st) « Com(sk) 2: (w,st) « Com(sk)
3 c¢:=H(w,m) 3: ¢« ChSet

4: z:= Resp(w,c,st) 4 z = Resp(w, ¢, st)
5: until z # 1 5 until 2 # 1

6: 6: H(w,m):=c

7: return (w, 2) 7: return (w, 2)

Fig. 1. Oracles Sign and Trans.

gap lies. The reprogramming in Trans only reprograms the random oracle with
accepting transcripts and thereby shifts the random oracle slightly towards pairs
((w,m), ¢) such that Resp(w,c,st) # L. Even though one expects this change in
the distribution of the random oracle to be small, there is still a gap that needs
to be properly bounded.

Both Lyubashevsky [4] and KLS [5] miss the loss incurred by the bias in H
in their analysis. In [4] this is missed in the hop from the real signing oracle
to Hybrid 1 in the proof of Lemma 5.3—note that the bound in [4] remains
correct due to a loose analysis. In [5] the gap is missed in the game hop from
Gy to G in the proof of Theorem 3.2. Moreover, this oversight is not a problem
limited to [4] and [5], and it potentially affects all FS-based schemes involving
rejection sampling. This includes a long list of works [2,11-14] on lattice-based
and isogeny-based signature schemes (and non-interactive proof systems) that
need to be re-examined carefully.

BRIGDING THE GAP. Our second contribution is a new, fixed proof for the CMA-
to-NMA reduction for FSwA in general, and for Dilithium in particular. We
address both the ROM and the QROM case; in order to optimize the reduction
loss, we use slightly different (lower level) hybrids for the two cases.?

In order to circumvent the gap (while keeping the reduction loss reasonable),
we follow a rather different (but in some sense also more natural) proof strategy
than [5]. We present a high-level outline of the proof (which is the same for ROM
and QROM) in Section 3. The proof requires fine-grained control of the modifi-
cations to the random oracle, which we handle using nested hybrid arguments.
In order to deal with QROM adversaries, we make use of the compressed-oracle
technique [15]. However, special care has to be taken to deal with the potentially
unbounded number of random oracle queries done by the signing procedure, as a
result of the unbounded rejection sampling loop; moreover, this number depends
on the choice of the message to be signed, which is under the adversary’s control.

Result-wise, we note that our CMA-to-NMA reduction differs from the (flawed)
one in [5] in that we can rely on a weaker variant of HVZK than in [5]. On the
downside, the bound we obtain for the CMA-to-NMA reduction is worse than the

2 We note that for simplicity, we consider ordinary unforgeability. It is not too hard
to extend our results to strong unforgeability if the considered IDS satisfies the
additional property of having computational unique-responses.

one claimed in [5]. For this reason, we conclude in Section 7 with an analysis of
the security loss incurred by our proof for concrete parameters — the analysis is
close to that given in [5], but we improve the analysis of relevant entropy met-
rics—and confirm that the parameters in the Dilithium NIST submission [1]
provide sufficient slack to accommodate the additional loss and still comfortably
reach the claimed security for all considered NIST security levels (2, 3, and 5).

MACHINE-CHECKED PROOF. We mechanize the entire security proof of Dilithium
in the ROM using EasyCrypt.? The formalization covers the fixed CMA-to-NMA
reduction (Section 5), the correctness of an HVZK simulator for the IDS underly-
ing Dilithium, and the reduction from NMA security to MLWE and SelfTargetMSIS.
The latter two proofs largely follow the original proofs in [5] and are described
in Section 6. These results guarantee the absence of additional gaps in the ROM
proof and, due to their similarity, give high confidence that such gaps also do
not exist in the QROM proof. In fact, in Section 3 we show that the two proofs
have the same overall structure and that the only significant differences lie in
how the probability of bad events is bounded in the ROM and the QROM.

The intricacy of the security proof, particularly the new CMA-to-NMA re-
duction, posed interesting challenges when formalizing the proof in EasyCrypt
(even in the ROM). Indeed, the mechanized proof uses several tools that were
not used in earlier mechanized cryptographic proofs.

— Proving an advantage bound that matches the pen-and-paper proof implies
reasoning about the expected number of iterations of the unbounded rejec-
tion sampling loop in Dilithium. To do this, we make use of an expectation
logic that was recently added to EasyCrypt to reason about the expected
complexity of randomized programs [17]. The logic is based on the seminal
work by Kozen [18].

— Some hybrid arguments in the proof modify the operation of the rejection
sampling loop one iteration at the time, which means that the total number
of hybrid steps is potentially infinite. In consequence, we need to prove the
convergence of advantage expressions that result from putting together all
the hybrid steps, as the number of hybrid steps goes to infinity.

— In addition to various minor additions to existing EasyCrypt libraries (e.g.,
for limits of sequences and sums, or for conditional sampling) we developed a
new matrix library supporting variable-width matrices and vectors as well as
block matrices.* For the application to Dilithium, we created a new library
that refines the existing EasyCrypt support for abstract polynomial rings
modulo an ideal. This was necessary to express and prove low-level properties
that justify some of the optimizations in Dilithium.

Altogether, the machine-checked security proof is about 6000 lines long. In ad-
dition, the generic library extensions also amount to several thousand lines. The

3 Support for QROM in EasyCrypt is still under active development [16], and the
existing features do not yet allow to formally verify the QROM proof.

4 This was done in collaboration with Oskar Goldhahn and has now been merged into
the EasyCrypt standard library

EasyCrypt development, along with documentation on where to find the vari-
ous theorem statements and how to automatically machine-check the proofs, is
available at https://github.com/formosa-crypto/dilithium.

CONCURRENT WORK. Concurrent and independent work [19] partially overlaps
with the results we present in this paper. Both our work and [19] identify the
same gap in the CMA-to-NMA reduction that is present in prior works on Fiat-
Shamir with aborts. Furthermore, both [19] and our work offer new, corrected
CMA-to-NMA reductions (both in the ROM and QROM), where the high-level
strategy to fix the previous proofs involves reprogramming the random oracle
both on accepted and rejected transcripts. But then, the two works proceed
differently. [19] considers an HVZK simulator for the underlying IDS that can
be used simultaneously for reprogramming accepted and rejected transcripts;
such a simulator is then constructed for a particular class of signatures. On
the other hand, in this paper we introduce an additional hybrid step that re-
moves the reprogrammings of the rejected transcripts, which allows us to rely
on a weaker HVZK simulator that only needs to simulate accepting transcripts.
Finally, beyond the above, [19] and our work include the following respective dis-
joint contributions: [19] identifies and discusses some further difficulties with the
Fiat-Shamir with aborts paradigm, e.g., with the history-free approach from [5],
and with termination and correctness in the unbounded case. On the other hand,
we offer a fully mechanized security proof for Dilithium (for the classical ROM
setting) using the EasyCrypt formal-verification platform.

Outline. We first explain the high-level structure of the CMA-to-NMA reduc-
tion (Section 3). We then show how we bound the critical game hops in the
QROM proof (Section 4) and the mechanized ROM proof (Section 5). Based
on this, we describe the mechanized security proof for Dilithium (Section 6).
We conclude with a concrete analysis of the security loss for specific parameters
(Section 7).

2 Preliminaries

We consider a signature scheme obtained by applying Fiat-Shamir with aborts
(FSwA) to an interactive identification scheme (IDS) that follows the standard
commit-challenge-response structure. The latter means that for a public/secret
key pair (pk, sk), the scheme works in three flows: 1) the Prover generates a first
message (w,st) «— Com(sk) (sometimes also called the commitment), and sends
w to the Verifier; 2) the Verifier choses a random challenge ¢ < C and sends
it back to the Prover; 3) the Prover computes a response z := Resp(sk, w, ¢, st),
which the Verifier checks using Verify(pk, w, ¢, z).> We write KeyGen for the al-
gorithm that generates the key pair (pk, sk).

The Fiat-Shamir transformation turns such an IDS into a signature scheme
by computing the challenge ¢ as the hash of w and the to-be-singed message m.

5 Throughout the paper, when clear from the context, we often omit the dependence
on pk and sk in our notation.

https://github.com/formosa-crypto/dilithium

We stress that by considering FSwA, we allow the IDS to abort, i.e., Resp to
output z = L; in this case, the signing procedure will simply retry with a fresh
new first message w until it succeeds (see Sign in Fig. 1 or 2). For a given key
pair (pk, sk), we let the abort probability for w generated by Com and a random
challenge ¢ be

D(pk,sk) ‘= (wyst)‘lfém(sk)[Resp(w,c, st) = 1].
ce—C
The entropy of w will be an important parameter, implicitly captured by the
guessing probability

k) = P = . 1
“(pk.sk) 711110125‘(/ (w,st)(—(]{om(sk)[w ’U)o] ()

where W is the support set for IDS commitments. Finally, we require the IDS
to satisfy the following honest-verifier zero-knowledge variant, which admits to
simulate accepted transcripts.®

Definition 1. (Accepting Honest-verifier Zero-knowledge) An IDS as above is
said to be acHVZK with simulation error (. if there exists a poly-time algorithm
ZKSim that, when given the public key pk, outputs (w, ¢, z) with a distribution
that has statistical distance at most (.5 from the distribution of a transcript
(w, ¢, z) produced by an honest execution of the protocol conditioned on z # L.

