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ABSTRACT

App stores enable users to share their experiences directly with
the developers in the form of app reviews. Recent studies have
shown that the feedback received from users is a valuable source
of information for requirements extraction, which encourages app
developers to leverage the reviews for app update and maintenance
purposes. Follow-up studies proposed automated techniques to help
developers filter the large volume of daily and noisy reviews and/or
summarize their content. However, all previous studies approached
the app reviews classification and summarization as separate tasks,
which complicated the process and introduced unnecessary over-
head. Moreover, none of those approaches explored the potential of
utilizing the hierarchical relationships that exist between the labels
of app reviews for the purpose of building a more accurate model.
In this work, we propose Hierarchical Multi-Kernel Relevance Vec-
tor Machines (HMK-RVM), a Bayesian multi-kernel technique that
integrates app review classification and summarization using a
unified model. Moreover, it can provide insights into the learned
patterns and underlying data for easier model interpretation. We
evaluated our proposed approach on two real-world datasets and
showed that in addition to the gained insights, the model produces
equal or better results than the state of the art.
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1 INTRODUCTION

User opinions on mobile apps are highly valued by app developers
due to the competitive nature of the market [4], where developers
attempt to attract the highest possible user base and maintain their
satisfaction level. Thus, developers would like to analyze the feed-
back received from users in the form of app reviews to understand
the users’ requirements, preferences, and complaints [20, 31]. How-
ever, the large volume of app reviews received on a daily basis has
made a manual analysis of reviews too time-consuming. As such, it
became favorable to have automated approaches that can facilitate
quicker and easier access to the feedback found in app reviews.

Existing efforts on this task fall into two directions. In the first
one, a classification model is constructed to assign reviews into a
predefined list of labels considered to be useful for app develop-
ers (e.g., bug reports and feature requests) as a way to automate
the process [11, 16, 20, 24, 25, 33, 40, 41]. However, assigning such
general labels is inadequate to extract useful requirements as one
can easily find thousands of reviews that fall under one of those
labels and significant manual work is still needed to find the actual
requirements. Thus, the second direction aims to summarize or
group together user reviews with similar topics for easier require-
ment extraction [9, 13]. Visualization techniques have been used
to highlight the most frequent terms used in those reviews and it
is left to the developers to infer the requested feature(s). Similarly,
clustering has been leveraged to group reviews that cover the same
set of topics but the developers still have to analyze each cluster
to identify the requirements embedded in the review content. In a
more end-to-end research, both the classification and summariza-
tion tasks were attempted [15, 32, 34, 43]. We align our work with
this direction. However, unlike previous work where the classifica-
tion and summarization tasks were handled separately, we propose
to merge the two tasks together in a single learning process.

In this work, we present a novel approach to facilitate the ex-
traction of user requirements from app reviews in which both
the classification and summarization are achieved simultaneously
using a unified model. In particular, we propose Hierarchical Multi-
kernel Relevant Vector Machines (HMK-RVM), in which three main
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goals are accomplished. First, we exploit the hierarchical relation-
ships between the labels during the learning process to build a
more accurate classifier. Second, we adopt a Bayesian multi-kernel
learning approach that encapsulates a rich feature space into sepa-
rate kernels, which achieved improved model interpretability and
understanding of predictions. Third, in addition to a competitive
classification accuracy, the proposed approach can identify a small
set of most representative reviews as part of its learning process
that can effectively summarize the content of all available reviews.
We extensively evaluate our approach on two real-world datasets
and show that it can produce equal or better classification accuracy
than the state of the art while identifying the most informative re-
views to greatly facilitate requirements extraction. We summarize
our contributions as follows:

e We leverage the hierarchical relationships that exist in the app
review labels as part of the learning process, which is a new per-
spective on the classification task that was not considered before.
We further demonstrate that using the hierarchical relationships
between the labels can lead to a more accurate model.

e We propose a multi-kernel Bayesian approach that integrates
classification and summarization under a unified framework.
We show that our proposed approach can offer two additional
benefits beyond accuracy: (i) an insight into the learned task and
the underlying data for better model interpretability, and (ii) an
insight into the most representative reviews that best summarize
the users feedback, for easier requirements extraction.

e We evaluate our proposed approach (HMK-RVM) on two real-
world datasets and show that it can provide better classification
results while providing significantly better summarization re-
sults than the state of the art.

The remainder of this paper is organized as follows. We present a
summary of related work in Section 2. We discuss our proposed
approach in Section 3. We evaluate our approach and present our
results in Section 4. We then discuss the significance of the results
and the potential threats to validity in Section 5 and Section 6.
Finally, we conclude the paper in Section 7.

2 RELATED WORK

In this section, we summarize existing studies related to app reviews
classification and/or summarization. We divide existing works into
two major categories: (i) classification only and (ii) classification
followed by summarization. For the former, a key limitation is
that they do not address requirement extraction. Hence, develop-
ers need to manually analyze all informative reviews (which is
usually around 35%-40% of all reviews) that leads to significant
overhead. As for the latter, they usually rely on a complex pipeline
that requires the implementation, tuning, and maintenance of two
different ML models, one for classification and one for extraction
through clustering/visualization or other relevant strategies.

2.1 Summarizing User Reviews

There are several existing works with a focus on summarizing or
visualizing the overall topics found in user reviews. In [19] an ap-
proach to summarize the most discussed aspects of a product and
the corresponding user opinions (i.e., positive or negative) is pre-
sented. In [9], topic modeling is exploited to discover the topics
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found in the reviews along with representative sentences. In [11],
DBSCAN clustering is used to group together similar reviews. In
[44], the authors proposed an information retrieval framework that
processes the reviews and put them in a knowledge database. The
framework returns the most relevant reviews that discuss the pro-
vided topics given the developer-selected keywords. In [13, 15, 34],
different visualization tools/techniques are presented. For example,
in [34], an HTML tool was presented that visualizes the content of
reviews by showing terms formatted in a word cloud. In [13, 45]
they focused on providing an interface that summarizes and tracks
the change in reviews under specific topics between different ver-
sions to highlight abnormal changes (e.g., version 2 has significantly
higher bug reports than all other versions).

