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ABSTRACT
As a widely used weakly supervised learning scheme, modern mul-
tiple instance learning (MIL) models achieve competitive perfor-
mance at the bag level. However, instance-level prediction, which is
essential for many important applications, remains largely unsatis-
factory. We propose to conduct novel active deep multiple instance
learning that samples a small subset of informative instances for an-
notation, aiming to significantly boost the instance-level prediction.
A variance regularized loss function is designed to properly balance
the bias and variance of instance-level predictions, aiming to effec-
tively accommodate the highly imbalanced instance distribution in
MIL and other fundamental challenges. Instead of directly minimiz-
ing the variance regularized loss that is non-convex, we optimize a
distributionally robust bag level likelihood as its convex surrogate.
The robust bag likelihood provides a good approximation of the
variance based MIL loss with a strong theoretical guarantee. It also
automatically balances bias and variance, making it effective to iden-
tify the potentially positive instances to support active sampling.
The robust bag likelihood can be naturally integrated with a deep
architecture to support deep model training using mini-batches of
positive-negative bag pairs. Finally, a novel P-F sampling function is
developed that combines a probability vector and predicted instance
scores, obtained by optimizing the robust bag likelihood. By leverag-
ing the key MIL assumption, the sampling function can explore the
most challenging bags and effectively detect their positive instances
for annotation, which significantly improves the instance-level pre-
diction. Experiments conducted over multiple real-world datasets
clearly demonstrate the state-of-the-art instance-level prediction
achieved by the proposed model.
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1 INTRODUCTION
Multiple Instance Learning (MIL) offers an attractive weakly super-
vised learning paradigm, where instances are naturally organized
into bags and training labels are assigned at the bag level to reduce
annotation cost [6, 19, 25, 27]. State-of-the-art MIL models achieve
competitive performance at the bag level. However, instance-level
prediction, which is essential for many important applications (e.g.,
anomaly detection from surveillance videos [27] and medical image
segmentation [12]) remains largely unsatisfactory.

In MIL, a bag is considered to be positive if at least one of the
instances is positive otherwise negative [6, 10]. To achieve a high
bag level prediction, most existing MIL models primarily focus on
the most positive instance from a positive bag that is mainly respon-
sible for determining the bag label [1, 10, 14, 27]. However, they
suffer from two major limitations, which lead to poor instance-level
predictions. First, solely focusing on the most positive instance is
sensitive to outliers, which are negative instances that look very
different from other negative ones [3]. As a result, these instances
may be wrongly assigned a high score indicating they are positive.
Second, there may be multiple types (i.e., multimodal) of positive
instances in a single bag (e.g., different types of anomalies in a
surveillance video or different types of skin lesions in a dermatol-
ogy image). Thus, focusing on a single most positive instance will
miss other positive ones. Both cases will result in a low instance-
level prediction performance. A possible solution to improve the
detection of positive instances is to consider the top-𝑘 most posi-
tive instances. However, the number of positive instances may vary
significantly across different bags and applying the same 𝑘 to all
bags may be inappropriate. Furthermore, finding an optimal 𝑘 for
each bag is highly challenging as it takes a discrete value.

The underlying reason for the less accurate instance-level pre-
diction is due to the lack of instance labels. For positive instances
that are relatively rare across bags, detecting them by only relying
on bag labels is inherently challenging as the weakly supervised
signal (i.e., bag label) cannot be propagated to the instance level
without sufficient statistical evidence. One promising direction to
tackle this challenge is to augment MIL with active learning (AL).
Multiple instance AL (or MI-AL) aims to select a small number of
informative instances to improve the instance level prediction in
MIL. In most MIL problems, the data is highly imbalanced at the
instance level, where the positive ones are much more sparse. Since
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Figure 1: (a) Example of a challenging bag; (b) MI-AL performance on instance-level predictions; (c)-(e) Prediction scores of
instances in the bag in different MI-AL steps

the positive instances usually carry more important information, a
primary goal of MI-AL is to effectively sample the positive instances
from a candidate pool dominated by the negative ones. If a true
positive instance can be sampled and labeled, it can help to iden-
tify other similar positive instances in the same and different bags,
which will significantly improve the instance-level predictions.

However, existing MIL models may easily miss some rare posi-
tive instances [27]. They may also focus on the wrongly identified
negative instances due to their sensitivity to outliers or incapabil-
ity of handling multimodal bags. Thus, the true positive instances
may be assigned a low prediction score, indicating that they are
predicted as negative with a high confidence. As a result, com-
monly used uncertainty based sampling will miss these important
instances. Figure 1 (a) shows a challenging bag, which is an im-
age that contains the shadow of a bird (as the positive class). The
positive instances are patches that cover (part of) the bird shadow.
Figure 1 (b) shows that combining uncertainty sampling with a
maximum score based MIL model (the green curve) is not able to
sample effectively so that instance-level prediction remains very
low over the AL process. Figure 1 (c) further confirms that the
initial prediction score (F-score) of the positive instance is close to
0, making it hard to be sampled.

We propose a novel MI-AL model for effective instance sam-
pling to significantly boost the instance-level prediction in MIL.
We design an unique variance regularized MIL loss that encour-
ages a high variance of the prediction scores to address bags with
a highly imbalanced instance distribution and/or those with out-
liers and multimodal scenarios. Since the variance regularizer is
non-convex, we propose to optimize a distributionally robust bag
likelihood (DRBL), which provides a good convex approximation
of the variance based loss with a strong theoretical guarantee. The
DRBL automatically adjusts the impact of the bag-level variance,
making it more effective to detect potentially positive instances to
support active sampling. It can also be naturally integrated with a
deep architecture to support deep MIL model training using mini-
batches of positive-negative bag pairs. Finally, a novel P-F sampling
function is developed that combines a probability vector (i.e., p) and
predicted instance scores (i.e., f ), obtained by optimizing the DRBL.
By leveraging the key MIL assumption, the sampling function can
explore the most challenging bags and effectively detect their pos-
itive instances for annotation, which significantly improves the
instance-level prediction. Novel batch-mode sampling is developed
to work seamlessly with the deep MIL, leading to a powerful active
deep MIL (ADMIL) model to support sampling of high-dimensional
data used in most MIL applications. Figure 1 (b) shows the proposed

model (purple curve) that significantly improves instance predic-
tions. Figures 1 (c)-(e) show P-F sampling dynamically updates the
probability p and score f values to effectively sample the positive
instance from the highly challenging bag in a few steps.

Our main contribution includes: (i) an unique variance regular-
ized MIL loss and its convex surrogate that address inherent MIL
challenges to best support active sampling, (ii) a novel P-F sam-
pling function to effectively explore most challenging bags with
rare positive instances, (iii) mini-batch training and batch-mode
active sampling to support ADMIL in broader MIL applications,
and (iv) state-of-the-art instance prediction performance in MIL
while maintaining low instance annotations.

