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Abstract—Decentralized federated learning across edge net-
works can leverage blockchain with consensus mechanisms for
training information exchange among participants over costly
and distrustful wide-area networks. However, it is non-trivial to
optimally operate the blockchain to support decentralized fed-
erated learning due to the complex cost structure of blockchain
operations, the balance between blockchain overhead and model
convergence, and the dynamics and uncertainties of edge network
environments. To overcome these challenges, we formulate a
non-linear time-varying integer program that jointly places
blockchain nodes and determines the number of training iter-
ations to minimize the long-term blockchain computation and
communication cost. We then design an online polynomial-time
approximation algorithm that decomposes the problem and solves
the subproblems alternately on the fly using only estimated
inputs. We rigorously prove the sublinear regret of our approach.
We further implement our approach with a prototype system,
and conduct extensive trace-driven experiments to validate the
superiority of our approach over other alternatives.

I. INTRODUCTION

Federated learning often adopts a star topology consisting
of multiple rounds of training where in each round the partici-
pating devices train local models and send them to the central
server for aggregation [1, 2]. This paradigm suffers from server
congestion, single point of failure, single point of attack,
and straggling participants. To overcome these performance
issues, one approach is to decentralize the federated learning
process, i.e., letting participants directly exchange informa-
tion among themselves and conduct iterative aggregations to
train the model collaboratively [3, 4]. Yet, this is still not a
panacea, especially when such decentralized federated learning
is deployed and operated across multiple network carriers or
Internet Service Providers (ISPs) [5]. In this case, information
exchange among participants through Wide Area Networks
(WANSs) could be costly and distrustful [6], impairing the
quality and accuracy of the models being trained.

Blockchain can be a promising solution to facilitate across-
WAN decentralized federated learning by providing consensus
mechanisms to ensure consistent information sharing among
federated learning participants [7]. In fact, blockchain pro-
vides encryption, verification, and immutability, among others,
which could all be useful for securing and protecting privacy
for decentralized federated learning. As a distributed ledger,
blockchain can further provide incentivization functionalities
by tracing each participant’s contribution of training data. In
this paper, we study the scenario as shown in Fig. 1, where a
service provider would like to leverage a blockchain to help
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Fig. 1: Decentralized federated learning upon blockchain
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with its decentralized federated learning across edge servers
in different networks operated by multiple carriers.
Unfortunately, provisioning the blockchain optimally to sup-
port decentralized federated learning faces multiple challenges.
First, the coexistence of the blockchain and the decentral-
ized federated learning requires careful orchestration upon a
complex cost structure. Traditionally, the consensus achieved
by blockchain is built upon any node that joins the blockchain.
Yet, the exchange of training information (e.g., intermediate
models and/or gradients) in decentralized federated learning is
directed—only desired participants are supposed to receive it.
Consequently, permission control is needed for the blockchain.
That is, in each edge network, one may choose edge servers
among those which exchange training information with others
across WANS to serve as blockchain nodes, while considering
the costs of blockchain operations including raw data encryp-
tion and decryption, intra- and across-WAN communication,
and “Proof of Work” for competing for new blocks [8, 9].
Second, the overhead of the blockchain and the quality (e.g.,
convergence) of the model being trained by the decentralized
federated learning need to be balanced. To reduce the over-
head of the blockchain operations triggered by decentralized
federated learning, one may decrease the frequency of training
information exchange in terms of the number of training
iterations; however, the model convergence actually relies on
sufficient training. The best suitable number of training itera-
tions needs to be found to address this trade-off. Unfortunately,
before actually performing the training process, it is typically
hard to calculate a precise number of training iterations.
Third, the edge network dynamics and uncertainties further
hamper us from continuously controlling the efficient provi-
sioning of the blockchain with decentralized federated learn-



ing. For example, as the transmission cost over WAN varies
over time [6], it is desirable to reconfigure the blockchain
placement accordingly. Note that such input variations about
the network environment are often unpredictable beforehand,
and we can only make changes to the blockchain placement
using the estimated inputs. What could be worse is that the
estimations could often be inaccurate compared to the actual
inputs revealed afterwards, and mislead the control decisions
irrevocably. It is therefore non-trivial to optimize the total
cumulative cost in the long run in this situation.

Existing research falls insufficient for addressing the afore-
mentioned challenges. Some focus on the design and opti-
mization of federated learning at edge [10-14] and others
focus on the management and application of blockchains at
edge [8, 9, 15-17], both covering only part of the scope and
not capturing the problem targeted in this paper. Those few
on decentralized federated learning with blockchains [18-22]
neither orchestrate the two systems jointly across WANSs nor
consider online optimization under uncertainties.

We firstly model and formulate the optimization problem
that jointly places the nodes in the blockchain and determines
the number of training iterations in the decentralized federated
learning across edge networks. Our formulation optimizes over
continuous time epochs the total computation and communi-
cation cost of the blockchain triggered by the decentralized
federated learning, subject to the requirements of ensuring
eventual model convergence with at least one blockchain node
in each edge network at each time epoch. Our problem turns
out to be a non-linear integer program, which is NP-hard, and
is general to capture arbitrary time-varying system dynamics.