2.2 Classifying User Reviews

As for app review classification, [11] is among the first attempts
to classify app reviews to be either informative or non-informative.
The authors used a bag-of-words (BoW) representation, similar to
other studies [24, 25, 43]. In [43], the authors leveraged N-grams in
the BoW representation to account for context that requires two or
three words (e.g., not laggy). If we process those words separately,
we will not understand the actual intention. In [24], the tense of the
verb was incorporated into the feature space. The authors argued
that verbs in the past are usually associated with users reporting
bugs, whereas, verbs in the future are usually correlated with hope
and requests for additions (i.e., feature requests). In [33], the authors
claimed that most reviews follow a specific linguistic patterns and
identifying those patterns can help to improve classification per-
formance. Thus, they created 246 linguistic patterns that describe
the general form in which a review would be in to fall under a
specific label (e.g., [someone] should add [something]). In [15], the
BoW representation is replaced with a representation generated
from parsing sentences as parsing trees and then traversing the
tree to construct the representation. The authors claimed this ap-
proach can take word semantics into consideration. In [40, 41], the
authors suggested to classify on the sentence level instead of the
review level to allow for multi-label classification. It is also worth
mentioning that some studies investigated connections beyond the
classification of app reviews. For example, in [32], the authors inves-
tigated the possibility of linking user feedback to the source code
components. Different from the studies above, we argue that there
is still room to improve the automation of requirements extraction
from app reviews. Therefore, we extend this line of work by in-
tegrating summarization and classification tasks while exploring
unique characteristics of the problem, such as the hierarchical rela-
tionships between the labels. By doing so, we uncover new ways
to further improve the automation of such tasks.

2.3 Other Related Studies on App Reviews

There is a number of studies that focus on analyzing app stores [18],
types of feedback in user reviews [10, 12, 17, 21], and the interaction
between these two [27]. We differ from those studies in that we are
not analyzing the feedback itself. Instead, we focus on app review
classification and summarization to largely automate the extraction
of user requirements.
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Figure 1: Overview of the proposed approach for require-
ments extraction from app reviews

3 METHODOLOGY

Overview. In this section, we present the proposed HMK-RVM
model as seen in Figure 1. Given a set of app reviews, the proposed
approach first classifies each review into the predefined labels. This
would help developers separate informative reviews from non-
informative ones. Additionally, the predefined labels (e.g., feature
request, bug report, etc.) can further guide the developers to extract
the relevant requirements. Along with the classification process, the
model also identifies a set of the most representative reviews that
summarize the entire collection. As a result, developers can only
focus on these representative reviews for requirements extraction
as they are expected to capture most of the discussed requirements.

For the rest of this section, we first discuss the difference between
a flat and a hierarchical approach and justify how the latter fits
better with app review classification. We then present our proposed
multi-kernel RVM, which leverages Bayesian sparse learning and
multiple kernels to integrate classification and summarization.

3.1 Hierarchical User Review Classification

For common classification tasks with a set of balanced classes, stan-
dard multi-class models can be straightforwardly applied. However,
for problems with highly imbalanced classes (e.g., those that in-
volve rare classes), standard techniques may suffer from a poor
performance due to lack of attention given to the minority class.
Meanwhile, it has been shown that leveraging existing hierarchical
relationship between classes can improve the performance of the
classifier [22, 29]. In traditional flat classification, the hierarchical
relationship between classes is ignored. For example, a binary flat
classifier would attempt to distinguish app reviews with feature
requests from all other classes. This ignores the fact that reviews
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with feature requests and/or bug reports are all considered as in-
formative reviews, i.e., they share a common parent class. Taking
this information into consideration when training the classifier can
help us build a better classifier that attempts to first distinguish
the informative reviews from the non-informative reviews and then
further classify those informative reviews into their appropriate
class. In this way, classes at both levels tend to be more balanced.

Non-
informative

Information
Seeking

Non-
functional

Feature
Request

Bug Report

Figure 2: The hierarchical structure in app review classes

|, |Performance

¢

We observe that all the previous works have approached the prob-
lem as a flat classification problem. In [11], a binary classifier that
determines whether an app review is informative or non-informative
was used, introducing the first two types of classes. A follow up
work [25] further studied the app reviews and introduced a new
set of labels rating, bug reports, feature requests, and user experience.
A more recent study used feedback from the industry to further
break down user experience into reviews reporting security con-
cerns, energy concerns, and so on. However, no existing work has
attempted to leverage the hierarchical relationship between those
classes as part of the learning process. Based on the analysis of
previous work, it is clear that the classes of app reviews can be
organized into a fairly complex hierarchy as shown in Figure 2.
It has been reported in multiple studies [31] that the informative
subset of app reviews represent at most 30%-35% of the whole cor-
pus. If we further break down the informative subset into multiple
classes, we can observe that some classes can be as rare as 5%-10%.
As such, using traditional flat classification will create classifiers
dominated by the negative (i.e., non-informative) class, leading to a
poor classification performance. This limitation can be addressed
when a hierarchical classification approach is used.

3.2 Multi-Kernel Relevance Vector Machines

Notations. Let X = {x1,X2,..xnN} denote a set of N training in-
stances, where x; € RP. We limit the introduction to Relevance
Vector Machines (RVM) [42] to binary classification problem for
simplicity where each data instance x; is assigned with a label
t; € {0, 1}. Later, the binary classification solution can be directly
generalized to multi-class problem with the one-vs-the-rest formu-
lation. The RVM is a Bayesian model in which the label follows the
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Bernoulli distribution ¢; ~ Bernoulli(o):

M
pti=1)=y; = U(Z ¢m(Xi)Wm) =o(w' ¢(x;)) (1)
m=1

where ¢(x;) is a vector of M basis functions that projects the feature
space from RP to RM: ¢(x;) = [h1(x;), d2(xi), ..¢a(x;)]. Typical
basis functions include polynomial, Gaussian, and sigmoidal [6]. In
RVM, the basis functions are specified with a kernel function k(- -):
$i(x) = k(x, x;). We denote K € RN*N a5 the gram matrix whose
i-th row is given by [k(x1,%;), k(x2, X;), ..k(xn,%;)] . The kernel
view of (1) is given by:

pti=l)=yi=o0 (2

N
D waki(x, xn))
n=1

where w are model parameters that follow a Gaussian distribu-
tion p(w; @) ~ N(0,A7!), with A being a diagonal matrix A =
diag(ay, ..., an). The goal of RVM is to learn the posterior distribu-
tion p(wlt, &) as well as to estimate the hyper-parameter «. Here,
we omit the dependency on X, which is implied.