2 RELATED WORK
Multiple Instance Learning (MIL). Existing supervised learning
models have been leveraged to tackle MIL problems, including SVM
[1], boosting [29], graph-based models [31], attention based [11, 12],
conditional random field [5] and Gaussian Processes [10, 14]. Other
approaches try to relax the MIL assumption, which allows positive
instances in a negative bag to handle noisy bags [19]. As MIL is com-
monly applied to video anomaly detection and image segmentation
that involve high dimensional data, deep neural networks (DNNs)
have become a popular choice for training MIL models [11, 12, 27].
Despite the significant progress made so far, most existing models
focus on improving the bag-level predictions. As a result, instance-
level performance still falls short in meeting the high standard in
critical applications [10, 12, 27]. The proposed ADMIL model aims
to fill out this critical gap by augmenting MIL with novel active
sampling strategies to significantly boost instance predictions using
limited labeled instances to maintain a low annotation cost.
Active Learning (AL). Uncertainty and margin based measures
are commonly leveraged in existing AL models to achieve efficient
data sampling [23]. Distributionally robust optimization has also
been adopted in multi-class AL to address sampling bias and imbal-
anced data distribution [32]. Deep learning (DL) models are good
candidates for AL because of their high-dimensional data process-
ing and automatic feature extraction capability. Existing models
mainly target at improving uncertainty quantification of the net-
work for reliable sampling [9, 13, 18, 28]. Batch-mode sampling is
commonly used in active DL to avoid frequent model re-training. It
focuses on constructing representative batches to avoid redundant
information given by similar instances [2, 15, 22]. AL in the MIL
setting has been rarely investigated. One exception is the MI lo-
gistic model and its three uncertainty measures to simultaneously
consider both instance and bag level uncertainty [24]. However, un-
certainty sampling is ineffective to explore challenging bags, where
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all instances are confidently predicted as negative. In addition, the
original model is a simple linear model, which does not provide
sufficient capacity for high-dimensional data. There is no system-
atic way to support batch-mode sampling, either. A reinforcement
learning based AL technique is developed in [4], where segments
are chosen to be labeled in each AL step . However, segmentation
level annotations are required to compute the reward during the
training process, which violates the assumption of MIL. Another
AL framework is developed for MIL tasks in [30]. However, sam-
pling is conducted at the bag level (i.e., choosing bags instead of
instances). Thus, it is essentially a multi-label AL model, aiming to
improve the bag-level predictions with fewer annotated bags. This
is fundamentally different from the design goal of ADMIL.

3 METHODOLOGY
Let {x1, ..., x𝑛} denote a set of instances associated with each bag B,
where each x𝑖 ∈ R𝐷 is a feature vector. Let 𝑡B ∈ {+1,−1} indicates
the bag type. Following the standard MIL assumption discussed
earlier, active sampling will focus on instances in the positive bags
as all instances in a negative bag are negative. We also allow the
number of instances to vary from one bag to another.

3.1 Variance Regularization
Let x+

𝑖
(or x−

𝑗
) be the 𝑖𝑡ℎ (or 𝑗𝑡ℎ) instance in a positive bag B𝑝𝑜𝑠 (or

a negative bag B𝑛𝑒𝑔). Following the MIL assumption, a commonly
used loss function for training deep MIL models is to make the
maximum prediction score of instances from a positive bag to be
higher than a negative bag [27]. We define as

LMS =

{
1 − max

𝑖∈B𝑝𝑜𝑠
[𝑓 (x+𝑖 ;w)] + max

𝑗 ∈B𝑛𝑒𝑔
[𝑓 (x−𝑗 ;w)]

}
+

(1)

where 𝑓 (x;w) ∈ [0, 1] is the prediction score of instance x provided
by a deep neural network parameterized byw and [𝑎]+ = max{0, 𝑎}.
We will omit w from 𝑓 (x;w) to keep the notation uncluttered. The
above objective function aims to maximize the gap between the
maximum prediction score of instances from a positive bag andmax-
imum score from a negative bag. Model training can be performed
by sampling pairs of positive and negative bags (B𝑝𝑜𝑠 ,B𝑛𝑒𝑔), using
their bag-level labels to evaluate the loss, and performing back-
propagation. The maximum score based MIL (referred to as MS-
MIL) models are designed primarily for bag label prediction as it
aims to identify a single most positive instance from a positive bag
and maximizes its prediction score. In this way, it fully leverages
the MIL assumption (i.e., at least one positive instance in B𝑝𝑜𝑠 ) and
the weakly supervised signal (i.e., bag-level label).

As discussed earlier, MS-MIL and its top-𝑘 extensions suffer from
key limitations that impact their instance-level prediction perfor-
mance. Meanwhile, they provide inadequate support to sample the
most informative instances to enhance the instance predictions.
Inspired by the recent advances in learning theory to automatically
balance bias and variance in risk minimization [7], we propose a
novel variance regularizedMIL loss function to capture the inherent
characteristics of MIL, aiming to collectively address highly imbal-
anced instance distribution, existence of outliers, and multimodal
scenarios. As a result, minimizing the new MIL loss can effectively
improve the prediction scores of the positive instances, making
them easier to be sampled for annotation by the proposed sampling

function. In particular, the variance regularized loss introduces two
novel changes to (1), which are formalized below:

LVAR =

{
1 −

[
1
𝑛

𝑛∑︁
𝑖=1

𝑓 (x+𝑖 ) +𝐶
√︂

Var𝑛 [𝑓 (𝑋+)]
𝑛

]
+ max

𝑗 ∈B𝑛𝑒𝑔

[
𝑓 (x−𝑗 )

]}
+

(2)

where ∀𝑖 ∈ [1, 𝑛], x+
𝑖
∈ B𝑝𝑜𝑠 , 𝑛 is the size of B𝑝𝑜𝑠 , Var𝑛 is the

empirical variance of 𝑓 (𝑋+) with 𝑋+ being a random variable rep-
resenting an instance from a positive bag, and parameter𝐶 balances
the mean score and the variance.

The first key change is to use the mean score to replace the
maximum score in (1), which avoids the model to only focus on
the most positive instance in a bag to make it robust to outliers
and multimodal scenarios. Since positive bags are guaranteed to
include positive instances and instances in a negative bag are all
negative, it is desirable that the mean score for a positive bag should
be high. Maximizing the mean score in a positive bag using a com-
plex model (e.g., a DNN) could effectively reduce the training loss
(by reducing the bias) in estimating the bag-level labels. However,
using the mean score alone is problematic as most instances in
a positive bag are usually negative in a typical MIL setting. As a
result, such a low bias model will lead to a very high false positive
rate, which negatively impacts the overall instance-level prediction.
The proposed loss function addresses this issue through the novel
variance term, which effectively handles the highly imbalanced
instance distribution. With only a small number of instances being
truly positive, the empirical variance Var𝑛 for the bag should be
high due to the large deviation of a small number of high scores
from the majority of low scores. It is worth to note that the variance
term in (2) plays a distinct role than risk minimization in standard
supervised learning, where it is minimized to control the estimation
error. In contrast, the variance in (2) is encouraged to be large to
allow a small set of instances in a bag to be positive, aiming to pre-
cisely capture the imbalanced distribution. To our best knowledge,
this is the first bias-variance formulation in the MIL setting.

Conducting MI-AL using variance regularization still faces two
challenges. First, its effectiveness hinges on an optimal balance
between the mean score and the empirical variance, which is con-
trolled by the hyperparameter𝐶 . Similar to the standard supervised
learning, there lacks a systematic way of setting such a hyperpa-
rameter to achieve an optimal trade-off. Second, the variance term
is non-convex with multiple local minima [7], which makes model
training much more difficult and time-consuming. Thus, it is not
suitable for real-time interactions to support active sampling.

3.2 Distributionally Robust Bag Likelihood
To address the challenges as outlined above, we propose to formu-
late a distributionally robust bag level likelihood (DRBL) as a convex
surrogate of the variance regularized loss in (2). By extending the
distributionally robust optimization framework developed for risk
minimization in supervised learning [7, 20], we theoretically prove
the equivalence between DRBL and variance regularization with
high probability. Being convex, DRBL is easier to optimize that
facilitates MIL model training to support fast active sampling. Fur-
thermore, by setting a proper uncertainty set as introduced next,
we show that the parameter𝐶 is directly obtained when optimizing
the DRBL, where the instance distribution in the bag is constrained
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by the uncertainty set. As a result, it achieves automatic trade-off
between the mean prediction score and the variance.

