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PeleLM-FDF large eddy simulator of turbulent reacting flows
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A new computational methodology, termed ‘PeleLM-FDF’ is developed and utilised
for high fidelity large eddy simulation (LES) of complex turbulent combustion systems.
This methodology is constructed via a hybrid scheme combining the Eulerian PeleLM
base flow solver with the Lagrangian Monte Carlo simulator of the filtered density func-
tion (FDF) for the subgrid scale reactive scalars. The resulting methodology is capable
of simulating some of the most intricate physics of complex turbulence-combustion
interactions. This is demonstrated by LES of a non-premixed CO/H; temporally evolv-
ing jet flame. The chemistry is modelled via a skeletal kinetics model, and the results
are appraised via a posteriori comparisons against direct numerical simulation (DNS)
data of the same flame. Excellent agreements are observed for the time evolution of
various statistics of the thermo-chemical quantities, including the manifolds of the
multi-scalar mixing. The new methodology is capable of capturing the complex phe-
nomena of flame-extinction and re-ignition at a 1/512 of the computational cost of the
DNS. The high fidelity and the computational affordability of the new PeleLM-FDF
solver warrants its consideration for LES of practical turbulent combustion systems.

Keywords: large eddy simulation; turbulent combustion; filtered density function; low
mach number approximation

1. Introduction

Since its original proof of concept [1, 2], the filtered density function (FDF) has become
very popular for large eddy simulation (LES) of turbulent flows. This popularity is due
to an inherent capability of the FDF to account full statistics of the subgrid scale (SGS)
quantities; and thus it is more accurate than conventional SGS models which are based
on low order SGS moments. This superior performance comes at a price. The FDF trans-
port equation is somewhat more difficult and computationally more expensive to solve, as
compared to traditional LES schemes. The last decade has witnessed significant progress
in improvement and popularity of FDF as evidenced by a rather large number of publica-
tions; e.g. Refs. [3-29]. Parallel with these developments, there have also been extensive
studies regarding the FDF accuracy & reliability [16, 22, 30-33], and sensitivity analysis
of its simulated results [34, 35]. For comprehensive reviews of progress within the last
decade, see Refs. [36, 37].

Despite the remarkable progress as noted, there is still a continuing demand for fur-
ther improvements of LES-FDF for prediction of complex turbulent combustion systems.
In particular, it is desirable to develop FDF tools which are of high fidelity, and are also
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computationally affordable. In the present work, the PeleLM [38] base flow solver is com-
bined with the parallel Monte Carlo FDF simulator [4, 39] in a hybrid manner that takes
full advantage of modern developments in both strategies. PeleLM is a massively parallel
simulator of reactive flows at low Mach numbers. These flows are of significant interest
in several industries such as gas turbines, IC engines, furnaces and others. The solver is
based on block-structured AMR algorithm [40] through the AMReX numerical software
library [41] (formerly called BoxLib [42]). This solver uses a variable density projection
method [43-45] for solving three-dimensional Navier-Stokes and reaction-diffusion equa-
tions. The computational discretization is based on structured finite volume (FV) for spatial
discretization, and a modified spectral deferred correction (SDC) algorithm [46—49] for
temporal integration. The solver is capable of dealing with complex geometries via the
embedded boundary method [50, 51], and runs on modern platforms for parallel comput-
ing such as MPI + OpenMP for CPUs and MPI + CUDA or MPI + HIP for GPUs. The
fidelity of PeleLM has been demonstrated to be effective for DNS of a variety of reactive
turbulent flows [52-56]. Here, the PeleLM is augmented to include LES capabilities by
hybridising it with the FDF-SGS closure. The resulting solver is shown to be computation-
ally efficient, and to produce results consistent with those generated by high-fidelity, and
much more expensive DNS.

2. Hybrid PeleLM-FDF solver

Formulation is based on the variable density turbulent reacting flow involving Ny species
in which the flow velocity is much less than the speed of sound [2, 57]. In this flow,
the primary transport variables are the fluid density p(x,?), the velocity components
u;(x,1), i = 1,2,3 along the x; direction, the specific enthalpy h(x, t), the pressure p(x, 1),
and the species mass fractions Y, (x, 1) (@ = 1,2,..., Ny). The conservation equations gov-
erning these variables are the continuity, momentum, enthalpy (energy) and species mass
fraction equations, along with an equation of state [58]. Large eddy simulation involves
the use of the spatial filtering operation, with (Q(X, )}, denoting the filtered value of the
transport variable Q(x,f) and (Q(x,1));, =(pQ)¢/(p), representing its density weighted
(Favre) average. The FDF of only the scalar variables are considered. In the FDF transport
equation, the effects of the subgrid scale (SGS) convection are modelled by the standard
gradient diffusion model [59, 60] with the Vreman’s model [61] for the SGS viscosity,
and unity SGS Prandtl and Schmidt numbers. The influence of SGS mixing is taken into
account with the LMSE/IEM closure [62]. Modelled stochastic differential equations are
constructed to portray these models. These SDEs are solved via a Lagrangian Monte Carlo
(MC) routine [57].