The posterior distribution can be derived via the Bayes’ rule:

®)
By applying Laplace approximation, the posterior distribution also
follows a Gaussian distribution N(w*,Y), whose mean and covari-
ance are given by w* = AT'KT(t —y) and 3 = (KTBK + A1,
respectively, where B = diag(y © (1 —y)).

The hyper-parameter a can be derived using type II maximiza-
tion. To do that, we first compute the model evidence

ptla) = / p(tw)p(wla)dw = / p(twp(wla)dw ()

where we used Taylor expansion on the integrant at w* to remove

the integral. Then the optimal value of & is obtained by solving

apltle) _ .
“oa -0

Inp(wlt, @) o Inp(t|w) + In p(w|a)

w_ 1—oi2i;
%= w2 ®)
Training of RVM is achieved through an iterative process of updat-
ing w*, %, and o} until convergence. In the prediction phase, the pre-
dictive distribution of a test data point x’is given by p(¢’|x’, w*) =
Bernoulli(o(w*Tx")). The prior distribution adopted by RVM is
commonly referred as auto relevance detection (ARD). It makes
the model prefer simpler explanations than complex explanations
so that over-fitting can be automatically addressed. Specifically,
during the training process, a certain number of &’s components
will be driven to infinity, making their corresponding training data
instances independent from the prediction and the remaining few
important training data instances are called relevance vectors.

We make a general extension to RVM to handle the input with
multiple modalities (e.g., different representations). Suppose the
input X is now given in three different representations Xy, Xy,
and X7y7. Then, we construct a overall gram matrix as the linear
combination of the gram matrix for each representation.

K = 01K(X1, X1) + 02K(X11, X11) + 0K (X111, X011) — (6)

Replacing the gram matrix in standard RVM with (6), we have

the RVM for multi-modality data input. The hyper-parameters
0 = (61,0,,05)7 can be solved by type II maximization similar
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to solving . However, the objective function is not convex with
respect to 6 and may cause the optimization either to trap into the
local optima or commit to slow convergence. To address this, we
adopt a gradient-free method, simplex [5], to directly search the
optimal 0 in the hyper-parameter space.

3.3 Why Extend RVM?

A fundamental reason for using and extending RVM for our problem
is its ability to identify the most representative points that can
summarize the underlying dataset. This aligns well with the task of
finding the best subset of reviews that can be used for requirement
extraction. During model training, it ensures both the sparsity and
the quality of the selected data points. The former, i.e., sparsity,
allows us to identify a small subset of reviews to summarize the
entire dataset in a compact way. As a result, the developer can safely
ignore a large portion of the reviews to significantly reduce the
manual analysis effort when performing requirement extraction.
The latter, i.e., quality, further helps to identify the most informative
reviews that can ensure the accuracy and quality of the extracted
requirements. At the end of this training process, a set of points
are selected which the model uses for classification. We propose
to use those points for summarization as well. Consequently, we
would achieve both aspects using a single learning model.

3.4 Constructing the Kernels

The number of kernels used with the approach and their types
can be selected based on the available data and given task. For the
purpose of app reviews classification, we constructed four kernels
to build a comprehensive kernel space.

The first is a meta kernel, which captures simple meta informa-
tion about the review, e.g., the rating and the number of words.
The second is a kernel that utilizes the textual content of the re-
view by capturing the important recurring terms, e.g., add, crash,
etc. To construct this kernel, we applied a standard natural lan-
guage processing methods, such as stop-word removal and word
stemming, on the textual content of the title and body of an app
review to generate such a representation using the term frequency-
inverse document frequency (TF-IDF) approach [26]. However, one
potential disadvantage with this kernel is that the textual nature
of app reviews is quite noisy, which can lead to a large and sparse
dictionary. For that purpose, we constructed a third a kernel that
would provide us with a less sparse representation by attempting to
capture the broad topics within the reviews, in contrast to relying
on the exact terms. To construct this kernel, we used the topic
modeling technique, Latent Dirichlet Allocation (LDA) [7]. LDA
been widely used in many previous studies [2, 3, 38] to summarize
the topics of a large document corpus. The intuition behind LDA is
that it leverages the textual content of a set of documents to group
together the frequently co-occurring words into an approximation
of a real-world concept, i.e., a topic.

Even though those kernels would provide a comprehensive repre-
sentation, they lack one important aspect, and that is the semantics
of the used words. In [25], they found that classifying the reviews
coming from the iOS app store was significantly more accurate than
those coming from the Android store. They attribute this differ-
ence to the language and vocabulary difference from those two app
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stores. They claim that the iOS store reviews were less noisy (e.g.,
having less typos) and used a much more homogeneous vocabulary
of terms. This observation highlights the effect of the noise found
in user reviews on the classification task and the impact it has on
the learning process. In [44], this observation was studied further
as the authors also highlighted and described the observation that
app reviews suffer from a high percentage of typos, acronyms, and
abbreviations. They performed a preliminary analysis of 300,000
reviews and compared their textual content against an English dic-
tionary of 150,000 common words, and found that a large portion
of the used words in app reviews do not match any words in the
English dictionary, mainly due to abbreviations and typos. Having
such high noise and unique language (e.g., wait is written as w8)
creates an issue for traditional data mining techniques that relies
on stemming and dictionary creation as both wait and w8 will still
exist as two unique different words. They hypothesized that this
observation might be due to the fact that reviews are written using
mobile devices which lack a physical keyboard, hence, it is more
likely to have typos, acronyms, and abbreviations. To overcome
this issue, the authors in [44] manually created a custom dictionary
that attempts to replace the most frequent out-of-dictionary words
with their dictionary-equivalent (e.g., replacing exelent with excel-
lent). Moreover, in [15], a similar observation was made, and the
authors manually constructed a collection of 60 different typos and
contractions, and replaced them using regular expressions.

We have observed a similar pattern of noise with app reviews,
where a large portion of words in the post-processing and stemming
dictionary seem to represent the same word but written differently
due to misspelled words (e.g., fantastic vs fantastick) or alternatively
spelled words either for abbreviations purposes (e.g., thanks vs thx),
or to represent a stronger emotion, (e.g., loved vs loooved). In Table
1, we show a few additional examples.