We first introduce a probability vector p = (𝑝1, ..., 𝑝𝑛)⊤, where∑
𝑖 𝑝𝑖 = 1, 𝑝𝑖 ≥ 0,∀𝑖 ∈ {1, ..., 𝑛} and let 𝑝𝑖 denote the probability

that instance x+
𝑖
∈ B𝑝𝑜𝑠 can represent the bag.We further introduce

a binary indicator vector z = (𝑧1, ..., 𝑧𝑛)⊤, where 𝑝 (𝑧𝑖 = 1) =

𝑝𝑖 . Let 𝑌 be a binary random variable that denotes the bag label.
Conditioning on all the instances in the bag, the (conditional) bag
likelihood for bag B𝑝𝑜𝑠 is given by 𝑝 (𝑌 = 1|z, f) = ∏

𝑖 𝑓 (x+𝑖 )
𝑧𝑖 ,

where f = (𝑓 (x+1 ), ..., 𝑓 (x
+
𝑛))⊤. By integrating out the indicator

variables, we have the marginal bag likelihood as 𝑝 (𝑌 = 1|p, f) =∑
𝑖 𝑝𝑖 𝑓 (x+𝑖 ). Instead of letting a single most positive instance to

determine the bag label, where 𝑝 (𝑦 = 1|p, f) = 𝑓 (x+
𝑘
) with 𝑘 =

argmax𝑖 𝑓 (x+𝑖 ), which is equivalent to MS-MIL, or assigning equal
probability to each instance (i.e., 𝑝𝑖 = 1/𝑛), which is equivalent to
the mean score, we introduce an uncertainty set P𝑛 that allows p
to deviate from a uniform distribution to some extent:

P𝑛 :=
{
p ∈ R𝑛, p⊤1 = 1, 0 ≤ p, 𝐷 𝑓

(
p| |1

𝑛

)
≤ 𝜆

𝑛

}
(3)

where 𝐷 𝑓 (p| |q) is the 𝑓 -divergence between two distributions p
and q, 1 is a 𝑛-dimensional unit vector, and 𝜆 controls the extent
that p can deviate from a uniform vector, which essentially corre-
sponds to the imbalanced instance distribution in the bag. Note
that P𝑛 only specifies a neighborhood that p may deviate from a
uniform distribution. Since P𝑛 is a convex set, an optimal p can be
easily computed for each specific bag by optimizing the robust bag
likelihood according to its specific imbalanced instance distribution.
This is fundamentally more advantageous than a top-𝑘 approach,
where 𝑘 is discrete and hard to optimize. Next, we show that the
optimal robust bag likelihood is equivalent to the variance regular-
ized mean prediction score with high probability, which allows us
to define a new MIL loss based on DRBL.

Theorem 1. Let𝑋+ be a random variable representing an instance
from a positive bag, 𝑓 (𝑋+) ∈ [0, 1] is the score assigned to an in-
stance, 𝜎2 = Var[𝑓 (𝑋+)] and Var𝑛 [𝑓 (𝑋+)] denote the population
and sample variance of 𝑓 (𝑋+), respectively, and 𝐷 𝑓 takes the form of
𝜒2-divergence. For a fixed 𝜆 and with 𝑛 ≥ max(2, 𝜆

𝜎2 max(8𝜎, 44)),

max
p∈P𝑛

𝑛∑︁
𝑖=1

𝑝𝑖 𝑓 (x+𝑖 ) =
1
𝑛

𝑛∑︁
𝑖=1

𝑓 (x+𝑖 ) +
√︂

𝜆𝑉𝑎𝑟𝑛 [𝑓 (𝑋+)]
𝑛

(4)

with probability at least 1−exp
(
− 7𝑛𝜎2

20

)
, where P𝑛 is an uncertainty

set defined by (3).

It is worth to note that given the highly imbalanced positive
instances in a typical MIL setting, the true variance 𝜎2 should be
high. For a bag with a decent size, it guarantees the equivalence
in (4) with high probability. Furthermore, maximizing the robust
bag likelihood given on the l.h.s. of (4) assigns 𝐶 =

√
𝜆, which

automatically adjusts the impact of variance based on the uncer-
tainty set. Theorem 2 below further generalizes this result to the
KL-divergence.

Theorem 2. Let𝑋+ be a random variable representing an instance
from a positive bag, 𝑓 (𝑋+) ∈ [0, 1] is the score assigned to an in-
stance, 𝜎2 = Var[𝑓 (𝑋+)] and Var𝑛 [𝑓 (𝑋+)] denote the population

and sample variance of 𝑓 (𝑋+), respectively, and 𝐷 𝑓 takes the form
of KL-divergence. We have

max
p∈P𝑛

𝑛∑︁
𝑖=1

𝑝𝑖 𝑓 (x+𝑖 ) =
1
𝑛

𝑛∑︁
𝑖=1

𝑓 (x+𝑖 ) +
√︂

2𝜆Var𝑛 [𝑓 (𝑋+)]
𝑛

+ 𝜖
(
𝜆

𝑛

)
(5)

where 𝜖
(
𝜆
𝑛

)
= 𝜆

3𝑛
𝜅3 (𝑓 (𝑋 +))
Var𝑛 [𝑓 (𝑋 +) ] +O

((
𝜆
𝑛

)3/2)
with𝜅3 = E0 [(𝑓 (𝑋+)−

E0 [𝑓 (𝑋+)])3] and E0 denotes the expectation taken over p0.

Remark: Given a bag with a decent size 𝑛 ≫ 1 and since 𝜆 is
usually set to 𝜆 ≪ 1 (0.01 is used in our experiments), we have
𝜖

(
𝜆
𝑛

)
→ 0. When the empirical variance Var𝑛 [𝑓 (𝑋+)] is suffi-

ciently large (which is true for MIL), the r.h.s. of (5) is dominated
by the first two terms, which implies

max
p∈P𝑛

𝑛∑︁
𝑖=1

𝑝𝑖 𝑓 (x+𝑖 ) ≈
1
𝑛

𝑛∑︁
𝑖=1

𝑓 (x+𝑖 ) +
√︂

2𝜆Var𝑛 [𝑓 (𝑋+)]
𝑛

(6)

Detailed proofs are given in Appendix A. Leveraging the above
theoretical results, we formulate a DRBL-based MIL loss as

LDRBL =

{
1 − max

p∈P𝑛

[
𝑛∑︁
𝑖=1

𝑝𝑖 𝑓 (x+𝑖 )
]
+ max

𝑗 ∈B𝑛𝑒𝑔

[
𝑓 (x−𝑗 )

]}
+

(7)

The DRBL loss offers a very intuitive interpretation on the newly
introduced probability vector p. Since it can deviate from the uni-
form distribution as specified by the uncertainty set P𝑛 , each entry
𝑝𝑖 essentially corresponds to the contribution (or weight) of x+

𝑖
to

the bag likelihood (being positive). As a result, to maximize the ro-
bust bag likelihood, instances with a higher prediction score should
receive a higher weight. Meanwhile, constrained by P𝑛 , multiple
instances will contribute to the bag likelihood with a sizable weight
as p cannot deviate too much from being uniform. Hence, their
prediction scores will simultaneously be brought up by the model.
This makes DRBL robust to the outlier and multimodal cases as
it increases the chance for the true positive instances or multiple
types of true positive instances to be assigned a high prediction
score. This provides fundamental support to the proposed P-F active
sampling function that combines the probability vector p and the
prediction score f in a novel way to choose the most informative
instances in a bag for annotation.