To solve this problem in polynomial time in an online
manner using only estimated inputs, we then design an online
approximation algorithm that decomposes the problem care-
fully into two subproblems and solves these two subproblems
alternately on the fly. In the first subproblem, we determine
the fractional number of training iterations for the current time
epoch based on the blockchain node placement in the previous
time epoch via a primal-dual-based online learning approach
[23]. This approach essentially solves a one-shot optimization
problem with a transformed objective in each individual time
epoch, while ensuring the time-averaged convergence violation
is upper-bounded and vanishes as time goes to infinity. In the
second subproblem, we determine the fractional blockchain
node placement for the current time epoch based on the
number of training iterations at the same epoch by applying
the null-space method [24] to a quadratic program through
a corresponding linear system that combines the original
constraint and the optimality conditions. For all the fractional
solutions, we design a randomized rounding algorithm to
round them into integers. To produce the estimated inputs for
these subproblems, we also design a lightweight input estima-
tion approach which explicitly tolerates inaccurate estimations.

Via a rigorous proof, next, we demonstrate the performance
analysis that the regret, which measures the gap between the
actual cost incurred by the online decisions of our proposed
approach based on the estimated inputs and the offline optimal

TABLE I: Major notations

Input Description
aijt Transmission cost across WAN from edge ¢ to edge j in ¢
Ay Matrix indicating across-WAN transmission cost in ¢
w Matrix indicating information exchanges in decentralized FL
o Unit cost of encryption and decryption in ¢
B Cost for intra-carrier user information collection in ¢
Yt Cost for operating one blockchain node in ¢
m Size of data to be exchanged
Gt Gradient (i.e., a column vector) involved in training in ¢
€ Required model convergence for decentralized FL
Pt,1, Pt,2 | Objectives of subproblems at ¢ after decomposition
Decision Description
Tit Whether to place a blockchain node on edge 7 in ¢
Yt Number of training iterations for decentralized FL in ¢

actual cost, only grows sublinearly along with time. This proof
is non-trivial, based on connecting different problems and
solutions and the design of all of our algorithms. This analysis
also in turn guides the design of our input estimation approach.
Finally, we implement our proposed algorithms with a pro-
totype system, and conduct extensive trace-driven experiments
to validate the superiority of our approach. Our prototype uses
FedML [4] for decentralized federated learning, and creates
a blockchain upon the distributed InterPlanetary File System
(IPFS) [25]. Our algorithms are implemented in AMPL [26],
invoking the IPOPT [27] optimization solver. Using real-world
edge network data [28], WAN cost [6], and binary classifi-
cation tasks [29], we observe the following results: (i) Our
approach reduces the real-time blockchain cost by around 30%
on average compared to multiple alternative approaches; (ii)
WAN pricing, intra-edge-network communication, blockchain
operation overhead, and the model size impact the blockchain
cost of our approach to different extents; (iii) Our approach
is robust to inaccurate estimations of inputs, reducing training
iterations conservatively while still guaranteeing convergence;
(iv) Our approach is efficient in execution time, only taking
hundreds of milliseconds for a time epoch of 15 minutes.

II. MODEL AND FORMULATION
A. System Settings and Models

We summarize all our major notations in TABLE 1.

Edge Networks: We consider a set of edge networks, which
may be owned and operated by different carriers. Each edge
network is connected to end users through cellular or wireline
access, and these edge networks are connected to one another
via Wide Area Networks (WANs). Each edge network consists
of multiple edges, where an “edge” refers to a micro data
center [30] or server cluster co-located with a cellular base
station or a WiFi access point. We consider that each edge has
a globally unique index or ID across all the edge networks,
and use & to denote the set of all the edges in the system.
We also use K to denote the set of all the edge networks. We
study the system over a series of time epochs 7 = {1,...,T}.

Decentralized Federated Learning: We consider a service
provider who uses the edge resources from the carriers to train
machine learning models at edge via decentralized federated
learning over time. The output for the service provider is the
final model at the end of the last (i.e., T'-th) time epoch.



We adopt a pre-specified matrix W = (W;;) € RI€IXI€l for
the decentralized federated learning process. For 7 and j in &,
W;; > 0 indicates that there is information exchange during
the decentralized federated learning process between the edges
¢ and j; and W;; = 0 indicates that there is no information
exchange between the edges ¢ and j during this process. The
latter case occurs when, for example, at least one of these
two edges does not participate in the decentralized feder-
ated learning process. Without loss of generality, we enforce
S JEN W;; =1 (e.g., by normalization), where N}, is the
set of the edges that exchange information with the edge 1. As
W is fixed and pre-specified by the service provider, the edges
that participate in the decentralized federated learning process
stay unchanged over all the time epochs under consideration.