Table 1: Examples of mis- or alternatively spelled words

Word Observed noise

amazing amaazing, amaaazing, amassing, amazeng

thanks thx, thanx, tx, tnx, 10x, thnx, ty

awesome awasome, awesommeeee, awsolne, OwWesome,
asssome

love lov, luv, lovve, looove, loveee

because be, b/c, cuz, coz, bez, caus

While merging misspelled or alternatively spelled words would
improve the textual representation and the model’s performance,
we argue that using a manually created custom dictionary would
be too difficult to create and maintain over the time. To overcome
this issue, we constructed a fourth kernel that leverages word em-
bedding techniques to create a representation that captures the
semantics of words. For example, the word2vec [28], the GloVe [36],
or the FastText [8] model are all techniques that take into consider-
ation word semantics and meanings. These techniques are built on
the notion that words with similar semantic meanings will have the
same set of words around them. For example, the words love and like
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are used in similar manners, i.e., I love that app and I like that app.
As a result, they would be closely placed in the embedding space
as they share a similar semantic meaning. To construct this kernel
space, we need to either use a pre-trained model from a different
domain (e.g., Tweets), or train our own problem-specific model to
generate the word embeddings for the app reviews. According to
[23, 39], which studied this specific concern among other choices
with word embedding models, it is recommended to use a model
that is specific to your domain as it can better capture the relevant
vocabulary and their unique usage. We believe this is especially
true for app reviews and an important factor to overcome the issue
of misspelled and alternatively spelled words. To the best of our
knowledge, there’s no publicly available word embedding model
that was trained on app reviews. For that reason, we decided to
create such a model and make it publicly available as part of our
replication package. We trained a FastText [8] model on 1,673,672
app reviews collected from [35] and [14]. We chose FastText be-
cause it is most effective in settings where out-of-dictionary words
are common, like ours. For more details on the training process and
the selected parameters, kindly refer to the replication package'.
Finally, it is worth noting that our approach has the flexibility to
use any number of kernels. We believe the suggested four kernels
represent app reviews quite well and can capture both high-level
concepts (e.g., LDA) and low-level characteristics (e.g., meta). As a
result, the four kernels offer sufficient expressive power to construct
a comprehensive feature space that can help the machine learning
model achieve a good level of robustness and generalization.

4 EVALUATION AND RESULTS

In this section, we plan to evaluate the proposed model, specifically,
by investigating the following research questions:

RQ;: Do we gain any app reviews prediction accuracy from hier-
archical classification versus flat classification?

RQ2: How accurate is the classification of the proposed HMK-RVM
approach compared to the state of the art?

RQs3: How accurate is the summarization of the proposed HMK-
RVM approach compared to the state of the art?

RQy4: Beyond accuracy, what insights can we gain from using the
proposed hierarchical multi-kernel RVM approach?

The source code and data used in the experiment section are

available online for easy replication/validation purposes .

Table 2: Statistics of the used datasets

Maalej Panichella
Feature Request 252 (7%) 391 (13%)
Bug Report 370 (10%) 271 (9%)
User Experience 607 (16%) 334 (11%)
Total Info 1229 (33%) 880 (30%)

Total Non-Info 2455 (67%) 2024 (70%)

Total Reviews 3684 2904

Uhttps://tinyurl.com/qup3h4l
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4.1 Datasets

To address our questions, we will report results on two real-world
datasets that were provided by previous research. The first is the
Maalej dataset [24, 25], where reviews were randomly selected from
both Apple and Google Play stores. The authors crawled over a mil-
lion app reviews and followed a sampling strategy with the goal of
picking a stratified and a representative sample (e.g., equal number
of free and paid apps, equal number of iOS and Android app, etc.).
The second is the Panichella dataset [34, 40], where the authors
favored an app specific sampling approach. The dataset contains
reviews of 17 apps coming from Google Play, Microsoft, and Apple
app stores. Unfortunately, the ground truth was not provided for
this dataset so we asked two teams of graduate students to label the
dataset separately according to a labelling guide that can be found
with the replication package'. The guide follows closely the guid-
ance of the original paper. Once the teams completed the labelling
task, we compared the labels and addressed all disagreements. We
found a good inter-rater agreement (kappa=0.68) between the an-
notators. The statistics of both datasets can be found in Table 2.

4.2 Experiment and Results

RQ;: Do we gain any app reviews prediction
accuracy from hierarchical classification versus
flat classification?

Experimental Setup: To evaluate the model’s accuracy gained
from leveraging the hierarchical relationship embedded within the
labels, we will use a simple feature space consisting of a bag-of-
words representation using TF-IDF [37]. For this evaluation, we
will not attempt to add any additional features such as meta-data
features (e.g., rating, review length, efc.) as we want to focus on the
added benefit of hierarchical versus flat app reviews classification.
Moreover, to make sure the results are not due to a specific clas-
sifier or to a specific dataset, we will evaluate on both the Maalej
and Panichella datasets, and on four different classifiers: Logistic
Regression (L1 Regularization), Random Forest (200 trees), Support
Vector Machines (Linear Kernel), Relevant Vector Machines (Linear
Kernel), and Naive Bayes (Multinomial). As we are limited to the
three mutual labels (bug report, feature request, and user experi-
ence) provided with those datasets, we will build the experiment
around them. Finally, to make sure both the flat and hierarchical
classifiers were exposed to the same set of reviews during training
and testing, we used a single train/test split of 80/20 for both.

For flat classification, as shown in Figure 3(a), we are training
three one-vs-the-rest binary classifiers, one classifier per label (e.g.,
bug report or not). We prefer to use binary classifiers instead of a
multi-class classifier as this setup allows for multi-label classifica-
tion. This means an app review can be given a single or multiple
labels. For example, an app review with multiple labels from the
Panichella dataset is “This is a great app for keeping track of weight
... there should be a way to turn off daily reminder ... also I notice it
keeps changing the year I was born...“. However, using this setup, it
is also possible for an app review not to be assigned any of the three
classes. For that purpose, in Figure 3(a) we show a non-informative
node that captures all such cases.
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For hierarchical classification, as shown in Figure 3(b), we use
a top-down approach for training and classification purpose. At
the first level, we are using a binary classifier that classifies all
app reviews as either informative or non-informative, and on the
second level we use three one-vs-the-rest binary classifiers that
attempt to further classify what passes as informative under one
or none of the three classes: bug report, feature request, and user
experience. Thus, in hierarchical classification, we are training one
more classifier than flat classification. This may seem as added
complexity, however, the top down approach actually has a better
overall computational cost because only the informative classifier is
trained on all the training examples, the remaining three classifiers
train only on the informative subset. For example, if we had a
training data set of 10k app reviews, 3k of those are informative,
then the first level classifier will train on all 10k app reviews, but the
second level will only have to train on the 3k app reviews. Whereas,
in flat classification, each of the classifiers would need to be trained
on the complete 10k dataset.