3.3 P-F Active Sampling
Since we have the prediction score 𝑓 (x+

𝑖
) ∈ [0, 1], it can be natu-

rally interpreted as the probability of instance x+
𝑖
being positive. A

straightforward way to perform uncertainty based instance sam-
pling is to compute the 𝑓 -score based entropy of the instances,
referred to F-Entropy:

x∗ = arg max
𝑖∈B𝑝𝑜𝑠

𝐻 [𝑓 (x+𝑖 )], (8)

where 𝐻 [𝑓 ] = −[𝑓 log 𝑓 + (1 − 𝑓 ) log(1 − 𝑓 )]. Since the sampled
instance has the largest prediction uncertainty (according to F-
Entropy), labeling such an instance can effectively improve the
model’s instance-level performance. Active sampling using (8) is
straightforward, which involves evaluating 𝐻 [𝑓 (x+)] for all the
instances from positive training bags (note that all the instances
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in a negative bag are negative). Since we consider a deep learning
model to better accommodate high-dimensional data, sampling
one instance at a time requires frequent model training, which is
computationally expensive. Instead, we sample a small batch of
instances in each step based on their predicted F-Entropy. It is worth
to note that, due to the highly imbalanced instance distribution, the
majority of the prediction scores, including many positive instances,
may be very low. The goal is to assign a relatively higher score
to the potentially positive instances so that their entropy is not
too low, indicating a confident negative prediction, which will be
missed by the sampling function.

As discussed earlier, using the robust bag likelihood as the MIL
loss can directly benefit instance sampling by increasing the chance
to assign a higher prediction score to a positive instance so that
it is more likely to be sampled. However, F-Entropy sampling still
suffers from two major limitations. First, for some very difficult
bags, such as the sample image shown in Figure 1 (a), identifying
the positive instances (e.g., the patch in the image containing the
shadow of a bird) can be highly challenging. As a result, theymay be
assigned a very low 𝑓 score. In fact, as shown in Figure 1 (c), all the
instances in this bag receive a very low score with the highest less
than 0.01, leading to a very low entropy. Some additional examples
of challenging bags from the 20NewsGroup dataset are shown in
Figure 8 of Appendix B, where all the instances are predicted with a
very low score. Hence, all these instances are predicted as negative
with low uncertainty, making them less likely to be chosen by
entropy based sampling. Second, since batch-mode sampling is
adopted to reduce the training cost of a deep network, it is essential
to diversify the selected instances in the same batch to minimize
the annotation cost. However, choosing data instances solely based
on their predicted entropy may lead to the annotation of similar
instances, which is not cost-effective.

The proposed P-F active sampling overcomes the above two lim-
itations simultaneously through effective bag exploration by com-
bining the probability vector p and the prediction score f through
a minmax function according to their distinct roles in a bag. The
key design rationale of P-F sampling is rooted in the standard MIL
assumption that ensures at least one positive instance in each posi-
tive bag to guide effective bag exploration. Both p’s and f ’s along
with the bag structure are dynamically updated during bag explo-
ration to increase the chance of sampling the positive instances
in an under-explored bag. A hybrid loss function further utilizes
labels of sampled negative instances in the same bag to boost the
prediction scores of the positive instances. More specifically, let
𝐵 be the total number of positive training bags, P-F sampling will
choose the following data instance:

x𝑃𝐹∗ = arg min
𝑏∈{1,...,𝐵 }

𝑓 (x+
𝑏∗
), and 𝑏∗ = argmax p𝑏 (9)

where p𝑏 is the probability vector of bag 𝑏. For each bag, the sam-
pling function first identifies the instance x+

𝑏∗
with the largest 𝑝

value in each bag. Such an instance can be regarded as the most rep-
resentative instance in the bag as it makes the largest contribution
(according to p𝑏 ) to the bag likelihood. According to the prediction
score of x+

𝑏∗
, we can categorize bags into three groups: (1) easy bags,

where 𝑓 (x+
𝑏∗
) takes a large value, indicating that the model makes

confidently correct predictions, (2) confusing bags, where 𝑓 (x+
𝑏∗
) is

reasonably large but uncertain, indicating the model is still confus-
ing about its prediction, and (3) difficult bags, where 𝑓 (x+

𝑏∗
) is very

low, indicating the model makes confidently wrong predictions.
It is desirable to sample from both confusing and difficult bags as
the model already makes accurate instance predictions for easy
bags. Sampling instances from the confusing bags can be achieved
through the proposed F-Entropy as the model makes uncertain
predictions, which leads to a high entropy. Finally, sampling from
the difficult bags is fundamentally more challenging due to low
prediction scores for the entire bag. However, the MIL assumption
provides a general direction for bag-level exploration of positive
instances as there must be at least one positive instance in each
positive bag. The P-F sampling function in (9) chooses the represen-
tative instance from the bag with the lowest prediction score. Such
an instance is guaranteed to be sampled from an under-explored
(i.e., difficult) bag as it has the lowest prediction score despite being
predicted as the most positive instance in the bag.

Extension to the batch-mode sampling is conducted in two direc-
tions, within a bag and across bags, for more effective exploration
while ensuring diversity of the sampled instances. First, instead of
only sampling the most positive instance from the identified under-
explored bag, we propose to sample 𝑘 > 1 instances as the positive
instances may be ranked lower than multiple negative instances
in the bag according to the current prediction scores (see Figure 1
(c) for an example). This helps to more effectively explore very
difficult bags. To ensure diversity among the sampled instances,
we keep 𝑘 small but sample across multiple bags simultaneously.
Only bags with a max prediction score 𝑓 (x+

𝑏∗
) less than a threshold

(0.3 is used in our experiments) will be explored as these represent
the difficult bags as discussed above. For bags with a larger 𝑓 (x+

𝑏∗
),

they are either easy bags or confusing bags that can be effectively
sampled using F-Entropy. Our overall P-F sampling function in-
tegrates bag exploration and F-Entropy and gives priority to the
former to perform diversity-aware bag exploration first. As more
bags are successfully explored along with MI-AL, less instances will
be sampled by exploration and the focus will be naturally shifted
to F-Entropy to perform model fine-tuning. The detailed sampling
process is summarized by Algorithm 1.