Within each epoch, decentralized federated learning consists
of multiple “iterations”. We assign a globally unique index to
each iteration of each epoch. That is, each iteration u at each
edge 7 that participates in the decentralized federated learning
process consists of multiple “steps” as follows:

o Step 1: The edge i uses its local model w!, from the
previous iteration « — 1 to incur the loss f!(w? ) upon
its local training data. It then computes an intermediate
parameter 2’ ek — AV fi(w), where 2 is also
obtained from u — 1 with the initial value z{ = 0.

e Step 2: The edge i transmits the two-tuple information
(W,]zu+1, Wijw;) to its each neighbor j. W;; is
defined as above. w!, is another parameter prepared in
the previous iteration v — 1 for the edge ¢, whose initial
value is w} = 1.

o Step 3: The edge i receives (W2 +%,W7/Zw ') from
its each neighbor, and conducts the updates as follows
for the next iteration u + 1 2= Zj reNi Wiz R

Wog1 = D ‘N szzw and wi_ , =z2!_ /=i
The training data are produced and contributed by end users.
Due to regulatory restrictions, the training data often have
to stay within each corresponding edge network. Distributed
federated learning is thus used, where only the (intermediate)
models and/or parameters leave the edge network boundaries.
For the decentralized federated learning process described as
above, we actually know the following convergence result [3]:

— i
2y

Proposition 1. For a model trained by the decentralized
federated learning process, the following holds:

U . 2.2
Zu:o Z?:l ||w’bu+1 45 3_9)2 Zu 0 HG ||F7

where U is the total number of iterations; w, , is the local
model produced on the edge i at the end of the iteration u;
Zut1 is the average of {2} ,,Vi}; G, is the gradient in the
iteration u (i.e., [V fi(wl), ..., Vfi(w?), .. Vf‘g‘( ‘g‘)}) K
is the learning rate; C, s, and d,,;y, are constants; and || -
is the Frobenius Norm.
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Based on the above, if we set k = 1/U, then we have
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where {||G||%}avg=> o ||Gul|% /U is the averaged gradient.
Introducing a “model convergence parameter” € to ensure the
right-hand side, the number of required training iterations is

U = O({lIGI% avg/Ouin) /&

Blockchain: We consider a blockchain in the system, which
is mainly used to make the consensus for the information
exchanged among the edges during the decentralized federated
learning process. For the best resource utilization, we allow the
dynamic selection of the edges as the “blockchain nodes”.

Gradient transmission over blockchain runs as follows in
each training iteration. Consider transferring the gradient from
the edge ¢ to the edge j. First, the gradient is encrypted,
where a unique password is used to produce the encrypted
gradient and the corresponding hash value. Here, encryption is
to ensure trustful transmission. Second, the hash value, instead
of the raw or the encrypted gradient, is recorded into the
blockchain. Only the last block of the blockchain manages
these hash values, and once the life cycle of the last block is
terminated, blockchain nodes will compete for a new block
which will be attached to the end of the blockchain. Third,
the edge j sends the password, and the edge ¢ verifies it by
by re-generating a new hash value and comparing it to the
existing hash value in the blockchain. Then the edge i sends
the encrypted gradient and the edge j gets and decrypts it.

Control Decisions: We make two types of control decisions
for the decentralized federated learning process and for the
blockchain, respectively. We denote by y; € ZT the number of
training iterations conducted in ¢ for decentralized federated
learning. We use x;; € {1,0} to denote whether or not the
edge i is selected as a blockchain node in ¢. Note that an edge
that participates in decentralized federated learning can also
be selected as a blockchain node simultaneously.

Blockchain Computation Cost: Two pieces of information
are recorded into the blockchain. The first is the hash values of
the gradients to be transferred across edges. We denote by m
the size of the gradient. Note that the model being trained has
a fixed model structure or a fixed number of model parameters;
the training process just determines the values of these model
parameters, and so the size of the exchanged information (e.g.,
gradient) stays unchanged over time. We also denote by oy
the amount of computation resources consumed for encrypting
and decrypting a single-unit information of gradients within a
training iteration. Thus, the cost per training iteration is ma;.
The second is the contribution (e.g., amount) of training data
from end users, which can often be recorded in the blockchain
for potential further rewards from the service provider. We
denote by (; the amount of resources consumed for collecting
the user contribution from the edges. Regarding the resources
consumed for Proof of Work when creating a new block,
we denote by ~; the cost for running one blockchain node,
including the resources for competing blocks and the resources
for achieving the consensus. The total computation cost is thus

Ye - {may + B + ||zl love



where ; is the column vector of {z;,Vi}, and ||x¢||o is the
norm counting the number of non-zero values in the vector.

Blockchain Communication Cost: We adopt a matrix
A; = (air) € RIEXIEL where a;;; > 0 equals the transmis-
sion cost (e.g., network delay) from the edge ¢ to the edge j
at the time epoch ¢ for transferring encrypted gradients across
the WAN, and a;;; equals positive infinity if either at least
one of the two edges does not participate in the blockchain or
there is no across-WAN transmission involved. The blockchain
WAN communication cost is thus

T _
Ty Ay =), ) Tt

Note that, for z;;x;:a;5; and xj,x;4a;;, the involved links over
WAN could be the same. Therefore, without loss of generality,
we assume that A; is symmetric. Note that, decentralized
federated learning incurs its own cost of computation and
(intra- and/or inter-WAN) communication; as the participating
edges for decentralized federated learning stay unchanged, we
can incorporate all cost of decentralized federated learning per
training iteration at ¢ into [3;.

