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Abstract
Evidential deep learning, built upon belief the-
ory and subjective logic, offers a principled and
computationally efficient way to turn a determin-
istic neural network uncertainty-aware. The resul-
tant evidential models can quantify fine-grained
uncertainty using the learned evidence. To en-
sure theoretically sound evidential models, the ev-
idence needs to be non-negative, which requires
special activation functions for model training
and inference. This constraint often leads to infe-
rior predictive performance compared to standard
softmax models, making it challenging to extend
them to many large-scale datasets. To unveil the
real cause of this undesired behavior, we theoreti-
cally investigate evidential models and identify a
fundamental limitation that explains the inferior
performance: existing evidential activation func-
tions create zero evidence regions, which prevent
the model to learn from training samples falling
into such regions. A deeper analysis of eviden-
tial activation functions based on our theoretical
underpinning inspires the design of a novel regu-
larizer that effectively alleviates this fundamental
limitation. Extensive experiments over many chal-
lenging real-world datasets and settings confirm
our theoretical findings and demonstrate the effec-
tiveness of our proposed approach.

1. Introduction
Deep Learning (DL) models have found great success in
many real-world applications such as speech recognition
(Kamath et al., 2019), machine translation (Singh et al.,
2017), and computer vision (Voulodimos et al., 2018). How-
ever, these highly expressive models may easily fit the noise
in the training data, which leads to overconfident predictions
(Nguyen et al., 2015). The challenge is further compounded
when learning from limited labeled data, which is common
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for applications from specialized domain (e.g., medicine,
public safety, and military operations) where data collec-
tion and annotation is highly costly. Accurate uncertainty
quantification is essential for successful application of DL
models in these domains. To this end, DL models have been
augmented to become uncertainty-aware (Gal & Ghahra-
mani, 2016; Blundell et al., 2015; Pearce et al., 2020). How-
ever, commonly used extensions require expensive sampling
operations (Gal & Ghahramani, 2016; Blundell et al., 2015),
which significantly increase the computational costs (Lak-
shminarayanan et al., 2017).

The recently developed evidential models bring together
evidential theory (Shafer, 1976; Jøsang, 2016) and deep
neural architectures that turn a deterministic neural network
uncertainty-aware. By leveraging the learned evidence, evi-
dential models are capable of quantifying fine-grained un-
certainty that helps to identify the sources of ‘unknowns’.
Furthermore, since only lightweight modifications are intro-
duced to existing DL architectures, additional computational
costs remain minimum. Such evidential models have been
successfully extended to classification (Sensoy et al., 2018),
regression (Amini et al., 2020), meta-learning (Pandey & Yu,
2022a), and open-set recognition (Bao et al., 2021) settings.

Figure 1. Cifar100 Result

Despite the attractive
uncertainty quantifica-
tion capacity, eviden-
tial models are only
able to achieve a pre-
dictive performance on
par with standard deep
architectures in rela-
tively simple learning problems. They suffer from a sig-
nificant performance drop when facing large datasets with
more complex features even in the common classification
setting. As shown in Figure 1, an evidential model using
ReLU activation and an evidential MSE loss (Sensoy et al.,
2018) only achieves 36% test accuracy on Cifar100, which
is almost 40% lower than a standard model trained using
softmax. Additionally, most evidential models can easily
break down with minor architecture changes and/or have
a much stronger dependency on hyperparameter tuning to
achieve reasonable predictive performance. The experiment
section provides more details on these failure cases.
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Figure 2. Visualization of zero-evidence region for evidential mod-
els with ReLU activation in a binary classification setting. Existing
models fail to learn from samples that are mapped to such zero-
evidence region (shared area at the bottom left quadrant).

To train uncertainty-aware evidential models that can also
predict well, we perform a novel theoretical analysis with
a focus on the standard classification setting to unveil the
underlying cause of the performance gap. Our theoreti-
cal results show that existing evidential models learn sub-
optimally compared to corresponding softmax counterparts.
Such sub-optimal training is mainly attributed to the inher-
ent learning deficiency of evidential models that prevents
them from learning across all training samples. More specif-
ically, they are incapable to acquire new knowledge from
training samples mapped to “zero-evidence regions” in the
evidence space, where the predicted evidence reduces to
zero. The sub-optimal learning phenomenon is illustrated
in Figure 2 (detailed discussion is presented in Section 4.2).
We analyze different variants of evidential models present
in the existing literature and observe this limitation across
all the models and settings. Our theoretical results inspire
the design of a novel Regularized Evidential model (RED)
that includes positive evidence regularization in its train-
ing objective to battle the learning deficiency. Our major
contributions can be summarized as follows:

• We identify a fundamental limitation of evidential models,
i.e., lack the capability to learn from any data samples that
lie in the “zero-evidence” region in the evidence space.

• We theoretically show the superiority of evidential models
with exp activation over other activation functions.

• We conduct novel evidence regularization that enables
evidential models to avoid the “zero-evidence” region so
that they can effectively learn from all training samples.

• We carry out experiments over multiple challenging real-
world datasets to empirically validate the presented theory,
and show the effectiveness of our proposed ideas.

2. Related Works
Uncertainty Quantification in Deep Learning. Accu-
rate quantification of predictive uncertainty is essential for

development of trustworthy Deep Learning (DL) models.
Deep ensemble techniques (Pearce et al., 2020; Lakshmi-
narayanan et al., 2017) have been developed for uncer-
tainty quantification. An ensemble of neural networks is
constructed and the agreement/disagreement across the en-
semble components is used to quantify different uncertain-
ties. Ensemble-based methods significantly increase the
number of model parameters, which are computationally
expensive at both training and test times. Alternatively,
Bayesian neural networks (Gal & Ghahramani, 2016)(Blun-
dell et al., 2015)(Mobiny et al., 2021) have been devel-
oped that consider a Bayesian formalism to quantify dif-
ferent uncertainties. For instance, (Blundell et al., 2015)
use Bayes-by-backdrop to learn a distribution over neural
network parameters, whereas (Gal & Ghahramani, 2016)
enable dropout during inference phase to obtain predictive
uncertainty. Bayesian methods resort to some form of ap-
proximation to address the intractability issue in marginal-
ization of latent variables. Moreover, these methods are
also computationally expensive as they require sampling for
uncertainty quantification.

Evidential Deep Learning. Evidential models introduce a
conjugate higher-order evidential prior for the likelihood dis-
tribution that enables the model to capture the fine-grained
uncertainties. For instance, Dirichlet prior is introduced
over the multinomial likelihood for evidential classification
(Bao et al., 2021; Zhao et al., 2020), and NIG prior is in-
troduced over the Gaussian likelihood (Amini et al., 2020;
Pandey & Yu, 2022b) for the evidential regression models.
Adversarial robustness (Kopetzki et al., 2021) and calibra-
tion (Tomani & Buettner, 2021) of evidential models have
also been well studied. Usually, these models are trained
with evidential losses in conjunction with heuristic evidence
regularization to guide the uncertainty behavior (Pandey &
Yu, 2022a; Shi et al., 2020) in addition to reasonable gen-
eralization performance. Some evidential models assume
access to out-of-distribution data during training (Malinin &
Gales, 2019; 2018) and use the OOD data to guide the un-
certainty behavior. A recent survey (Ulmer, 2021) provides
a thorough review of the evidential deep learning field.

In this work, we focus on evidential classification models
and consider settings where no OOD data is used during
model training to make the proposed approach more broadly
applicable to practical real-world situations.

3. Learning Deficiency of Evidential Models
3.1. Preliminaries and problem setup
Standard classification models use a softmax transformation
on the output from the neural network FΘ for input x to ob-
tain the class probabilities in K-class classification problem.
Such models are trained with the cross-entropy based loss.
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For a given training sample (x,y), the loss is given by

Lcross = −
K∑

k=1

yk log(smk) (1)

where smk is the softmax output. These models have
achieved state-of-the-art performance on many benchmark
problems. A detailed gradient analysis shows that they can
effectively learn from all training data samples (see Ap-
pendix A). Nevertheless, these models lack a systematic
mechanism to quantify different sources of uncertainty, a
highly desired property in many real-world problems.

Figure 3. Graphical model for Evidential Deep Learning

Evidential classification models formulate training as an
evidence acquisition process and consider a higher-order
Dirichlet prior Dir(p|α) over the predictive Multino-
mial distribution Mult(y|p). Different from a standard
Bayesian formulation which optimizes Type II Maximum
Likelihood to learn the Dirichlet hyperparameter (Bishop
& Nasrabadi, 2006), evidential models directly predict α
using data features x and then generate the prediction y by
marginalizing the Multinomial parameter p. Figure 3 de-
scribes this generative process. Such higher-order prior en-
ables the model to systematically quantify different sources
of uncertainty. In evidential models, the softmax layer of
the standard neural networks is replaced by a non-negative
activation function A, where A(x) ≥ 0 ∀x ∈ [−∞,∞],
such that for input x, the neural network model FΘ with
parameters Θ can output evidence e for different classes.
Dirichlet prior α is evaluated as α = e+1 to ensure α ≥ 1.
The trained evidential model outputs Dirichlet parameters
α for input x that can quantify fine-grained uncertainties in
addition to the prediction y. Mathematically, for K−class
classification problem,

Evidence(e) = A(FΘ(x)) = A(o) (2)
Dirichlet Parameter(α) = e+ 1 (3)

Dirichlet Strength(S) = K +

K∑
k=1

ek (4)

The activation function A(·) assumes three common forms
to transform the neural network output into evidence: (1)
ReLU(·) = max(0, ·), (2) SoftPlus(·) = log(1 +
exp(·)), and (3) exp(·).

Evidential models assign input sample to that class for which
the output evidence is greatest. Moreover, they quantify the
confidence in the prediction for K class classification prob-
lem through vacuity ν (i.e., measure of lack of confidence

in the prediction) computed as

Vacuity(ν) =
K

S
(5)

For any training sample (x,y), the evidential models aim to
maximize the evidence for the correct class, minimize the
evidence for the incorrect classes, and output accurate confi-
dence. To this end, three variants of evidential loss functions
have been proposed (Sensoy et al., 2018): 1) Bayes risk with
sum of squares loss, 2) Bayes risk with cross-entropy loss,
and 3) Type II Maximum Likelihood loss. Please refer to
equations (21), (22), and (23) in the Appendix for the spe-
cific forms of these losses. Additionally, incorrect evidence
regularization terms are introduced to guide the model to
output low evidence for classes other than the ground truth
class (See Appendix C for discussion on the regularization).
With evidential training, accurate evidential deep learning
models are expected to output high evidence for the correct
class, low evidence for all other classes, and output very
high vacuity for unseen/out-of-distribution samples.