Similar to AL in standard supervised learning, the sampled an-
notated instances should be used to improve the model prediction
performance. However, the MIL loss primarily focuses on the bag-
level labels due to the lack of instance labels. To this end, we propose
a hybrid loss function that integrates the bag and instance labels.
Let X𝑙 = {x𝑙1, x

𝑙
2, ..., x

𝑙
𝑚} be the 𝑚 labeled instances queried by

the proposed active learning function and t𝑙 = {𝑡𝑙1, 𝑡
𝑙
2, ..., 𝑡

𝑙
𝑚} with

𝑡𝑖
𝑙
∈ {0, 1} be the corresponding instance labels. We formulate a

supervised binary cross-entropy (BCE) loss as

𝐿BCE = − 1
𝑚

𝑚∑︁
𝑖=1

[
𝑡𝑙𝑖 log(𝑓 (x

𝑙
𝑖 )) + (1 − 𝑡

𝑙
𝑖 ) log(1 − 𝑓 (x𝑙𝑖 ))

]
(10)

It is clear that the sampled positive instances provide important
supervised signals so that the model will predict a high score for
similar positive instances, which will directly benefit instance-level
prediction. In contrast, the sampled negative instances, especially
those chosen from the under-explored bags, contribute less to im-
prove the prediction performance as their original prediction scores
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are already low. However, they play a subtle but essential role to
achieve more effective bag-level exploration. First, if a sampled
instance is labeled as negative, it will be removed from the bag,
which does not violate the MIL assumption. Meanwhile, since we
have

∑
𝑖 𝑝𝑖 = 1, the 𝑝 values will be redistributed and the chance

for each remaining instance to be sampled is therefore increased.
Furthermore, the BCE loss will further bring down the prediction
scores of negative instances that are similar to the sampled one.
This may help to improve the score of the positive instance so that
it can have a higher chance to be sampled in the future. Finally, the
hybrid loss that combines the MIL loss and the supervised loss is
used to retrain the model after a new batch of instances are queried:

LHybrid = L𝐷𝑅𝐵𝐿 (B𝑝𝑜𝑠 ,B𝑛𝑒𝑔) + 𝛽L𝐵𝐶𝐸 (X𝑙 , t𝑙 ) (11)

where 𝛽 is used to trade-off bag- and instance-level losses.

4 EXPERIMENTS
We conduct extensive experimentation over multiple real-world
MIL datasets to justify the effectiveness of the proposed ADMIL
model. The purpose of our experiments is to demonstrate: (i) the
state-of-the-art instance prediction performance by comparing with
existing competitive baselines, (ii) effectiveness of the proposed P-F
active sampling function through comparison with other sampling
mechanisms, (iii) impact of keymodel parameters through a detailed
ablation study, and (iv) qualitative evaluation through concrete
examples to provide deeper and intuitive insights on the working
rationale of the proposed model.

4.1 Experimental Setup
Datasets. Our experiments involve four datasets covering both tex-
tual and image data: 20NewGroup [31], Cifar10 [16], Cifar100 [16],
and Pascal VOC [8]. The detailed description of each dataset is
given below and bag level statistics is summarized in the Table 1
• 20NewsGroup: In this dataset, an instance refers to a post from
a particular topic. For each topic, a bag is considered as positive
if it contains at least one instance from that topic and negative
otherwise. This dataset is particularly challenging because of
the severe imbalance where there are very few (≈ 3%) positive
instances in each positive bag. While number of instances per
bag may vary, on average there are around 40 instances per bag.
• Cifar10: In the original dataset, there are 50,000 training and
10,000 testing images with 10 classes indicating different images.
The bags are constructed as follows. First, we pick ‘automobile’,
‘bird’, and ‘dog’ related images as positive instances and the rest
as negative. To construct a positive bag, we choose a random
number from 1 to 3 and pick the positive instances equal to
the randomly generated number. The rest of the instances are
selected from a negative instances pool. For negative bags, all
instances are selected from the negative instance pool. For each
bag, we consider 32 instances.
• Cifar100: The dataset consists of 50,000 training and 10,000
testing images with 20 different superclasses indicating different
species. Bag construction is similar to Cifar10, where images in
superclass flowers are treated as positive and the rest as negative.
• Pascal VOC: This dataset consists of 2,913 images, where images
are used for segmentation. Each image is treated as a bag and
instances are obtained as follows. We define a grid size of 60 ×

Algorithm 1: P-F Active Sampling
Input: pB𝑝𝑜𝑠 , Q𝑝𝑟𝑒𝑣 , 𝑇ℎ𝑃𝐹 , 𝑇ℎ𝐻 , 𝐵𝑆𝑖𝑧𝑒 , 𝑘
Output: Q
Data: 𝐵 positive training bags // Feature vector for

each bag

1 Initialization:U𝐵 = {}, count = 0, Q𝑃−𝐹 = {}, Q𝐹 = {}
2 for 𝑏 ∈ [𝐵] do
3 p𝑏 ← pB𝑝𝑜𝑠 [𝑏], 𝑏∗ ← argmax p𝑏 \ Q𝑝𝑟𝑒𝑣 [𝑏]
4 if 𝑓 (x+

𝑏∗
) ≤ 𝑇ℎ𝑃𝐹 then

5 U𝐵 ← 𝑏∗

/* Adding instances from unexplored bags */

6 U𝐵 = arg sortAsc𝑏∗∈U𝐵
𝑓 (x+

𝑏∗
)

7 for 𝑏∗ ∈ U𝐵 do
8 if 𝑏∗ ∈ Q𝑝𝑟𝑒𝑣 then
9 if positive ins ∈ Q𝑝𝑟𝑒𝑣 [𝑏] then
10 continue

11 else
12 X𝑃𝐹 = arg sortDesc𝑏∗

(
𝑓 (x+

𝑏∗
) \ Q𝑝𝑟𝑒𝑣 [𝑏∗]

)
[:𝑘]

13 for x𝑖 ∈ X𝑃𝐹 do
14 if count≥ BSize then
15 break
16 Q𝑃−𝐹 [𝑏∗] ← x𝑖
17 count← count+1

18 Q𝑝𝑟𝑒𝑣 = Q𝑝𝑟𝑒𝑣 ∪ Q𝑃−𝐹
/* Adding instances with highest F-Entropy;

𝐻 [𝑓 (x+
𝑖
)] =

−
[
𝑓 (x+

𝑖
log 𝑓 (x+

𝑖
)) + (1 − 𝑓 (x+

𝑖
)) log(1 − 𝑓 (x+

𝑖
))

]
*/

19 C𝑖𝑑𝑥 = arg sortDesc𝑖
(
𝐻 [𝑓 (x+

𝑖
)] ≥ 𝑇ℎ𝐻

)
20 for 𝑖 ∈ C𝑖𝑑𝑥 do
21 if count≥ BSize then
22 break
23 if x+

𝑖
∈ Q𝑝𝑟𝑒𝑣 [𝑏𝑖 ] then

24 break
25 Q𝐹 [𝑏𝑖 ] ← x+

𝑖

26 count← count+1
27 Q = Q𝑝𝑟𝑒𝑣 ∪𝑄𝐹

75 and partition the images. Depending on the image size, the
number of instances may vary. We treat an instance as positive if
at least 5% of the total pixels in a given instance are related to the
object of interest otherwise negative. In our case, we considerthe
bird as the object of interest. All the images consisting of bird
are regarded as positive bags and others as negative.

Evaluation metric and model training. To assess the model
performance, we report the instance-level mean average preci-
sion (mAP) score, which summarizes a precision-recall curve as a
weighted mean of precision achieved at each threshold, with the
increase in recall from the previous threshold as the weight. mAP
explicitly places much stronger emphasis on the correctness of
the few top ranked instances than other metrics (e.g., AUC) [26].
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Table 1: Number of positive and negative bags on different datasets
Split 20NewsGroup Cifar10 Cifar100 Pascal VOC

Positive Negative Positive Negative Positive Negative Positive Negative
Train 30 30 500 500 500 500 124 124
Test 20 20 100 100 100 100 84 84
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Figure 2: MI-AL performance
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Figure 3: Effectiveness of P-F active sampling

This makes it particularly suitable for instance prediction evalu-
ation as a small subset of instances with the highest prediction
scores will eventually be identified as positive for further inspec-
tion (by human experts) with the rest being ignored. For Cifar10,
Cifar100, and Pascal VOC datasets, we extract the visual features
from the second-to-the last layer of a VGG16 network pre-trained
using the imagenet dataset, yielding a 4,096 dimensional feature
vector for each instance. For 20NewsGroup, we use the available
200-dimensional feature vector. In terms of network architecture,
we use a 3-layer FC neural network. The first layer has 32 units
followed by 16 units and 1 unit FC layers. We adopt 60% dropout
between FC layers. ReLU and sigmoid activations are used for the
first and last FC layers. Learning rate 0.01 is used for all dataset
except for 20NewsGroup which is 0.1.