User
Experience

Informative

Feature
Request

User
Experience

Feature
Request

Bug Report Bug Report

(a) Flat Classification (b) Hierarchical Classification

Figure 3: Evaluation of flat and hierarchical app review clas-
sification, where each node is a potential label

Experiment Results: We report the average AUC computed from
precision and recall (AUCpR), macro F1 (MF;), and macro recall
(MR) in Table 3. We can make a couple of observations. First, Naive
Bayes seems to outperform the other classifiers when a simple bag
of words model is used, which was also observed in a previous
study [25], because a term count representation aligns perfectly
with how Naive Bayes works. Second, overall, formulating the prob-
lem using hierarchical classification increases the model’s accuracy,
especially with recall (i.e., increasing the chance that we do not miss
any informative app reviews). On the Maalej dataset, we observed
on average a 8.4% better AUCpR, 49.8% better F1 measure, and 108%
better recall. Similarly on the Panichella dataset we observed 13%
better AUCpR, 17% better F1, and 33% better recall. To better under-
stand the results, we analyzed the performance of Random Forest
on the Panichella dataset where the recall had an improvement
of 61%. It’s important to mention that in app review classification,
the ability to label all existing informative reviews correctly (i.e.,
recall) is more important than mis-classifying a few non-informative
reviews as informative (i.e., precision) because all reviews labelled
as non-informative are usually disregarded (i.e., feedback would be
lost with low recall). Thus, this significant improvement on the
recall when using a hierarchical approach is a perfect match with
the app review classification problem.
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Table 3: Classification results of flat and hierarchical app review classifiers

‘ Maalej Dataset

‘ Panichella Dataset

Classifier ‘ Flat ‘ Hierarchical ‘ Flat ‘ Hierarchical
| AUCpr MF, MR | AUCpg MF; MR | AUCpg MF; MR | AUCpg MF; MR
Logistic 0.349 0.369 0.381 0.393 0.433 0.562 0.622 0.599 0.594 0.699 0.681 0.731
Reg. (+12%)  (+17%) (+47%) (+12%)  (+13%) (+23%)
Random 0.399 0.195 0.136 0.433 0.531 0.603 0.739 0.541 0.428 0.768 0.699  0.692
Forest (+8%)  (+172%) (+343%) (+4%)  (+29%) (+61%)
SVM 0.346 0.358 0.385 0.353 0.423 0.561 0.482 0.523 0.572 0.625 0.617  0.701
(+2%) (+18%)  (+45%) (+30%) (+17%) (+22%)
Naive 0.458 0.474 0.529 0.497 0.507 0.623 0.681 0.630 0.624 0.768 0.705 0.736
Bayes (+8%)  (+7%) (+17%) (+13%)  (+10%) (+17%)
RVM 0.459 0.375 0.309 0.514 0.505 0.591 0.686 0.591 0.512 0.734 0.702 0.747
(+12%)  (+35%) (+91%) +7%)  (+18%) (+45%)
Given 52 reviews with bug reports
Classifier 1
Given 52 reviews with bug reports
Classifier 1
44 classified|as informative
8 discarded as non-informative
) 4
Classifierz
Feature User
Request Experience Bug Report Feature User
Bug Report

20 classified as bug reports
30 discarded as non-informative

(a) Flat Classification

Request Experience

30 classified as bug reports
14 remained labeled as informative w/o a subclass

(b) Hierarchical Classification

Figure 4: Given 52 app reviews with bug reports, how were they classified in flat vs hierarchical?

We report in Table 4 the recall of each classifier. In flat classifica-
tion, we can observe that the classifier’s ability to correctly classify
all the bug report and user experience instances is quite poor. As we
believe the bug report is a more critical category, we further inves-
tigated the instances and how they were labelled in both classifiers
as shown in Figure 4. In our experiment, the testing sample had
52 app reviews with bug reports. In the case of flat classification,
we clearly observed that the classifier missed 32 of the bug reports
(62%). However, the hierarchical classifier mislabelled 8 bug reports
out of the 52 as non-informative, and mislabeled 14 bug reports out
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of the 44 informative reviews as other type of informative reviews.
Overall, the classifier mislabelled 42% of the bug reports, a much
better recall than the flat classifier. Upon further checking, we can
observe that the first level performance in the hierarchical classifier
is excellent as we were able to capture 85% of the bug reports as
informative reviews. However, the second level performance was
less ideal (i.e., missing 14 out of 44), but we can argue that it is still
better than the flat classifier as we were still able to label those app
reviews as informative, i.e., they were not completely missed, but
were incorrectly classified as other types of informative reviews.
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Table 4: Analyzing random forest: the flat vs. the hierarchi-
cal classifiers on the Panichella dataset

Type ‘ Info. ‘ Feature ‘ Bug User Ex-
Request | Report | perience
‘ Recall Measure
Flat | 0517 | 0.666 | 0385 | 0.145
Hierarchical | 0.727 | 0.831 | 0.682 | 0526

We credit the better performance of the hierarchical classifier
to two main factors. First, it is not affected as much by the class
imbalance as the flat classifier. In the case of flat classification, the
frequency of each class is dominated by the negative class, e.g., the
bug report classifier had 91% instances of the negative class so it
needs to distinguish from the non-informative and other informa-
tive classes, which is quite challenging. However, in hierarchical
classification, the first level uses the combined knowledge from all
three classes to first filter out informative from non-informative app
reviews, which is an easier task, i.e., due to the different nature of
non-informative reviews from informative along with a much higher
positive class frequency. Second, we observed that the bug report
classifier can distinguish itself better from other feature request
and user experience reviews (i.e., informative reviews) when non-
informative reviews are removed, which is what the hierarchical
top-down classification is inherently doing.