3.2. Theoretical Analysis of Learning Deficiency in
Evidential Learning

To identify the underlying reason that causes the perfor-
mance gap of evidential models as described earlier, we
consider a K class classification problem and a represen-
tative evidential model trained using Bayes risk with sum
of squares loss given in (21). We first provide an important
definition that is critical for our theoretical analysis.
Definition 1 (Zero-Evidence Region). A Zero-evidence
sample is a data sample for which the model outputs zero
evidence for all classes. A region in the evidence space that
contains zero-evidence samples is a zero-evidence region.

For a reasonable evidential model, novel data samples not
yet seen during training, difficult data samples, and out-of-
distribution samples should become zero-evidence samples.

Theorem 1. Given a training sample (x,y), if an evidential
neural network outputs zero evidence e, then the gradients
of the evidential loss evaluated on this training sample over
the network parameters reduce to zero.

Proof. Consider an input x with one-hot ground truth label
y. Let the ground truth class index be gt, i.e., ygt = 1,
with corresponding Dirichlet parameter αgt, and y ̸=gt =
0. Moreover, let o, e, and α represent the neural network
output vector before applying the activation A, the evidence
vector, and the Dirichlet parameters respectively.

In this evidential model, the loss is given by

LMSE(x,y) =
K∑
j=1

(yj −
αj

S
)2 +

αj(S − αj)

S2(S + 1)
(6)
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Now, the gradient of the loss with respect to the neural
network output can be computed using the chain rule:

∂LMSE(x,y)

∂ok
=
∂LMSE(x,y)

∂αk

∂ek
∂ok

=

[
2αgt

S2
− 2

yk
S

− 2(S − αk)

S(S + 1)
+

+
2(2S + 1)

∑
i

∑
j αiαj

(S2 + S)2

]
× ∂ek
∂ok

(7)

Based on the actual form of A, we have three cases:

Case I: ReLU(·) to transform logits to evidence

ek = ReLU(ok) =⇒ ∂ek
∂ok

=

{
1 if ok > 0

0 otherwise
(8)

For a zero-evidence sample, the logits ok satisfy the rela-
tionship ok ≤ 0 ∀ k =⇒ ∂ek

∂ok
= 0 =⇒ ∂LMSE(x,y)

∂ok
= 0

Case II: SoftPlus(·) to transform logits to evidence

ek = log(exp(ok) + 1) =⇒ ∂ek
∂ok

= Sigmoid(ok) (9)

For a zero-evidence sample, the logits ok → −∞ =⇒
Sigmoid(ok) → 0 & ∂ek

∂ok
→ 0.

Case III: exp(·) to transform logits to evidence

ek = exp(ok) =⇒ ∂ek
∂ok

= exp(ok) = αk − 1 (10)

For a zero-evidence sample, αk → 1 =⇒ ∂ek
∂ok

→ 0.
Moreover, there is no term in the first part of the loss gradient
in (7) to counterbalance these zero-approaching gradients.
So, for zero-evidence training samples, for any node k,

∂LMSE(x,y)

∂ok
= 0 (11)

Since the gradient of the loss with respect to all the nodes
is zero, there is no update to the model from such samples.
This implies that the evidential models fail to learn from a
zero-evidence data sample.

For completeness, we present the analysis of standard clas-
sification models in Appendix A, detailed proof of the evi-
dential models trained using Bayes risk with sum of squares
error along with other evidential lossses in Appendix B, and
impact of incorrect evidence regularization in Appendix C.

Remark: Evidential models can not learn from a train-
ing sample that the model has never seen and for which
the model accurately outputs “I don’t know”, i.e., ek =
0 ∀k ∈ [1,K]. Such samples are expected and likely to be
present during model training. However, the supervised in-
formation in such training data points is completely missed

by evidential models so they fail to acquire any new knowl-
edge from all such training data samples (i.e., data samples
in zero-evidence region of the evidence space).

Corollary 1. Incorrect evidence regularization can not help
evidential models learn from zero-evidence samples.

Intuitively, the incorrect evidence regularization encourages
the model to output zero evidence for all classes other than
the ground truth class and the regularization does not have
any impact on the evidence for the ground truth class. So,
the regularization updates the model parameters such that
the model is likely to map input samples closer to zero-
evidence region in the evidence space. Thus, the regular-
ization does not address the failure of evidential models to
learn from zero evidence samples.

Theorem 2. For a data sample x, if an evidential model
outputs logits ok ≤ 0 ∀k ∈ [0,K], the exponential acti-
vation function leads to a larger gradident update on the
model parameters than softplus and ReLu.

Limited by space, we present the proof of Theorem 2 along
with additional analysis in the Appendix D. The proof fol-
lows the gradient analysis of the exponential, Softplus,
and ReLU based models. It implies that the the training
of evidential models is most effective with the exponential
activation function. Intuitively, the ReLU based activation
completely destroys all the information in the negative logits,
and has largest region in evidence space in which training
data have zero evidence. Softplus activation improves
over the ReLU, and compared to ReLU, has smaller region
in evidence space where training data have zero evidence.
However, Softplus based evidential models fail to cor-
rect the acquired knowledge when the model has strong
wrong evidence. Moreover, these models are likely to suf-
fer from vanishing gradients problem when the number of
classes increases (i.e., classification problem becomes more
challenging). Finally, exponential activation has the smallest
zero-evidence region in the evidence space without suffering
from the issues of SoftPlus based evidential models.

4. Avoiding Zero-Evidence Regions Through
Correct Evidence Regularization

We now consider an evidential model with exponential func-
tion to transform the logits into evidence. We propose a
novel vacuity-guided correct evidence regularization term

Lcor(x,y) = −λcor log(αgt − 1) (12)

where λcor = ν = K
S represents the regularization term

whose value is given by the magnitude of the vacuity output
by the evidential model and αgt−1 represents the predicted
evidence for the ground truth class. The regularization
term λcor determines the relative importance of the correct
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evidence regularization term compared to the evidential
loss and incorrect evidence regularization and is treated as
constant during model parameter update.

Theorem 3. Correct evidence regularization Lcor(x,y)
can address the issue of learning from zero-evidence train-
ing samples.

Proof. The proposed regularization term Lcor(x,y) does
not contain any evidence terms other than the evidence for
the ground truth node. So, the gradient of the regularization
for nodes other than the ground truth node will be 0 i.e.
∂Lcor(x,y)

∂ok

∣∣∣
k ̸=gt

= 0 and there will be no update on these

nodes. For the ground truth node gt, ygt = 1, the gradient
is given by

∂Lcor(x,y)

∂ogt
=
∂
(
− λcor log(αgt − 1)

)
∂ogt

(13)

= −λcor
∂ log(αgt − 1)

∂αgt
× ∂αgt

∂ogt
(14)

= − λcor
(αgt − 1)

(αgt − 1) = −λcor (15)

The gradient value equals the magnitude of the vacuity. The
vacuity is bounded in the range [0, 1], and zero-evidence
sample, the vacuity is maximum, leading to the greatest
gradient value of ∂Lcor(x,y)

∂ogt
= −1. In other words, the reg-

ularization encourages the model to update the parameters
such that the correct evidence αgt − 1 increases. As the
model evidence increases, the vacuity decreases, and the
contribution of the regularization Lcor(x,y) is minimized.
Thus, the proposed regularization enables the evidential
model to learn from zero-evidence samples.

4.1. Evidential Model Training
We formulate an overall objective used to train the pro-
posed Regularized evidential model (RED). Essentially,
the evidential model is trained to maximize the correct evi-
dence, minimize the incorrect evidence, and avoid the zero-
evidence region during training. The overall loss is

L(x,y) = Levid(x,y) + η1Linc(x,y) + Lcor(x,y)
(16)

where Levid(x,y) is the loss based on the evidential
framework given by (21), (23), or (22) (See Appendix B),
Linc(x,y) represents the incorrect evidence regularization
(See Appendix Section C), Lcor(x,y) represents the pro-
posed novel correct evidence regularization term in (12), and
η1 = λ1 × min(1.0, epoch index/10) controls the impact
of incorrect evidence regularization to the overall model
training. In this work, we consider the forward-KL based
incorrect evidence regularization given in (42) based on
(Sensoy et al., 2018).

4.2. Evidence Space Visualization

Figure 4. Evidence space visualization to demonstrate the effec-
tiveness of the proposed method.

Figure 2 visualizes the evidence space in ReLU-based ev-
idential models by considering the pre-ReLU output in a
binary classification setting. Ideally, all samples that belong
to Class 1 should be mapped to the blue region (region of
high evidence for Class 1, low evidence for all other classes),
all samples that belong to Class 2 should be mapped to the
red region, and all out-of distribution samples should be
mapped to the zero-evidence region (no evidence for all
classes). To realize this goal, the models are trained using
the evidential loss Levid with incorrect evidence regular-
ization Linc. However, there is no update to the evidential
model from such samples of zero-evidence region. Model’s
prior belief of “I don’t know” for such samples does not
get updated even after being exposed to the true label. For
the samples with high incorrect evidence and low correct
evidence, evidential model aims to correct itself. However,
many such samples are likely to get mapped to the zero-
evidence region (as shown by blue and orange arrows in
Figure 2) after which there is no update to the model. Such
fundamental limitation holds true for all evidential models.

The evidence space visualization for RED is shown in Figure
4 to illustrate how it addresses the above limitation. Cor-
rect evidence regularization (indicated by green arrows) is
weighted by the magnitude of the vacuity and is maximum
in the zero-evidence region. In this problematic region, the
proposed regularization fully dominates the model update
as there is no update to the model from the two loss com-
ponents (Levid and Linc) in (16). As the sample gets far
away from the zero evidence region, the vacuity decreases
proportionally, the impact of the proposed regularization
to model update becomes insignificant, and the evidential
losses (Levid & Linc) guide the model training. In this
way, RED can effectively learn from all training samples
irrespective of the model’s existing evidence.

5



Learn to Accumulate Evidence from All Training Samples: Theory and Practice

5. Experiments
Datasets and setup. We consider the standard supervised
classification problem with MNIST (LeCun, 1998), Ci-
far10, and Cifar100 datasets (Krizhevsky et al., 2009), and
few-shot classification with mini-ImageNet dataset (Vinyals
et al., 2016). We employ the LeNet model for MNIST,
ResNet18 model (He et al., 2016) for Cifar10/Cifar100,
and ResNet12 model (He et al., 2016) for mini-ImageNet.
We first conduct experiments to demonstrate the learning
deficiency of existing evidential models to confirm our the-
oretical findings. We then evaluate the proposed correct
evidence regularization to show its effectiveness. We finally
conduct ablation studies to investigate the impact of evi-
dential losses on model generalization and the uncertainty
quantification of the proposed evidential model. Limited by
space, additional clarifications, experiment results includ-
ing few-shot classification experiments, experiments over
challenging tiny-Imagenet datasett with Swin Transformer,
hyperparameter details, and discussions are presented in the
Appendix.