4.2 Performance Comparison
To demonstrate the instance prediction performance achieved by
the proposed ADMIL model, we compare it with competitive base-
lines. First, the two MI-AL sampling strategies: MIAL-Uncertainty
and MIAL-MIU [24], from the MI logistic model are included. Since
our datasets involve high-dimensional data, we replace the original
linear model by the exact DNNmodel used in our ADMIL so we can
focus on comparing MI active sampling. The EGL sampling tech-
nique in [24] was not included due to the prohibitive computational
cost to evaluate the gradient of each instance output with respect
to the large number of DNN parameters. We also implement an MS-
MIL model and its top-𝑘 variant with uncertainty sampling using
entropy. Given the different sizes of the datasets, we query maxi-
mum 15 instances per step in 20NewsGroup, 30 instances in Pascal
VOC, and 150 instances in Cifar10 and Cifar100. Figure 2 shows the

Table 2: MIL Performance in Passive Setting
Approach 20NewsGroup Cifar10 Cifar100 Pascal VOC

Ilse et al. [12] 60.85 65.16 40.15 40.15
Hsu et al. [11] 42.08 63.84 41.57 34.83

ADMIL 73.47(75.42) 64.41(74.50) 40.41(51.26) 45.15(60.79)

MI-AL curves with one standard deviation (computed over three
runs) represented by vertical black line for all four datasets. ADMIL
achieves the best performance in all cases. For most datasets, it
shows a much better initial performance, which results from the
proposed DRBL-based MIL loss that significantly benefits MIL per-
formance in passive learning. Overall the entire MI-AL process,
ADMIL consistently stays the best and converges to a higher point
in the end for all datasets. For the Pascal VOC, the top-𝑘 MIL model
with entropy sampling achieves closer performance towards the
end, which is mainly due to the limited positive instances in this
dataset. Hence, no testing bags contain similar positive instances
in the challenging bags that are explored by P-F sampling. While
ADMIL achieves much better instance predictions in those bags,
the advantage does not transfer to the testing bags. For reference,
we also compare ADMIL with two recently developed MIL models,
including Ilse et al. [12] and Hsu et al. [11], under the passive setting.
As shown in Table 2, ADMIL achieves better or at least comparable
performance as compared with these competitive baselines. This
clearly justifies of using ADMIL as a base model for active sam-
pling. After labeling a small set of actively sampled instances, the
performance is significantly boosted (as shown in the parenthesis),
which further justifies the benefits of combining AL with MIL. Our
qualitative study will provide a more detailed analysis on this.
Effectiveness of active sampling. To demonstrate the effective-
ness of the proposed P-F active sampling function, we compare it
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Figure 4: Impact of model parameter 𝜆
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Figure 5: Impact of model parameter 𝛽
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Figure 6: Impact of hyperparameter 𝑘

with two other sampling methods, F-Entropy and random sampling,
while keeping all other parts of themodel the same. As shown in Fig-
ure 3, P-F sampling clearly outperforms others with a large margin
in the first three datasets. It’s advantage over F-Entropy is smaller
on Pascal VOC due to the same reason as explained above. The
performance gain is mainly attributed to the effective exploration
of P-F sampling over the most challenging bags.

4.3 Ablation Study
Impact of 𝜆 and 𝛽: Figures 4 and 5 demonstrate the impact of
𝜆 (with 𝛽 = 1) and 𝛽 (with 𝜆 = 0.01) to the model performance.
In particular, 𝜆 can be set according to the imbalanced instance
distribution within bags, where a larger 𝜆 corresponds to a higher
imbalanced distribution. We vary 𝜆 in [10−10, 1] and since most
bags in the MIL setting are highly imbalanced, relatively higher 𝜆
value gives very good performance in general. Figure 4 shows that
𝜆 = 0.0001 clearly outperforms too large (or small) 𝜆 values. As
for 𝛽 , placing less emphasis on an instance level loss (small 𝛽), we
may not fully leverage labels of queried instances. Meanwhile, with
too much emphasis on the instance level loss (large 𝛽), the model
overly focuses on the limited queried instances with less attention
to the bag labels. Therefore, a good balance results in an optimal
performance, shown in Figures 5.

Impact of 𝑘: Figure 6 shows the impact of the hyperparameter 𝑘 ,
which is the number of instances queried in each unexplored bag,
on model performance. As can be seen, 𝑘 = 2 achieves a generally
decent performance across all the datasets. For datasets with a larger
size (e.g., Cifar100), a larger 𝑘 leads to a slightly better performance.

4.4 Qualitative analysis
To further justify why the proposed ADMIL model and its P-F
sampling function work better than other baselines, we provide
a few illustrative examples to offer deeper insights on its good
performance. First, we show two challenging bags in addition to
the one shown in Figure 1 (a). As shown in Figure 7 (a-b), B2 presents
a side view of a bird while only a small portion of the bird is visible
in B3. For those difficult cases, the model originally predicts all
instances as a negative with high confidence. However, by coupling
the P-F sampling and the hybrid loss in (11), the positive instances
from those bags are successfully queried. Figure 7 (c) shows a clear
advantage in the mAP scores between P-F sampling and F-Entropy.
As a further evidence, we investigate the number of true positive
(TP) bags being explored by both P-F sampling and F-Entropy. TP
bags refer to those that the model is being able to query at least
one true positive instance. Instead of reporting the actual number
of bags, which is affected by the size of the dataset, we show the
additional percentage TP bags being explored by P-F sampling in
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(a) Sample bag B2 (b) Sample bag B3

Bag P-F F-Entropy
B1 1.00 0.04
B2 0.53 0.07
B3 0.64 0.55
B1 Shadow of a bird
B2 Side view of a bird
B3 Part of a bird

(c) mAP scores
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Figure 7: (a-b) Poorly explored bags in Pascal VOC; (c) Description of these bags and their mAP scores; (d) Additional true
positive bags successfully explored by P-F sampling

Figure 7 (d). It is worth to note that neither method tries to query
the easy bags as their positive instances are correctly predicted with
high confidence. The major difference is from the challenging bags
and the percentage of these bags varies among different datasets.
Nevertheless, P-F sampling consistently explores more effectively
than F-Entropy across all datasets.

5 CONCLUSION
To tackle the low instance-level prediction performance of exist-
ing MIL models that is essential for many critical applications,
we develop a novel MI-AL model to sample a small number of
most informative instances, especially those from confusing and
challenging bags, to enhance the instance-level prediction while
keeping a low annotation cost. We propose to optimize a robust
bag likelihood as a convex surrogate of a variance regularized MIL
loss to identify a subset of potentially positive instances. Active
sampling is conducted by properly balancing between exploring
the challenging bags (through P-F sampling) and refining the model
by sampling the most confusing instances (through F-Entropy). The
design of the loss function naturally supports mini-batch training,
which coupled with the batch-mode sampling, makes the MI-AL
model work seamlessly with a deep neural network to support
broader MIL applications that involve high-dimensional data. Our
extensive experiments conducted on multiple MIL datasets show
clear advantage over existing baselines.
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A PROOFS OF THEOREMS
In this section, we provide the detailed proofs for both theorems.