B. Problem Formulation, Goal, and Challenges

Control Problem P: Having the system models above, we
formulate the total cost optimization problem:

min > P = Zt{iBIAtiBt + ye{may + B + ||xe||o7e }}
st 3y > OIIGIF Yavg/min) /€5 )]
Vi k1@ > 1, )
Vt:x, € {1,0}",y, € Z7. 3)

In the above, Zt y; refers to the total number of the iterations
over all the time epochs; G refers to the gradient revealed at
the end of the last iteration in the time epoch ¢; and 1j is a
column vector specified by the edge network k& € IC, where the
i-th element equals 1 if the edge 7 is within this edge network
and equals O if not. The optimization objective is the total
blockchain computation and communication cost. Constraint
(1) ensures a sufficient number of training iterations for the
desired convergence of the model being trained. Constraint (2)
ensures at least one blockchain node in each edge network.
Constraint (3) specifies the domains of the decision variables.
Control Problem P with Estimated Inputs: We highlight
that the inputs, including a; and S, are posterior. That is,
these inputs are only revealed at (the end of) each epoch ¢ after
the actual execution of the decentralized federated learning. If
we want to make control decisions on the fly at (the beginning
of) each epoch t, as is desired, then we have to estimate these
inputs and make control decisions based on such estimations,
because the actual inputs remain unknown at that time point.
Therefore, we can also formulate the following problem:

S, P2 ] Ay + ye{mds + Br + @ love )
st. 3,y > OIIGlF Yavg /62m) €

Vi k1@, > 1,

Vt:x, € {1,0}n,yt S Z+,

min

Algorithm 1 Controlling Blockchain with Decentralized FL.

1: Initialize Z1,7; as a feasible fractional solution;

2: for t € [1,T] do

/I Obtain and implement decisions for current epoch

3:  Round 7, Ty to integers ¥, &, respectively;

4:  Place blockchain and run decentralized FL by 4, &+;
/I Make fractional decisions for next epoch

5:  Estimate inputs for P;11,1 and Piiq 2;

6:  Solve g1 from 73t+171 via “online learning”, given &;;
7. Solve Ty 1 from 73t+1,2, given Ui11;

8: end for

where ~ means the estimation. We note that {G;, Vt} are also
only revealed after the actual training in ¢; however, as it is
involved in a long-term constraint accumulated over time, we
choose to treat it differently and resort to dynamically adjust-
ing the control decisions to restrict the cumulative violation
of this constraint, instead of estimating G on the fly.

Algorithmic Goal: Given the two problem formulations as
above, we clarify the goal of our algorithm design. We use
{Z,Vi} and 7; to represent the decisions at ¢ produced by
our online algorithms, whose aggregated representations are
denoted as {&:, §:, Vt}. We also use {x},y;,Vt} to represent
the offline optimal solutions (i.e., oracle) of the problem P
assuming all the actual inputs over time are all given at once.
We define the performance metric of regret as

r=P{Z:, 4, }) = P({z}, 57, V1))

We use P to refer to the objective function of P (and use P
to refer to the objective function of P). Our goal is to design
online algorithms that can produce {Z:, 4} on the fly at each
time epoch ¢ via appropriately solving the problem [P with the
estimated inputs {@y, 3;} and can provably upper-bound the
regret r sublinearly when evaluating {&;, ¢;, Vt} in P.

Algorithmic Challenges: It is fundamentally non-trivial to
design online algorithms to achieve the aforementioned goal.
First, the inputs need to be strategically estimated on the fly,
such that solving P can produce online solutions that have
provably bounded regret with regards to IP. Second, even with
inputs known, [P has the long-term constraint accumulated over
time regarding y;, making it not straightforward to assign any
value to y; as time goes to . At ¢, setting y; small could end
up having to increase y; as time goes closer to the end, which
could increase the objective P and damage the minimization;
setting y; large could in contrast lead to sub-optimality in the
first place. Third, [P contains non-linear terms in the objective
with integer domains. The problem is actually NP-hard even
in the offline setting, due to minimizing ||x:||o [31]. Requiring
to solve it online can only escalate the difficulty.

III. ONLINE ALGORITHM

To overcome all the aforementioned challenges, we propose
Algorithm 1. Section III-A presents the overall structure and
idea of our algorithm, and Sections III-B~III-D elaborate the
different parts of our algorithm mathematically.
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Fig. 2: Algorithm workflow

A. Algorithm Overview with Problem Decomposition

We design the following decomposition and decompose the
problem P into two problems, P; and P5, for the decentralized
federated learning and for the blockchain, respectively.