5.1. Learning Deficiency of Evidential Models

Sensitivity to the change of the architecture. We first
consider a toy illustrative experiment with two frameworks:
1) standard softmax, 2) evidential learning, and experiment
with the LeNet (LeCun et al., 1999) model considered in
EDL (Sensoy et al., 2018) with a minor modification to the
architecture: no dropout in the model. To construct the toy
dataset, we randomly select 4 labeled data points from the
MNIST training dataset as shown in the Figure 5. For the
evidential model, we use ReLU to transform the network
outputs to evidence, and train the model with MSE-based
evidential loss (Sensoy et al., 2018) given in (21) without
incorrect evidence regularization. We train both models
using only these 4 training data points.

Figure 6 compares the training accuracy and training loss
trends of the evidential model with the standard softmax
model (trained with the cross-entropy loss). Before any
training, both models have 0% accuracy and the loss is high
as expected. For the evidential model, in the first few iter-
ations, the model learns from the training dataset, and the
model’s accuracy increases to 50%. Afterward, the eviden-
tial model fails to learn as the evidential model maps two of
the training data samples to the zero-evidence region. Even
in such a trivial setting, the evidential model fails to fit the 4
training data points showing their learning deficiency that
empirically verifies the conclusion in Theorem 1. It is also
worth noting that the range of the evidential model’s loss is
significantly smaller than the standard model. This is mainly
due to the bounded nature of the evidential MSE loss(i.e., it
is bounded in the range [0, 2]) (a detailed theoretical analy-
sis of the evidential losses is provided in the Appendix). In
contrast, the standard model trained with cross-entropy loss

GT: 3 GT: 5 GT: 2 GT: 6

Figure 5. Toy dataset with 4 data points.
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Figure 6. Training of standard and evidential models

easily fits the trivial dataset, obtains near 0 loss, and perfect
accuracy of 100% after a few iterations of training.
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Figure 7. Zero-evidence trend during model training

Additionally, we visualize the zero-evidence data samples
for the toy dataset setting. We plot the total evidence for
each training sample as training progresses for the first 100
iterations. The total evidence trend as training progresses
for the first 100 iterations is shown in Figure 7. The ev-
idential model’s predictions are correct for data samples
with ground truth labels of 3 and 6, and incorrect for the
remaining two data samples. After few iterations of training,
the remaining two samples have zero total evidence (i.e.
samples are mapped to zero evidence region), the model
never learns from them, and the model only achieves overall
50% training accuracy even after 100 iterations. Clearly,
the evidential model continues to output zero evidence for
two of the training examples and fails to learn from them.
Such learning deficiency of evidential models limits their
extension to challenging settings. In contrast, the standard
model easily overfits the 4 training examples and achieves
100% accuracy.

Sensitivity to hyperparameter tuning. In this experi-
ment, evidential models are trained using evidential losses
given in (21), (22), or (23) with incorrect evidence regular-
ization to guide the model for accurate uncertainty quan-
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Figure 8. Impact of different incorrect evidence regularization
strengths to the test set accuracy on Cifar100 dataset

tification. We study the impact of the incorrect evidence
regularization λ1 to the evidential model’s performance
using Cifar100. The result shows that the generalization
performance of evidential models is highly sensitive to λ1
values. To illustrate, we consider the Type II Maximum
Likelihood loss in (23) with different λ1 to control KL reg-
ularization (results on other loss functions are presented in
the Appendix). As shown in Figure 8, when some regular-
ization is introduced, evidential model’s test performance
improves slightly. However, when strong regularization is
used, the model focuses strongly on minimizing the incor-
rect evidence. Such regularization causes the model to push
many training samples into or close to the zero-evidence
regions, which hurts the model’s learning capabilities. In
contrast, the proposed model can continue to learn from
samples in zero-evidence regions, which shows its robust-
ness to incorrect evidence regularization. Moreover, our
model has stable performance across all hyperparameter
settings as it can effectively learn from all training samples.

Challenging datasets and settings. We next consider
standard classification models for the Cifar100 dataset and
1-shot classification with the mini-ImageNet dataset. We
develop evidential extensions of the classification models
using Type II Maximum Likelihood loss given in (23) with-
out any incorrect evidence regularization and use ReLU to
transform logits to evidence. As shown in Figure 10, com-
pared to the standard classification model, the evidential
model’s predictive performance is sub-optimal (almost 20%
lower for both classification problems). This is mainly due
to the fact that evidential model maps many of the training
data points to zero-evidence region, which is equivalent to
the model saying “I don’t know to which class this sample
belongs” and stopping to learn from them. Consequently,
the model fails to acquire new knowledge (i.e., update itself),
even after being exposed to correct supervision (the label
information). In these cases, instead of learning, the eviden-
tial model chooses to ignore the training data on which it
does not have any evidence and remains to be ignorant.

Visualization of zero-evidence samples. We next show
the 2-dimensional visualization of the latent representation
for the randomly selected 500 training examples based on

Figure 9. Zero-Evidence Sample Visualization

(a) Cifar100 Results (b) 1-Shot Results

Figure 10. Learning trends in complex classification problems

the tSNE plot for ReLU based evidential model trained on
the Cifar100 dataset with λ1 = 0.1. Figure 9 plot visualizes
the latent embedding of zero evidence (Zero E) training sam-
ples with non-zero evidence (Non-Zero E) training samples.
As can be seen, both zero and non-zero evidence samples ap-
pear to be dispersed, overlap at different regions, and cover
a large area in the embedding space. This further confirms
the challenge of effectively learning from these samples

5.2. Effectiveness of the RED

Evidential activation function. We first experiment with
different activation functions for the evidential models to
show the superior predictive performance and generalization
capability of exp activation validating our Theorem 2. We
consider evidential models trained with evidential log loss
given by (23) in Table 1 (Additional results along with hy-
perparameter details are presented in Appendix Section F).
As can be seen, exp activation to transform network outputs
into evidence leads to superior performance compared to
ReLU and Softplus based transformations. Furthermore,
our proposed model with correct evidence regularization
further improves over the exp-based evidential models as
it enables the evidential model to continue learning from
zero-evidence samples.

Table 1. Classification performance comparison
Model MNIST Cifar10 Cifar100
ReLU 98.19±0.08 41.43±19.60 61.27±3.79

SoftPlus 98.21±0.05 95.18±0.11 74.48±0.17

exp 98.79±0.02 95.11±0.10 76.12±0.04

RED(Ours) 99.10±0.02 95.24±0.06 76.43±0.21

We next present the test set performance change as training
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progresses with MNIST dataset and two different evidential
losses in Figure 11 where we observe similar results. The
exp activation shows superior performance, as it has small-
est zero-evidence region, and does not suffer from many
learning issues present in other activation functions.

(a) Evidential MSE loss (b) Evidential Log loss

Figure 11. Impact of evidential activation functions to the Test
Accuracy

Correct evidence regularization. We now study the im-
pact of the proposed correct evidence regularization using
the MNIST and Cifar100 classification problems. We con-
sider the evidential baseline model that uses exp activation
to acquire evidence, and is trained with Type II Maximum
Likelihood based loss with different incorrect evidence reg-
ularization strengths. We introduce the proposed novel cor-
rect evidence regularization to the model. As can be seen in
Figure 12, the model with correct-evidence regularization
has superior generalization performance compared to the
baseline evidential model. This is mainly due to the fact
that with proposed correct evidence regularization, the evi-
dential model can also learn from the zero-evidence training
samples to acquire new knowledge instead of ignoring them.
Our proposed model considers knowledge from all the train-
ing data and aims to acquire new knowledge to improve its
generalization instead of ignoring the samples on which it
has no knowledge. Finally, even though strong incorrect
evidence regularization hurts the model’s generalization, the
proposed model is robust and generalizes better, empirically
validating our Theorem 3. Limited by space, we present
additional results in Appendix F.3.2.

Zero-evidence Sample Anaysis. Similar to the toy
MNIST zero-evidence analysis, we consider the Cifar100
dataset, and carry out the analysis for this complex
dataset/setting. Instead of focusing on a few training ex-
amples, we present the average statistics of the evidence
(E) for the 50,000 training samples in the 100 class classi-
fication problem for a model trained for 200 epochs using
a log-based evidential loss in (23) with λ1 = 1.0. For ref-
erence, the samples with less than 0.01 average evidence
(i.e., E ≤ 0.01) are samples on which the model is not
confident (i.e., having a high vacuity of ν ≥ 0.99), and are
close to the ideal zero-evidence region. Our proposed RED
model effectively avoids such zero evidence regions, and
has the lowest number of samples (i.e. only 0.06% of total
training dataset compared to 58.96% of SoftPlus based,

(a) Trend for λ1 = 1.0 (b) Trend for λ1 = 10.0

(c) Trend for λ1 = 0.1 (d) Trend for λ1 = 1.0

Figure 12. Impact of correct evidence regularization to test accu-
racy: (a), (b) - MNIST Results; (c), (d) - Cifar100 Results

and 100% of ReLU based evidential models) in very low
evidence regions.

Table 2. Zero-Evidence Analysis for Complex Dataset-Setting
Model E ≤ .01 E ≤ 0.1 E ≤ 1.0 E > 1.0
ReLU 50000 50000 50000 0
SoftPlus 29483 32006 49938 62
Exp 48318 49881 49949 51
RED 30 16322 25154 24846

5.3. Ablation Study

Impact of loss function. We next study the impact of
the evidential loss function on the model’s performance
using MNIST and CIFAR100 classification problems. We
consider all three activations: ReLU,SoftPlus, and exp
to transform neural network outputs to evidence and carry
out experiments over CIFAR100 with identical model and
settings. As seen in Table 3, the generalization performance
of evidential model is consistently sub-optimal when trained
with evidential MSE loss given by (21) compared to the two
other evidential losses (22) & (23). This is consistent across
all three evidence activation functions. This is mainly due
to the bounded nature of the evidential MSE loss (21): for
all training samples, evidential MSE loss is bounded in the
range of [0, 2]. Type II Maximum Likelihood loss given in
(23) and cross-entropy based evidential loss given in (22)
show comparable empirical results.

Next, we consider exp activation and conduct experiments
over the MNIST dataset for incorrect evidence regulariza-
tion strengths of λ1 = 0&1. We again observe similar
results where the training with the Evidential MSE loss in
(21) leads to sub-optimal test performance. Additional re-
sults, along with theoretical analysis are presented in the
Appendix. In the subsequent experiments, we consider the
Type II Maximum Likelihood loss (23) for evidential model
training due to its simplicity and some theoretical advan-
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tages (see Appendix E). We leave a thorough investigation
of these two evidential losses ((22) & (23)) as future work.

