
Hierarchical Bayesian Multi-kernel Learning for Integrated
Classification and Summarization of App Reviews

Moayad Alshangiti
University of Jeddah, Saudi Arabia
Rochester Institute of Tech., USA

mshangiti@uj.edu.sa

Weishi Shi
Rochester Institute of Technology,

Rochester, USA
ws7586@rit.edu

Eduardo Lima
Rochester Institute of Technology,

Rochester, USA
eduardo.lima@rit.edu

Xumin Liu
Rochester Institute of Technology,

Rochester, USA
xumin.liu@rit.edu

Qi Yu
Rochester Institute of Technology,

Rochester, USA
qi.yu@rit.edu

ABSTRACT

App stores enable users to share their experiences directly with

the developers in the form of app reviews. Recent studies have

shown that the feedback received from users is a valuable source

of information for requirements extraction, which encourages app

developers to leverage the reviews for app update and maintenance

purposes. Follow-up studies proposed automated techniques to help

developers ilter the large volume of daily and noisy reviews and/or

summarize their content. However, all previous studies approached

the app reviews classiication and summarization as separate tasks,

which complicated the process and introduced unnecessary over-

head. Moreover, none of those approaches explored the potential of

utilizing the hierarchical relationships that exist between the labels

of app reviews for the purpose of building a more accurate model.

In this work, we propose Hierarchical Multi-Kernel Relevance Vec-

tor Machines (HMK-RVM), a Bayesian multi-kernel technique that

integrates app review classiication and summarization using a

uniied model. Moreover, it can provide insights into the learned

patterns and underlying data for easier model interpretation. We

evaluated our proposed approach on two real-world datasets and

showed that in addition to the gained insights, the model produces

equal or better results than the state of the art.

CCS CONCEPTS

· Software and its engineering → Requirements analysis;

KEYWORDS

Bayesian Modeling, Multi-Kernel Learning, Relevant Vector Ma-

chines, App Reviews, User Requirements

ACM Reference Format:

Moayad Alshangiti, Weishi Shi, Eduardo Lima, Xumin Liu, and Qi Yu.

2022. Hierarchical Bayesian Multi-kernel Learning for Integrated Classi-

ication and Summarization of App Reviews. In Proceedings of the 30th

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speciic permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9413-0/22/11. . . $15.00
https://doi.org/10.1145/3540250.3549174

ACM Joint European Software Engineering Conference and Symposium on

the Foundations of Software Engineering (ESEC/FSE ’22), November 14ś18,

2022, Singapore, Singapore. ACM, New York, NY, USA, 12 pages. https:

//doi.org/10.1145/3540250.3549174

1 INTRODUCTION

User opinions on mobile apps are highly valued by app developers

due to the competitive nature of the market [4], where developers

attempt to attract the highest possible user base and maintain their

satisfaction level. Thus, developers would like to analyze the feed-

back received from users in the form of app reviews to understand

the users’ requirements, preferences, and complaints [20, 31]. How-

ever, the large volume of app reviews received on a daily basis has

made a manual analysis of reviews too time-consuming. As such, it

became favorable to have automated approaches that can facilitate

quicker and easier access to the feedback found in app reviews.

Existing eforts on this task fall into two directions. In the irst

one, a classiication model is constructed to assign reviews into a

predeined list of labels considered to be useful for app develop-

ers (e.g., bug reports and feature requests) as a way to automate

the process [11, 16, 20, 24, 25, 33, 40, 41]. However, assigning such

general labels is inadequate to extract useful requirements as one

can easily ind thousands of reviews that fall under one of those

labels and signiicant manual work is still needed to ind the actual

requirements. Thus, the second direction aims to summarize or

group together user reviews with similar topics for easier require-

ment extraction [9, 13]. Visualization techniques have been used

to highlight the most frequent terms used in those reviews and it

is left to the developers to infer the requested feature(s). Similarly,

clustering has been leveraged to group reviews that cover the same

set of topics but the developers still have to analyze each cluster

to identify the requirements embedded in the review content. In a

more end-to-end research, both the classiication and summariza-

tion tasks were attempted [15, 32, 34, 43]. We align our work with

this direction. However, unlike previous work where the classiica-

tion and summarization tasks were handled separately, we propose

to merge the two tasks together in a single learning process.