AMReX library is a very powerful computational software with many useful functions,
templates, and classes including linear solvers [63] and particle containers [64]. The lat-
ter is especially useful for our purpose. The principal algorithm is based on a variable
density projection method for low Mach number flows as described in Ref. [65]. The
domain is discretised by an ensemble of finite volume cells and the particles are free to
move within the domain (Figure 1). The MC procedure is implemented by deriving a
new class from the particle container of the AMReX library, adding all the required func-
tions including procedures for grid-to-particle interpolation, particle SDE & ODE solving
and ensemble averaging. The particles’ transport is simulated via the Euler-Maruyama
scheme [66], and the compositional makeup is updated with a third order Runge-Kutta
solver.
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Figure 1. (a) Ensemble averaging in MC simulations. The red cube denotes the finite volume cell
centre, and the blue spheres denote the MC particles. (b) Example of MC particles within the Eulerian
field identified by PeleLM. The colours of the MC particles provide a measure of the particle’s scalar
values.

The filtered density, all of the mass fractions, and the enthalpy can be evaluated via
both PeleLM ad the MC-FDF solvers. The filtered chemical source term can be evaluated
only by via MC-FDF. This is done by conducting ensemble averaging involving Ng ele-
ments within a volume of (Ag)? at the points of interest. The consistency of the hybrid
solver is assessed by instantaneous comparison of the filtered variables simulated by the
two solvers. The consistency of the density field, in particular, is assessed by the scheme
devised in previous work [57]. The choice of Ag is independent of the grid size Ax, and
the LES filter size Ag. Itis desirable to set Ag as small as possible. The particle-grid inter-
action is schematically illustrated in Figure 1(a), while the example of an actual hybrid
Eulerian-Lagrangian simulation is shown in Figure 1(b). The transfer of information from
the grid points to the MC particles is accomplished via a linear interpolation. Higher accu-
racy can be achieved by constructing the MC averages via linear weighting [67] and/or
adaptive cloning of the MC particles [25, 68]. The computational procedure is summarised
via Algorithm ??. The algorithm shows the steps involved in a single time-advancements
from time level n to n + 1. Steps 1, 5 and 6 are from the original Pelel-LM. Steps 2-4
are the FDF-MC inserts. Of primary importance is Step 4 in which the filtered chemical
source term is determined. This term is subsequently utilised in Step 5 to update the scalar
fields. Time advancement is completed in Step 6 where the velocity-pressure coupling is
finalised. Step 7 is solely for the purpose of accuracy assurance, and is recommended in all
hybdrid Eulerian-Lagrangian solvers [57].

3. Flow configuration and model specifications

The performance of the PeleLM-FDF solver is assessed by conducting LES of a tem-
porally evolving planar turbulent CO/H; jet flame. This flame has been the subject of
detailed DNS [69], and several subsequent modelling and simulations [70-75]. The flame
is rich with strong flame—turbulence interactions resulting in local extinction followed by
re-ignition. The flow configuration is the same as that considered in DNS and is depicted in
Figure 2. The jet consists of a central fuel stream of width H surrounded by counter-flowing
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Algorithm 1 Hybrid PeleLM-FDF Algorithm
1: Advance the velocity field from time-level n to level n 4 1/2 via PeleLM.
2: Interpolate the relevant variables from the fixed Eulerian points to the instantaneous
particle locations.
3: Integrate the modelled SDEs describing the MC-transport and ODEs describing
species’ compositional setup.
4: Construct the filtered values of all of the scalars (¢)H}C, the density (P)Z‘julc’ and the

chemical source terms (S)H}C from the MC field.

5: Advance the scalars field and the density via the PeleLM.

6: Evaluate the pressure and update the velocity field at level n + 1.