We note that this is a different flavor of HVZK than naHVZK considered
in [5], and it is weaker (at least in spirit). In [5] the simulator must match the
full distribution of traces, which means that a (strict or expected) poly-time
naHVZK simulator implies an expected poly-time simulator as we require it: the
acHVZK simulator repeatedly runs the naHVZK simulator until a good trace is
generated. Whether the acHVZK simulator is strict or expected poly-time will
determine whether we require the computational hardness assumption to hold
for strict or expected poly-time algorithms.” E.g., the scheme considered in [4]
admits a strict poly-time acHVZK simulator, while for Dilithium we only know
how to simulate accepted transcripts in expected poly-time.

3 Outline of the Proof

In this section, we provide a detailed account of how we closed the gap in the
proof described in the introduction. We first give some intuition about the gen-
eral proof strategy, and we pinpoint the main two technical steps of the proof,
i.e., we isolate two quantities (corresponding to two distinguishing advantages
for some game hops) that remain to be bounded. We then discuss the challenges

5 For simplicity, and since this is sufficient for out main application (Dilithium), we
consider statistical indistinguishability of the simulated transcript. Our results ex-
tend to a computational variant in the obvious way.

7 Also note that, at the cost of an increased simulation error, an expected poly-time
simulator can always be turned into a strict poly-time one by cutting the runtime.

in bounding these quantities, and we provide some intuition on how we solve
them. The rigorous analyses of these quantities are then done in subsequent
sections, separately for the QROM and the mechanized ROM proof.

Below, we consider an IDS as considered above, which satisfies Def. 1, and the
goal is to show that EF-NMA security implies EF-CMA security for the signature
scheme that is obtained from the IDS via FSwA.8

3.1 Proof Skeleton

We follow the common approach, which is to show that for any CMA attacker
ASiEnH wwhich has access to a signing oracle Sign and the random oracle H, one
can replace the signing oracle Sign by an oracle Sim that does not have the secret
key, but instead produces a valid transcript by using the acHVZK-simulator and
reprograms H to be consistent with the transcript (see the description of Sim
in Fig. 2 below). Turning AS™# into an NMA attacker B¥ that does not ask
signature queries (and does not reprogram H and produces forgeries consistent
with H) is then a standard argument (discussed in more detail further down).
In order to show that replacing Sign by Sim has little effect, we introduce
two hybrid oracles Prog and Trans, as specified in Fig. 2, and we show that

ASign,H NAProg,H NATrans,H ,\ASim,H

The oracle Prog samples transcripts (w, ¢, z) of the IDS for randomly chosen chal-
lenges ¢ and then reprograms H consistently (denoted H(w, m) := ¢ « C), both
for rejected and accepted transcripts. We emphasize that, since the reprogram-
ming happens independently of whether the transcript is accepted or not, there
is no dependency between w and ¢, circumventing the issue in [5]. Intuitively,
in order to notice the difference, A must have queried H on one of the points
(w, m) before H gets reprogrammed on it; this is unlikely if w has high entropy.

The oracle Trans is as Prog, except that it only reprograms H on the final ac-
cepted transcript. This modification to the game introduces a bias in H towards
accepting transcripts. However, this should remain unnoticed unless A queries
such a pair (w, m) where Trans reprograms H yet Prog does not. Because w is
chosen with high-entropy and not revealed to A, this is unlikely to happen.

Finally, closeness of AT and AS™H follows by definition of the acHVZK
property: for each of the calls A makes to Trans, replacing it by a call to Sim
changes the output distribution of A by at most (..

The key part of the proof is bounding the loss incurred by the hops to AP&
and AT2"sH which we will do separately for the QROM proof (Section 4) and
the mechanized ROM proof (Section 5). Here, we rigorously define those quan-
tities and explain the arguments that are common to both proofs.

For any 0 < € and p < 1, for any key pair (pk, sk) with p(.) < p and
€(pk,sk) < €, and for any choice of ¢s,qu € N, let the quantities A;ifg‘”’mg(qs, qH)

8 The acronym EF-NMA (resp. EF-CMA) stands for existential unforgeability against
no (resp. chosen) message attacks.

Sign(m): Prog(m): Trans(m):

1: repeat 1: repeat 1: repeat
2: (w,st) « Com(sk) 2: (w,st) « Com(sk) 2: (w,st) « Com(sk)
3: c¢:=H(w,m) 3: H(w,m):=c«C 3 e C
4: z:= Resp(w,c,st) 4: z:= Resp(w,c,st) 4z = Resp(w, ¢, st)
5: until z # L 5: until z # L 5: until z # L
6: return (w, z) 6: return (w, z) 6: H(w,m) :=c

7: return (w, z)

Sim(m):

1: (w, ¢, z) « ZKSim(pk)
2: H(w,m):=c

3: return (w, z)

Fig. 2. Overview of the different oracles used for the hybrid proof.

and AP~ ™"(gs, gzr) be monotone in p and in ¢, bounded from above by 1, and
so that

A;i"%g(qs, qH) = |Pr[1 — ASig”’H] — Pr[l — Apmg’H” and
A;:oeg—»Trans(qS’qH) 2 |PI‘[1 - AProg,H] _ Pr[l - ATrans,H]|

for any (classical or quantum) oracle algorithm A5&™# that makes at most ¢g
classical calls to Sign and gy (classical or quantum) calls to the random oracle
H, and outputs a single bit at the end. We take it as understood here that Sign
uses the considered fixed secret key sk for the public key pk given to A, and the
same for Prog and Trans.

Having control over these two parameters, we obtain the desired CMA-to-
NMA reduction via the following result. We note that the statement holds both
for classical and quantum A, where the latter can make quantum queries to
H (but still only classical queries to Sign), with B then also being classical or
quantum, respectively. In order to deal with unlikely “bad” keys that give rise
to values of p(,i sk) and € sy close to 1, which we need to avoid, the formal
statement has a precondition that bounds these two quantities (in some ways)
except with small probability.

Lemma 1. Let € > 0 and p < 1, and let § := Pr[—I"] for an event I" for which
Pr[p(pk’sk) <P A €phsk) S € [=1 (2)

where the randomness is over (pk, sk) « KeyGen. Let AS€H be o CMA attacker
against FSWA[ID, H] that makes qs queries to the signing oracle Sign and qg

queries to the random oracle H. Then, there exists an NMA attacker B against
FSwA[ID, H] so that

AdVEF—CMA(A) < AdVEF—NMA(B)
+qsCor + A5 (qs, qu +1) + AJE" " (gs,qm +1) + 6,

and with running time TIME(BY) ~ TIME(A) + qsTIME(ZKSim). If ASea=rrs

and AP~ are concave as functions in €, then (2) can be relaved to

Ele(pr,s) [I] < € and Prppr,sey <p|I]=1.

See full version [20, Proof of Lemma 1] for the proof.

3.2 Challenges, and How We Solve Them

The challenges that arise in bounding AZ%=" and AF%~™"—and also our
solutions — apply independently of whether A is classmal or quantum. The case
of a classical A is conceptually simpler in that we can see the random oracle as
using standard lazy sampling and the elementary steps in the proof are argued
using up-to-bad reasoning: we define a series of hybrids, where two consecutive
games are identical until a bad event is triggered. This bad event typically corre-
sponds to the adversary being able to observe a change in the distribution of a
single value sampled by the random oracle. The proof then follows from proving
an upper-bound on the probability of each bad event occurring and aggregating
these bounds into a global advantage term.

In the case of a quantum A, we resort to the compressed oracle technique,
which can be understood as a quantum version of lazy sampling. In this setting,
a bad event as above may then be defined via a measurement (we expand on this
analogy in Section 4). Such a measurement typically disturbs the state, and thus
the continuation of the experiment. However, thanks to the gentle-measurement
lemma, if the probability of the event occurring is small (which follows from
pretty much the same argument as classically) we immediately know that this
disturbance is small as well. Thus, conceptually, there is no big difference in the
argument for a classical and for a quantum A. However, and interestingly, it
turns out that in order to optimize the respective bounds on A7%~™", we have
to use slightly different approaches in the ROM and in the QROM proofs.

We outline the proofs of the two non trivial hops next.

THE ‘PROGRAM ALWAYS’ GAME HOP. To bound AJ& =" the game hop from
ASienH 6 AProgH s hroken down into multiple steps and Substeps At the top
level, the gg calls to Sign are replaced by calls to Prog one by one. For each
such replacement, the challenge lies in the fact that there is no fixed upper
bound on the number of loop iterations executed by the modified Sign oracle
query, and thus on the number of reprogrammings that must be dealt with.
Even worse, per-se, A could potentially affect the number of loop iterations by
choosing m dependent on responses to prior H-queries. To deal with this, for
each replacement of Sign by Prog, we do the replacement gradually by replacing
the loop body in the query to Sign by the content of the loop body in Prog one
iteration at a time. Le., we consider the hybrid Hyb”, which programs H(w,m)
to a fresh random c for the first & iterations of the loop and sets ¢ := H(w, m) for
the remaining ones (see Fig. 3, middle). Thus, Hyb = Sign and Hyb™ = Prog.
An important observation at this point is that we can exploit that the prob-
ability of remaining in the loop becomes exponentially smaller for increasing

10

Sign(m): Hyb* (m): Prog(m):

1: repeat 1: 7:=0 1: repeat
2: (w,st) « Com(sk) 2: repeat 2: (w,st) « Com(sk)
3: c¢:=H(w,m) 3t (w,st) « Com(sk) 3: H(w,m):=c« C
4: z:= Resp(w,c,st) 4 if i <k then 4: z:= Resp(w,c,st)
5: until z # 1 5 H(w,m):=cC 5: until z # 1
6: return (w, z) 6: else 6: return (w, z)