RQ,: How accurate is the classification of the
proposed HMK-RVM approach compared to the
state of the art?

Baselines: To evaluate our proposed approach, we compared against
five baselines and using two different datasets. The proposed ap-
proach and all the baselines presented are trained using the textual

content of the reviews and the meta data information.

First, the AR-Miner [11] baseline used a Naive Bayes model
[30], where the hidden topics of the reviews were discovered using
Latent Dirichlet Allocation (LDA) [7] and used alongside the rating
of the app review to construct the feature space. To implement
their approach, we selected the number of topics k for LDA using
cross-validation. Specifically, we chose 85 topics for both datasets.

Second, the Maalej [25] baseline also adopted a Naive Bayes
model due to its previously reported high performance with text
classification. However, [25] used a bag of words approach and
extracted the ratio of past, present, and future tenses in the review
to represent the textual content, claiming that reviews with bug re-
ports tend to use past tenses, whereas reviews with feature requests
tend to use future tenses. Additionally, they used the review’s rating,
length, and sentiment score as part of their features.

Third, the ARdoc [33, 34] baseline leveraged a decision tree (J48)
model. The authors manually constructed 246 linguistic patterns
each mapping to a specific app review label, e.g., reviews with
pattern [someone] should add [something] are mapped to feature
requests. Moreover, they generated a TF-IDF representation from the
textual content of the reviews and used the review’s sentiment score
in their feature space. Due to the difficulties in recreating the 246
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linguistic patterns, we did not implement this approach ourselves
but rather used the tool provided by the authors to generate labels.
As such, we do not have the AUC and ROC scores for this baseline,
since computing them requires access to the model itself to evaluate
performance under different decision thresholds.

Finally, we include the proposed approach with two variant
baselines. The RVM baseline, where the Relevance Vector Ma-
chines (RVM) [42] with fast marginal likelihood maximization is
used as a baseline using our complete feature space (features are
concatenated into a single large feature space) and presented as
an alternative to using the multi-kernel learning approach. The
(MK-RVM) baseline where the multi-kernel approach is added to
the previous baseline and the problem is approached using a flat
classification approach as an alternative to using a hierarchical
approach. Finally, (HMK-RVM), which is our proposed model, the
hierarchical multi-kernel RVM which combines the power of RVM
with multi-kernel learning and follows a hierarchical classification
approach that leverages the existing hierarchical structure.

Experiment Setup: We formulated the learning task as a bi-
nary one-vs-the-rest problem by following earlier work. We chose
this formulation due to two reasons: the first is that it supports
multi-label classification (e.g., a review can contain both a bug re-
port and a feature request), and the second is due to its higher
reported performance than multi-class classification. For example,
[25] reported that using multiple binary classifiers for app review
classification performed significantly better than a single multi-
class classifier in all cases. To measure the accuracy of the models,
we used a train/test split of 80/20. To measure the robustness, ie.,
performance on different datasets, we conducted the experiment
on both Maalej and Panichella datasets.

Experiment Results: In Table 5, we show a summary of the
results. We can observe that the traditional RVM that uses our
proposed feature space performs on par with the other baselines
introduced in prior work. This highlights the usefulness of lever-
aging the information from multiple aspects and shows that RVM
is on equal footing to other models such as Naive Bayes and De-
cision Trees in terms of accuracy. Moreover, it shows that using
a larger feature space on its own is not enough to gain a compet-
itive advantage as the difference between it and other baselines
is not that significant. Once we utilize the multi-kernel approach
we can observe a 2%-4%improvement in the overall model’s per-
formance (AUCpR) over traditional RVM on both datasets, and a
3%-15% improvement with the proposed hierarchical version of
the multi-kernel RVM classifier. We can also observe that most of
this improvement is due to a boost in the recall (93% increase on
Maalej and 40% on Panichella). As we discussed earlier, this is the
main advantage of leveraging the existing hierarchical relationship
between labels. Breaking the prediction task into multiple levels,
whereby in the first, we predict (informative vs. non-informative)
and use the collective knowledge between the different children of
each branch can significantly boost the model’s recall, i.e., increases
our chance of identifying informative reviews correctly.

Overall, we can observe that the proposed hierarchical multi-
kernel RVM is outperforming all the baselines as it can offer a
boost through the combination of two aspects. First, the multi-
kernel learning technique allows it to choose the best kernel(s)
for the current learning task through the assigned weights (e.g.,
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Table 5: Summary of the results comparing proposed approach to the start of the art

Maalej Dataset ‘ Panichella Dataset
Approach
AUCpr AUCgroc mF; MF; MP MR ‘ AUCpr AUCgroc mF; MF; MP MR

AR-miner [11] 0.402 0.804 0.496 0445 0.363 0.634 | 0.432 0.806 0.472  0.444 0.345 0.699
Maalej [25] 0.472 0.843 0.565 0.513  0.463  0.597 0.668 0.898 0.677 0.640 0.645 0.647
ARdoc [33, 34] - - 0.338 0.267 0.341 0.325 - - 0.376  0.307 0.642 0.344
RVM 0.506 0.869 0.433  0.399 0.583 0.308 0.702 0.927 0.655 0.617 0.736  0.536
MK-RVM 0.516 0.870 0.421 0377 0.502 0.304 0.729 0.930 0.685 0.652 0.741 0.567
HMK-RVM 0.519 0.798 0.615 0.541 0.503 0.594 | 0.806 0.882 0.771 0.729 0.709 0.753

meta-information might be more useful to bug reports than feature
requests, leading to a higher weight for the corresponding kernel
than other kernels, or LDA topics may introduce more noise than
true signals for bug reports, hence setting the LDA kernel’s weight
to very small can improve the model’s accuracy). Second, the hi-
erarchical approach offers a boost in the model’s recall through
leveraging existing hierarchical relationships between the differ-
ent labels. Moreover, through the learning process, the proposed
approach has identified, on average, 45 relevant vectors (varies by
classifier/dataset). Those relevant vectors should be the most repre-
sentative reviews (i.e., reviews that best summarize the content),
which provides us with two additional advantages beyond accu-
racy. The first is a computational advantage, as we can limit future
training and prediction to those relevant vectors since other points
are already represented by them, which significantly cuts down the
original dataset size. The second is a summarization advantage, as
those reviews should highlight the reviews that best summarize
the dataset, which developers can use for requirement extraction.