In this work, we present a novel approach to facilitate the ex-

traction of user requirements from app reviews in which both

the classiication and summarization are achieved simultaneously

using a uniied model. In particular, we propose Hierarchical Multi-

kernel Relevant Vector Machines (HMK-RVM), in which three main

558

https://doi.org/10.1145/3540250.3549174
https://doi.org/10.1145/3540250.3549174
https://doi.org/10.1145/3540250.3549174

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Moayad Alshangiti, Weishi Shi, Eduardo Lima, Xumin Liu, and Qi Yu

goals are accomplished. First, we exploit the hierarchical relation-

ships between the labels during the learning process to build a

more accurate classiier. Second, we adopt a Bayesian multi-kernel

learning approach that encapsulates a rich feature space into sepa-

rate kernels, which achieved improved model interpretability and

understanding of predictions. Third, in addition to a competitive

classiication accuracy, the proposed approach can identify a small

set of most representative reviews as part of its learning process

that can efectively summarize the content of all available reviews.

We extensively evaluate our approach on two real-world datasets

and show that it can produce equal or better classiication accuracy

than the state of the art while identifying the most informative re-

views to greatly facilitate requirements extraction. We summarize

our contributions as follows:

• We leverage the hierarchical relationships that exist in the app

review labels as part of the learning process, which is a new per-

spective on the classiication task that was not considered before.

We further demonstrate that using the hierarchical relationships

between the labels can lead to a more accurate model.

• We propose a multi-kernel Bayesian approach that integrates

classiication and summarization under a uniied framework.

We show that our proposed approach can ofer two additional

beneits beyond accuracy: (i) an insight into the learned task and

the underlying data for better model interpretability, and (ii) an

insight into the most representative reviews that best summarize

the users feedback, for easier requirements extraction.

• We evaluate our proposed approach (HMK-RVM) on two real-

world datasets and show that it can provide better classiication

results while providing signiicantly better summarization re-

sults than the state of the art.

The remainder of this paper is organized as follows. We present a

summary of related work in Section 2. We discuss our proposed

approach in Section 3. We evaluate our approach and present our

results in Section 4. We then discuss the signiicance of the results

and the potential threats to validity in Section 5 and Section 6.

Finally, we conclude the paper in Section 7.

2 RELATED WORK

In this section, we summarize existing studies related to app reviews

classiication and/or summarization. We divide existing works into

two major categories: (i) classiication only and (ii) classiication

followed by summarization. For the former, a key limitation is

that they do not address requirement extraction. Hence, develop-

ers need to manually analyze all informative reviews (which is

usually around 35%-40% of all reviews) that leads to signiicant

overhead. As for the latter, they usually rely on a complex pipeline

that requires the implementation, tuning, and maintenance of two

diferent ML models, one for classiication and one for extraction

through clustering/visualization or other relevant strategies.

2.1 Summarizing User Reviews

There are several existing works with a focus on summarizing or

visualizing the overall topics found in user reviews. In [19] an ap-

proach to summarize the most discussed aspects of a product and

the corresponding user opinions (i.e., positive or negative) is pre-

sented. In [9], topic modeling is exploited to discover the topics

found in the reviews along with representative sentences. In [11],

DBSCAN clustering is used to group together similar reviews. In

[44], the authors proposed an information retrieval framework that

processes the reviews and put them in a knowledge database. The

framework returns the most relevant reviews that discuss the pro-

vided topics given the developer-selected keywords. In [13, 15, 34],

diferent visualization tools/techniques are presented. For example,

in [34], an HTML tool was presented that visualizes the content of

reviews by showing terms formatted in a word cloud. In [13, 45]

they focused on providing an interface that summarizes and tracks

the change in reviews under speciic topics between diferent ver-

sions to highlight abnormal changes (e.g., version 2 has signiicantly

higher bug reports than all other versions).

2.2 Classifying User Reviews

As for app review classiication, [11] is among the irst attempts

to classify app reviews to be either informative or non-informative.