7 ¢:= H(w, m)

8: z:= Resp(w,c,st)

9: di:=1+1
10: until z # L
11: return (w, z2)

Fig. 3. The oracles Sign (left) and Prog (right), and Hyb"* in-between (middle).

k—i.e., Hyb® and Hyb**! become harder to distinguish — because the iteration
where they could differ is less likely to be reached. In particular, the probabil-
ity that round k (counting from 0) is reached, which is the round where Hybk
and Hybk+1 differ, is p* — we stress that we crucially exploit here that in the
previous rounds the challenge ¢ was chosen at random (and not computed via
H); this ensures that A cannot influence this probability by choosing m one or
another way. Furthermore, if this round is reached then A can notice the differ-
ence between the two hybrids only if it has made a prior H-query to the point
(w, m) where Hykar1 reprograms H while Hybk does not.? However, since w has
high min-entropy, this is unlikely to have occurred. Altogether, one replacement
of Sign by Prog thus incurs an error that is bounded by an infinite geometric
series, for which there is the high-school closed formula. Multiplying the result
with gg, to account for the gg times we replace Sign by Prog, we then get the
desired bound on AZE~ P

The quantum case is slightly trickier in that we cannot directly “inspect”
prior H-queries to see if the point (w,m), where Hykarl reprograms H while
Hyb]C does not, has been queried before by A. However, one can mimic this line
of reasoning using the compressed oracle technique and doing a certain measure-
ment, which is likely to give the desired outcome again due to the high entropy of
w; furthermore, the gentle measurement lemma then ensures that the measure-
ment introduces little disturbance. The quantitative difference to the classical
case is that conditioned on reaching iteration k, the distinguishing advantage
(essentially) gets a square-root, but of course the probability of reaching that
iteration remains to be p*, and so we end up with a similar, though slightly
worse, infinite geometric series.

THE ‘PROGRAM ONCE’ GAME HOP. The bounding of A7%~ ™" is handled differ-
ently in the QROM and the ROM, in order to optimize the respective bounds.
For the classical proof, the structure of the hybrids is the same as in the previous
hop, in that we replace Prog by Trans one by one, and for each replacement we do
it gradually one iteration at a time. This will then give rise to a similar infinite
geometric series. The main difference to before is that if the crucial iteration

9 Or, if H got reprogrammed on (m,w) already during a prior call to Prog.

11

(where one hybrid reprograms H at the point (m,w) and the other does not)
is reached, then the reasoning for why the distinguishing advantage is small is
different. Here, we rely on the fact that in order to notice the difference, A must
make a future H-query to (m,w), but since w has high min-entropy and is not
revealed to A, this is unlikely to happen.

In principle, a similar strategy can be applied in the QROM setting. However,
the “inspection” of future H-queries will require a measurement for every future
H-query, which will lead to a unnecessarily large loss. Instead, we will do a slight
detour involving a “clone” H’ of H, and a variant of Prog (see Fig. 4) that also
reprograms H’, but only on the accepted (m,w), and then the hybrid works by
replacing A’s calls to H by calls to H' one by one.

The detailed bounds and proofs are given in Sections 4 and 5.

4 Proof in the Quantum Random Oracle Model

Here, we provide the technical details of the CMA-to-NMA reduction for the con-
sidered signature scheme obtained via Fiat-Shamir with aborts, in the QROM.
As explained in Sect. 3, this boils down to bounding A7% =" and Aj%¢~ ™", and
applying Lemma 1.

We start by introducing some notation and recalling a couple of elementary
concepts in the context of quantum information (Sect. 4.1), and by introducing
an abstract distance measure for oracles (Def. 2 in Sect. 4.2) that captures the
indistinguishability of two oracles in the QROM.

4.1 Preliminaries

Let pg be a density operator. We can speak of a (classical) event I', if pg decom-
poses into pg = Pr[I"]pgp + Pr[—=I"]pg— for probabilities Pr[I"] and Pr[—I]
that add up to 1, and density operators pgr and pg—p. In typical cases pg
is part of a bigger state pxg, where X is classical, and I" is then obtained by
requiring X to satisfy some property.

We will also consider events that are obtained by applying a measurement.
Let pg be a density operator and {Pr, P-r} a binary projective measurement,
labeled by I and —I". By default, we then write I" (and correspondingly for —1I")
for the event of observing the measurement outcome associated with P, i.e.,
Pr[I'] = tr(Prpe), and we let pgp = ﬁPppEPp be the corresponding post-
measurement state.

We use §(pg, pe/) := %HpE —pe |1 to denote the trace distance between density
operators pg and pg/. The trace distance forms an upper bound to the advantage
of any quantum algorithm in distinguishing pg from pg:.

Lemma 2 (Gentle Measurement Lemma). Let pg be a density operator and
{Pr, P-r} a binary projective measurement. Then d(pg, pgjr) < /Pr[—17.

12

4.2 Setting Up the Stage

As explained in Sect. 3, in order to control AZe = and Aj%~ ™", we consider a
hybrid argument where we repeatedly replace one oracle call to a certain oracle
by another one. To smoothen the exposition, we introduce first an abstraction
of this core problem, together with a metric that captures the figure of merit.

Replacing One Oracle by Another. We consider a quantum oracle algorithm
AH01,-01.0 that makes oracle calls to a random function H (i.e., a random
oracle) and to arbitrary but specified oracles Oq,...,0O,, and it makes one call
to an unspecified oracle O (though with a specified set M of possible inputs),
and the goal will be to show that for two particular specifications O and O, the
algorithm A will not notice the difference whether O is instantiated with O or
with O, i.e., that Pr[1 « AH:O1::0r0] & Pr[1 = AH:01::0n0"]

Considering that A is a quantum algorithm, we allow the queries to the
random oracle H to be in superposition; for the purpose of this work, the queries
to all the other oracles are classical though.

Furthermore, we note that we allow the oracle instantiations Oq,...,O,, as
well as O and O, to also have oracle (read) access to H, and even to have oracle
write access, i.e., they may reprogram H at a chosen point to a chosen value.
Formally, O1,...,0,,0,0’ are classical, stateless, possibly randomized oracle
algorithms, with oracle read and write access to H. '°

Closeness of Oracles In order to show indistinguishability of answering A’s
O-query by O or O, it is sufficient to show that the output produced by O(m)
or O'(m), together with H (which may also look different in one and the other
case, due to possible different reprogramming), look alike to A.

Using the compressed oracle technique, we can consider H to be obtained by
measuring a certain quantum system D (the “compressed oracle”); namely, H(x)
can be obtained by measuring register D, of D in the computational basis. Indeed
the technique ensures existence of a system D, the state of which evolves (and
gets entangled) upon random-oracle (superposition) queries, and that satisfies:

1. The random-oracle queries commute with measuring any of the registers of
D in the computational basis. This includes reprogramming queries, which,
on input (z,y) replaces the state of register D, by |y).

2. After ¢ (read or write) random-oracle queries, measuring all of D in the
Fourier basis produces a function table that is 0 (sometimes denoted L)
everywhere, except for up to ¢ points. In particular, measuring all of D before
any random-oracle query in the computational basis produces a uniformly
random function (table) H.

10 We may actually allow O1, . .., Oy, to be stateful, all having access to the same state,

but for the propose of “switching” from O to O’ for any A, this state can always be
maintained and provided by \A.

13

The above considerations motivate to define the (parameterized) following met-
ric, which then gives rise to the subsequent Theorem 1 .

Definition 2. For oracle instantiations O and O’ of O, and for q € N,

/ Py—
dg(0,0") := max 8 (Po(m)HE> PO (m)HE)
where the mazimum is over all possible m € M and over all states ppg with
the property that D behaves as in Item 2. above (for the considered q) upon
measuring in the Fourier basis; furthermore, po(myme is obtained from m and
poe by running O on input m, and by measuring all of D in the computational
basis to obtain H, and the same for po:(m)HE-

It is not too hard to argue that the maximum is indeed attained in the
definition of d,. Furthermore, ¢’ > ¢ = dy > d,, and d, satisfies the triangle
inequality.

To help to understand the intuition for this metric, we point out that in the
corresponding classical counter part, we would maximize over all query inputs
m and over all possible lazy-sampled databases D that have at most ¢ entries,
and then compare the respective distributions of (O(m), H) and (O’(m), H),
obtained by running O, respectively O’, on m, and obtaining H by filling in all
the empty places in (the possibly reprogrammed) database D by random values.

The following is straightforward to prove.

Theorem 1. Consider a quantum oracle algorithm AH:O1:0m0 for arbitrary

but fixed oracle instantiations O1,...,0,, and let O and O" be two possible in-
stantiations for O, as specified above. Recall that A is restricted to making one
query to O. Let Q be the number of oracle calls to H, made by A and O, .. .,0,,
prior to A’s oracle call to O.'' Then,

‘Pr[l - AH,Ol,...,OT,O] _ Pr[l - AH,Ol,...,OT,O']‘ g EQ[CZQ(0,0/)] .