7: Conduct consistency assessments by comparisons of the scalars fields and he density
as obtained via the PeleLM and MC-FDF.

oxidiser streams. The fuel stream is comprised of 50% of CO, 10% H, and 40% N, by
volume, while oxidiser streams contain 75% N, and 25% O,. The initial temperature of
both streams is 500 K and thermodynamic pressure is set to 1 atm. The velocity differ-
ence between the two streams is U = 276 m/s. The fuel stream velocity and the oxidiser
stream velocity are U/2 and —U /2, respectively. The Reynolds number, based on U and
H is Re = 9, 079. The sound speeds in the fuel and oxidiser streams denoted as C; and
C,, respectively and the Mach number Ma = U/(C; + C,) = 0.3 is small enough to jus-
tify a low Mach number approximation. The combustion chemistry is modelled via the
skeletal kinetics, containing 11 species with 21 reaction steps [69]. The initial conditions
are taken directly from DNS. The boundary conditions are periodic in stream wise (x) and
spanwise (z) directions, and the outflow boundary conditions imposed at y = %L, /2. The
FDF simulations are conducted in the same as those in previous LES-FDF [39].

The size of the computational domain is L, x L, x L, = 12H x 14H x 8H. The time
is normalised by #; = H/U. The domain is discretised into equally spaced structured
fixed grids of size Ny x N, x N, = 108 x 126 x 72. The resolution, as selected, is the
largest that was conveniently available to us, and kept the SGS energy within the
allowable 15% ~ 20% of the total energy. This resolution should be compared with
Nipns % Nypys X Nopys = 864 x 1008 x 576 grids as utilised in DNS [69]. The sizes
of the ensemble domain, the subgrid filter and the finite volume cells are taken to be
equal A = Ag = Ax = Ay = Az = L,/N,, and the timestep for temporal integration is
At = 1077 s. The number of MC particles per grid point is set to 64; so there are over 62.7
million MC particles portraying the FDF at all time. With a factor of 512 times smaller
number of grid points, the total computational time for the simulations is around 400
CPU hours on 2 nodes of 28-core Intel Xeon E5-2690 2.60 GHz (Broadwell) totalling
56 processors.

The simulated results are analysed both instantaneously and statistically. In the for-
mer, the instantaneous contours (snap-shots) and the scatter plots of the reactive scalar
fields are considered. This pertains to the temperature and mass fractions of all of the
species. In the latter, the ‘Reynolds-averaged’ statistics are constructed. With the assump-
tion of a temporally developing layer, the flow is homogeneous in the z— and the x—
directions. Therefore, all of the Reynolds averaged values, denoted by an overline, are
temporally evolving and determined by ensemble averaging over the x —z planes. The
resolved stresses are denoted by R (a,b) = (a).(b), — ((a) L) ((b) L), and the total stresses
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Figure 2. Schematics of the temporally developing turbulent jet flame. The jet consists of a central
fuel stream surrounded by two counter-flowing oxidiser streams. The fuel stream is comprised of
50% of CO, 10% Hj and 40% Nj by volume, while oxidiser streams contain 75% Nj and 25% O;.
The initial temperature of both streams is 500 K and the thermodynamic pressure is set to 1 atm.

are denoted by r (a, b) = (ab) — ab. The latter can be evaluated directly from the fine-grid
DNS data rpns (a, b). In LES with the assumption of a generic filter, i.e. (Q);, = é, the total
stresses are approximated by 7y gs (a,b) = R (a,b) + 1 (a, b) [76, 77], where t (a, b) is the
subgrid variance. The root mean square (RMS) values are square roots of these stresses.
To analyse the compositional flame structure, the ‘mixture fraction’ field Z(x, ) is also
constructed. Bilger’s formulation [78, 79] is employed for this purpose.

4. Presentation of results

For the purpose of flow visualisation, the contour plots of the temperature field are
presented in Figure 3 for several consecutive time-instances. These contours show the for-
mation of structures within the flow, and the growth of the layer from the initial perturbed
laminar to a highly three-dimensional turbulent flow. To demonstrate the consistency, com-
parisons are made between the filtered values as obtained by the Lagrangian and Eulerian
simulators. Figure 4 shows the instantaneous scatter plots of the temperature and mixture
fraction, and Figure 5 shows the Reynolds averaged values of these variables. The cor-
relation coefficients between the averaged MC and FV scattered for both the temperature
and the mixture fraction fields are greater than 0.99 at all time instances, and the Reynolds
averaged results are indistinguishable. This level of consistency is observed throughout the
entire simulations.