RQ;: How accurate is the summarization of the
proposed HMK-RVM approach compared to the
state of the art?

Building on the classification step, which helped us identify the set
of informative reviews and filter out the non-informative ones, the
next goal is to summarize the feedback in the set of informative
reviews for the purpose of requirement extraction. We propose to
leverage the set of relevant vectors, which HMK-RVM learns as
part of the classification task as a way to potentially summarize
the users’ feedback. As a result, we achieve both the classification
and summarization tasks simultaneously using the same model. In
this section, we will evaluate the set of reviews identified as the
most informative by HMK-RVM for requirement extraction against
multiple baselines that were used in the literature for this purpose
or for summarization in general.

Baselines: We will use the set of relevant vectors identified by
the HMK-RVM model presented in RQ2 as our proposed approach
and compare it to the following baselines:

First, we will compare against approaches that were proposed
by prior work. We will build upon the classification experiment to
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further summarize the content of the reviews based on the recom-
mendation of the original authors. For AR-Miner [11] and ARdoc
[33, 34], Latent Dirichlet Allocation (LDA) will be used to group the
set of reviews predicted as informative, and then the review with
the highest probability for each topic will be picked as the most
informative one. The size of the final list of selected reviews will
be equal to the number of topics. As for Maalej [25], where the
original authors did not propose any summarization approach, we
will apply K-means to the set of reviews classified as informative to
cluster them, and then use the review at the center of each cluster
as the most informative review. We will also compare against Star
Clustering [1], which creates a graph where each node is a review
and an edge is created if the cosine similarity between two reviews
is larger than a given alpha, and then use the set of nodes with the
highest degree to be the set of center stars, i.e., most informative
reviews for requirement extraction.

Second, for the purpose of completeness, we will use random
sampling as a baseline where we randomly picked n points as the
set of most informative reviews. Additionally, we will compare
against widely used summarization techniques such as K-means
and Latent Dirichlet Allocation (LDA) in the same way described
earlier but applied to the complete dataset.

To keep this comparison fair, we made the selection of the hyper-
parameters, e.g., number of topics for LDA, in a manner that pro-
vided us with a final set of informative reviews that is equal in size
for all baselines.

Experimental Setup: To evaluate this aspect of the proposed
HMK-RVM approach, we asked two graduate Ph.D. students (in
computing) to read the reviews in the Panichella dataset and gener-
ate a list of the requirements discussed, and then label each review
with 1) a requirement id(s), 2) a level of informativeness ranging
from one to three, where one is a review with no requirements, two
is a review that is relevant to a requirement but without enough in-
formation to extract it (e.g., due to missing info, poor readability, or
not being explicit enough, i.e., requiring the developer to guess/infer
the meaning), and three is a review with an explicit requirement
and enough information to extract it. We show examples of this la-
beling in Table 6. The two students annotated the dataset separately
and then compared their labels. Disagreements were resolved in
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Table 6: Examples of real-world reviews from the Panichella
dataset and how they were labeled for RQ3. Requirement ID
5 refers to users’ request for additional login options.

Review Req.Id Informative
Level
Blinq Okay NA 1 (Low)
Login Facebook? Nope. App 5 2 (Medium)
immediately deleted
FB and without FB can Blinq 5 3 (High)
not work?? There must also
be an alternative logon options!
Informativeness

M Level 1 (Low) M Level 2 (Medium) M Level 3 (High)

100% Ratio of least informative reviews (Ivl 1

Ratio of most informative reviews (vl 3

75%

50%

(63%]

Coverage

\'mé ‘e\"\\’\g
S

25%
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Figure 5: The results of the summarization evaluation. The
Y-axis represents the coverage, i.e., percentage of require-
ments that were captured by the selected set of informative
reviews. The higher the score the better. The color provides
a visual representation of how informative are the reviews
selected by each approach. The more green and the less red,
the better the approach.

group discussions. More details on this process can be found in the
replication package!. We found a substantial inter-rater agreement
(kappa=0.87) between the annotators. It is important to know that
the reviews are sharing the same context (same app, same version)
to assume that they are discussing the same requirement, which is
why we only used the Panichella dataset for this evaluation as it
provides the app information in addition to the review, whereas,
this information is missing in the Maalej dataset.

We use two metrics to evaluate each approach. First, how in-
formative are the selected reviews for requirement extraction, i.e.,
were the selected reviews mostly of level two and three of informa-
tiveness (medium and high), or were they mostly level one (noise).
Second, as part of the labeling process we compiled a list of re-
quirements that are discussed in the reviews, and using this ground
truth, we want to evaluate the coverage of each approach, i.e., how
many of the existing discussed requirements were mentioned in
the selected set. However, we argue that not all requirements are
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equal. The more mentioned/discussed a requirement is, the more
valuable, and vice versa. As such, we measured coverage only for
requirements mentioned in three or more reviews. As most ma-
chine learning models require a certain level of statistical presence
to learn patterns, two may not be sufficient to show the statistical
significance. Meanwhile, setting a higher threshold (e.g., four or
more) may miss some meaningful requirements.

Experimental Results: We show the evaluation results in Fig-
ure 5. We can observe that the proposed HMK-RVM significantly
outperforms all the baselines. First, looking at coverage where the
higher the score the better the model at capturing all the discussed
requirements, we can see that it is 11% better than LDA (the second
best model) and roughly 50% better than all other baselines. This
means it is able to select at least one review for each discussed
requirement with a much higher success rate than the state of
the art. Second, looking at informativeness, which is a key aspect
of requirement extraction, we can see that the reviews selected
by HMK-RVM have the highest level of informativeness, and the
least level of noise. HMK-RVM had 74% more informative reviews
than the second-best baseline. Additionally, it picked 50% less noisy
reviews than the second-best baseline. This means that it is far
superior at picking the most informative reviews and avoiding the
least informative (noisy) reviews for requirements extraction than
the state of the art.

Table 7: Analyzing the model’s insight: What and the
learned weights tell us about the underlying data?