As a toy example application, consider a quantum oracle algorithm AM©
that makes at most qg queries to a random oracle H and go queries to a non-
instantiated oracle O. Let us assume that O and O’ are instantiations of O that
make no queries to H, and it holds that d,(O,0’) < gme for any ¢. Then, by
repeated application of Theorem 1 in order to switch from O to O’ one by one,
we immediately obtain that |Pr[1 — AH’O] — Pr[l — AH’O’” < qHQOE -

Typical Strategies There are two generic approaches to prove that d,(O,0’)
is small:

Strategy 1. Show the existence of a (classical) event I" (I" for “good” event)
with the property that, for any m and ppg, (1) the event I" has the same prob-
ability Pr[I'] of occurrence when running O and O’, and (2) O and O’ act

1 This includes calls to reprogram H.

14

identically conditioned on I', and thus the two states po(m)re/r and por(m)me|r
are identical. Indeed, in that case, by basic properties of the trace distance,

5(p0(m)HEapO’(m)HE) < PT[F](S(PO(m)HE\F,Po'(m)HE\F)
+ Pr[=I"0(po(m)HE|~s PO (m)HE-) (3)
< Pr[—17. (4)

Strategy 2. Show the existence of a binary projective measurement {Pr, P_}
on D and the internal state of the respective oracles, so that when applied dur-
ing the run of the oracle, similarly to above, (i) the event I" (of observing the
measurement outcome associated with Pr) has the same probability Pr[I’] of
occurrence when running O and O’, and (ii) O and O’ act identically conditioned
on I', and thus the two states po(m)me|r and por(m)me|r are identical. Indeed,
in that case, by triangle inequality,

§(po(myme: Por(myHE) < 6(PO(m)HE> PO(m)HE|T)
+ 0(Po(m)HE|> PO (m)HE|T")
+ 0(Por (m) HE|T'> PO (m) HE) (5)
< 2/Pr[~1] (6)

where the final inequality is by applying the gentle measurement lemma twice.

This extends in the obvious way to a classically-controlled measurement, i.e.,
to a measurement that is only applied if a particular classical bit b is set, and
such that (o) the classical bit b is set with the same probability when running
O and O, (i) conditioned on b being set, the event I" has the same probability
Pr[I"] of occurrence when running O and O, and (ii) O and O’ act identically
conditioned on b not being set, or conditioned on b set and I". The above bound
then becomes

6(p0(7n)HEa pO’(m)HE) <2 Pr[b= 1] PI‘[—'F|b= 1] : (7)

4.3 Core of the Proof

We need to bound the quantities AJ%~"¢(gs, qn) and AP”’g_’T’a"S(qS,qH). For
that purpose, we consider a fixed key (pk sk) for which p,i sk) < p and €(pp k) <
¢, and we consider a quantum oracle algorithm A with a binary output, and
which makes gg classical queries to Sign and gy quantum queries to the random
oracle H. Our goal then is to bound the respective closeness of AS€"™H and
AProg:H and of APo&H and ATens:H: we do this below.

Closeness of AS&"H and 4P For the purpose of showing closeness of Sign
and Prog, we introduce the following hybrid oracles. For every k € N, the oracle
Hyb" replaces the first k evaluations ¢ := H(w,m) in the loop of Sign to freshly
reprogramming H(w,m) := ¢ < C, with the convention that Hyb? := Sign. In
other words, Hyb® acts like Prog for the first k iterations of the loop, and then
like Sign for the remaining ones (if it is still looping then).

15

Lemma 3. d,(Hyb" ™' Hyb®) < 2p*~1\/(q + k)e for every k > 1.

The claim here is closely related to the adaptive reprogramming in [21]; how-
ever, there are some subtle technical differences (with the crucial reprogramming
step being reached only with a certain probability, and with prior reprogram-
mings taking place). For this reason, and for consistency with the other parts of
the proof, we prove Lemma 3 from scratch.

Proof. The oracle Hybk_1 and Hybk only differ at the kth iteration, in which the
former performs an evaluation ¢ := H(w,m), while the latter performs a fresh
reprogramming H(w,m) := ¢ « C. We call this the crucial iteration.

We follow Strategy 2. and consider a binary projective measurement per-
formed right before c is determined in the crucial iteration, classically controlled
by the bit b that is set if the crucial iteration is executed (i.e., the loop has
not stopped before). The measurement checks whether or not the sampled w
in the crucial iteration is such that measuring Dy .,) in the Fourier basis pro-
duces 0, and I' is satisfied if this is the case (i.e., if (w,m) is not recorded in the
database). Recall that in case the loop terminates prior to the crucial iteration,
no measurement is performed.

Clearly, (0) b is set with the same probability when running Hybk_1 and Hybk,
(i) if the crucial iteration is reached then Pr[I'] is the same when running Hyb" !
and Hyb®, and (ii) if the crucial iteration is reached and I is satisfied then, in
both cases, ¢ is uniformly random and H(w,m) becomes ¢—in case of Hyb®
by construction, and in case of Hybk_1 since c¢ is then obtained by measuring
the state |0> of D(g,m) in the computational basis— and thus Hybk_1 and Hybk

act identially. Hybk_1 and Hybk obviously also behave the same if the crucial
iteration is not reached. Thus, by Inequality (7), dq(Hyb" !, Hyb*) < 2Pr[b =
1]4/Pr[—I|b=1]. It remains to control this latter term.

For b = 1 to happen, the loop must have entered the kth iteration, which
happens with probability Pr[b=1] = p*~! because every previous transcript is
freshly sampled.

Conditioned on b = 1 where the loop enters the kth iteration, the database
records no more than ¢ + k non-0 entries, and a is freshly sampled, and thus
by Equation (1) and union bound, we obtain Pr[=I'|b = 1] < (¢ + k)e. This
concludes the proof. |

Now applying Lemma 3 k times, together with the triangle inequality for d, we
obtain

dq(Sign,Hybk) < Z 2pi71\/(q+i)€< Qi)(l—P)Zpilx/m

1

1<i<k izl

<12_/i\/(1—p)2pi1q+(1—p)2pi1i<2\ﬁ q+ ! (8)

i1 i=1 l1-p (1-p)

where the third inequality is Jensen’s inequality (exploiting that, by the standard
formula for a geometric series, (1 —p) Y., p*~* = 1), and the last one follows by

16

again applying the standard formula for a geometric series (noting that the
second term is the derivative of a geometric series).

Next, we argue closeness of Hybk to Prog. Recall that Prog is obtained from
Sign by replacing every evaluation ¢ := H(w,m) in the loop to a fresh reprogram-
ming H(w,m) := ¢ « C, whereas Hyb”* does so only for the first k iterations.

Lemma 4. dq(Hybk7 Prog) < p* for every k € N.

Proof. We follow Strategy 1 and define the good event I' where a non-abort
response z # L is output within the first %k iterations in a call to Hybk/Prog.
Indeed, (i) the probability Pr[—1I"] depends only on the first k iterations, hence
it is the same in both oracles, and (ii) conditioned on I', the loop terminates
within k iterations, so that both oracles behave identically. Since within each
iteration the transcript (w,c,z) is freshly sampled, the probability that all &k
iterations yield z = L is bounded by Pr[—I"] < p*. Thus, by Inequality (4) we
conclude that d,(Hyb", Prog) < Pr[—I"] < p*. o

By combining Inequality (8) and Lemma 4, and letting k go to infinity, we obtain

. 2/e 1
dq(Sign, Prog) < T q+ -

Replacing every invocation of Sign in A5€"# by Prog from left to right, and
further taking into account that the expected number of read/write queries to H
prior to every replacement is E[Q] < ¢y + (g5 —1)/(1 —p), we apply Theorem 1
qs times and obtain

|Pr[1 - ASign,H] —Prf1 — AProg,H]| < qs - Eg[dg(Sign, Prog)]

< 2 € 1
<as Eo| 25\ /Q+] < %«/EQ[QHE

2 €
< gs\/e ot 95
1-p 1-p

where the third inequality is by Jensen’s inequality. This proves Corollary 1.

Corollary 1. |Pr[1 — ASig“’H] — Pr[l — APr°g’H]| < misf\p/gq [qm + f’%p .

Closeness of AP&:H and ATasH_ For the purpose of showing closeness
of APo&:H and ATrs:H we introduce a second instantiation H’ of the random
oracle, which is set to be equal to H at the beginning, and we modify Prog to
Prog’ so as to also reprogram H’, but only on the accepted transcript (see Fig. 4
middle). Looking ahead, we notice that this detour via Prog’ and H' is not done
in the ROM proof; there, we have a (more) direct argument to go from APre.H#
to AT H - very similar to the one going from A€ to AP&H The reason
we do it this way here is that we obtain a better bound than when trying to
mimic the reasoning that is used in the ROM proof.

17

Prog(m): Prog’(m): Trans(m):
1: repeat 1: repeat 1: repeat

2: (w,st) « Com(sk) 2: (w,st) « Com(sk) 2: (w,st) « Com(sk)
3: H(w,m):=c«C 3: H(w,m):=c«C 3 ceC
4: z:= Resp(w,c,st) 4: z:= Resp(w,c,st) 4: z:= Resp(w,c,st)
5: until z # L 5: until z # L 5: until z # L
6: return (w, 2) 6: H'(w,m) :=c 6: H(w,m):=c

7: return (w, z) 7: return (w, z)

Fig. 4. The oracles Prog, Prog’ and Trans.

Since the adverary A in an execution of AP™&# has its random-oracle queries
answered by H, and A has no access to H', we obviously have that A”&H =
AProg".H Similarly, AProg' . H' _ pTrans,H Thus, it remains to show closeness of
AProg" H and AProg".H' Towards this goal, we first settle the following properties
of an execution of Prog’.