> 73t,l(i%t) £ 3 Ave{ma, + B+ (1T a, )y} }

min
st 2 Coaly) = S AOIGIF/07) /e — i} <0,
Yty € Z7T.
min 32, Pro(a) 25 {@] Avzy + y{ma + By + v{ me}}
st Vt:Coolxy) 2 [, 1 xy,..]T < —1,
x; € {1,0}".

We introduce some new notations used in the above and also
in the rest of this paper. We use P 1(y;) and C; 1(y) to denote
tlle objective and the constraint functions at ¢ for I@l, and use
Py 2(x4) and C; 2 () to denote the objective and the constraint
functions at t for @2. ]IA”l treats {ys, Vﬁ} as the decision
variables and treats {x, Vt} as the inputs. P; treats {x, Vt} as
the decision variables and treats {y;, Vt} as the inputs. In Py,
we have ||z¢[|o = ||@|[; = 172, when @, takes the integers
{1,0}. In Py, we have Vk, 1;:ct > 1 as in Constraint (2); then,
Ci2(x;) is a column vector that aggregates such constraints
{~1{ @, ..., ~ 12} and is organized in the standard form,
ie., X —1. Also, we denote by 7375,1(%) and 73t,2(sct) the
objectives with the estimated inputs; analogously, we denote
by P:1(y:) and Py o(x,) the objectives with the actual inputs.

Algorithm 1 proceeds as follows. At each time epoch ¢, we
first round the fractional decisions into integers and implement
such integral decisions for ¢, as in Lines 3~4; next, we
estimate the inputs for the next epoch ¢ 41, and solve P41 1
(given ;) and 7315_5_172 (given Yy41), respectively, to acquire
the fractional decisions of the number of training iterations
and the placement of blockchain nodes for ¢ 4 1, as in Lines
5~7. This algorithm can be visualized in Fig. 2.

B. Controlling Decentralized Federated Learning

We focus on Line 6 of Algorithm 1 in this section.
First, note that the optimization

minZt ?t,l(yt)7 s.t. Zt Ct71(yt) S 07 Yt € Z+a
can be equivalently written in the convex-concave form:
min,, ez+ maxx,eroo 2oy (Pe1(y) + AeCea(ye)),

where \; is the Lagrange multiplier and the domain of y; is
positive integers, making it hard to solve as already mentioned
previously. Thus, we relax the problem:

ming, eg+ maxy, ek 3o (Pea(Ue) + MeCe1 (1)

Second, we split the relaxed problem to a series of subprob-
lems over the entire time horizon and solve each of them in
an online manner as time goes. That is, V¢ + 1, we have

~112
|yt+1 —Yt | \

win {VP(5) (g}

+AenaC , (4
Y ERT 61 1 t,l(yt+1)} ( )

where we can introduce new aAdditional terms, i.e., the first two
terms in (4), to approximate Pt+171(yt+1), with the parameter
& as the step size. \;11 is then updated as

A1 = M+ &Coa ()] T, )

where &5 is the step size, and [-]* £ max{-,0}.

We are essentially conducting online learning here, as we do
not use any information for ¢ + 1 but only use the information
from before ¢ + 1 when determining the value of y:y;.
Specifically, at each ¢, we execute (5), and then solve (4) via
any existing standard convex optimization solver. Note that
we have broken the original constraint of >, Cy1(y:) < 0,
which is accumulated over time, into individual constraints
of Ct1(y:) < 0 and incorporated each of such constraints
into the objective at each corresponding ¢, as in (4). We will
later show that this transformation, with the approximation
introduced in the above, can provably upper-bound the cumu-
lative violation regarding the original constraint. The factional
control decision, i.e., ¥z 1, will also be rounded as described
later for controlling decentralized federated learning at ¢ + 1.
Following a previous literature [23], we have Proposition 2
which upper-bounds the regret and the constraint violation for
IP,, respectively, when {Z;, Vt} is given.

Proposition 2. The following inequalities hold for I@l:

2{Pea(@e, 5e) — Pea(@e, 77)} < O(T7),
O(NGIE Yavg/Tmin) /e = 224 B < O(TT),
where y} is the fractional optimal solution for @1 at t given
Ty att; and T <1 and ' < 1 are constants.
C. Controlling Blockchain
We focus on Line 7 of Algorithm 1 in this section.
For the optimization

min Y3, Pro(w), st Cro(z) < —1, x, € {1,0}",

we can transform the inequality constraint to an equality
constraint via replacing its right-hand side by a constant vector.
Such a constant vector ¢ for the optimum can be enumerated
through the binary lookup. Thus, we have, V¢ + 1,

. 1 ~ . ~ 5
min iw;—H@Atﬂ)wtﬂ + Jen1 Vi T + Yo (e + By)
s.t. Ct+1}2(dft+1) =C, Tit1 S {170}117

where ¢ = [c1, ..., cix|] € R™ such that ¢ < —1. Note that
x4 still falls into the integer domain. We relax the problem:

) 1
min iath 1(2A0 )T — b (6)
s.t. BSUt_A,_l =C, Tty € [O, 1]”,



where the matrix BT = [-14,...,—1)x|] indicates related
domains of the edges and each row of it corresponds to an edge
network; and the column vector b iS [—Jea Ve, -y — Y Vt)-
We can actually combine the stationarity condition in the
Karush-Kuhn-Tucker (KKT) optimality conditions and the
above equality constraint to characterize the optimal solution.
That is, we have the following linear system:

K s (4 ) () -(). o

where Z;, 1 is the optimal solution to @HLQ and ¢ is the
Lagrange multiplier for the equality constraint.