The authors used a bag-of-words (BoW) representation, similar to

other studies [24, 25, 43]. In [43], the authors leveraged N-grams in

the BoW representation to account for context that requires two or

three words (e.g., not laggy). If we process those words separately,

we will not understand the actual intention. In [24], the tense of the

verb was incorporated into the feature space. The authors argued

that verbs in the past are usually associated with users reporting

bugs, whereas, verbs in the future are usually correlated with hope

and requests for additions (i.e., feature requests). In [33], the authors

claimed that most reviews follow a speciic linguistic patterns and

identifying those patterns can help to improve classiication per-

formance. Thus, they created 246 linguistic patterns that describe

the general form in which a review would be in to fall under a

speciic label (e.g., [someone] should add [something]). In [15], the

BoW representation is replaced with a representation generated

from parsing sentences as parsing trees and then traversing the

tree to construct the representation. The authors claimed this ap-

proach can take word semantics into consideration. In [40, 41], the

authors suggested to classify on the sentence level instead of the

review level to allow for multi-label classiication. It is also worth

mentioning that some studies investigated connections beyond the

classiication of app reviews. For example, in [32], the authors inves-

tigated the possibility of linking user feedback to the source code

components. Diferent from the studies above, we argue that there

is still room to improve the automation of requirements extraction

from app reviews. Therefore, we extend this line of work by in-

tegrating summarization and classiication tasks while exploring

unique characteristics of the problem, such as the hierarchical rela-

tionships between the labels. By doing so, we uncover new ways

to further improve the automation of such tasks.

2.3 Other Related Studies on App Reviews

There is a number of studies that focus on analyzing app stores [18],

types of feedback in user reviews [10, 12, 17, 21], and the interaction

between these two [27]. We difer from those studies in that we are

not analyzing the feedback itself. Instead, we focus on app review

classiication and summarization to largely automate the extraction

of user requirements.

559

Bayesian Learning for Integrated Classification and Summarization of App Revs. ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Classifying Into
Predefined Labels

Identifying Most
Representative Subset

Separating Informative
from Non-informative

Dataset

App Reviews
Preprocessing Data

As many before
asked, we need:

1) support for .vlc
2) add dark theme
3) allow us to

Review #1920

Presenting
Example-based

Summary

Classification

Summarization

Figure 1: Overview of the proposed approach for require-

ments extraction from app reviews

3 METHODOLOGY

Overview. In this section, we present the proposed HMK-RVM

model as seen in Figure 1. Given a set of app reviews, the proposed

approach irst classiies each review into the predeined labels. This

would help developers separate informative reviews from non-

informative ones. Additionally, the predeined labels (e.g., feature

request, bug report, etc.) can further guide the developers to extract

the relevant requirements. Along with the classiication process, the

model also identiies a set of the most representative reviews that

summarize the entire collection. As a result, developers can only

focus on these representative reviews for requirements extraction

as they are expected to capture most of the discussed requirements.

For the rest of this section, we irst discuss the diference between

a lat and a hierarchical approach and justify how the latter its

better with app review classiication. We then present our proposed

multi-kernel RVM, which leverages Bayesian sparse learning and

multiple kernels to integrate classiication and summarization.

3.1 Hierarchical User Review Classiication

For common classiication tasks with a set of balanced classes, stan-

dard multi-class models can be straightforwardly applied. However,

for problems with highly imbalanced classes (e.g., those that in-

volve rare classes), standard techniques may sufer from a poor

performance due to lack of attention given to the minority class.

Meanwhile, it has been shown that leveraging existing hierarchical

relationship between classes can improve the performance of the

classiier [22, 29]. In traditional lat classiication, the hierarchical

relationship between classes is ignored. For example, a binary lat

classiier would attempt to distinguish app reviews with feature

requests from all other classes. This ignores the fact that reviews

with feature requests and/or bug reports are all considered as in-

formative reviews, i.e., they share a common parent class. Taking

this information into consideration when training the classiier can

help us build a better classiier that attempts to irst distinguish

the informative reviews from the non-informative reviews and then

further classify those informative reviews into their appropriate

class. In this way, classes at both levels tend to be more balanced.

Root

Feature
Request

UsabilityBug Report

Functional Non-
functional

Security

PerformanceEnergy

Non-
informative Informative

Information
Seeking SentimentalSpam

Figure 2: The hierarchical structure in app review classes

Weobserve that all the previousworks have approached the prob-

lem as a lat classiication problem. In [11], a binary classiier that

determines whether an app review is informative or non-informative

was used, introducing the irst two types of classes. A follow up

work [25] further studied the app reviews and introduced a new

set of labels rating, bug reports, feature requests, and user experience.

A more recent study used feedback from the industry to further

break down user experience into reviews reporting security con-

cerns, energy concerns, and so on. However, no existing work has

attempted to leverage the hierarchical relationship between those

classes as part of the learning process. Based on the analysis of

previous work, it is clear that the classes of app reviews can be

organized into a fairly complex hierarchy as shown in Figure 2.

It has been reported in multiple studies [31] that the informative

subset of app reviews represent at most 30%-35% of the whole cor-

pus. If we further break down the informative subset into multiple

classes, we can observe that some classes can be as rare as 5%-10%.

As such, using traditional lat classiication will create classiiers

dominated by the negative (i.e., non-informative) class, leading to a

poor classiication performance. This limitation can be addressed

when a hierarchical classiication approach is used.