Proposition 1. For an arbitrary but fized message my, let (w,c, z) be the first
non-L transcript produced in an invocation of Prog'(mg), and let S be the set
of w’s sampled in the loop for which z = L. Then the following holds.

— The distribution of (S, w, ¢, z) is invariant to the choice of my. (9)
— S’ is statistically independent of (w, ¢, z). (10)
— For every w® € A, Pr[uw® € §'] < Tt (11)

Proof. Let t; = (w;,¢;,2;) be the transcript sampled in the i-th iteration of
the loop. For the purpose of the analysis, we assume that ¢; is sampled for
every i € Z~g, even if the loop stops before. Then, the ¢;’s are i.i.d. distributed,
and S’ equals {wi,...,wk_1}, with K being minimal such that zx # 1 and
(w, ¢, z) = tg. As the sampling of (57, w, ¢, z) does not involve mg at all, Item (9)
follows immediately.

For the analysis of Item (10), we consider the list L := [¢1,...,tx_1]; clearly
showing independence of L and (w, ¢, z) implies independence of S’ and (w, ¢, z).
Further consider an arbitrary but fixed list L0 = [t9,...,¢?_,] of transcripts
9 = (w, ?,29), and an arbitrary but fixed transcript t° = (w, c?,2%). With

17 1™

the goal to show that
Pr[L =L° and (w,c,2) = t°] = Pr[L = L°] - Pr[(w,c, 2) = t°] , (12)

18

we may assume 2 = --- =29 | = 1 and 2° # L, because otherwise both sides

of Equation (12) vanish trivially. But then, by definition of L and (w, ¢, 2),

Pr{L=L"and (w,c,z) =t°] =Pr[Vi<k:t; =t and t;, =t0]

:Pr[Vi<k‘:ti=t? andtk=toandzk¢J_]

2 # L o 2 # 1
=Pr| o " Prlte=t" o
Vi<k:t; =1 Vi<k:t;=1;

2 = L
=Pr -Prt =t0‘z #1
lVi<k:ti=t?1 i b # 4]

=Pr[L=L"] Prltp =t # 1],

where the fourth equality is due to independence between (t1,...,t,_1) and t.
Furthermore, summing up both sides of the above equality over all choices of LY,
noting that Pr [tk = t0|zk # J_] does not depend on k (since the t;’s are i.i.d.),
we immediately get that Pr [ty = t°|z, # 1] = Pr[(w,c, 2) = t°], which shows
Equation (12) and thus Item (10).

Next, notice that |L| > ¢ implies z; = -+ = 2z = L. Thus,

Pr[a’ € §'] < Z Pr[w, = w° and |L| > ¢]

£=1
< ZPr[wgzwo and 21 = - - = 2zp_1 =J_]
121
= = 0 . — . = = —1 €
ZPr[wg—w]Pr[zl— —Zg,l—J]SZp Egl—p’
21 21
where the equality holds due to the independence between a, and (21, ..., 2¢—1).
This concludes Item (11). o

For this purpose, for every 0 < i < gy we let G; be the hybrid between
AProg’ . H and AProg’.H' that has the first i queries to the random oracle answered
by H’, and the remaining ones by H. Obviously, Gy = AP H while G =
AProg . H' Thyg, considering an arbitrary but fixed 1 < ¢ < gy and setting
G :=G;_1 and G’ := G;, it is sufficient to show that G and G’ are close. This is
indeed the case:

Lemma 5. |Pr[l « G] —Pr[l « ¢’]| <2 s
Proof. Below, we refer to the i-th query of A to the random oracle, i.e., the
query on which G and G’ differ, as the crucial query.

In the respective executions of G and G’, we define S as the set of all the w’s

that Prog’ sampled but for which Resp(w,c,st) = L, in all the invocations of
Prog’ before the crucial query. Thus, by construction, at the time of the crucial

19

query, H and H’ differ at most at the points in S. (They might agree on a point
in S, if the freshly sampled value for H at this point equals the old value.)

For the sake of analysis, consider a binary projective measurement on the
input query register for the crucial query, which measures whether or not the
input (w,m) is such that w € S. Let I" be satisfied if w ¢ S, and let G and G’
be the two respective games obtained by performing this measurement. Since H
and H' only differ at the places (w, m) where w € S, conditioned on I', the two
oracles behave identically, and thus do G and G’. Furthermore, the probability
Pr[I'] is the same in both games.

Thus by a double application of the gentle measurement lemma, we have

|Pr[1 — G] —Pr[1 «— G']| < |Pr[l « G] —Pr[l « G| I
+[Pr[l « G'[I'T = Pr[l < G|| I
+ | Pr[l « G|I'] — Pr[1 « G]|
< 2y/Pr[-T7].

Hence, it remains to bound the probability Pr[—I"]. The intuition is that S
collects those w’s that Prog dismisses; thus, A does not get to see them, so it is
hard for him to find an element in S, hence I' is satisfied most likely. However,
turning this intuition into a rigorous argument is not fully straightforward, since
the set S, as a random variable, has a somewhat odd distribution.

Let @ be the random variable indicating the number of queries made to Prog
prior to the crucial query; we have with certainty that @ < gs.

A crucial observation that holds for both G, G’ is that, conditioned on Q = ¢
for an arbitrary but fixed g, the set S equals S7 U+ --US; where every 7 is the set
S’ that was produced in the jth query of Prog’ as specified in Proposition 1. We
note that, at the time the adversary A makes the crucial query, H has not been
queried, and (w, ¢, z) in Proposition 1 is the only information that is dissipated
to the adversary for every prior query to Prog’. It follows from Item (9) and
Item (10) that every S is independent from the view of adversary, and hence so
is S.

Due to the independence, it suffices to bound Pr[w® € S|Q = ¢] for every
w® € W. Then it follows from the union bound and Item (11) that

0

Pr[w’ € S|Q = q] < Z Pr[w’ € S}] < 1qie .
j€lal P
Putting things together, the proof is concluded.]

Corollary 2. |[Pr[l « APe&H] — Pr[1 « AT H]| < QQHQ/{I%; .

4.4 Wrapping Up

From the above it follows that

; 2qs+/€ s gse
Sign — Proy rog — Trans
Ay as am) S 7~ NI, and - AV (gs, qmr) < 24 |7 —

20

and thus by Lemma 1, we obtain the following.

Theorem 2. Let €,p,0 < 1 be so that there exists an event I with Pr[—I"] <
8, Pr[peprsky Sp | Il =1 and Elepon) | Il < € for (pk,sk) < KeyGen. Let
ASEH be g quantum CMA attacker against FSWA[ID, H] that makes qs queries
to the signing oracle Sign and qg quantum queries to the random oracle H.
Then, there exists a quantum NMA attacker B so that

AdVEF—CMA(A) < Adv EF—NMA(B)
2 €
qs\[ar + 14+ 2 1 2(q + 1)y |25 4 gsCp + 6
1-— 1—p 1—p

and with running time TIME(BH) ~ TIME(A) + ¢qsTIME(ZKSim).

5 The Mechanized ROM Proof

We now describe the mechanized proof of the CMA-to-NMA reduction in the
ROM. As argued in Section 3, the high-level structure is the same as in the
QROM proof. We again want to instantiate Lemma 1. We assume query bounds
qs for signature queries and qpy for random oracle queries. In order to obtain
the bound for the CMA-to-NMA reduction, we need to provide A7 =" and
AP~ T and prove these bounds for an arbitrary (but fixed) key palr (pk, sk)
such that px k) < p and €p k) < €. We set:

; gs +1 qH
\SiEn—Prog . _
s ase (g 1)

\Prog — Trans . _ qsqHE
I—p

Applying some simplifications, this allows us to prove the following bound.

Theorem 3. Let e,p, 6 < 1 be as in Theorem 2. Let AS&"H be a classical CMA
attacker against FSWA[ID, H] that makes qs queries to the signing oracle Sign
and qg queries to the random oracle H. Then, there exists a classical NMA
attacker B against FSWA[ID, H] so that

+ QSCzk +46

3 3 2qs(qu +1)e qse(gs + 1)
AdVEF CMA ./4 < AdVEF NMA B +
“) B =0y T

and with running time TIME(BH) ~ TIME(A) + qsTIME(ZKSim).

Proof. 1t suffices to show that the bounds for A7 =" and AP%~ ™" are indeed
correct; the theorem then follows with Lemma 1 For As'g"—"’“’g, as outlined in
Sectlon 3.2, we successively replace the individual loop iterations of the Sign or-
acle with iterations from the Prog oracle (cf. Hyb in Fig. 3). That is, we have ¢g
sequences of hybrid arguments (one for each query), each replacing one-by-one
k loop iterations (cf. Hyb in Fig. 3). After k steps, we cut off the remaining

21

loop for a loss of p*. This yields an intermediate game where A interacts with
H and Prog”, the latter behaving like Prog but aborting after x iterations. The
final bound is then obtained as the limit when & is increased to infinity (causing
Prog”™ to become Prog). Consider the hybrid step where the queries 0 to i — 1 are
answered by Prog”, query i is answered by Hyb’ and all remaining queries are
answered by Sign. We bound the loss of answering query i with Hyb’ ™! instead.
Assuming a lazy implementation of the random oracle, both games behave the
same unless iteration j on query 7 is reached and the pair (w, m) is already in the
(previously queried) domain of H. The probability of this “bad” event occurring
can be bounded by

0 :=7ple (+qu +j>
L=p

where the term in parentheses is an upper bound on the expected size of the
(previously queried) domain of H at the point where the bad event might occur
(i.e., iteration j of query). In there, the term lf is the expected number of
iterations of the i preceding calls. Summing the total loss over ¢ and j we have

gs—1

k—1
> (p'“ +) m) <as-pt+ AT
7=0

=0

which converges to Aj% = as is increased to infinity. For A7~ ™" the struc-
ture of the hybrid argument is exactly the same, the difference lies in how the bad
event is bounded. Let Hyb, be the analog to Hyb, replacing iterations of Prog with
those of Trans, and consider the replacement of Hyb?, with Hyb%+1 on query i. The
two games behave the same, unless (a) iteration j of query 7 is reached and un-
successful and (b) the adversary queries H using the pair (w, m) at some (later)
point in the game. The probability of (a) is bounded by p’ and the probability
of b is at most gge. Summing and taking the limit as above yields Aje~™". o

Remark 1. The theorem we formalized in EasyCrypt is slightly less general
than Theorem 3. We only consider the case of a perfect simulator (i.e, (;x = 0),
and we restrict to the case where the simulator is obtained by wrapping a simu-
lator for a single run of the IDS in a while loop. These simplifications naturally
match our application to Dilithium.