Table 3. Impact of evidential losses on classification performance
Loss ReLU SoftPlus exp RED(Ours)
MSE(21) 31.49±0.3 15.74±0.5 42.95±0.7 75.73±0.3

CE (22) 68.62±2.4 74.44±0.1 76.23±0.1 76.35±0.1

Log(23) 61.27±3.8 74.48±0.1 76.12±0.1 76.43±0.2

(a) Trend for λ1 = 0.0 (b) Trend for λ1 = 1.0

Figure 13. Impact of evidential losses on test set accuracy

Figure 14. Accuracy-Vacuity curve

Study of uncertainty information. We now investigate
the uncertainty behavior of the proposed evidential model
with Cifar100 experiments. We present the Accuracy-
Vacuity curve for different incorrect evidence regulariza-
tion strengths (λ1) in Figure 14. Vacuity reflects the lack
of confidence in the predictions, and the accuracy of effec-
tive evidential model should increase with lower vacuity
threshold. Without any incorrect evidence regularization
(i.e., λ1 = 0), the evidential model is highly confident on
its predictions and all test samples are concentrated on the
low vacuity region. As the incorrect evidence regularization
strength is increased, the model outputs more accurate confi-
dence in the predictions. Strong incorrect evidence regular-
ization hurts the generalization over the test set as indicated
by low accuracy when all test samples are considered (i.e.,
vacuity threshold of 1.0). In all cases, the evidential model
shows reasonable uncertainty behavior: the model’s test set
accuracy increases as the vacuity threshold is decreased.

Next, we look at the accuracy of the evidential models on
their top-K % most confident predictions over the test set.
Table 4 shows the accuracy trend of Top-K (%) confident
samples. Consider the most confident 20% samples (cor-
responding to 2000 test samples of Cifar100 dataset). The
proposed model leads to highest accuracy (of 99.35%) com-
pared to all the models. Similar trend is seen for different
K values where the proposed model shows comparable

to superior results demonstrating its accurate uncertainty
quantification capability.

Table 4. Accuracy on Top-K% confident samples (%)
Model 10% 20% 30% 50% 80% 100%
ReLU 98.50 98.30 97.27 90.60 71.54 61.27
SoftPlus 99.10 98.75 98.30 95.86 85.56 74.48
exp 99.40 98.95 98.50 96.52 86.46 76.12
RED 99.60 99.35 98.83 96.24 86.38 76.43

We next consider out-of-distribution (OOD) detection ex-
periments for the Cifar100-trained evidential model using
SVHN dataset (as OOD) (Netzer et al., 2011). As seen
in Table 5, the evidential models, on average, output very
high vacuity for the OOD samples, showing the potential
for OOD detection.

Table 5. Out-of-Distribution sample detection
Model InD Vacuity OOD Vacuity (SVHN)
exp 0.3227 0.7681
RED (Ours) 0.2729 0.7552

We present the AUROC score for Cifar100 trained models
with SVHN dataset test set as the OOD samples in Table
6. In AUROC calculation, we use the maximum softmax
score for the standard model, and predicted vacuity score
for all the evidential models. As can be seen, the exp-based
model outperforms all other activation functions, and the
proposed model RED can learn from all the training samples
that leads to the best performance.

Table 6. AUROC for Cifar100-SVHN experiment
Model ReLU SoftPlus Standard exp RED
AUROC 0.7430 0.8058 0.8669 0.8804 0.8833

6. Conclusion
In this paper, we theoretically investigate the evidential mod-
els to identify their learning deficiency, which makes them
fail to learn from zero-evidence regions. We then show
the superiority of the evidential model with exp evidential
activation over the ReLU and SoftPlus based models.
We further analyze the evidential losses, and introduce a
novel correct evidence regularization over the exp-based ev-
idential model. The proposed model effectively pushes the
training samples out of the zero-evidence regions, leading to
superior learning capabilities. We conduct extensive experi-
ments that empirically validate all theoretical claims while
demonstrating the effectiveness of the proposed approach.
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Appendix

Organization of the Appendix
• In Section A, we present an analysis of standard classification models trained with cross-entropy loss to show their

learning capabilities.

• In Section B, we present a complete proof of Theorem 1 for different evidential losses that demonstrates the inability of
evidential models to learn from zero-evidence samples.

• In Section C, we describe different incorrect evidence regularizations used in the existing literature and carry out a
gradient analysis to study their impact on evidential model learning.

• In Section D, we present the proof for Theorem 2 that shows the superiority of exp activation over the SoftPlus and
ReLU functions to transform logits to evidence.

• In Section E, we analyze the evidential losses that reveals the theoretical limitation of evidential models trained using
Bayes risk with sum of squares loss.

• In Section F, we present additional experiment results, clarifications, hyperparameter details, and discuss some
limitations along with possible future works.

The source code for the experiments carried out in this work is attached in the supplementary materials and is available at
the link: https://github.com/pandeydeep9/EvidentialResearch2023

A. Standard Classification Model
Consider a standard cross-entropy based model for K−class classification. Let the overall network be represented by fΘ(.),
and let o = fΘ(x) be the output from this network before the softmax layer for input x and one-hot ground truth label of y.
The output after the softmax layer is given by

smi =
exp(oi)∑K

k=1 exp(ok)
=

exp(oi)

Sce (17)

Where Sce =
∑K

i=1 exp(oi). The model is trained with cross-entropy loss. For a given sample (x,y), the loss is given by

Lcross-entropy = −
K∑

k=1

yk log(smk) = −
K∑

k=1

[
ykok − yk log

( K∑
i=1

exp(oi)
)]

(18)

= logSce −
K∑

k=1

ykok (19)

Now, looking at the gradient of this loss with respect to the pre-softmax values o

gradk =
∂Lcross-entropy

∂ok
=

( 1

Sce

∂Sce

∂ok
− yk

)
=

(exp(ok)
Sce − yk

)
= smk − yk (20)

Analysis of the gradients For Standard Classification Model.

The gradient measures the error signal, and for standard classification models, it is bounded in the range [-1, 1] as
0 ≤ smk ≤ 1 and yk ∈ {0, 1}. The model is updated using gradient descent based optimization objectives. For input x, the
neural network outputs K values o1 to oK , and the corresponding ground truth is y, ygt = 1, y ̸=gt = 0.

When yi = 0, the gradient signal is gradi = smi and the model optimizes the parameters to minimize this value. Only when
smi = 0, the gradient is zero, and the model is not updated. In all other cases when smi ̸= 0, there is a non-zero gradient
dependent on smi, and the model is updated to minimize the smi as expected.
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When yi = 1, the gradient signal is gradi = smi − 1 and the model optimizes the parameters to minimize this value. As
smi ∈ [0, 1], only when the model outputs a large logit on i (corresponding to the ground truth class) and small logit for
all other nodes, smi = 1, the gradient is zero, and the model is not updated. In all other cases when smi < 1, there is a
non-zero gradient dependent on smi and the model is updated to maximize the smi and minimize all other sm̸=i as expected.
The gradient signal in standard classification models trained with standard cross-entropy loss is reasonable and enables
learning from all the training data samples.

B. Evidential Classification Models
Theorem 1: Given a training sample (x,y), if an evidential neural network outputs zero evidence e, then the gradients of
the evidential loss evaluated on this training sample over the network parameters reduce to zero.

Proof. In the main paper, we considered a K−class classification problem and a representative evidential model trained
using Bayes risk with sum of squares loss (Eqn. 21) in the proof. Following 3 variants of evidential losses ((Sensoy et al.,
2018)) have been commonly used in evidential classification works:

1. Bayes risk with sum of squares loss (i.e., Evidential MSE loss) (Zhao et al., 2020)

LMSE(x,y) =

K∑
j=1

(yj −
αj

S
)2 +

αj(S − αj)

S2(S + 1)
(21)

2. Bayes risk with cross-entropy loss (i.e., Evidential CE loss)(Charpentier et al., 2020)

LCE(x,y) =
K∑
j=1

yk

(
Ψ(S)−Ψ(αk)

)
(22)

3. Type II Maximum Likelihood loss (i.e., Evidential log loss)(Pandey & Yu, 2022a)

LLog(x,y) =
K∑

k=1

yk

(
log(S)− log(αk)

)
(23)

For completeness, we consider all three loss functions used in evidential classification models and carry out their analysis.

B.1. Gradient of Evidential Activation Functions A(.)

Three non-linear functions are proposed and commonly used in the existing literature to transform the neural network output
to evidence: 1) ReLU function, 2) SoftPlus function, and 3) Exponential function. In this section, we compute the
gradients of the evidence output ei from these non-linear activation functions with respect to the logit input oi

1. A(.) = ReLU(.) = max(0, .)

ek = ReLU(ok) = max(0, ok) =⇒ ∂ek
∂ok

=

{
0 if ok ≤ 0

1 otherwise
(24)

2. A(.) = SoftPlus(.) = log(1 + exp(.))

ek = log(exp(ok) + 1) =⇒ ∂ek
∂ok

=
1

1 + exp(−ok)
= Sigmoid(ok) (25)

3. A(.) = exp(.)

ek = exp(ok) =⇒ ∂ek
∂ok

= exp(ok) = ek = αk − 1 (26)
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B.2. Evidential Model Trained using Bayes risk with sum of squares loss (i.e., Eqn. 21)

Proof. Consider an input x with one-hot ground truth label of y. Let the ground truth class be g i.e. ygt = 1, with
corresponding Dirichlet parameter αgt, and y ̸=gt = 0. Moreover, let o, e, and α represent the neural network output vector
before applying the activation A, the evidence vector, and the Dirichlet parameters respectively.