Now, let us observe the following two propositions. Propo-
sition 3 holds because each row of B is mapped to a unique
edge network, and all these edge networks have no overlap
by definition. That is, B has full row rank, as no row can be
omitted. Proposition 4 follows from an existing literature [24],
where Z is a matrix whose columns form a basis of the kernel
of B so that Z has full column rank and BZ = 0.

(1>

Proposition 3. The matrix B has full row rank.

Proposition 4. If ZT A, 1 Z is positive definite, K is non-
singular; further, the KKT system in (7) has a unique solution.

Then, we adopt the null-space method [24] to solve (7) for
Z;.1. That is, we can write Z;, in the form of

Ty =Ywy + Zwg, (3

where Y is a matrix such that [Y" Z] is nonsingular. Putting
(8) into the equality constraint of (6), we have

B.’/B\H_l =BYwy + BZwz = BYwy +0 = ¢,

because BZ = 0. This actually implies that Y wy- satisfies the
equality constraint of (6). Then, putting (8) into the stationarity
condition (7), we have

2At+1Y’lUY + 2At+1ZwZ + B—l—()f)>k =0.

Multiplying the above equation by Z ' and using Z' BT =
(BZ)" =0, we have

Z'(2A141)Zwz = Z'0 - ZT(2A,,1)Y wy,

where wz can be directly solved using the Cholesky factor-
ization upon the solved wy . Finally, Z;, 1 for the epoch ¢+ 1
can be obtained from (8) accordingly.

D. Rounding Decisions and Estimating Inputs

We focus on Lines 3~5 of Algorithm 1 in this section.

Randomized Rounding: After obtaining the fractional de-
cisions &; and 7j; for the epoch ¢, we need to convert them to
integers. We employ randomized rounding:

ul,
[u],
This ensures E[j;] = 4 and E[Z;] = Z;. Then, as shown

in Line 4 of Algorithm 1, we use &; to place the blockchain
nodes and use ¥, to set the number of training iterations for

with prob. [u] —u

U=DT;¢ 0" Yp, U= )
bt OF Ut { with prob. u — |u]

decentralized federated learning in the time epoch ¢. After
such implementations of these control decisions, the results
revealed (i.e., ||Gt||r) will help the decision update for the
next epoch (i.e., for constructing Cyy1.1(+)).

Input Estimation: As stated earlier, we need to obtain the
estimated inputs {ay, 5;} on the fly at ¢ as our algorithm runs.
Unlike previous works that estimate inputs via solving addi-
tional optimizations [6, 32], we adopt a lightweight approach
here for reducing the overall algorithmic runtime overhead. In
fact, in the next section, we will show a non-trivial theorem
that we actually only require

’ﬁt,l(') - Pt,l(')’ < v and }ﬁtﬁ(') - ,Pt,Z(')} <v

where v is a constant, in order to upper-bound the regret
incurred by our algorithm. Note that this constant v can always
exist. For example, if for any ¢ the above differences are v ;
and v, 2, then we can set v = max; { max{v;1,2}}. In
practice, we may want to make v as small as possible. In
our reahzatlon We choose to calculate the estimations at ¢ as

1 t—1
- 1 Z-,— 1 Qr and /Bt t—1 27:1 57"
IV. PERFORMANCE ANALYSIS

We upper-bound the regret sublinearly based on the design
of our algorithms. We introduce and recap some notations,
based on which we present Theorem 1 and derive its proof.

(1) The fractional decisions produced by our online approach
are {&i, Yy, Vt}; the integer decisions produced by our
online approach are {&:, J;, Vt}.

(ii) For problems with estimated inputs, given Z; at t, the
fractional optimal solution for Py at ¢ is ¥;'; given y; at
t, the fractional optimal solution for Py at ¢ is ;.

(iii) For problems with actual inputs, the fractional offline
optimal solution for Py is {x;°, y; ,Vt} the fractional
offline optimal solution for Py is {&;°, y;°,Vt}.

(iv) For problems with actual inputs, the fractional offline
optimal solution for P is {&}, ¥y}, Vt}; the integer offline
optimal solution for P is {x}, yF,Vi}.

Theorem 1. The regret is upper-bounded as
r = E[P({@:, 4, Vt})] — P({7,y;, Vi}) < O(T7) + 9,
where T < 1 and §) are constants.