Mechanizing the proof of the aforementioned variant of Theorem 3 turned out
to be challenging for a number of reasons. In the following, we briefly comment
on the most important ones.

First and foremost, the analysis of the bad event used to establish the bound
AZee=Pree crucially relies on the ability to take into account the expected size of
the domain of the random oracle at the point where the bad event can (poten-
tially) occur. Even with the intermediate oracle Prog”, a worst-case assumption
on the i preceding queries would give a term of 7 - k instead of 1ip, causing the
sum to no longer converge as is increased to infinity. The expected-size analysis
for the domain of the random oracle H is carried out using an expectation logic.
This expectation logic is an adaptation of the seminal work by Kozen [18] and

22

was recently added to EasyCrypt to reason about the expected complexity of
randomized programs. Our work [17] provides the first application of this logic
to cryptographic proofs.

Moreover, while the argument for A7%~™" is intuitively much simpler than
the argument for AJ% =", the proof in EasyCrypt is almost as complex. Unlike
for AZz=Pe¢, the bad event is not necessarily triggered during the critical itera-
tion; it can be triggered whenever H is queried. In order to bound the probability
of the bad event occurring, we exploit that—assuming that iteration j of query
1 is unsuccessful—the commitment w is never used. This allows us to bound
the bad event by transforming the game into one where w is sampled after the
adversary is finished. This is called an eager/lazy argument in EasyCrypt.

Lastly, the hybrid arguments for bounding AJ% ™" and AJ~™™ involve a
complex interplay of up-to-bad reasoning, hybrid steps, and a limit construction
that ultimately lets the number of hybrid steps approach infinity. To the best of
our knowledge, such a construction has not been formalized in EasyCrypt before.

6 A Machine-Checked Security Proof for Dilithium

We now describe the machine-checked security proof for Dilithium. More pre-
cisely, we prove EF-CMA security of the “template scheme” from the specification
document [1, Figure 1] extended with public key compression. This is equivalent
to Dilithium-QROM [5, Figure 17] with A and y sampled randomly (i.e., not
generated from a seed) and with an unbounded loop for the signing procedure.

The overall structure of the machine-checked proof largely follows [5]. We
first prove EF-NMA security by a reduction from MLWE and SelfTargetMSIS. We
then express Dilithium as the FSwA transform of an IDS and provide an HVZK
simulator for this IDS. This allows us to instantiate Theorem 3 and conclude
EF-CMA security of Dilithium.

6.1 Dilithium Specification

Most of the operations in Dilithium operate on vectors and matrices over the
rings R := Z[X]/(X"™ + 1) and R, := F,[X]/(X™ + 1). The specification [1] sets
n to 256 and ¢ to the prime 8380417 = 223 — 213 4 1. In addition, there are
a number of supporting algorithms (e.g., highBits or makeHint) that deal with
certain kinds of rounding.

While the specification is written for one (parametric) mathematical struc-
ture, the security proof of Dilithium only makes use of a select few properties
of this structure. For the machine-checked security proof, we insert an extra
layer of abstraction. We define an abstract theory defining an abstract ring type
R, together with the various (abstract) supporting algorithms and the prop-
erties relating them. We then carry out the entire security proof with respect
to these abstract operations. We also prove that the polynomial ring from the
specification can be used to implement all operations such that all axioms are

23

satisfied. While this extra layer of abstraction does not remove any proof bur-
den, it allows us to make explicit the minimal structure required to carry out the
security proof and cleanly separate the arithmetic reasoning required to build
the required structure from the more high-level parts of the security proof.

The supporting algorithms are as follows. In addition to L; and the L.
norms, written ||_||; and ||_[|. respectively, we have two rounding functions. In-
tuitively, power2round(r,d) rounds to the nearest multiple of 2¢ and removes
trailing zeros. Similarly, highBits(r, &) round into « buckets of (roughly) equal
size. We treat the result of highBits as an (abstract) bucket designation while
lowBits(r, @) can be seen as the difference between r and the center of its desig-
nated bucket. Lastly, h := makeHint(z,r, a) creates a “hint” for useHint(h,r, «)
to compute the high bits of r + z without knowing z, provided z is small. All
operations, except |||, and |||, are generalized pointwise to vectors RF. The
former is only used on R, while for the latter the vector version is defined as
v, := max; [|r;||,. Further, we write S! for the uniform distribution over R},
conditioned on |||, <. With the supporting algorithms in place, the Dilithium
signature scheme is defined in Fig. 5.

While we present our results using a conventional mathematical presenta-
tion, the scheme and the security proof are completely formalized in EasyCrypt
(see full version [20, Fig. 13]). Note that, in contrast to [5], we are working in a
typed setting. In particular, the hash function (or random oracle) H takes pairs
(w1, m), where m is a message and w : high,.,, as arguments and outputs a
uniformly random c € B;:

Bri={ce Ry |ef, =1and [ef, =7}.

In addition to the parameters n and ¢ internal to R,, the scheme has a
number of additional parameters: the size of A (i.e., k x I) the coefficient ranges
for s1,s2 (the interval [—n,n]) and y (the interval [—y; +1,v; —1]), the low-order
rounding range (o := 27;), the number d of bits dropped from t, and the number
7 of +£1's in ¢ (cf. B, above). Further, there is the derived parameter 3 := 7-1.12

We now give some of the properties of R, and the supporting algorithms that
we require for the security proof. Let ¢ and « be integers such that 2a < ¢, ¢g=1
mod « and « is even. Further let r and z be vectors over R, where ||z| , < /2
and let h be a vector of hints. We require:

useHint(makeHint(z, r, @), r, @) = highBits(r + z,), (13)
||r — shift, (useHint(h,r, a))|| . < a+1, (14)
||r — power2round(r,d) - 2|, < 297! Jand (15)
shift, is injective. (16)

There are, of course, a number of additional properties we require (e.g., 0 < [|r|,,
llet]l . < llell; - [It]].,, or the triangle inequality ||u + v, < |ull. +v|l,,). For
the complete list we refer to the DRing theory (for the properties of R, and the
supporting algorithms) and the DVect theory for the lifting to vectors.

2 See [1] for a discussion on how these parameters are set in practice.

24

keygen(): verify(pk,m, o):

1: A — REX! I (A, 1) := pk

2 (s1,82) S! x S 2 (¢, (,h) = o

3 t:= As; + s 3: wi := useHint(h, Az — ct; .24, 272)
4: t1 := power2round(t, d) 4: ¢ i= H(wi,m)

5: to =t —t; - 2¢ 5 return [[z], <m —BArc=c]
6: pk:= (A, t1)

7. sk = (A,ShSQ,to)

8: return (pk, sk)

sign(sk,m):

1: (A, s1,s2,t0) := sk

2: r:=1

3: while r = 1 do

4: y e« S'lyl—l

5. w:= Ay

6: wi := highBits(w, 272)

7. c€ B;:= H(wi,m)

8 z:=y+cs:

9: if ||z]|, <71 — B A ||lowBits(w — ¢s2,272)||. < 72 — S then

10: h := makeHint(—cto, w — cs2 + cto, 22)

11: r:= (z,h)

12: return (c,r)

Fig. 5. The Dilithium signature scheme

Even though verify only uses A and ti, the security proofs assume that
the adversary knows t, allowing it to derive both t; and ty. In particular, the
entirety of t is needed to define the HVZK simulator for the EF-CMA to EF-NMA
reduction. Hence, the first step of the proof is to change the public key to (A, t),
the secret key to (A, s1,s2), and adapt sign and verify to compute t; and tg as
necessary. We call this scheme Simplified Dilithium (DilithiumS) and prove the
following lemma showing that it is sufficient to establish security for this variant
of the construction.

Lemma 6. Let .ASig_”’H be a CMA attacker against Dilithium. Then there ex-
ists an adversary B€“H such that: AdvE:SMA(A) < AdvELSMA (B) Further,
Time(A) ~ Time(B).

6.2 Reduction to MLWE and SelfTargetMSIS

We now prove EF-NMA security of the simplified scheme. The reduction to MLWE
and SelfTargetMSIS closely follows [1,5]. We first sketch the mathematical proof
for the sake of completeness — we correct minor points with respect to the state-
ments in [5] and [1] that became clear in the formal proof—and then com-
ment on the formalization in EasyCrypt. We begin by recalling the MLWE and
SelfTargetMSIS security assumptions for the ring R, used by Dilithium.