In this evidential framework, the loss is given by

LMSE(x,y) =
K∑
j=1

(yj −
αj

S
)2 +

αj(S − αj)

S2(S + 1)
= 1− 2αgt

S
+

∑
k α

2
k

S2
+

2
∑

i

∑
j αiαj

S2(S + 1)
(27)

= 2− 2αgt

S
−

2
∑

i

∑
j αiαj

S(S + 1)
(28)

Now, consider different components of the loss and compute the gradients of the components with respect to Dirichlet
parameters α,

∂
αgt

S

∂αgt
=

1

S
− αgt

S2
&

∂
αgt

S

∂α ̸=gt
= −αgt

S2
=⇒

∂
αgt

S

∂αk
=
yk
S

− αgt

S2

The gradient of the variance term is the same for all the K Dirichlet parameters and is given by

∂
∑

i

∑
j αiαj

S(S+1)

∂αk
=

(S − αk)

S(S + 1)
−

(2S + 1)
∑

i

∑
j αiαj

(S2 + S)2

Now, the gradient of the loss with respect to the neural network output can be computed using the chain rule as

∂LMSE(x,y)

∂ok
=
∂LMSE(x,y)

∂αk

∂ek
∂ok

= −
[
2
∂ αk

S

∂αk
− 2

∂
∑

i

∑
j αiαj

S(S+1)

∂αk

]
× ∂ek
∂ok

=

[
2αgt

S2
− 2

yk
S

− 2(S − αk)

S(S + 1)
+

2(2S + 1)
∑

i

∑
j αiαj

(S2 + S)2

]
× ∂ek
∂ok

Case I: ReLU(.) to transform logits to evidence

ek = ReLU(ok) = max(0, ok) =⇒ ∂ek
∂ok

=

{
1 if ok > 0

o otherwise
(29)

For zero-evidence sample with ReLU(.) used to transform the logits to evidence, the logits ok satisfy the relationship
ok ≤ 0 ∀ k =⇒ ∂ek

∂ok
= 0 =⇒ ∂LMSE(x,y)

∂ok
= 0

Case II: SoftPlus(.) to transform logits to evidence

ek = log(exp(ok) + 1) =⇒ ∂ek
∂ok

= Sigmoid(ok) (30)

Case II: exp(.) to transform logits to evidence

ek = exp(ok) =⇒ ∂ek
∂ok

= exp(ok) = αk − 1 (31)

For zero-evidence sample with SoftPlus(.) used to transform the logits to evidence, the logits ok → −∞ =⇒
Sigmoid(ok) → 0 & ∂ek

∂ok
→ 0. For zero-evidence sample with exp(.) used to transform the logits to evidence, αk →

1 =⇒ ∂ek
∂ok

→ 0. Moreover, there is no term in the first part of the loss gradient (see Eqn. 29) to counterbalance these
zero-approaching gradients. So, for zero-evidence samples,

∂LMSE(x,y)

∂ok
= 0 (32)

Since the gradient of the loss with respect to all the nodes is zero, there is no update to the model from such samples. Thus,
the evidential models fail to learn from such zero-evidence samples.
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B.3. Evidential Model Trained using Type II Maximum Likelihood formulation of Evidential loss (i.e., Eqn. 23)

Consider a K−class evidential classification model that trains the model using Type II Maximum Likelihood formulation of
the evidential loss. Consider an input x with one-hot ground truth label of y,

∑K
k=1 yk = 1. For this evidential framework,

the Type II Maximum Likelihood loss is given by

LLog(x,y) =
K∑

k=1

yk

(
log(S)− log(αk)

)
= logS −

K∑
k=1

yk logαk (33)

Taking the gradient of the loss with the logits o, we get

gradk =
∂LLog(x,y)

∂ok
=

1

S

∂S

∂ok
− yk

1

αk

∂αk

∂ok
=

( 1

S
− yk
αk

)∂ek
∂ok

(34)

Case I: ReLU(.) to transform logits to evidence

For any zero-evidence sample with ReLU(.) used to transform the logits to evidence, the logits ok satisfy the relationship
ok ≤ 0 ∀ k =⇒ ∂ek

∂ok
= 0 =⇒ ∂LLog(x,y)

∂ok
= 0 ∀k ∈ [1,K]

Case II: SoftPlus(.) to transform logits to evidence. Considering Eqn. 34 and Eqn 25, the gradient of the loss with
respect to the logits becomes

gradk =
∂LLog(x,y)

∂ok
=

( 1

S
− yk
αk

)
Sigmoid(ok) (35)

Case III: exp(.) to transform logits to evidence. Considering Eqn. 34 and Eqn 26, the gradient of the loss with respect to
the logits becomes

gradk =
∂LLog(x,y)

∂ok
=

( 1

S
− yk
αk

)
(ek) =

( 1

S
− yk
αk

)
(αk − 1) (36)

For zero-evidence sample with SoftPlus(.) used to transform the logits to evidence, the logits ok → −∞ =⇒
Sigmoid(ok) → 0 & ∂ek

∂ok
→ 0. Similarly, for zero-evidence sample with exp(.) used to transform the logits to evidence,

αk → 1 =⇒ ∂ek
∂ok

→ 0. Moreover, there is no term in the first part of the loss gradient (see Eqn. 35 and Eqn. 36 ) to
counterbalance these zero-approaching gradient terms.

Since the gradient of the loss with respect to all the nodes is zero, there is no update to the model from such samples. Thus,
the evidential models trained with Type II Maximum Likelihood formulation of the evidential loss fail to learn from such
zero-evidence samples.

B.4. Evidential Model Trained using Bayes risk with cross-entropy formulation of Evidential loss (i.e., Eqn. 22)

Consider a K−class evidential classification model that trains model using Bayes risk with cross-entropy loss for evidential
learning (Eqn. 22). Consider an input x with one-hot ground truth label of y,

∑K
k=1 yk = 1. For this evidential framework,

the loss is given by

LCE(x,y) =
K∑
j=1

yk

(
Ψ(S)−Ψ(αk)

)
= Ψ(S)−Ψ(αgt) (37)

Where αgt represents the output Dirichlet parameter for the ground truth class i.e. ygt = 1, y ̸=gt = 0, and Ψ(.) represents
the Digamma function, and for z ≥ 1, is given by

Ψ(z) =
d

dz
log Γ(z) =

d

dz

(
− γz − log z +

∞∑
n=1

( z
n
− log

(
1 +

z

n

)))
= −γ − 1

z
+ z

∞∑
n=1

1

n(n+ z)

15



Learn to Accumulate Evidence from All Training Samples: Theory and Practice

Here, γ is the Euler–Mascheroni constant, and Γ(.) is the gamma function, Using Weierstass’s definition of gamma function
(Knopp, 1996) for values outside negative integers that is given by

Γ(z) =
e−γz

z

∞∏
n=1

(
1 +

z

n

)−1

e
z
n

Using the definition of the digamma functions, the loss updates as

LCE(x,y) = Ψ(S)−Ψ(αgt) =
1

αgt
− 1

S
+ S

∞∑
n=1

1

n(n+ S)
− αgt

∞∑
n=1

1

n(n+ αgt)
(38)

The derivative of the digamma function is bounded and is given by

∂Ψ(z)

∂z
=

∂

∂z

(
− γ − 1

z
+

∞∑
n=1

1

n
− 1

n+ z

)
=

1

z2
+

∞∑
n=1

1

(n+ z)2

1

z2
<
∂Ψ(z)

∂z
<

1

z2
+
π2

6
, z ≥ 1

With this, we can compute the gradients of the loss with respect to the logits as

gradk =
∂LCE(x,y)

∂ok
=

∂

∂αk

(
Ψ(S)−Ψ(αgt)

)∂αk

∂ok
=

( 1

S2
+

∞∑
i=1

1

(n+ S)2
− yk
α2
gt

−
∞∑
i=1

yk
(n+ αgt)2

)∂ek
∂ok

(39)

Case I: ReLU(.) to transform logits to evidence

For any zero-evidence sample with ReLU(.) used to transform the logits to evidence, the logits ok satisfy the relationship
ok ≤ 0 ∀ k =⇒ ∂ek

∂ok
= 0 =⇒ ∂LCE(x,y)

∂ok
= 0 ∀k ∈ [1,K]

Case II: SoftPlus(.) to transform logits to evidence. Considering Eqn. 25 and Eqn 39, the gradient of the loss with
respect to the logits becomes

gradk =
∂LCE(x,y)

∂ok
=

( 1

S2
+

∞∑
i=1

1

(n+ S)2
− yk
α2
gt

−
∞∑
i=1

yk
(n+ αgt)2

)
Sigmoid(ok) (40)

Case III: exp(.) to transform logits to evidence. Considering Eqn. 26 and Eqn 39, the gradient of the loss with respect to
the logits becomes

gradk =
∂LCE(x,y)

∂ok
=

( 1

S2
+

∞∑
i=1

1

(n+ S)2
− yk
α2
gt

−
∞∑
i=1

yk
(n+ αgt)2

)
(αk − 1) (41)

For zero-evidence sample with SoftPlus(.) used to transform the logits to evidence, the logits ok → −∞ =⇒
Sigmoid(ok) → 0 & ∂ek

∂ok
→ 0. Similarly, for zero-evidence sample with exp(.) used to transform the logits to evidence,

αk → 1 =⇒ ∂ek
∂ok

→ 0. Moreover, there is no term in the first part of the loss gradient (see Eqn. 29) to counterbalance
these zero-approaching gradient terms.

The gradient of the loss with respect to all the nodes is zero for all the considered cases. Since the gradient of the loss with
respect to all the nodes is zero for all three cases, there is no update to the model from such samples. Thus, the evidential
models fail to learn from such zero-evidence samples in all cases.

C. Regularization in the Evidential Classification Models
Based on the evidence e, beliefs b, and the Dirichlet parameters α, various regularization terms have been introduced that
aim to penalize the incorrect evidence/incorrect belief of the model, leading to the model with accurate uncertainty estimates.
Here, we briefly summarize the key regurlaizations:

16



Learn to Accumulate Evidence from All Training Samples: Theory and Practice

1. Introduce a forward KL regularization term as in EDL (Sensoy et al., 2018) that regularizes the model to output no
incorrect evidence.

LEDL
reg(x,y) = KL

(
Dir(p|α̃)||Dir(p|1)

)
= log

( Γ
∑K

k=1 α̃k

Γ(K)
∏K

k=1 Γα̃k

)
+

K∑
k=1

(α̃k − 1)

[
ψ(α̃k)− ψ

( K∑
j=1

α̃j

)]
(42)

Where α̃ = y + (1 − y) ⊙ α = (α̃1, α̃2, ...α̃N ) parameterize a dirichlet distribution, α̃i=gt = 1, α̃i = αi∀i ̸= gt.
Here, the KL regularization term encourages the Dirichlet distribution based on the incorrect evidence i.e., Dir(p|α̃)
to be flat which is possible when there is no incorrect evidence. From Eqn. 42, we can see that the regularization
term, introduces digamma functions for the loss and may require evaluation of higher-order polygamma functions for
challenging problems (e.g. involving bi-level optimizations as in MAML (Finn et al., 2017)).

2. Introduce an incorrect evidence regularization term as in ADL (Shi et al., 2020) that is the sum of the incorrect evidence
for a sample

LADL
reg(x,y) =

K∑
k=1

(
e⊙ (1− y)

)
k
=

K∑
k=1

ek × (1− yk) (43)

Here, ⊙ represents element-wise product. The evidence for a class ek is only restricted to be non-negative and can take
large positive values leading to large variation in the overall loss.

3. Introduce incorrect belief-based regularization as in Units-ML (Pandey & Yu, 2022a)

LUnits
reg (x,y) =

K∑
k=1

( e
S

⊙ (1− y)
)
k
=

K∑
k=1

ek
S

× (1− yk) (44)

The regularization value is bounded to be in a range of [0, 1] for all the data samples, no matter how severe the mistake
is.

All three regularizations aim to guide the model such that the incorrect evidence is minimized (ideally close to zero). These
regularizations help the evidential model acquire desired uncertainty quantification capabilities in evidential models. Such
guidance is expected to update the model such that it maps input samples near zero-evidence regions in the evidence space.
Thus, the regularization does not help address the issue of learning from zero-evidence samples and is likely to hurt the
model’s learning capabilities.