3.2 Multi-Kernel Relevance Vector Machines

Notations. Let X = {x1, x2, ..xN } denote a set of N training in-

stances, where xi ∈ RD . We limit the introduction to Relevance

Vector Machines (RVM) [42] to binary classiication problem for

simplicity where each data instance xi is assigned with a label

ti ∈ {0, 1}. Later, the binary classiication solution can be directly

generalized to multi-class problem with the one-vs-the-rest formu-

lation. The RVM is a Bayesian model in which the label follows the

560

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Moayad Alshangiti, Weishi Shi, Eduardo Lima, Xumin Liu, and Qi Yu

Bernoulli distribution ti ∼ Bernoulli(σ):

p(ti = 1) = yi = σ

(

M
∑

m=1

ϕm (xi)wm

)

= σ (w⊤ϕ(xi)) (1)

where ϕ(xi) is a vector of M basis functions that projects the feature

space from RD to RM : ϕ(xi) = [ϕ1(xi),ϕ2(xi), ..ϕM (xi)]. Typical

basis functions include polynomial, Gaussian, and sigmoidal [6]. In

RVM, the basis functions are speciied with a kernel function k(·, ·):

ϕi (x) = k(x, xi). We denote K ∈ RN×N as the gram matrix whose

i-th row is given by [k(x1, xi),k(x2, xi), ..k(xN , xi)]
⊤. The kernel

view of (1) is given by:

p(ti = 1) = yi = σ

(

N
∑

n=1

wnk(x, xn)

)

(2)

where w are model parameters that follow a Gaussian distribu-

tion p(w;α) ∼ N(0,A−1), with A being a diagonal matrix A =

diag(α1, ...,αN). The goal of RVM is to learn the posterior distribu-

tion p(w|t,α) as well as to estimate the hyper-parameter α . Here,

we omit the dependency on X , which is implied.

The posterior distribution can be derived via the Bayes’ rule:

lnp(w|t,α) ∝ lnp(t|w) + lnp(w|α) (3)

By applying Laplace approximation, the posterior distribution also

follows a Gaussian distribution N(w∗
,Σ), whose mean and covari-

ance are given by w∗
= A−1K⊤(t − y) and Σ = (K⊤BK + A)−1,

respectively, where B = diag(y ⊙ (1 − y)).

The hyper-parameter α can be derived using type II maximiza-

tion. To do that, we irst compute the model evidence

p(t|α) =

∫

p(t|w)p(w|α)dw ≃

∫

p(t|w∗)p(w∗ |α)dw (4)

where we used Taylor expansion on the integrant at w∗ to remove

the integral. Then the optimal value of α is obtained by solving
∂p(t |α)
∂α

= 0:

α∗i =
1 − αiΣii

(w∗
i)

2
(5)

Training of RVM is achieved through an iterative process of updat-

ingw∗, Σ, andα ∗
i until convergence. In the prediction phase, the pre-

dictive distribution of a test data point x′is given by p(t ′ |x′,w∗) =

Bernoulli(σ (w∗⊤x′)). The prior distribution adopted by RVM is

commonly referred as auto relevance detection (ARD). It makes

the model prefer simpler explanations than complex explanations

so that over-itting can be automatically addressed. Speciically,

during the training process, a certain number of α ’s components

will be driven to ininity, making their corresponding training data

instances independent from the prediction and the remaining few

important training data instances are called relevance vectors.

We make a general extension to RVM to handle the input with

multiple modalities (e.g., diferent representations). Suppose the

input X is now given in three diferent representations XI , XI I ,

and XI I I . Then, we construct a overall gram matrix as the linear

combination of the gram matrix for each representation.

K = θ1K(XI ,XI) + θ2K(XI I ,XI I) + θ3K(XI I I ,XI I I) (6)

Replacing the gram matrix in standard RVM with (6), we have

the RVM for multi-modality data input. The hyper-parameters

θ = (θ1,θ2,θ3)
⊤ can be solved by type II maximization similar

to solving α . However, the objective function is not convex with

respect to θ and may cause the optimization either to trap into the

local optima or commit to slow convergence. To address this, we

adopt a gradient-free method, simplex [5], to directly search the

optimal θ in the hyper-parameter space.

3.3 Why Extend RVM?

A fundamental reason for using and extending RVM for our problem

is its ability to identify the most representative points that can

summarize the underlying dataset. This aligns well with the task of

inding the best subset of reviews that can be used for requirement

extraction. During model training, it ensures both the sparsity and

the quality of the selected data points. The former, i.e., sparsity,

allows us to identify a small subset of reviews to summarize the

entire dataset in a compact way. As a result, the developer can safely

ignore a large portion of the reviews to signiicantly reduce the

manual analysis efort when performing requirement extraction.