25

Definition 3 (MLWE Assumption). Let m and k be integers and let D :
R, — [0,1] be a distribution. The advantage of an algorithm A for solving the
decisional MLWE,, 1. p problem over the ring R, is:

Adv,'\:i%\f% (A) :=

Pr [A(A,t) =1 ‘ A — RMFt R;ﬂ]_

Pr [A(A,As1 tso) =1 ‘ A« RI"™s; DFis,y Dm” .

Definition 4 (Self-target MSIS Assumption). Let m and k be integers and
let H : R;" x M — B, be a random oracle.

SelfTargetMSIS |
ANVEmky =

||r||7;, <7 - mxk. r -
PF[H([Im|A]-I‘,u)=r[m+k—1]‘A Ry (v, p) AH(A)].

The goal of this section is then to prove the following lemma.

Lemma 7. For every adversary AS&“ breaking NMA security of simplified
Dilithium, we can construct an MLWE adversary B and a SelfTargetMSIS adver-
sary C such that:

EF-NMA MLWE SelfTargetMSIS
AdVpiithiams (A) < Adv s (B) + Adve, 71577 (C)

where ¢ := max {71 — 5,2y + 1+ T2d_1} and G : Ry x Msg — B is a random
oracle. Further Time(A) ~ Time(B) ~ Time(C).

Proof (Sketch). The proof consists of three steps. The first step is to replace key-
gen with a keygen’, sampling t uniformly at random and returning an undefined
(and unused) secret key (cf. Fig. 6). Taking B to be the remainder of the EF-
NMA security game after key generation, the difference between the two games is
exactly Adv,’l’!'[}%f (B). Next, we define an oracle H'(wq, m) := G(shift,(wy),m).
Since shift, is injective and both H (used by our scheme) and G (the random
oracle from the SelfTargetMSIS assumption) have as output distribution the uni-
form distribution over B, replacing H by H' incurs no loss.

It remains to construct the reduction C that returns a valid solution for
the SelfTargetMSIS problem whenever A ’(A, t) successfully forges a signature
(for some (A, t) derived from the SelfTargetMSIS instance). Writing | for vector
concatenation, the reduction is given in Fig. 6. Given a SelfTargetMSIS instance
A’ with dimensions k x [+ 1, C splits off the last column, negates it, and passes
the parts to the EF-NMA adversary. We have that the distribution of (A, t) is
identical to the EF-NMA game (using keygen’ for key generation). Now assume
that (m, (¢, (z,h))) passes verification with respect to H'. That is, we have:

1. H'(useHint(h, Az — ct; - 2%, a),m) = c
2. |zl <m =5

26

keygen’(): C(A': RExI*1y:
1: A « REX 1: (A t) = A’
2: t « RE 2 t:=—t
3: return ((A,t), witness) 3: (m, (c, (z,h))) « AT (A, t)
4: t1 := power2round(d, t)
5. r:=Az—ct; - 2¢
6: uy :=r — shiftq (useHint(h, r, o)
7o ug i=c(t —t1- 2d)
8: return ((u; —u2)|z|[c])

Fig. 6. Randomized keygen and reduction to SelfTargetMSIS

Now with r' := ((u; —up) |z | [¢]) € RFF'*! as defined in C, we have:

(LAY -+, m) = G(TA| — 4] ¢, m)

=G(Az —ct + (u; —ug),m)
H'(useHint(h, Az — ct; - 2%, &), m)
=r'[k+1].

Hence, r' satisfies the “self-target” condition and it remains to show [[r'|| , <
max {'yl —6,2v +1+ T2d’1}. For z this follows by assumption, and for ¢ we

have ||[¢]||, = 1. For (u; — uy), recalling that we set o = 25, we have:

o uell,, < 292+ 1+ el - [l6 — b 29, < 29+ 1720

[ur — gl < [Ju

where the bound for u; follows with Inequality (14) and the bound for uy follows
with Inequality (15). =

The main technical difficulty when formalizing the results in this section was
to develop a matrix library that would support all the required operations. This
was done in collaboration and is shared between several developments. In the
mathematical presentation we have assumed tacitly that all matrix operations
are carried out on matrices and vectors of compatible dimensions. In EasyCrypt,
we use a matrix theory where operations are defined even if the dimensions do
not match, with “undefined” behaviors chosen to simplify the equational theory.
This does not cause any problems for matrices and vectors provided by the
schemes or games. However, vectors given by the adversary (i.e., the z and h
component of a signature) need to be checked for the correct length by the verify
procedure (see full version [20, Fig. 13]).

6.3 The HVZK Simulator and EF-CMA Security

We now extend the security proof from EF-NMA to EF-CMA. This mainly amounts
to instantiating Theorem 3. In order to do so, we need to express the simplified
Dilithium scheme as the FSwA transform of an IDS and provide a HVZK simu-
lator for this IDS. There are two minor technical complications. The first is that,

27

in order to simplify the mechanization of the proof of Theorem 3, we restricted
ourselves to IDS where Com, Resp, and Verify were given as operators (i.e., math-
ematical functions) rather than procedures (i.e., imperative code such as that
given in Fig. 5). Now we have to “pay” for this simplification and show that
our scheme can indeed be seen as the FS transform of such an operator-based
IDS. The second complication is that Dilithium is actually based on a variant
of the F'S transform that is specific to commitment recoverable IDS, allowing to
replace the commitment w with the (in practice much smaller) challenge ¢ in
the signature. The difference is mainly in verification as shown below (generic
on the left, commitment recoverable on the right):

verify(pk,m, o = (w, 2)): verify(pk, m, o = (¢, 2)):

1: ¢:= H(w,m) 1: w := Recover(pk, ¢, z)
2: return [[Verify(pk,w,c,2)]] 2: return [Verify(pk, w, ¢,)] Allc = H(w, m)]

The Recover function for Dilithium is
Recover((A,t),c, (z,h)) := useHint(h, Az — ¢ - power2round(t, d) - 2%).

For Sign (cf. Fig. 5), Lines 4-6 correspond to Com while Lines 8-11 correspond
to Resp. Defining the remaining operators and proving that no context can dis-
tinguish the original scheme from the FSwA transform of the IDS is routine.

Proving EF-CMA security of the scheme obtained using the FSwA transform
for commitment-recoverable IDS can trivially be reduced to proving EF-CMA
security of the standard FSwA transform. However, the reduction requires an
additional gg random oracle queries to turn the signatures of the form (w, 2),
returned by the signing oracle, into signatures of the form (¢, z) as expected by
the adversary.

Now we define the HVZK Simulator for the IDS sketched above. We let D,
be the distribution that with probability |th_ s_1l/ISL, 1| returns true and
otherwise returns false. The Sim in Fig. 7 is a minor variation of the one in [5,
Figure 14]. The main difference is that we make explicit the use of Recover to
satisfy the interface of Theorem 3. As mentioned earlier, executing Sim in a while
loop until z # L yields an acHVZK simulator.

Putting everything together, we obtain the security theorem for Dilithium as
we have formalized it in EasyCrypt:

Theorem 4. Let I', §, € and py < 1 be such that PrA(_Rgxz[ﬂF] <4,

EA(_R(;;M max Plr [highBits(Ay, 2v2) = w]

F] < e, and

Pr, g o [[[lowBits(Az — ct,27v2)||, = 72 — B] < po for all A satisfying I,
Y1—hP— -

all c € By and all t € sz. Then for every classical adversary AS8"H making
at most qg signing queries and at most qg random oracle queries and for the

28

Sim(pk = (A, t)):

1:r:=1

2: b D,

3: if b then

4: to:=t — power2round(t, d) - 2¢

5: c<« B,

6: Z — Sil*ﬁfl

7 if ||lowBits(Az — ct,a)||, < v2 — 3 then
8: h := makeHint(—cto, Az — ct + cto))

9: r := (Recover(pk,c,z),c, (z,h))

—_
Q@

return r.

Fig.7. HVZK simulator

adversaries B (against MLWE) and the C¢ (against SelfTargetMSIS) constructed
in the proof of Lemma 7 we have:

AdvEliiim(A) < AdVITER(B) + Adv TS (€)

. 2qs(qm +qs +1)e | qse(qgs +1)

1-p 2(1 —p)? i

s! st
where p := ”l_ﬁ_l|p0+<1 - “l_ﬁ_l> and ¢ := max {71 — 3,272 + 1 + 72971}
‘Sﬁ—l| ‘571—1‘

We remark that we do not show in EasyCrypt that the execution times of B and
C are close to the execution time of 4, but this can be checked by inspection. As a
consequence, the formal statement needs to be with respect to specific reductions
rather than existentially quantified adversaries (see full version [20, Fig. 14]).

7 Concrete Security Analysis

In the following, we quantify the security loss of our proof to analyze the impact
on the concrete security of Dilithium. Our proof of security for Dilithium has the
same overall structure as the one given in [5] regarding the reductions from the
underlying computational assumptions MLWE and SelfTargetMSIS. Indeed, the
bounds we establish for the advantage of both classical and quantum attackers
differ from the original proofs only in the additive terms, which in our case are
larger due to additional (Q)ROM reprogramming steps.

In the NIST submission [1, Section 6.2] the authors simplify the additive secu-
rity loss as 272°* — a conservative value —and claim that this bound is achieved
for all of the parameter sets considered, based on the analysis performed in [5].
In what follows, we give more precise bounds for this additive loss according to
our corrected proofs. We show that it is still low enough to comfortably meet
the requirements of the relevant NIST security levels.