C.1. Gradient Analysis of the Incorrect Evidence Regularizations

The regularization terms use ground truth information to consider only the incorrect evidence. Thus, the gradient of the
regularization loss with respect to the ground truth node αgt is 0. In this analysis, we consider the gradient with respect to
non-ground truth nodes i.e. αk, and ok, k ̸= gt.

1. Gradient for EDL regularization (Eqn. 42 )

LEDL
reg(x,y) = KL

(
Dir(p|α̃)||Dir(p|1)

)
= log

( Γ
∑K

k=1 α̃k

Γ(K)
∏K

k=1 Γα̃k

)
+

K∑
k=1

(α̃k − 1)

[
ψ(α̃k)− ψ

( K∑
j=1

α̃j

)]

= log Γ(S − αgt)− log Γ(K)−
K∑

k=1

log Γα̃k +
K∑

k=1

(α̃k − 1)

[
ψ(α̃k)− ψ(S − αgt)

] (45)
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∂LEDL
reg(x,y)

∂αk
=

∂

∂αk

(
log Γ(S − αgt)− log Γ(K)−

K∑
k=1

log Γα̃k +
K∑

k=1

(α̃k − 1)

[
ψ(α̃k)− ψ(S − αgt)

])

= ψ(S − αgt)− ψ(αk) +
∂

∂αk

( K∑
k=1

(α̃k − 1)

[
ψ(α̃k)− ψ(S − αgt)

])
= ψ(S − αgt)− ψ(αk) + ψ(αk)− ψ(S − αgt) + (αk − 1)

∂

∂αk

(
ψ(α̃k)− ψ(S − αgt)

)
= (αk − 1)

∂

∂αk

(
ψ(αk)− ψ(S − αgt)

)
= (αk − 1)

(
ψ1(αk)− ψ1(S − αgt)

)
Where ψ1 is the trigamma function. Further, using the definition of trigamma function,

∂LEDL
reg(x,y)

∂αk
= (αk − 1)

(
ψ1(αk)− ψ1(S − αgt)

)
= (αk − 1)

( ∞∑
n=0

1

(n+ αk)2
− 1

(n+ S − αgt)2

)
(46)

Now, the gradients with respect to the logits ok becomes

∂LEDL
reg(x,y)

∂ok
=
∂LEDL

reg(x,y)

∂αk

∂αk

∂ok
= (αk − 1)

( ∞∑
n=0

1

(n+ αk)2
− 1

(n+ S − αgt)2

)
× ∂ek
∂ok

(47)

Case I: ReLU(.) to transform logits to evidence. The gradients with respect to the logits ok for zero evidence is zero.
For all non-zero evidence, the gradient updates as ∂ek

∂ok
= 1∀ek > 0 and

∂LEDL
reg(x,y)

∂ok
= (αk − 1)

( ∞∑
n=0

1

(n+ αk)2
− 1

(n+ S − αgt)2

)
(48)

Now, when αk → ∞, the value of the gradient ∂LEDL
reg(x,y)

∂ok
→ 0. There is close to zero model update from regularization

for very large incorrect evidence.

Case II: SoftPlus(.) to transform logits to evidence. The gradients with respect to the logits ok is given by the
sigmoid i.e. ∂ek

∂ok
= sigmoid(ok) , limok→∞

∂ek
∂ok

= 1, and

∂LEDL
reg(x,y)

∂ok
= (αk − 1)

( ∞∑
n=0

1

(n+ αk)2
− 1

(n+ S − αgt)2

)
σ(αk − 1) (49)

Now, similar to ReLU, when αk → ∞, the value of the gradient ∂LEDL
reg(x,y)

∂ok
→ 0. There is close to zero model update

from regularization for very large incorrect evidence.

Case III: exp(.) to transform logits to evidence. When using exponential non-linearity to transform the neural network
output to evidence, the αk is given by αk = exp(ok) + 1, ∂αk

∂ok
= αk − 1. Now the gradients with respect to the neural

network output ok becomes:

∂L2
reg(x,y)

∂ok
=
∂L2

reg(x,y)

∂αk
× ∂αk

∂ok
= (αk − 1)2

( ∞∑
n=0

1

(n+ αk)2
− 1

(n+ S − αgt)2

)
(50)

Here, the gradient values increase as αk → ∞, and the gradient values do not vanish. Simply, as the incorrect evidence
becomes very large, the model updates also become large in the accurate direction.

Thus, considering Case I, II, and II, we see that the incorrect evidence-based regularization with forward KL divergence
is not effective in regions of incorrect evidence when using ReLu and SoftPlus functions to transform logits to
evidence. This issue of correcting very large incorrect evidence does not appear when using exp function to transform
the logits into evidence.
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2. Gradient for ADL regularization ((Shi et al., 2020) )

LADL
reg(x,y) =

K∑
k=1

(
e⊙ (1− y)

)
k
=

K∑
k=1

ek × (1− yk) = S −K − αgt + 1 (51)

Considering the gradient of the regularization with respect to the parameters αk, k ̸= gt, and corresponding logits ok,
we get

∂LADL
reg(x,y)

∂αk
= 1 =⇒

∂LADL
reg(x,y)

∂ok
=
∂ek
ok

(52)

When considering the exp function to transform logits to evidence, ∂ek
ok

= ek = exp(ok) and the gradient value
becomes very large when the model’s predicted incorrect evidence value is large. This may lead to exploding gradients
and stability issues in the model training. For ReLU and SoftPlus functions, the gradients in positive evidence
regions are ∂ek

ok
= 1, and ∂ek

ok
= σ(ok) respectably. Thus, the gradient and corresponding model updates for high

incorrect evidence are as desired.

3. Gradient analysis of incorrect belief regularization term as in Units-ML(Pandey & Yu, 2022a)

LUnits
reg (x,y) =

K∑
k=1

( e
S

⊙ (1− y)
)
k
=

K∑
k=1

ek
S

× (1− yk) =
1

S

(
S −K − αgt + 1

)
(53)

The regularization value is bounded to be in a range of [0, 1] for all the data samples, no matter how severe the mistake
which may limit its effectiveness. Next, the gradient of the regularization with respect to the parameters αk, and logits
ok is given by

∂LUnits
reg (x,y)

∂αk
=
∂
(

1
S

(
S −K − αgt + 1

))
∂αk

=
αgt +K − 1

S2
=

egt +K

(K +
∑K

k=1 ek)
2

(54)

∂L3
reg(x,y)

∂ok
=
∂LUnits

reg (x,y)

∂αk
× ∂αk

∂ok
=
egt +K

S2
× ∂ek
∂ok

(55)

The gradient value decreases as the number of classes K in the classification problem increases. For all three
transformations: ReLU, SoftPlus, and exp to transform logits to evidence, the gradients will go to zero as the

incorrect evidence increases i.e. ek → ∞ and S → ∞ =⇒ ∂L3
reg(x,y)

∂ok
→ 0. So, the regularization may be ineffective

when the incorrect evidence is very high.

D. Impact of Non-linear Transformation
Theorem 2: For a data sample x, if an evidential model outputs logits ok ≤ 0 ∀k ∈ [0,K], the exponential activation
function leads to a larger gradident update on the model parameters than softplus and ReLu.

Proof. Consider an evidential loss L, which is formally defined in Eqns. (21), (22), and (23), is used to train the evidential
model, let o, e ∈ RK denote the neural network output vector before applying the activation A, and the evidence vector,
respectively, for a network with weight w. For a data sample x, if the network outputs ok < 0, ∀k ∈ [K], we have:

1. ReLu:
∂L1

∂w
=

∑
k

∂L1

∂ek

∂ek
∂ok

∂ok
∂w

= 0 (see Eqn. 8),

2. SoftPlus:
∂L2

∂w
=

∑
k

∂L2

∂ek

∂ek
∂ok

∂ok
∂w

=
∑
k

∂L2

∂ek

∂ok
∂w

Sigmoid(ok) ( see Eqn. 9),
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3. Exponential:

∂L3

∂w
=

∑
k

∂L3

∂ek

∂ek
∂ok

∂ok
∂w

=
∑
k

∂L3

∂ek

∂ok
∂w

exp(ok) =
∑
k

∂L3

∂ek

∂ok
∂w

{[1 + exp(ok)]Sigmoid(ok)} (see Eqn. 10)

Thus, we have ∂L3

∂w ≥ ∂L2

∂w ≥ ∂L1

∂w , which implies that A = exp leads to a larger update to the network than both Softplus
and ReLu. This completes the proof. Now we carry out an analysis of the three activations.

Analysis:

Consider a representative K−class evidential classification model that trains using Type II Maximum Likelihood evidential
loss. Consider an input x with one-hot label of y,

∑K
k=1 yk = 1. For this evidential framework, the Type II Maximum

Likelihood loss (LLog(x,y)) and its gradient with the logits o ( Eqn. 34) are given by

LLog(x,y) = logS −
K∑

k=1

yk logαk & gradk =
∂LLog(x,y)

∂ok
=

( 1

S
− yk
αk

)∂ek
∂ok

(56)

Case I and II: ReLU(.) and SoftPlus(.) to transform logits to evidence.

• Zero evidence region: For ReLU(.) based evidential models, if the logits value for class k i.e. ok is negative, then
the corresponding evidence for class k i.e. ek = 0, ∂ek

∂ok
= 0 & gradk = ∂LLog(x,y)

∂ok
= 0. So, there is no update to

the model through the nodes that output negative logits value. In the case of SoftPlus(.) based evidential models,
there is no update to the model when training samples lie in zero-evidence regions. This is possible in the condition of
ok → −∞. In other cases, there will be some small finite small update in the accurate direction from the gradient.

• Range of gradients: The range of gradients for both ReLU(.) and SoftPlus(.) based evidential models are
identical. Considering the gradient for the ground truth node i.e.yk = 1, the range of gradients is [ 1K − 1, 0]. For
all other nodes other than the ground truth node i.e. yk = 0, the range of gradients is [0, 1

K ]. So, for classification
problems with a large number of classes, the gradient updates to the nodes that do not correspond to the ground truth
class will be bounded in a small range and is likely to be very small.

• High incorrect evidence region: If the evidence for class k is very large i.e. ek → ∞, then for ReLU(.), ∂ek
ok

= 1,

and for SoftPlus(.), ∂ek
ok

= Sigmoid(ok) → 1, 1
αk

= 1
ek+1 → 0, 1

S → 0, & gradk = ∂LLog(x,y)
∂ok

→ 0. For large
positive model evidence, there is no update to the corresponding node of the neural network. The evidence can be
further broken down into correct evidence (corresponding to the evidence for the ground truth class), and incorrect
evidence (corresponding to the evidence for any other class other than the ground truth class). When the correct class
evidence is large, the corresponding gradient is close to zero and there is no update to the model parameters which
is desired. When the incorrect evidence is large, the model should be updated to minimize such incorrect evidence.
However, the evidential models with ReLU and Softplus fail to minimize incorrect evidence when the incorrect
evidence value is large. These necessities the need for incorrect evidence regularization terms.