The fidelity of LES predictions are assessed via comparisons with DNS. This is shown
for the first and second Reynolds-moments of the mixture fraction, the temperature, and the
mass fractions of major species (CO, CO,) at several time steps in Figure 6. Additionally,
2D slice plots of LES-FDF and DNS are shown in Figure 7 for a more detailed view. In
all of these cases, the DNS captures more of the small scale features which are filtered
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t = 20t; t =30t t = 40t;

Figure 3. Temporal evolution of the temperature field.
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Figure 4. Scatter plots of the Eulerian vs. the Lagrangian filtered values. (a) Temperature
(b) Mixture fraction.

out by LES. Therefore, the spreading rate as predicted by LES is somewhat larger than
that in DNS. The initial decrease of the temperature at ¢ &~ 20¢; is an indication of flame
extinction, and its increase at later times (¢ ~ 40¢;) signals re-ignition.
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Figure 5. Reynolds-averaged Eulerian (lines) vs. the Lagrangian filtered (symbols) values in the
cross-stream direction. (a) Temperature (b) Mixture fraction.

As an evidence of overall layer growth, the mixture fraction thickness is constructed.
This thickness is defined as §; = 2 arg min (|Z ) — e|) for y > 0, where € is a small pos-
itive number. The temporal evolution of this thickness, shown in Figure 8, indicates that
the growth of a turbulent layer predicted by LES is close to that obtained by DNS at initial
times. However, as the flow develops the LES predicts a larger rate of spreading for the
layer. This is most likely due to inadequacies of the simple gradient diffusion model for
the SGS convection, as demonstrated in previous work [80].

The flame extinction phenomenon and its subsequent re-ignition is explained in terms of
the dissipation of the mixture fraction: x =2y /pVZ-VZ [79, 81], where y denotes the
thermal diffusivity coefficient. The Reynolds-averaged values of this dissipation, implic-
itly modelled here as: (x), = 2Qt(Z,Z) are shown in Figure 9. Here 2 is the subgrid
mixing frequency and 7(Z,Z) is the subgrid variance of the mixture fraction. All of the
predicted results agree very well with DNS measured data. At initial times, when the dis-
sipation rates are large, the flame cannot be sustained and is locally extinguished. At later
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Figure 6. Reynolds-averaged mean and RMS values of the mixture fraction (Z), temperature (7'),
CO mass fraction (Ycp), and CO, mass fraction (Ycp,). Lines and symbols denote LES and DNS
results, respectively.

times, when the dissipation values are lowered, the flame is re-ignited and the temperature
increases. This dynamic is more clearly depicted in Figure 10, where the expected temper-
ature values conditioned on the mixture fraction are shown. By t = 20¢; the temperature
at the stoichimetric mixture fraction (Z; = 0.42) decreases from 7' = 1400 K, stays below
extinction limit for a while, and then rises after = 30¢;. The agreement with DNS data for
this conditional expected value is very good.

To provide a more quantitative assessment of the flame structure within the entire
domain, an ‘extinction marker’ is defined as M.y = (H(You — You.c) | Z = Zy) [82].
Here, You . = 0.0007 is a cut-off mass fraction of hydroxyl radical and H(x) denotes
the Heaviside function. (A video-clip is provided in Supplementary Materials.) The
volume averaged extinction marker defines the probability of a point experiencing extinc-
tion: % JyMexydV = P(Z = Zy,You < Yon,) and its evolution over time is shown in
Figure 11(a). The excellent agreement between LES and DNS on the figure indicates
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Figure 7. Instantaneous slice plots at z = 0 of CO mass fraction obtained from DNS (left) and
LES-FDF (right). (a) t = 20 (b) t = 40¢;.

0 10 20 30 40

Figure 8. Temporal evolution of mixture fraction thickness. Lines and symbols denote the LES
and DNS values, respectively.

that the timings of extinction and re-ignition as predicted by LES are accurate. The tem-
poral evolution of the expected temperature conditioned on the stoichiometric mixture
fraction in Figure 11(b) corroborates the onset of extinction due to high dissipation and
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Figure 9. Reynolds-averaged values of scalar dissipation rate. Lines and symbols denote the LES
and DNS values, respectively.
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Figure 11. Temporal evolution of average extinction and re-ignition. Lines and symbols denote the
LES and DNS values, respectively. (a) Volume averaged extinction marker (b) Mean temperature on
the stoichiometric surface.

the subsequent re-ignition at low dissipation. The increase of temperature at final times
is accompanied by Yo, production and Y¢p consumption at later times, as observed in
Figure 6.