Proof. First, we note the following set of inequalities:

YAPea(@y, vf) — Pealxf,yi)} <0, ©)

Zt{Pt 1(Z7°,0:°) — Py 1(52‘»%)} <0, (10)
YdAPea (@, 5f°) — Pea(®°,9:°)} = 1, (D
YA Pua(@, %) = Pea@e )y < v, (12)
S AP (@1, TF) — Pra (e, 57:°)} <0, (13)
S AP (@, T) — Pea(@e,77)} < O(T7). (14)

(9) follows from (iv); (10) follows from (iii); (11) defines the
constant €}; (12) follows from the input estimation, i.e., Line
5 of Algorithm 1; (13) follows from (ii); and (14) follows from
Line 6 of Algorithm 1 with Proposition 2, where 7 < 1.



Secgld, summing up (9)~(14) and replacing 7315,1(@,@5)
by E[Pi1(Z+,yt)], Vt in (14), we have

S AEPA (&, 50)] — Pealaf,yf)} < +O(T7), (15)

where 1 = Q) + v. Here, note that the first term on the left-
hand side of (9) cancels the second term on the left-hand side
of (10); the first term on the left-hand side of (10) cancels
the second term on the left-hand side of (11); ... and so on.
The replacement mentioned above and the adoption of the
expectation is due to randomized rounding, following from
Line 3 of Algorithm 1.

Third, analogously, following steps similar to the above, we
can actually also get the following:

S A Pa(@1, 1) — Pra(®), yp)} < Q.

Different from (15), when deriving (16), we note that in the
inequality corresponding to (14) regarding P; o, the left-hand
side is actually < 0, following from Line 7 of Algorithm 1.
Finally, summing up (15) and (16), we complete the proof,
where QQ = Q; + Qs. O

(16)

V. EXPERIMENTAL EVALUATIONS
A. Evaluation Settings

System Implementation: We implement our control algo-
rithms as part of a prototype system, as in Fig. 3. We adopt
FedML [4] for decentralized federated learning, and create a
blockchain on top of the distributed InterPlanetary File System
(IPFS) [25]. Data Sender and Data Receiver communicate
with each other as described in Section II-A. Hash is done
via AES256-CBC. Proof-of-Work is via calculating a specific
target hash value (e.g., with the prefix “0000”). We mainly use
Python for our prototype implementation. For the proposed
algorithms, we implement them by AMPL [26], invoking the
IPOPT [27] optimization solver. To realize large-scale exper-
iments, we conduct emulations on our lab testbed consisting
of three servers, and use threads to emulate edges. Each
thread runs either the FedML codes, or both the FedML and
the blockchain codes. Inter-edge communication is therefore
implemented as inter-thread communication.

Edge Networks and Training Data: We get real-world ISP
edge networks data [28], containing four ISP edge networks
of 49, 18, 16 and 4 edges, respectively. 20 out of these edges
are on the borders of the edge networks, connecting to other
edge networks via WANs. WAN transmission pricing is from
TraceRoute [6]. We use the Occupancy Detection [29] dataset,
which contains 20,000 data samples for binary classification
of room occupancy from temperature, humidity, light, etc. We
train a logistic regression model on 10 edges via decentralized
federated learning. For inputs such as resource consumption
for encryption and decryption and for competing for the new
block, we measure the real-time CPU and memory usage and
conduct estimation on the fly based on historical measure-
ments. We consider 100 time epochs, each of 15 minutes.

Algorithms: We compare our approach with the following
alternatives, each of which selects edges to serve as blockchain
nodes and ensures one blockchain node in each edge network:

Distributed Federated Learning
Local Update ---# 17 Directed Gradient Transfer ---# Local Update

Freen

( Distributed File System (IPFS) )

E dls;c

Fig. 3: Implementation architecture
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Fig. 4: Cost with algorithmic details

o wanOriented (or “outer”) selects edges with the mini-
mum across-WAN communication cost;

o userOriented (or “inner”) selects edges with the mini-
mum intra-edge-network communication cost;

o minerOriented (or “miner”) selects edges with the mini-
mum computation cost of encryption and decryption and
running blockchain nodes;

e fixBorder (or “fix”) selects edges randomly in each edge
network;

o lowerlteration (or “lower”) conducts training with 80%
iterations involved upon the edges selected as in “fix”.

All algorithms execute in an online manner using the same
estimated inputs. Also, all of them take the number of the
training iterations determined by our approach in each epoch.

B. Evaluation Results

Blockchain Cost: Fig. 4(a) compares the real-time cost of
all approaches. Our approach decreases the average cost per
time epoch by at least 31%, compared to others. The peak
cost of our approach is only 75% of the maximum of all
algorithms, shown in the bottom sub-figure of Fig. 4(a). In
Fig. 4(b), the first two sub-figures show the cost incurred by
our two decoupled subproblems. The third and the fourth sub-
figures exhibit the dynamic selections of the edges to serve as
blockchain nodes, where the selection for the first 10 edges
in the same edge network is displayed in detail in the latter.
The fifth sub-figure shows the number of training iterations (in
red) and the norm of the gradients (in grey) per time epoch.