29

We recall the expressions for the security loss L in the ROM from Theorem 4,
and its quantum counter part L* obtained from Theorem 2, i.e.

I 2qs(qu +gs + 1)e | gqse(gs +1)
' l—p 2(1—p)?

2 € €
L*::ﬂ,/qH+1+q—S+2(qH+1) 95€ 1 5.
1-p 1-p 1-p

We present an extended analysis of the bounds on € and § for the different
parameter settings for Dilithium (for the different NIST levels) in the full version
[20, Appendix A] , using a computer-aided analysis of the distribution of the rank
of (the upper square part of) the matrix A. We note that ¢ and e are related
and allow for different tradeoffs for fixed parameters which we did not fully
exploit, yet. For the rejection probability p, we use the heuristic from [5] to treat
lowBits(Az — ct) as uniformly random in S¥ ;. This gives rise to the following
table.

+4

and

P qs | qm 1) € loss

9=209 [=403 | [< 9=206
9 64 [9446 | 1% < 9 58
5265 | 5390 | [,

2128

49 64 64
NIST2 | <55 |2 2 o—117 | 9—428 | [*

2—265 2—390

h

27867 271108 L

103 64 192
NIST3 | < j55 | 2% |2 0—362 | 91180 | [%

<

<

<

S
—11 —42 —113
2 7 2 8 L* <2 3

<

<

271268 271584 L < 271260

759 64 256
NIST5 < 1024 2 2 27540 271664 L* < 27538

Fig. 8. Concrete security loss of Dilithium from Theorems 2 (L*) and 4 (L).

The take-away from our analysis is that the statistical additive loss remains
sufficiently small for all scenarios and therefore the dominant terms for the se-
curity level will remain the bounds for MLWE and SelfTargetMSIS. To be more
precise, the table says that an attacker doing qi hash computations only gains
an additive advantage of 2758 in the worst case (quantum attack against level 2).
For reference, NIST security level 2 corresponds to a setting where the expected
cost of a successful attack should match that of a collision search in a generic
256-bit hash function. This is often estimated to be 256/3 ~ 86. So, after 286
quantum queries, we would expect to find a collision. In our case, even after 2128
quantum queries, the success probability is bounded by 27°8. Actually, one num-
ber that may appear debatable (in the sense of really guaranteeing the claimed

30

security) is the bound for level 2 after a single query of a success probability
of 27113, This number is caused by the number of signing queries which domi-
nates in this case. This implies that for this attack, the cost is also dominated
by the signing queries (here 264). What the number says is that, if one could
ignore the cost of the signing queries, then there would exist an attack with an
expected cost of about 2'13 which is just the number of hash queries. However,
given that the cost of each of these attacks is at least 264 the total attack cost is
2177 Hence, for all the parameters there is a comfortable margin regarding the
security loss induced by the reduction. Thereby the full security of Dilithium is
still determined by the hardness of solving MLWE and SelfTargetMSIS.

Acknowledgments Jelle Don is supported by the ERC-ADG project AL-
GSTRONGCRYPTO (Project No. 740972). Benjamin Grégoire is supported by
the Agence Nationale de la Recherche (French National Research Agency) as part
of the France 2030 programme - ANR-22-PECY-0006. Yu-Hsuan Huang is sup-
ported by the Dutch Research Agenda (NWA) project HAPKIDO (Project No.
NWA.1215.18.002), which is financed by the Dutch Research Council (NWO).
Andreas Hiilsing is supported by an NWO VIDI grant (Project No. VI.Vidi.193.
066). Xiaodi Wu is supported by AFOSR Young Investigator Program (YIP)
Award (FA95502110094) and NSF CAREER Award (NSF-CCF-1942837).

References

1. Léo Ducas, Eike Kiltz, Tancréde Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, , and Damien Stehlé. CRYSTALS-Dilithium — algorithm specifi-
cations and supporting documentation (version 3.1). Technical report, February
2021. Specification document.

2. Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium: A lattice-based digital
signature scheme. TACR Transactions on Cryptographic Hardware and Embedded
Systems, pages 238-268, 2018.

3. Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and
factoring-based signatures. In Mitsuru Matsui, editor, ASTACRYPT, volume 5912
of Lecture Notes in Computer Science, pages 598-616. Springer, 2009.

4. Vadim Lyubashevsky. Lattice signatures without trapdoors. In Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
pages 738-755. Springer, 2012.

5. Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete treatment
of Fiat-Shamir signatures in the quantum random-oracle model. In Jesper Buus
Nielsen and Vincent Rijmen, editors, Advances in Cryptology — EUROCRYPT
2018, pages 552586, Cham, 2018. Springer International Publishing.

6. Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cremers,
Kevin Liao, and Bryan Parno. Sok: Computer-aided cryptography. In 42nd IEEE
Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27
May 2021, pages 777-795. IEEE, 2021.

7. Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. Verified models and
reference implementations for the TLS 1.3 standard candidate. In IEEE Symposium
on Security and Privacy (S€P), pages 483-502. IEEE Computer Society, 2017.

31

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, Jonathan
Protzenko, Aseem Rastogi, Nikhil Swamy, Santiago Zanella Béguelin, Karthikeyan
Bhargavan, Jianyang Pan, and Jean Karim Zinzindohoue. Implementing and prov-
ing the TLS 1.3 record layer. In IEEE Symposium on Security and Privacy (S€P),
pages 463-482. IEEE Computer Society, 2017.

Cas Cremers, Marko Horvat, Sam Scott, and Thyla van der Merwe. Automated
analysis and verification of TLS 1.3: 0-rtt, resumption and delayed authentica-
tion. In IEEE Symposium on Security and Privacy (S&P), pages 470-485. IEEE
Computer Society, 2016.

Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der
Merwe. A comprehensive symbolic analysis of TLS 1.3. In ACM Conference on
Computer and Communications Security (CCS), pages 1773-1788. ACM, 2017.
Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plancon. Lattice-based
zero-knowledge proofs and applications: Shorter, simpler, and more general. Cryp-
tology ePrint Archive, 2022.

Luca De Feo and Steven D Galbraith. SeaSign: compact isogeny signatures from
class group actions. In Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, pages 759-789. Springer, 2019.

Ward Beullens, Shuichi Katsumata, and Federico Pintore. Calamari and Falafl:
logarithmic (linkable) ring signatures from isogenies and lattices. In International
Conference on the Theory and Application of Cryptology and Information Security,
pages 464-492. Springer, 2020.

Ward Beullens, Samuel Dobson, Shuichi Katsumata, Yi-Fu Lai, and Federico Pin-
tore. Group signatures and more from isogenies and lattices: Generic, simple, and
efficient. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 95-126. Springer, 2022.

Mark Zhandry. How to record quantum queries, and applications to quantum indif-
ferentiability. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances
in Cryptology — CRYPTO 2019, pages 239—-268. Springer, 2019.

Manuel Barbosa, Gilles Barthe, Xiong Fan, Benjamin Grégoire, Shih-Han Hung,
Jonathan Katz, Pierre-Yves Strub, Xiaodi Wu, and Li Zhou. EasyPQC: Verifying
post-quantum cryptography. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’21, page 2564—2586, New York,
NY, USA, 2021. Association for Computing Machinery.

Martin Avanzini, Gilles Barthe, Benjamin Grégoire, Georg Moser, and Gabriele
Vanoni. A mechanisation of the complexity analysis of skiplists. Unpublished
manuscript, 2023.

Dexter Kozen. A probabilistic pdl. In Proceedings of the Fifteenth Annual ACM
Symposium on Theory of Computing, STOC ’83, page 291-297, New York, NY,
USA, 1983. Association for Computing Machinery.

Julien Devevey, Pouria Fallahpour, Alain Passelegue, and Damien Stehlé. A de-
tailed analysis of Fiat-Shamir with aborts. Cryptology ePrint Archive, Paper
2023/245, 2023. https://eprint.iacr.org/2023/245.

Manuel Barbosa, Gilles Barthe, Christian Doczkal, Jelle Don, Serge Fehr, Benjamin
Grégoire, Yu-Hsuan Huang, Andreas Hiilsing, Yi Lee, and Xiaodi Wu. Fixing
and mechanizing the security proof of Fiat-Shamir with aborts and Dilithium.
Cryptology ePrint Archive, Paper 2023/246, 2023. https://eprint.iacr.org/
2023/246.

Alex B Grilo, Kathrin Hévelmanns, Andreas Hiilsing, and Christian Majenz. Tight
adaptive reprogramming in the QROM. In Advances in Cryptology — ASIACRYPT
2021, pages 637-667. Springer, 2021.

32

https://eprint.iacr.org/2023/245
https://eprint.iacr.org/2023/246
https://eprint.iacr.org/2023/246

	Fixing and Mechanizing the Security Proof of Fiat-Shamir with Aborts and Dilithium
	Introduction
	Preliminaries
	Outline of the Proof
	Proof Skeleton
	Challenges, and How We Solve Them

	Proof in the Quantum Random Oracle Model
	Preliminaries
	Setting Up the Stage
	Core of the Proof
	Wrapping Up

	The Mechanized ROM Proof
	A Machine-Checked Security Proof for Dilithium
	Dilithium Specification
	Reduction to MLWE and SelfTargetMSIS
	The HVZK Simulator and EF-CMA Security

	Concrete Security Analysis