The latter, i.e., quality, further helps to identify the most informative

reviews that can ensure the accuracy and quality of the extracted

requirements. At the end of this training process, a set of points

are selected which the model uses for classiication. We propose

to use those points for summarization as well. Consequently, we

would achieve both aspects using a single learning model.

3.4 Constructing the Kernels

The number of kernels used with the approach and their types

can be selected based on the available data and given task. For the

purpose of app reviews classiication, we constructed four kernels

to build a comprehensive kernel space.

The irst is a meta kernel, which captures simple meta informa-

tion about the review, e.g., the rating and the number of words.

The second is a kernel that utilizes the textual content of the re-

view by capturing the important recurring terms, e.g., add, crash,

etc. To construct this kernel, we applied a standard natural lan-

guage processing methods, such as stop-word removal and word

stemming, on the textual content of the title and body of an app

review to generate such a representation using the term frequency-

inverse document frequency (TF-IDF) approach [26]. However, one

potential disadvantage with this kernel is that the textual nature

of app reviews is quite noisy, which can lead to a large and sparse

dictionary. For that purpose, we constructed a third a kernel that

would provide us with a less sparse representation by attempting to

capture the broad topics within the reviews, in contrast to relying

on the exact terms. To construct this kernel, we used the topic

modeling technique, Latent Dirichlet Allocation (LDA) [7]. LDA

been widely used in many previous studies [2, 3, 38] to summarize

the topics of a large document corpus. The intuition behind LDA is

that it leverages the textual content of a set of documents to group

together the frequently co-occurring words into an approximation

of a real-world concept, i.e., a topic.

Even though those kernels would provide a comprehensive repre-

sentation, they lack one important aspect, and that is the semantics

of the used words. In [25], they found that classifying the reviews

coming from the iOS app store was signiicantly more accurate than

those coming from the Android store. They attribute this difer-

ence to the language and vocabulary diference from those two app

561

Bayesian Learning for Integrated Classification and Summarization of App Revs. ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

stores. They claim that the iOS store reviews were less noisy (e.g.,

having less typos) and used a much more homogeneous vocabulary

of terms. This observation highlights the efect of the noise found

in user reviews on the classiication task and the impact it has on

the learning process. In [44], this observation was studied further

as the authors also highlighted and described the observation that

app reviews sufer from a high percentage of typos, acronyms, and

abbreviations. They performed a preliminary analysis of 300,000

reviews and compared their textual content against an English dic-

tionary of 150,000 common words, and found that a large portion

of the used words in app reviews do not match any words in the

English dictionary, mainly due to abbreviations and typos. Having

such high noise and unique language (e.g., wait is written as w8)

creates an issue for traditional data mining techniques that relies

on stemming and dictionary creation as both wait and w8 will still

exist as two unique diferent words. They hypothesized that this

observation might be due to the fact that reviews are written using

mobile devices which lack a physical keyboard, hence, it is more

likely to have typos, acronyms, and abbreviations. To overcome

this issue, the authors in [44] manually created a custom dictionary

that attempts to replace the most frequent out-of-dictionary words

with their dictionary-equivalent (e.g., replacing exelent with excel-

lent). Moreover, in [15], a similar observation was made, and the

authors manually constructed a collection of 60 diferent typos and

contractions, and replaced them using regular expressions.

We have observed a similar pattern of noise with app reviews,

where a large portion of words in the post-processing and stemming

dictionary seem to represent the same word but written diferently

due to misspelled words (e.g., fantastic vs fantastick) or alternatively

spelled words either for abbreviations purposes (e.g., thanks vs thx),

or to represent a stronger emotion, (e.g., loved vs loooved). In Table

1, we show a few additional examples.

Table 1: Examples of mis- or alternatively spelled words

Word Observed noise

amazing amaazing, amaaazing, amassing, amazeng

thanks thx, thanx, tx, tnx, 10x, thnx, ty

awesome awasome, awesomeeee, awsome, owesome,

asssome

love lov, luv, lovve, looove, loveee

because bc, b/c, cuz, coz, bcz, caus

While merging misspelled or alternatively spelled words would

improve the textual representation and the model’s performance,

we argue that using a manually created custom dictionary would

be too diicult to create and maintain over the time. To overcome

this issue, we constructed a fourth kernel that leverages word em-

bedding techniques to create a representation that captures the

semantics of words. For example, the word2vec [28], the GloVe [36],

or the FastText [8] model are all techniques that take into consider-

ation word semantics and meanings. These techniques are built on

the notion that words with similar semantic meanings will have the

same set of words around them. For example, the words love and like

are used in similar manners, i.e., I love that app and I like that app.