Proof of Theorem 1. Our proof of Theorem 1 is adapted from [7] by
making extensions that fit the unique design of the distributionally
robust bag likelihood (DRBL). We start by introducing the following
lemma, which will later be used in our proof.

Lemma 3 (Maurer and Pontil Theorem 10). Let 𝑌 be a random
variable taking values in [0, L]. Let 𝜎2 = Var[𝑌 ] and Var𝑛 [𝑌 ] =
1
𝑛

∑𝑛
𝑖=1 𝑌

2
𝑖
− ( 1𝑛

∑𝑛
𝑖=1 𝑌𝑖 )2 be the population and sample variance of

𝑌 , respectively. Then for for 𝑛 ≥ 2,

𝑃 (𝜎 − 𝑡 ≤
√︁
𝑉𝑎𝑟𝑛 [𝑌 ] ≤ 𝜎 + 𝑡) ≥ 1 − exp

(
− 𝑛𝑡

2

2𝐿2

)
(12)

The distributionally robust bag likelihood (DRBL), i.e., the l.h.s.
of (4), can be formulated as the following constrained optimization
problem:

max
p∈P𝑛

𝑛∑︁
𝑖=1

𝑝𝑖 𝑓 (x+𝑖 )

s.t. P𝑛 :=
{
p ∈ R𝑛, p⊤1 = 1, 0 ≤ p, 𝐷 𝑓

(
p| |1

𝑛

)
≤ 𝜆

𝑛

} (13)

Since the𝐷 𝑓 (p| |q) is assumed to be the 𝜒2-divergence and q follows
the uniform distribution, 𝐷 𝑓 (p| |q) is reduced to the squared Eu-
clidean distance.We first introduce themean of 𝑓 (x+

𝑖
)’s, which is de-

noted as 𝑓 = 1
𝑛

∑𝑛
𝑖=1 𝑓 (x+𝑖 ). Also, recall we denote the score vector

by f = (𝑓 (x+1 ), ..., 𝑓 (x
+
𝑛))⊤ in Section 3.2. Thus, the empirical vari-

ance of 𝑓 (𝑋+) is given by Var𝑛 [𝑓 (𝑋+)] = 1
𝑛 | |f | |

2
2−𝑓

2 = 1
𝑛 | |f−𝑓 1| |

2
2.

We further introduce u = p − 1

𝑛 , so the objective in (13) can be
transformed as

p⊤f = (u + 1
𝑛
)⊤f = 𝑓 + u⊤f = 𝑓 + u⊤ (f − 𝑓 1) (14)

where the last equality holds because u⊤1 = 0. Thus, the optimiza-
tion problem in (13) can be further transformed into

max
u∈R𝑛

𝑓 + u⊤ (f − 𝑓 1) s.t. | |u| |22 ≤
𝜆

𝑛2
, u⊤1 = 0, u ≥ − 1

𝑛
(15)

where the first constraint is derived by replacing 𝐷 𝑓 with the
𝜒2-divergence. Now, using the Cauchy-Schwarz inequality, which
states that u⊤v ≤ ||u| |2 | |v| |2, gives the following condition

u⊤ (f − 𝑓 1) ≤
√
𝜆

𝑛
| |f − 𝑓 1| |2 =

√︂
𝜆Var𝑛 [𝑓 (𝑋+)]

𝑛
(16)

where the equality holds if and only if

𝑢𝑖 =

√
𝜆(𝑓 (x+

𝑖
) − 𝑓 )

𝑛 | |f − 𝑓 1| |2
=

√
𝜆(𝑓 (x+

𝑖
) − 𝑓 )

𝑛
√︁
𝑛Var𝑛 [𝑓 (𝑋+)]

(17)

Since we also have a constraint u ≥ − 1
𝑛 , which satisfies if and only

if

min
𝑖∈[𝑛]

√
𝜆(𝑓 (x+

𝑖
) − 𝑓 )√︁

𝑛Var𝑛 [𝑓 (𝑋+)]
≥ −1 (18)

Thus, if inequality (18) holds for vector f , we have

max
p∈P𝑛

p⊤f = 𝑓 +
√︂

𝜆Var𝑛 [𝑓 (𝑋+)]
𝑛

(19)

which will prove the Theorem given in (4).

What remains is to prove inequality (18) holds with a high proba-
bility. To show this, we leverage the concentration inequality given
by Lemma 3. Since 𝑓 (x+

𝑖
) ∈ [0, 1], we have |𝑓 (x+

𝑖
) − 𝑓 | ≤ 1. To

satisfy inequality (18), it is sufficient to have
𝜆

𝑛Var𝑛 [𝑓 (𝑋+)]
≤ 1 or Var𝑛 [𝑓 (𝑋+)] ≥

𝜆

𝑛
(20)

Let us define the following event

𝜖𝑛 :=
{
Var𝑛 [𝑓 (𝑋+)] ≥

1
43

𝜎2
}

(21)

In Theorem 1, we suppose 𝑛 ≥ 4𝜆
𝜎2 max{2𝜎, 11}). Then, on event 𝜖𝑛 ,

we have 𝑛 ≥ 44𝜆
𝜎2 ≥ 𝜆

Var𝑛 [𝑓 (𝑋 +) ] , so that the sufficient condition
(20) holds and the (19) becomes true.

Now we find the probability of holding the above event in (21)
using Lemma 3. First, 𝐿 = 1 in our case, which gives

𝑃 (𝜎 − 𝑡 ≤
√︁
Var𝑛 [𝑓 (𝑋+)] ≤ 𝜎 + 𝑡) ≥ 1 − exp

(
−𝑛𝑡

2

2

)
The following also holds true:

𝑃

(
𝜎 − 𝑡 ≤

√︁
Var𝑛 [𝑓 (𝑋+)]

)
≥ 𝑃 (𝜎 − 𝑡 ≤

√︁
Var𝑛 [𝑓 (𝑋+)] ≤ 𝜎 + 𝑡)

≥ 1 − exp
(
−𝑛𝑡

2

2

)
Let 𝑡 =

(
1 −

√︃
1
43

)
𝜎 , which gives 𝜎 − 𝑡 =

√︃
1
43𝜎 . Substituting this

to (12) leads to

𝑃

(√︂
1
43

𝜎 ≤
√︁
Var𝑛 [𝑓 (𝑋+)]

)
≥ 1−exp

(
−𝑛𝑡

2

2

)
; 𝑃 (𝜖𝑛) ≥ 1−exp

(
−𝑛𝑡

2

2

)
Further substituting the value of 𝑡 =

(
1 −

√︃
1
43

)
𝜎 gives rise to

𝑃 (𝜖𝑛) ≥ 1 − exp
(
−0.359𝑛𝜎2

)
≥ 1 − exp

(
−7𝑛𝜎

2

20

)
This completes the proof of Theorem 1.

Proof of Theorem 2. In order to prove this theorem, we consider
two assumptions, which both hold true for our MIL setting.

Assumption 1: Random variable 𝑓 (𝑋+) has a finite exponen-
tial moment in a neighborhood of 0 under the distribution p0 i.e.,
E0 [exp(𝜏 𝑓 (𝑋+))] < ∞ for 𝜏 ∈ [−𝜏0, 𝜏0] for some 𝜏0 > 0.

Assumption 2: Random variable 𝑓 (𝑋+) is non-constant under
p0.