Impact of Different Factors: Fig. 5(a) illustrates the impact
of WAN pricing on the total cost. As WAN price increases,
the gap between our approach and “outer” becomes smaller,
because the WAN cost gradually becomes the dominant cost.
The cost reduction of our approach over others is 5%~46%.
Fig. 5(b) shows the impact of the intra-ISP communication
overhead, including collecting user contributions information,
on the total cost. With the increase of the number of the end
users, the gap between our approach and “inner” becomes
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Fig. 6: More evaluation results

smaller due to similar reasons as stated for Fig. 5(a). The cost
reduction of our approach over others is at least 15%. Fig. 5(c)
depicts the impact of the blockchain operations (i.e., encryp-
tion/decryption and running blockchain nodes) overhead on
the total cost. With the increase of the blockchain operations
overhead, the gap between our approach and “miner” becomes
smaller. The cost reduction of our approach over others is
11%~32%. Fig. 5(d) reveals the impact of the model size
on the total cost. Such model size also impacts the size of
the gradients. As the model size grows, the gap between our
approach and others increases (the vertical axis of this figure
is in the logarithmic scale). The cost reduction is up to 210%.

Impact of Input Estimations: In Fig. 6(a) and Fig. 6(b), “1
xRange” refers to the range of variations of the actual inputs
as in the original dataset; “2xRange” means that we manually
enlarge each actual input to 2 times its original value; and
so on. Estimation is always based on averaging the historical
values; thus, as such range increases, the absolute gap between
the actual input and the estimated input becomes larger.
Fig. 6(a) shows that, as such range for increases, the total cost
increases. This is because the control decisions are made based
on more inaccurate estimations. Fig. 6(b) shows the impact
on the number of training iterations by decisions made based
on estimated inputs. Although the minimum number of the
training iterations decreases as the estimations become less
accurate, such minimum number of the training iterations is
still 88% of the original value, ensuring model convergence.

Impact of Algorithmic Parameter: Fig. 6(c) investigates
the impact of £ on the number of training iterations. We set
& = & = &, where &7 and &5 are the algorithmic parameters as
in Section III-B. As in the formulation (4), as ¢ increases, the
number of training iterations at one time epoch does not have
to follow that at the previous time epoch; thus, the number of
training iterations can change vastly as time goes. When ¢ is

small, it is harder to change the number of training iterations
as time goes. The minimum number of training iterations is
80% of its value at the beginning of the time horizon.

Execution Time: Fig. 6(d) shows the execution time, where
the solving process takes only hundreds of milliseconds.

VI. RELATED WORK

Federated Learning at Edge: Wang et al. [10] studied
model aggregations under a given resource budget. Zhou
et al. [11] controlled the throughout of data training for cost-
efficient federated learning in edge networks. Feng et al. [12]
optimized model compression, sample selection, and user
selection in wireless mobile edges. Lu et al. [13] clustered
clients based on training data distribution and selected partici-
pants via auctions for energy efficiency. Jin et al. [14] jointly
managed data transference from user devices, resource provi-
sioning at edge servers, and the federated learning process.

These works focus on federated learning at the network
edge, but do not typically explore consensus mechanisms over
distrustful networks such as WANs. They lack consideration
of blockchains and cannot capture our work.

Blockchain at Edge: Qiu et al. [15] used reinforcement
learning for computation offloading in blockchain-empowered
edge computing. Feng et al. [8] optimized the performance
of blockchain and mobile edge computing via the Markov
decision process. Guo et al. [9] studied adaptive resource allo-
cation and block generation to improve blockchain throughput.
Chen et al. [16] presented a resource authentication approach
based on blockchain group key management. Du et al. [17]
designed edge resource markets with the Proof-of-Stake con-
sensus for transaction verification and award allocation.

These works investigate the optimization and the applica-
tion of blockchains in edge computing. They do not exploit
blockchains for federated learning, and thus are inapplicable
to our work tailored to decentralized federated learning.



Decentralized Federated Learning with Blockchain: Li
et al. [18] proposed to let clients join blockchain and federated
learning simultaneously and broadcast gradients for aggrega-
tion. Li et al. [19] employed blockchain for storage to replace
central federated learning servers. Hu et al. [20] decentralized
federated learning using a ring topology and used blockchain
for security. Wilhelmi et al. [21] used blockchain to store
model updates and studied ledger inconsistencies and age of
information. Feng et al. [22] explored smart contracts with the
blockchain to authenticate participants and aggregate models.

These works often study a different type of decentralized
federated learning, leverage a specific aspect of blockchain,
or loosely couple these two. None has captured the cost trade-
offs with online resource optimization under uncertainties.

VII. CONCLUSION

Orchestrating the blockchain dynamically and continuously
in a cost-minimizing manner to facilitate decentralized feder-
ated learning across distrustful networks has been less studied,
and this paper fills this gap. Our proposed online optimization
algorithm innovatively decomposes the problem and solves
subproblems alternately on the fly only based on estimated
inputs. We theoretically prove the sublinear regret of our online
approach, practically implement the prototype system, and ex-
perimentally exhibit the cost benefits from multiple angles. For
future work, we will continue to explore the interaction and
intersection of blockchain and federated learning techniques.
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