As a result, they would be closely placed in the embedding space

as they share a similar semantic meaning. To construct this kernel

space, we need to either use a pre-trained model from a diferent

domain (e.g., Tweets), or train our own problem-speciic model to

generate the word embeddings for the app reviews. According to

[23, 39], which studied this speciic concern among other choices

with word embedding models, it is recommended to use a model

that is speciic to your domain as it can better capture the relevant

vocabulary and their unique usage. We believe this is especially

true for app reviews and an important factor to overcome the issue

of misspelled and alternatively spelled words. To the best of our

knowledge, there’s no publicly available word embedding model

that was trained on app reviews. For that reason, we decided to

create such a model and make it publicly available as part of our

replication package. We trained a FastText [8] model on 1,673,672

app reviews collected from [35] and [14]. We chose FastText be-

cause it is most efective in settings where out-of-dictionary words

are common, like ours. For more details on the training process and

the selected parameters, kindly refer to the replication package1.

Finally, it is worth noting that our approach has the lexibility to

use any number of kernels. We believe the suggested four kernels

represent app reviews quite well and can capture both high-level

concepts (e.g., LDA) and low-level characteristics (e.g., meta). As a

result, the four kernels ofer suicient expressive power to construct

a comprehensive feature space that can help the machine learning

model achieve a good level of robustness and generalization.

4 EVALUATION AND RESULTS

In this section, we plan to evaluate the proposed model, speciically,

by investigating the following research questions:

RQ1: Do we gain any app reviews prediction accuracy from hier-

archical classiication versus lat classiication?

RQ2: How accurate is the classiication of the proposed HMK-RVM

approach compared to the state of the art?

RQ3: How accurate is the summarization of the proposed HMK-

RVM approach compared to the state of the art?

RQ4: Beyond accuracy, what insights can we gain from using the

proposed hierarchical multi-kernel RVM approach?

The source code and data used in the experiment section are

available online for easy replication/validation purposes 1.

Table 2: Statistics of the used datasets

Maalej Panichella

Feature Request 252 (7%) 391 (13%)

Bug Report 370 (10%) 271 (9%)

User Experience 607 (16%) 334 (11%)

Total Info 1229 (33%) 880 (30%)

Total Non-Info 2455 (67%) 2024 (70%)

Total Reviews 3684 2904

1https://tinyurl.com/qup3h4l

562

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Moayad Alshangiti, Weishi Shi, Eduardo Lima, Xumin Liu, and Qi Yu

4.1 Datasets

To address our questions, we will report results on two real-world

datasets that were provided by previous research. The irst is the

Maalej dataset [24, 25], where reviews were randomly selected from

both Apple and Google Play stores. The authors crawled over a mil-

lion app reviews and followed a sampling strategy with the goal of

picking a stratiied and a representative sample (e.g., equal number

of free and paid apps, equal number of iOS and Android app, etc.).

The second is the Panichella dataset [34, 40], where the authors

favored an app speciic sampling approach. The dataset contains

reviews of 17 apps coming from Google Play, Microsoft, and Apple

app stores. Unfortunately, the ground truth was not provided for

this dataset so we asked two teams of graduate students to label the

dataset separately according to a labelling guide that can be found

with the replication package1. The guide follows closely the guid-

ance of the original paper. Once the teams completed the labelling

task, we compared the labels and addressed all disagreements. We

found a good inter-rater agreement (kappa=0.68) between the an-

notators. The statistics of both datasets can be found in Table 2.

4.2 Experiment and Results

RQ1: Do we gain any app reviews prediction
accuracy from hierarchical classiication versus
lat classiication?

Experimental Setup: To evaluate the model’s accuracy gained

from leveraging the hierarchical relationship embedded within the

labels, we will use a simple feature space consisting of a bag-of-

words representation using TF-IDF [37]. For this evaluation, we

will not attempt to add any additional features such as meta-data

features (e.g., rating, review length, etc.) as we want to focus on the

added beneit of hierarchical versus lat app reviews classiication.