Assumption 1 is true in our case as 𝑓 (𝑋+) is bounded in [0, 1];
Assumption 2 also empirically holds true as there are both positive
and negative instances in a positive bag so the output scores are
distinct over different instances in a bag. The second assumption
ensures that the uniform distribution p0 is not a locally optimum,
which means there exists an opportunity to upgrade the value by re-
balancing the probability between positive and negative instances
in a positive bag.

Consider p that is absolutely continuous with respect to p0 and
therefore the likelihood ratio 𝑔 =

𝑑p
𝑑p0

(a.k.a., Radon–Nikodym
derivative) exists. Using a change of measure, the optimization
problem in the l.h.s. of (5) can be written as
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Figure 8: Example of challenging bags from different topics in 20NewsGroup

max
𝑔∈L1 (p0)

E0 [𝑔𝑓 (𝑋+)] s.t.
{
E0 [𝑔 log𝑔] ≤

𝜆

𝑛
,E0 [𝑔] = 1, 𝑔 ≥ 0

}
(22)

where L1 (p0) is L1-space with respect to the measure p0. To solve
the optimization problem above, we formulate its Lagrangian,

max
𝑔∈L1 (p0)

E0 [𝑔𝑓 (𝑋+)] − 𝛼
(
E0 [𝑔 log𝑔] −

𝜆

𝑛

)
(23)

where 𝛼 is the Lagrange’s multiplier. The solution of the above
objective function is given by the following proposition [17, 21]:

Proposition 1. Under Assumption 1, when 𝛼 > 0 is sufficiently
large, there exists an unique optimizer of (23) given by

𝑔∗ (x+) =
exp( 𝑓 (x

+)
𝛼 )

E0
[
exp 𝑓 (𝑋 +)

𝛼

] (24)

Assume that such 𝛼∗ and 𝑔∗ exist and that 𝛼∗ is sufficiently large
then

𝜆

𝑛
= E0 [𝑔∗ log𝑔∗] =

E0 [𝑔∗ 𝑓 (𝑋+)]
𝛼

− logE0

[
exp

(
𝑓 (𝑋+)
𝛼∗

)]
=

𝛽∗E0 [𝑓 (𝑋+) exp(𝛽∗ 𝑓 (𝑋+))]
E0 [exp(𝛽∗ 𝑓 (𝑋+))]

− logE0 [exp 𝛽∗ 𝑓 (𝑋+)]

= 𝛽∗𝜓
′
(𝛽∗) −𝜓 (𝛽∗)

where we define 𝛽∗ = 1
𝛼∗ and𝜓 (𝛽) = logE0 [exp(𝛽 𝑓 (𝑋+))] is the

logarithmic moment generating function of 𝑓 (𝑋+).
We can write the optimal solution of the objective function (22)

as follows

E0 [𝑓 (𝑋+)𝑔∗] =
E0 [𝑓 (𝑋+) exp( 𝑓 (𝑋

+)
𝛼∗ )]

E0 [exp( 𝑓 (𝑋
+)

𝛼∗ )]
= 𝜓

′
(𝛽∗) (25)

Now let us perform Taylor expansion of the following

𝛽𝜓
′
(𝛽) −𝜓 (𝛽) =

∞∑︁
𝑚=0

1
𝑚!

𝜅𝑚+1𝛽𝑚+1 −
∞∑︁

𝑚=0

1
𝑚!

𝜅𝑚𝛽𝑚

=

∞∑︁
𝑚=1

[
1

(𝑚 − 1)! −
1
𝑚!

]
𝜅𝑚𝛽𝑚

=

∞∑︁
𝑚=2

1
𝑚(𝑚 − 2)!𝜅𝑚𝛽𝑚 =

1
2
𝜅2𝛽

2 + 1
3
𝜅3𝛽

3 + 1
8
𝜅4𝛽

4 + O(𝛽5)

In the above expression, 𝜅𝑚 = 𝜓 (𝑚) (0) is the m-th derivative
of 𝜓 with evaluated at 𝛽 = 0 and O(𝛽5) is continuous in 𝛽 . By
Assumption 2, we have 𝜅2 > 0. Therefore, for small enough 𝜆

𝑛 ,
above equation reveals that there is a small 𝛽∗ > 0 that is root to

the equation 𝜆
𝑛 = 𝛽𝜓

′ (𝛽) − 𝜓 (𝛽) and the root is unique. This is
because by Assumption 2, 𝜓 (.) is strictly convex, and therefore,
𝑑 (𝛽𝜓 ′−𝜓 (𝛽)

𝑑𝛽
) = 𝛽𝜓

′′ (𝛽) > 0 for 𝛽 > 0, so that 𝛽𝜓
′ (𝛽) − 𝜓 (𝛽) is

strictly increasing.
Since 𝛼∗ = 1

𝛽∗ , this shows that for any sufficiently small 𝜆
𝑛 , we

can find a large 𝛼∗ > 0 such that the corresponding𝑔∗ in 24 satisfies
𝜆
𝑛 = E0 [𝑔∗ log𝑔∗]. This means we can write the following

𝜆

𝑛
=

1
2
𝜅2𝛽
∗2 + 1

3
𝜅3𝛽
∗3 + 1

8
𝜅4𝛽
∗4 + O(𝛽∗

5
) (26)

We can obtain 𝛽∗ as follow

𝛽∗ =

√︄
2𝜆
𝑛𝜅2

(
1 + 2

3
𝜅3
𝜅2

𝛽∗ + 1
4
𝜅4
𝜅2

𝛽∗
2
+ O(𝛽∗

3
)
)− 1

2

=

√︄
2𝜆
𝑛𝜅2

(
1 − 1

3
𝜅3
𝜅2

𝛽∗ + O(𝛽∗
2
)
)
=

√︂
2
𝜅2

(
𝜆

𝑛

)1/2
−2
3
𝜅3
𝜅22

𝜆

𝑛
+O

((
𝜆

𝑛

) 3
2
)

In the above expression, first we use the binomial expansion (1 +
𝑥)
−1
2 = 1− 1

2𝑥 +
3
8𝑥

2 .... followed by substitution of 𝛽∗ in the second
term. Now, the corresponding optimal solution becomes following

E0 [𝑓 (𝑋+)𝑔∗] = 𝜓
′
(𝛽∗) = 𝜅1 + 𝜅2𝛽∗ + 𝜅3

𝛽∗
2

2
+ O(𝛽∗

3
)

= 𝜅1 +
√
2𝜅2

(
𝜆

𝑛

) 1
2
+ 1
3
𝜅3
𝜅2

𝜆

𝑛
+ O

((
𝜆

𝑛

) 3
2
)

In the above equation𝜅1 = 𝑓 , 𝜅2 = Var𝑛 [𝑓 (𝑋+)], 𝜅3 = E0 [(𝑓 (𝑋+)−
E0 [𝑓 (𝑋+)])3]. This completes the proof of Theorem 2.

B MORE EXAMPLES OF CHALLENGING BAGS
Figure 8 shows the 𝑝-𝑓 plots for three example challenging bags
from three different topics in the 20NewsGroup dataset. As shown,
the highest 𝑓 -score from those bags is very low. This implies that
the passive learning model predicts all the instances as negative
with a high confidence. Using F-Entropy, we may not be able to
query any instance from those bags because of low uncertainty. In
contrast, by leveraging the standard MIL assumption, the proposed
P-F sampling will effectively explore those bags. Once the posi-
tive instances from these bags are queried, they help to accurately
identify similar positive instances in the same and different bags
to boost the instance prediction performance, as evidenced by our
experimental results.

C LINK TO SOURCE CODE
For the source code of our experiments, please click here.

https://github.com/ritmininglab/ADMIL-P-F
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