Case III: exp(.) to transform logits to evidence. Considering Eqn. Eqn. 34 and Eqn 26, the gradient of the loss with respect
to the logits becomes

gradk =
∂LLog(x,y)

∂ok
=

( 1

S
− yk
αk

)
(ek) =

( 1

S
− yk
αk

)
(αk − 1) (57)

• Zero evidence region: In case of exp(.) based evidential models, except in the extreme cases of αk → ∞, there will
be some signal to guide the model. In cases outside the zero-evidence region (i.e. outside αk → ∞), there will be
some finite small update in the accurate direction from the gradient. Moreover, for same evidence values, the gradient
of exp based model is larger than the SoftPlus based evidential model by a factor of 1 + exp(ok). Compared to
SoftPlus models, the larger gradient is expected to help the model learn faster in low-evidence regions.

• Range of gradients: For the ground truth node i.e.yk = 1, the range of gradients is [−1, 0]. For all nodes other than
the ground truth node i.e. yk = 0, the range of gradients is [0, 1]. Thus, the gradients are expected to be more expressive
and accurate in guiding the evidential model compared to ReLU and SoftPlus based evidential models.
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• High evidence region: If the evidence for class k is very large i.e. ek → ∞, then αk − 1 ≈ αk and gradk = smk − yk.
In other words, the model’s gradient updates become identical to the standard classification model (see Section A)
without any learning issues.

Due to smaller zero-evidence region, more expressive gradients, and no issue of learning in high incorrect evidence region,
the exponential-based evidential models are expected to be more effective compared to ReLU and SoftPlus based
evidential models.

E. Analysis of Evidential Losses
Here, we analyze the three variants of evidential loss. As seen in Section D, exp function is expected to be superior to
ReLU and SoftPlus functions to transform the logits to evidence. Thus, in this section, we consider exp function to
transform the logits into evidence. However, the analysis holds true for all three functions.

1. Bayes risk with the sum of squares loss (Eqn. 21)

LMSE(x,y) =
K∑
j=1

(yj −
αj

S
)2 +

αj(S − αj)

S2(S + 1)
(58)

The loss can be simplified as

LMSE(x,y) =

K∑
j=1

(yj −
αj

S
)2 +

αj(S − αj)

S2(S + 1)
(59)

= 1− 2αgt

S
+

∑
k α

2
k

S2
+

2
∑

i

∑
j αiαj

S2(S + 1)
(60)

= 1− 2αgt

S
+

∑
k α

2
k + 2

∑
i

∑
j αiαj

S2
+

2
∑

i

∑
j αiαj

S2(S + 1)
−

2
∑

i

∑
j αiαj

S2
(61)

= 2− 2αgt

S
+

2
∑

i

∑
j αiαj

S2

[ 1

(S + 1)
− 1

]
(62)

= 2− 2αgt

S
−

2
∑

i

∑
j αiαj

S(S + 1)
(63)

The range of the two components in the loss is 0 ≤ 2αgt

S +
2
∑

i

∑
j αiαj

S(S+1) ≤ 2 and the loss is bounded in the range [0, 2].
In other words, the loss for any sample in the entire sample space is bounded in the range of [0, 2] no matter how severe
the mistake is. Such bounded loss is expected to restrict the model’s learning capacity.

2. Bayes risk with cross-entropy loss (Eqn. 22)

LCE(x,y) =
K∑
j=1

yk

(
Ψ(S)−Ψ(αk)

)
= Ψ(S)−Ψ(αgt) (64)

Where Ψ(.) is the Digamma function, and Γ is the gamma function. The functions and their gradients are defined as

Γ(z) =
e−γz

z

∞∏
n=1

(
1 +

z

n

)−1

e
z
n (65)

Ψ(z) =
d

dz
log Γ(z) =

d

dz

(
− γz − log z +

∞∑
n=1

( z
n
− log

(
1 +

z

n

)))
(66)

= −γ − 1

z
+

∞∑
n=1

1

n
− 1

n+ z
(67)

∂Ψ(z)

∂z
=

∂

∂z

(
− γ − 1

z
+

∞∑
n=1

1

n
− 1

n+ z

)
=

1

z2
+

∞∑
n=1

1

(n+ z)2
(68)
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Now, the Bayes risk with cross-entropy loss becomes

LCE(x,y) = Ψ(S)−Ψ(αgt) (69)

=
1

αgt
− 1

S
+ S

∞∑
n=1

1

n(n+ S)
− αgt

∞∑
n=1

1

n(n+ αgt)
(70)

Both the infinite sums (
∑∞

n=1
1

n(n+S) and
∑∞

n=1
1

n(n+αgt)
) converge and lie in the range of 0 to π2

6 . The minimum
possible value of this loss is 0 when αgt → ∞&S ≈ αgt. The maximum possible value is ∞ when only S → ∞. The
loss lies in the range [0,∞] and is more expressive compared to MSE-based evidential loss.

Considering the gradient of the loss with respect to the ground truth node (i.e. αgt, ygt = 1),

∂LCE(x,y)

∂αgt
=

∂

∂αgt
Ψ(S)−Ψ(αgt) =

1

S2
+

∞∑
n=1

1

(n+ S)2
− 1

α2
gt

−
∞∑

n=1

1

(n+ αgt)2
(71)

As αgt < S, the gradient is always negative. Thus, the model aims to maximize the correct evidence αgt. Considering
the gradient of the loss with respect to nodes not corresponding to the ground truth (i.e. αk, k ̸= gt, yk = 0),

∂LCEx,y)

∂αk
=

∂

∂αk
Ψ(S)−Ψ(αgt) =
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∂S

∂S
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1

S2
+
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1
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(72)

∂LCEx,y)

∂ok
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∂αk
× αk

ok
=

( 1

S2
+

∞∑
n=1

1

(n+ S)2

)
(αk − 1) (73)

The gradient at nodes that do not correspond to ground truth is always non-negative. However, this gradient is also
minimum and 0 when S → ∞&αk → ∞. This is an undesired behavior as the model may be encouraged to always
increase the evidence for all the classes. Moreover, the gradient is zero and there is no update to the nodes when
S → ∞,&αk → ∞. So, the incorrect evidence regularization to penalize the incorrect evidence is essential for the
evidential model trained with this loss.

3. Type II Maximum Likelihood loss (Eqn. 23)

LLog(x,y) =
K∑

k=1

yk

(
log(S)− log(αk)

)
= log(S)− log(αgt) (74)

The loss is bounded in the range of [0,∞] as the loss is minimum and 0 when αgt → S → ∞, and maximum loss
when αgt << S&S → ∞. Thus, the loss is more expressive compared to MSE based evidential loss. Now, the
gradient of the loss is given by

∂LLog(x,y)

∂ok
=

1

S

∂S

∂ok
− yk

1

αk

∂αk

∂ok
=

( 1

S
− yk
αk

)∂ek
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=
( 1

S
− yk
αk

)
(αk − 1) (75)

Here, when S → ∞&αk → ∞, the gradient becomes ∂LLog(x,y)
∂ok

→ (1−yk). This is highly desirable behavior for the
model as it aims to minimize the evidence for the incorrect class and there will be no update to the node corresponding
to the ground truth class if αk = αgt, ygt = 1. Thus, the Type II based issue is expected to be superior to the other
two losses as the range of loss is optimal (i.e. in the range [0,∞]), and no learning issue arises for samples with high
incorrect evidence.

F. Additional Experiments and Results
We first present the details of the models, hyperparameter settings, clarification regarding dead neuron issue, and experiments
used in the work in Section F.1. We then present additional results and discussions, including Few-shot classification,
and 200-class tiny-ImageNet Classification results, that show the effectiveness of the proposed model RED in Section F.3.
Finally discuss some limitations and potential future works in Section F.4.
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F.1. Hyperparameter details

For Table 1 results, λ1 = 1.0 was used for MNIST experiments, λ1 = 0.1 was used for Cifar10 experiments, and
λ1 = 0.001 was used for Cifar100 experiments. Table 8, 9, and 10 present complete results across the hyperparameter
values and experiment settings. MNIST model was trained on the LeNet model (Sensoy et al., 2018) for 50 epochs, and
Cifar10/Cifar100 models were trained on Resnet-18 based classifier (He et al., 2016) for 200 epochs. Few-shot classification
experiments were carried out with λ1 = 0.1 using Resnet-12 based classifier (Chen et al., 2021). All results presented
in this work are from local reproduction. MNIST models were trained with learning rate of 0.0001 and Adam optimizer
(Kingma & Ba, 2014), and all remaining models were trained with learning rate of 0.1 and Stochastic Gradient Descent
optimizer with momentum. Tabular results represent the mean and standard deviation from 3 independent runs of the model.
In the proposed model RED, correct evidence regularization is weighted by the parameter λcor whose value is given by the
predicted vacuity ν. λcor is treated as hyperparameter, i.e., constant weighting term in the loss during model update.

F.2. Dead Neuron Issue Clarification

Instead of using ReLU as an activation function in a standard deep neural network, evidential models introduce ReLU as
non-negative transformation function in the output layer to ensure that the predicted evidence is non-negative to satisfy
the requirement of evidential theory. This non-negative evidence vector parameterizes a Dirichlet prior for fine-grained
uncertainty quantification that covers second-order uncertainty, including vacuity and dissonance. We theoretically and
empirically show the learning deficiency of ReLU based evidential models and justify the advantage of using an exponential
function to output (non-negative) evidence. We further introduce a correct evidence regularization term in the loss that
addresses the learning deficiency from zero-evidence samples. The “dead neuron” issue in the activation functions has been
studied, and ReLU variations such as Exponential Linear Unit, Parametric ReLU, and Leaky ReLU have been developed to
address the issue. But, these activation functions will not be theoretically sound in the evidential framework as they are can
lead to negative evidences. In this case, they can not serve as Dirichlet parameters that are interpreted as pseudo counts.

F.3. Effectiveness of Regularized Evidential Model (RED)

F.3.1. EVIDENTIAL ACTIVATION FUNCTION.

In this section, we present additional results (for section 5.2) with the MNIST classification problem using the LeNet
model to empirically validate Theorem 2. We carry out experiments for evidential models trained using all three evidential
losses: Evidential MSE loss in (21), Evidential cross-entropy loss in (22), and Evidential Log loss in (23) with λ1 =
{0.0, 1.0,&10.0}. As can be seen in Figure 15, 16, and 17, using exp activation for transforming logits to evidence leads to
superior performance in all settings compared to ReLU and Softplus based evidential models that empirically validates
Theorem 2.