Maalej Dataset | ¢we(®) | pmera(x) | $efiap()| draa(x)

Informative | 0.496 | 0533 | 0474 | 0511
Feature Request | 0489 | 0504 | 0.522 | 0.521
Bug Report | 0512 | 0.475 | 0.513 | 0.512
User Experience | 0.505 | 0383 | 0.001 | 0.892

RQ4: Beyond accuracy, what insights can we gain
from using the proposed HMK-RVM approach?

Experimental Setup: To address this question, we evaluated the
weights assigned to each of the kernels.

Experimental Results: For the first aspect, we report the as-
signed weights per kernel in Table 7 for the Maleej dataset. We can
observe that the learned weights per kernel vary between roughly
12% on average, which indicates a different priority based on the
learned task. For example, for the informative classifier, kernels with
higher representation (i.e., Meta and LDA) were assigned higher
weights, which can be due to the fact that the majority of reviews
at the first level of classification are non-informative reviews (70%),
mostly rating reviews (i.e., a strong positive or negative rating with
a short sentimental text). As such, they can be easily identified
with a more broad view of the reviews. Also, for the feature request
and bug report classifiers, we can observe a higher assigned weight
to the TF-IDF kernel, which may be due to the fact that such re-
views can be identified through a few frequently used words that
are captured by TF-IDF (e.g., add, feature, bug, crash, etc.). Finally,
the user experience classifier shows a significant weight difference
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between kernels. The LDA kernel and word embedding kernel are
highly utilized, whereas the TF-IDF kernel is essentially ignored.
We believe that this is due to the rich and lengthy nature of such
reviews (reviews with user experience are very descriptive). Having
that nature in mind with the fact that app reviews are usually full
of typos and alternatively spelled words would put a representation
that relies on exact terms such as TF-IDF at a disadvantage, whereas
a semantic capturing representation such as word embedding or
a topic capturing representation such as LDA is at a clear advan-
tage. As such, we can conclude that the user experience classifier’s
predictions rely heavily on the LDA and word embedding represen-
tation, ie., in order to maintain a healthy user experience classifier,
we need to maintain those representations. Such insight into the
classifier’s learning patterns is valuable to the understanding and
interpretation of the classifier’s behavior.

5 DISCUSSION

How is the proposed approach different from the current
state of the art (SOTA)? The existing SOTA approaches use a
pipeline of two dedicated models, one for classification and an-
other for summarization. This allows them to fine-tune each model
for its specific task. However, this also complicates the process
of implementation and maintainability. In contrast, our proposed
approach is designed to achieve both the classification and sum-
marization tasks using a single model. Although we do not have
the option to fine-tune the results for each task, we still demon-
strated that we were able to provide equal or better results on one
task (i.e., classification) and outperform all baselines on the other
(i.e., summarization), which shows that we did not compromise
on the accuracy when we attempted to merge the two tasks. In
fact, the summarization aspect is the most important aspect for
requirements extraction, in which our approach outperforms all
baselines in by a large margin.

How does the proposed approach improve the extraction of
requirements? How is this tested? The key improvement lies in
the amount of effort that the proposed approach can reduce in terms
of the human effort for requirements extraction. To measure this
aspect, we introduced two metrics, coverage and informative level.
For the former, a high coverage implies that analyzing the model-
identified subset of reviews would allow the developer to extract
most requirements. The saving of effort is achieved as the rest of
the reviews can be safely ignored. As for the latter, reviews with
a higher level of informativeness can help developers more easily
and accurately extract the requirements without cross-checking
other reviews. In our experiment, the set of informative reviews
constitutes around 35%-40% of the entire dataset whereas the set
of representative reviews that HMK-RVM identified includes only
around 5% of the dataset. This implies that by using HMK-RVM,
we can effectively reduce the human effort needed to extract the
requirements from manually analyzing 35%-40% of the dataset to
only 5%. In addition, the reviews identified by HMK-RVM are of a
high level of informativeness, which can improve the easiness and
accuracy of requirement extraction from these reviews.

What are the limitations of the approach? One limitation is
that RVM tends to pick from highly representative regions as a
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result of maximizing the model evidence in Eq. 4. While it is highly
desirable to choose a small number of reviews to represent the
whole set, it may also miss some requirements from less represen-
tative regions. Our results show that HMK-RVM achieved a 70%
coverage by just using a small number of representative reviews,
which clearly demonstrates its effectiveness. An interesting future
direction is to augment RVM’s learning process to include a few
reviews from less representative regions to enhance the coverage
further. Another limitation is that as we go down the hierarchy, we
are expected to have less data which may affect the performance.
Thus, another interesting direction is to study the effect of adding
more hierarchical levels on the performance of the model.

6 THREATS TO VALIDITY

In terms of internal validity, the main threat is that we used two
datasets in our experiment coming from previous work. We did not
participate in the collection or preparation of those datasets. Thus,
any issues with the reviews content or the labels are a potential
risk factor. The Maalej dataset provided both the reviews and the
labels, whereas, the Panichella dataset provided only the reviews.
As such, we had to manually label the reviews ourselves for the
Panichella dataset. In both cases, whether the ground truth was
handed to us, or whether we manually labeled the reviews, there
is the risk of human coders mistakes. To reduce this threat to our
labels, we created a coding guide that precisely defines the app
review types with an example of each, and we employed two teams
each with two members to label the dataset separately. Once both
teams completed their task, we sat down and extensively discussed
any disagreements. In terms of external validity, we believe our
results should have high generalizability for app reviews as we
evaluated it on two different real-world datasets that were carefully
constructed, i.e., sampled randomly from different apps and app
stores. As such, they should provide a reasonable approximation of
the general population.

7 CONCLUSION

In this paper, we proposed Hierarchical Multi-Kernel RVM (HMK-
RVM) where we extended and customized the use of RVM in a
novel way to facilitate requirement extraction from app reviews
by offering an integrated process that is easier to implement, inter-
pret, and maintain. The proposed approach classifies reviews in a
hierarchical fashion, leading to a more accurate model. In addition,
we showed that the assigned weights to each kernel can provide
an insight into what the classifier has learned from the underlying
data. Moreover, we leveraged RVM’s inner working mechanism
to accomplish the summarization task as part of the classification
learning process, and we have demonstrated its ability to outper-
form the state of the art in terms of summarization accuracy while
achieving a competitive classification accuracy.
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