Moreover, to make sure the results are not due to a speciic clas-

siier or to a speciic dataset, we will evaluate on both the Maalej

and Panichella datasets, and on four diferent classiiers: Logistic

Regression (L1 Regularization), Random Forest (200 trees), Support

Vector Machines (Linear Kernel), Relevant Vector Machines (Linear

Kernel), and Naive Bayes (Multinomial). As we are limited to the

three mutual labels (bug report, feature request, and user experi-

ence) provided with those datasets, we will build the experiment

around them. Finally, to make sure both the lat and hierarchical

classiiers were exposed to the same set of reviews during training

and testing, we used a single train/test split of 80/20 for both.

For lat classiication, as shown in Figure 3(a), we are training

three one-vs-the-rest binary classiiers, one classiier per label (e.g.,

bug report or not). We prefer to use binary classiiers instead of a

multi-class classiier as this setup allows for multi-label classiica-

tion. This means an app review can be given a single or multiple

labels. For example, an app review with multiple labels from the

Panichella dataset is łThis is a great app for keeping track of weight

... there should be a way to turn of daily reminder ... also I notice it

keeps changing the year I was born...ł. However, using this setup, it

is also possible for an app review not to be assigned any of the three

classes. For that purpose, in Figure 3(a) we show a non-informative

node that captures all such cases.

For hierarchical classiication, as shown in Figure 3(b), we use

a top-down approach for training and classiication purpose. At

the irst level, we are using a binary classiier that classiies all

app reviews as either informative or non-informative, and on the

second level we use three one-vs-the-rest binary classiiers that

attempt to further classify what passes as informative under one

or none of the three classes: bug report, feature request, and user

experience. Thus, in hierarchical classiication, we are training one

more classiier than lat classiication. This may seem as added

complexity, however, the top down approach actually has a better

overall computational cost because only the informative classiier is

trained on all the training examples, the remaining three classiiers

train only on the informative subset. For example, if we had a

training data set of 10k app reviews, 3k of those are informative,

then the irst level classiier will train on all 10k app reviews, but the

second level will only have to train on the 3k app reviews. Whereas,

in lat classiication, each of the classiiers would need to be trained

on the complete 10k dataset.

Root

Feature
Request

User
Experience Bug Report

(a) Flat Classiication

Root

Feature
Request

User
Experience Bug Report

Informative

(b) Hierarchical Classiication

Figure 3: Evaluation of lat and hierarchical app review clas-

siication, where each node is a potential label

Experiment Results:We report the average AUC computed from

precision and recall (AUCPR), macro F1 (MF1), and macro recall

(MR) in Table 3. We can make a couple of observations. First, Naive

Bayes seems to outperform the other classiiers when a simple bag

of words model is used, which was also observed in a previous

study [25], because a term count representation aligns perfectly

with how Naive Bayes works. Second, overall, formulating the prob-

lem using hierarchical classiication increases the model’s accuracy,

especially with recall (i.e., increasing the chance that we do not miss

any informative app reviews). On the Maalej dataset, we observed

on average a 8.4% betterAUCPR , 49.8% better F1 measure, and 108%

better recall. Similarly on the Panichella dataset we observed 13%

betterAUCPR , 17% better F1, and 33% better recall. To better under-

stand the results, we analyzed the performance of Random Forest

on the Panichella dataset where the recall had an improvement

of 61%. It’s important to mention that in app review classiication,

the ability to label all existing informative reviews correctly (i.e.,

recall) is more important than mis-classifying a few non-informative

reviews as informative (i.e., precision) because all reviews labelled

as non-informative are usually disregarded (i.e., feedback would be

lost with low recall). Thus, this signiicant improvement on the

recall when using a hierarchical approach is a perfect match with

the app review classiication problem.

563

Bayesian Learning for Integrated Classification and Summarization of App Revs. ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Table 3: Classiication results of lat and hierarchical app review classiiers

Classiier

Maalej Dataset Panichella Dataset

Flat Hierarchical Flat Hierarchical

AUCPR MF1 MR AUCPR MF1 MR AUCPR MF1 MR AUCPR MF1 MR

Logistic

Reg.