A more comprehensive comparison with DNS is done by examination of the mixture
fraction PDFs in Figure 12. In DNS these PDF generated by sampling of N, pys x 8 x
N_ pns near the centre-plane (|y| < Ay) of the jet (8 cross-stream planes). The LES gener-
ated PDFs are based on sampling of N, x 2 x N, (2 cross-stream planes). While the two
sets of PDFs are qualitatively the same, there are some small quantitative differences. The
DNS generated PDFs tend to be concentrated near the higher mixture fraction values. This
is consistent with the observations made in Figure 6, indicating a higher jet spreading rate
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Figure 13. Joint probability density functions of mixture fraction and Ycp, about y = 0 plane of
DNS (left) and LES (right).

in LES. However, the width of the PDFs are the same, consistent with the RMS values
shown in Figure 6. To portray the dynamics of multi-scalar mixing and reaction, the joint
PDFs of the scalar variables must be considered. The mixture fraction and the mass frac-
tion of the CO, are considered, and the results are shown in Figure 13. In both cases, as the
flow becomes fully turbulent at + = 40¢;, the PDFs tend to have a multi-variate Gaussian
distribution. In all cases, the LES predicted PDFs are in excellent agreement with those
depicted by DNS. Finally, to asses the LES predictions of the overall compositional struc-
ture, three-dimensional scatter plots of the mixture fraction, the mass fraction of oxidant
O, and the mass fraction of hydroxyl radical OH coloured by temperature are shown in
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Figure 14. Scatter plot of mixture fraction Z, oxidant mass fraction Yp,, and hydroxyl radical
mass fraction Yppy x 1000 coloured by temperature of DNS (left) and LES (right). (a) t = 20t/
(b) t = 401).

Figure 14. Again, the manifolds as predicted by LES-FDF are in very good agreements
with those depicted by DNS.

5. Conclusions

Modeling of turbulence-combustion interactions has been the subject of broad investiga-
tions for over seventy years now [83]. Large eddy simulation has been long recognised
as a convenient means of capturing the unsteady evolution of turbulence in both non-
reacting and reactive flows [84]. The major issues associated with LES for prediction
of practical turbulent combustion problems are: reliable modelling of SGS quantities,
high fidelity solution of the modelled transport equations, and versatility in dealing with
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complex flames. The filtered density function [36, 85-88] has proven particularly effec-
tive in resolving the first issue. The present work makes a progress in dealing with the
other two. This progress is facilitated by developing a novel computational scheme by the
merger of the PeleLM flow solver [48, 49, 65] and the Monte-Carlo (FDF) simulator. The
resulting computational scheme facilitates reliable and high fidelity simulation of turbulent
combustion systems. The novelty of the methodology, as developed, is its capability to cap-
ture the very intricate dynamics of turbulence-chemistry interactions. This is demonstrated
by its implementation to conduct LES of a CO/H, temporally developing jet flame. The
results are assessed via detailed a posteriori comparative assessments against DNS data for
the same flame [69]. Excellent agreements are observed for the temporal evolution of all of
the thermo-chemical variables, including the manifolds portraying the multi-scalar mixing.
The new methodology is shown to be particularly effective in capturing non-equilibrium
turbulence-chemistry interactions. This is demonstrated by capturing the flame-extinction
and its re-ignition as observed in DNS. With its high fidelity and computational afford-
ability, the new PeleLM-FDF simulator as developed here provides an excellent tool for
computational simulations of complex turbulent combustion systems.

At this point it is instructive to provide some suggestions for future works in continuation
of this research:

(1) The hydrodynamic SGS closure adopted here is based on the zero-order model of
Vreman [61]. This model has proven very effective for LES of many flows, including
the one considered here. However, for more complex flows one may need to use more
comprehensive SGS closures. Therefore, the extension to include the velocity-FDF
[80, 89-91] is encouraged.

(2) A very attractive feature of the PeleLM is its adaptive gridding and mesh refinement
strategy. This feature is not utilised here because of the relative flow simplicity. Future
work is needed to refine the MC strategy in conjunction with AMR. Some progress in
this regard has been reported [6, 8].

(3) The FDF-MC has experienced continual upgrades within the past decade [36]. As
examples: sparse-Lagrangian MC for better performance with small number of par-
ticles [7, 32, 92], high order SDE solver for more accurate particle integration [93],
mass consistency assurance [94], spline-averaging of the MC particles for higher order
calculations of the moments [30]. These upgrades can be implemented into future
versions of the present hybrid simulator.

(4) The PeleC code [95] is the counterpart of PeleLM for high speed flows. It would be
desirable to implement the FDF methodology in this code as well. In doing so, the full
self-contained form of the FDF [18] should be considered.

(5) Resolution assessment in LES is of crucial importance. Several such studies have been
conducted for other forms of LES-FDF [16, 21, 96], and is recommended for PeleLM-
FDF.

(6) With its flexibility and high fidelity, it is expected that the PeleLM-FDF methodology
will be implemented for LES of a wide variety of other complex turbulent combustion
systems.
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