(a) Trend for λ1 = 0.0 (b) Trend for λ1 = 1.0 (c) Trend for λ1 = 10.0

Figure 15. Impact of Evidential Activation to the test set accuracy of the model trained with MSE based evidential loss (Eqn. 21)

F.3.2. CORRECT EVIDENCE REGULARIZATION

We introduce the novel correct evidence regularization term to train the evidential model (Section 4.1). In this section, we
present additional results for the evidential model that uses exp activation. We trained the model using evidential losses
with different incorrect evidence regularization strengths ( λ1 = 0, 1.0 & 10.0). As can be seen( Figure 18, and 19), the
model with proposed correct-evidence regularization leads to improved generalization compared to the baseline model
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(a) Trend for λ1 = 0.0 (b) Trend for λ1 = 1.0 (c) Trend for λ1 = 10.0

Figure 16. Impact of Evidential Activation to test set accuracy of the model trained with cross-entropy based evidential loss (Eqn. 22)

(a) Trend for λ1 = 0.0 (b) Trend for λ1 = 1.0 (c) Trend for λ1 = 10.0

Figure 17. Impact of Evidential Activation to the test set accuracy of the model trained with Type II based evidential loss (Eqn. 23)

as the proposed correct-evidence regularization term enables the evidential model to learn from zero-evidence samples
instead of ignoring them. Moreover, even though strong incorrect evidence regularization hurts both model’s generalization,
the proposed regularization leads to a more robust model that generalizes better. Finally, the MSE-based evidential model
is hurt the most with strong incorrect evidence regularization as thee MSE based evidential loss is bounded in the range
[0, 2], and the incorrect evidence-regularization term may easily dominate the overall loss compared to other evidential
losses. This can be seen in Figure 18(c) where the incorrect evidence regularization strength is large i.e. λ1 = 10.0 and
the evidential model fails to train. Due to strong incorrect evidence regularization, the model may have learned to map all
training samples to zero-evidence region. However, with the proposed regularization, the model continues to learn and
achieves good generalization performance.

(a) Trend for λ1 = 0.0 (b) Trend for λ1 = 1.0 (c) Trend for λ1 = 10.0

Figure 18. Impact of proposed Correct Evidence Regularization to the test set accuracy of the evidential model( Trained with Eqn. 21)

F.3.3. FEW-SHOT CLASSIFICATION EXPERIMENTS

Ideas presented in this work address the fundamental limitation of evidential classification framework that enables the
evidential model to acquire knowledge from all the training samples. Using these ideas, evidential framework can be
extended to challenging classification problems to the reasonable predictive performance. To this end, we experiment
with few-shot classification using 1-shot and 5-shot classification for the mini-ImageNet dataset (Vinyals et al., 2016). We
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(a) Trend for λ1 = 0.0 (b) Trend for λ1 = 1.0 (c) Trend for λ1 = 10.0

Figure 19. Impact of proposed Correct Evidence Regularization to the test set accuracy of the evidnetial model (Trained with Eqn. 22)

consider the ResNet-12 backbone, classifier-baseline model (Chen et al., 2021), and its evidential extension. Table 7 shows
the results for 1-shot and 5-shot classification experiments. As can be seen, the ReLU and Softplus based evidential
models have suboptimal performance as they avoid many training samples of the zero-evidence region. In contrast, the exp
model has a better learning capacity that leads to superior performance. Finally, the proposed model RED can learn from all
training samples, which leads to the best generalization performance among all the evidential models.

Table 7. Few-Shot Classification Accuracy comparison: mini-ImageNet dataset
Standard CE Model: 1 Shot: 57.9±0.2%; 5-Shot: 76.9±0.2%

1-Shot Experiments
Regularization ReLU SoftPlus exp RED (Ours)
λ1 = 0.000 38.78±3.75 51.60±0.40 57.11±0.09 56.27±0.15

λ1 = 0.100 31.15±1.69 48.87±0.21 56.43±0.03 58.03±0.39

λ1 = 1.000 20.00±0.00 43.81±0.56 27.43±0.88 54.68±0.45

5-Shot Experiments
Regularization ReLU SoftPlus exp Ours
λ1 = 0.000 52.66±5.32 67.22±0.17 75.87±0.09 75.31±0.13

λ1 = 0.100 43.95±3.72 66.14±0.05 74.08±0.13 76.05±0.17

λ1 = 1.000 20.00±0.00 61.96±0.61 34.01±1.46 72.32±0.20

F.3.4. COMPLEX DATASET/MODEL EXPERIMENTS

We also carry out experiment for a challenging 200-class classification problem over Tiny-ImageNet based on (Huynh,
2022). We adapt the Swin Transformer to be evidential, and train all the models for 20 epochs with Evidential log loss
(Eqn. 23). In this setting, ReLU based evidential model achieves 85.25% accuracy, softplus based model achieves 85.15 %
accuracy, the exponential model improves over both to achieve 89.93 % accuracy, and our proposed model RED outperforms
all the evidential models to achieve the greatest accuracy of 90.14%, empirically validating our theoretical analysis.

F.4. Limitations and Future works

We carried out a theoretical investigation of the Evidential Classification models to identify their fundamental limitation:
their inability to learn from zero evidence regions. The empirical study in this work is based on classification problems.
We next plan to extend the ideas to develop Evidential Segmentation and Evidential Object Detection models. Moreover,
this work identifies limitations of Evidential MSE loss in (21), and we plan to carry out a thorough theoretical analysis
to analyze other evidential losses given in (23) and (22)). The proposed evidential model, similar to existing evidential
classification models, requires hyperparameter tuning for λ1 i.e. the incorrect evidence regularization hyperparameter.

In addition, extending evidential models to noisy and incomplete data settings and investigating the benefits of leveraging
uncertainty information could be interesting future work. Finally, It will be an interesting future work to extend the analysis
and evidential models to tasks beyond classification, for instance to build effective evidential segmentation and object
detection models.
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Table 8. Classification performance comparison: MNIST dataset
Standard CE Model: 99.21±0.03%

Log loss
Regularization ReLU SoftPlus exp RED (Ours)
λ1 = 0.000 97.06±0.19 97.07±0.24 98.85±0.03 98.82±0.04

λ1 = 1.000 98.19±0.08 98.21±0.05 98.79±0.02 99.10±0.02

λ1 = 10.000 83.17±4.54 80.37±18.70 98.14±0.07 98.84±0.03

Evidential CE loss
λ1 = 0.000 97.03±0.21 97.09±0.21 98.84±0.02 98.81±0.01

λ1 = 1.000 98.27±0.02 98.36±0.02 98.87±0.03 99.12±0.02

λ1 = 10.000 97.46±1.02 97.14±1.42 98.31±0.07 98.84±0.04

Evidential MSE loss
λ1 = 0.000 96.18±0.02 96.20±0.03 98.42±0.03 98.41±0.06

λ1 = 1.000 97.41±0.22 97.45±0.16 98.35±0.05 99.02±0.00

λ1 = 10.000 19.93±6.98 27.14±6.37 27.17±3.72 98.76±0.03

Table 9. Classification performance comparison: Cifar10 Dataset
Standard CE Model: 95.43±0.02%

Log loss
Regularization ReLU SoftPlus exp RED (Ours)
λ1 = 0.000 43.83±14.60 95.19±0.10 95.35±0.02 95.03±0.14

λ1 = 0.100 41.43±19.60 95.18±0.11 95.11±0.10 95.24±0.06

λ1 = 1.000 38.42±15.64 94.94±0.22 93.95±0.06 94.78±0.17

λ1 = 10.000 10.00±0.00 32.42±6.99 23.29±5.24 90.96±0.35

λ1 = 50.000 10.00±0.00 10.00±0.00 12.47±3.49 65.09±0.74

Evidential CE loss
λ1 = 0.000 79.19±16.06 95.32±0.17 95.38±0.10 95.40±0.14

λ1 = 0.100 75.97±20.56 95.12±0.05 95.33±0.03 95.08±0.07

λ1 = 1.000 75.83±20.74 94.99±0.08 94.65±0.04 94.74±0.11

λ1 = 10.000 10.00±0.00 89.63±0.38 56.54±4.80 91.71±0.23

λ1 = 50.000 10.00±0.00 27.03±2.62 25.33±6.66 62.98±0.84

Evidential MSE loss
λ1 = 0.000 95.43±0.05 95.35±0.15 95.10±0.04 94.92±0.12

λ1 = 0.100 95.15±0.10 95.04±0.05 95.14±0.03 95.03±0.13

λ1 = 1.000 49.68±29.48 93.51±0.03 18.98±1.82 94.90±0.20

λ1 = 10.000 10.00±0.00 10.00±0.00 10.00±0.00 90.15±0.71

λ1 = 50.000 10.00±0.00 10.00±0.00 10.00±0.00 27.11±24.20
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Table 10. Classification performance comparison: Cifar100 dataset
Standard CE Model: 75.67± 0.11

Log loss
Regularization ReLU SoftPlus exp RED (Ours)
λ1 = 0.000 56.69±5.83 73.85±0.20 76.25±0.16 76.26±0.27

λ1 = 0.001 61.27±3.79 74.48±0.17 76.12±0.04 76.43±0.21

λ1 = 0.010 54.20±5.93 75.56±0.43 76.02±0.16 76.14±0.09

λ1 = 0.100 20.29±4.54 75.67±0.22 72.72±0.26 74.62±0.21

λ1 = 1.000 1.00±0.00 37.60±0.82 2.59±0.52 68.62±0.03

λ1 = 2.000 1.00±0.00 1.57±0.35 0.97±0.06 62.33±0.52

Evidential CE loss
λ1 = 0.000 66.37±3.47 73.73±0.38 75.91±0.20 76.19±0.22

λ1 = 0.001 68.62±2.41 74.44±0.08 76.23±0.09 76.35±0.06

λ1 = 0.010 71.94±0.66 75.45±0.12 75.95±0.14 76.13±0.24

λ1 = 0.100 67.25±1.84 75.75±0.21 74.02±0.09 74.69±0.13

λ1 = 1.000 1.00±0.00 73.10±0.20 37.36±0.73 69.40±0.16

λ1 = 2.000 1.00±0.00 52.99±0.56 12.94±1.11 63.93±0.34

Evidential MSE loss
λ1 = 0.000 35.76±2.81 20.45±1.41 75.70±0.47 75.55±0.24

λ1 = 0.001 31.49±0.31 15.74±0.47 42.95±0.76 75.73±0.27

λ1 = 0.010 13.60±2.44 1.00±0.00 1.00±0.00 75.35±0.16

λ1 = 0.100 1.00±0.00 1.00±0.00 1.00±0.00 74.00±0.13

λ1 = 1.000 1.00±0.00 1.00±0.00 1.00±0.00 66.61±0.46

λ1 = 2.000 1.00±0.00 1.00±0.00 1.00±0.00 63.01±0.83
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