0.349 0.369 0.381 0.393

(+12%)

0.433

(+17%)

0.562

(+47%)

0.622 0.599 0.594 0.699

(+12%)

0.681

(+13%)

0.731

(+23%)

Random

Forest

0.399 0.195 0.136 0.433

(+8%)

0.531

(+172%)

0.603

(+343%)

0.739 0.541 0.428 0.768

(+4%)

0.699

(+29%)

0.692

(+61%)

SVM 0.346 0.358 0.385 0.353

(+2%)

0.423

(+18%)

0.561

(+45%)

0.482 0.523 0.572 0.625

(+30%)

0.617

(+17%)

0.701

(+22%)

Naive

Bayes

0.458 0.474 0.529 0.497

(+8%)

0.507

(+7%)

0.623

(+17%)

0.681 0.630 0.624 0.768

(+13%)

0.705

(+10%)

0.736

(+17%)

RVM 0.459 0.375 0.309 0.514

(+12%)

0.505

(+35%)

0.591

(+91%)

0.686 0.591 0.512 0.734

(+7%)

0.702

(+18%)

0.747

(+45%)

Root

Feature
Request Bug ReportUser

Experience

Classifier 1

Given 52 reviews with bug reports

20 classified as bug reports
30 discarded as non-informative

(a) Flat Classiication

Root

Feature
Request Bug ReportUser

Experience

Classifier 1

Given 52 reviews with bug reports

44 classified as informative
8 discarded as non-informative

Informative

Classifier 2

30 classified as bug reports
14 remained labeled as informative w/o a subclass

(b) Hierarchical Classiication

Figure 4: Given 52 app reviews with bug reports, how were they classiied in lat vs hierarchical?

We report in Table 4 the recall of each classiier. In lat classiica-

tion, we can observe that the classiier’s ability to correctly classify

all the bug report and user experience instances is quite poor. As we

believe the bug report is a more critical category, we further inves-

tigated the instances and how they were labelled in both classiiers

as shown in Figure 4. In our experiment, the testing sample had

52 app reviews with bug reports. In the case of lat classiication,

we clearly observed that the classiier missed 32 of the bug reports

(62%). However, the hierarchical classiier mislabelled 8 bug reports

out of the 52 as non-informative, and mislabeled 14 bug reports out

of the 44 informative reviews as other type of informative reviews.

Overall, the classiier mislabelled 42% of the bug reports, a much

better recall than the lat classiier. Upon further checking, we can

observe that the irst level performance in the hierarchical classiier

is excellent as we were able to capture 85% of the bug reports as

informative reviews. However, the second level performance was

less ideal (i.e., missing 14 out of 44), but we can argue that it is still

better than the lat classiier as we were still able to label those app

reviews as informative, i.e., they were not completely missed, but

were incorrectly classiied as other types of informative reviews.

564

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Moayad Alshangiti, Weishi Shi, Eduardo Lima, Xumin Liu, and Qi Yu

Table 4: Analyzing random forest: the lat vs. the hierarchi-

cal classiiers on the Panichella dataset

Type Info. Feature

Request

Bug

Report

User Ex-

perience

Recall Measure

Flat 0.517 0.666 0.385 0.145

Hierarchical 0.727 0.831 0.682 0.526

We credit the better performance of the hierarchical classiier

to two main factors. First, it is not afected as much by the class

imbalance as the lat classiier. In the case of lat classiication, the

frequency of each class is dominated by the negative class, e.g., the

bug report classiier had 91% instances of the negative class so it

needs to distinguish from the non-informative and other informa-

tive classes, which is quite challenging. However, in hierarchical

classiication, the irst level uses the combined knowledge from all

three classes to irst ilter out informative from non-informative app

reviews, which is an easier task, i.e., due to the diferent nature of

non-informative reviews from informative along with a much higher

positive class frequency. Second, we observed that the bug report

classiier can distinguish itself better from other feature request

and user experience reviews (i.e., informative reviews) when non-

informative reviews are removed, which is what the hierarchical

top-down classiication is inherently doing.

RQ2: How accurate is the classiication of the
proposed HMK-RVM approach compared to the
state of the art?

Baselines:To evaluate our proposed approach, we compared against

ive baselines and using two diferent datasets. The proposed ap-

proach and all the baselines presented are trained using the textual

content of the reviews and the meta data information.

First, the AR-Miner [11] baseline used a Naive Bayes model

[30], where the hidden topics of the reviews were discovered using

Latent Dirichlet Allocation (LDA) [7] and used alongside the rating

of the app review to construct the feature space. To implement

their approach, we selected the number of topics k for LDA using

cross-validation. Speciically, we chose 85 topics for both datasets.

Second, the Maalej [25] baseline also adopted a Naive Bayes

model due to its previously reported high performance with text

classiication. However, [25] used a bag of words approach and

extracted the ratio of past, present, and future tenses in the review

to represent the textual content, claiming that reviews with bug re-

ports tend to use past tenses, whereas reviews with feature requests

tend to use future tenses. Additionally, they used the review’s rating,

length, and sentiment score as part of their features.

Third, theARdoc [33, 34] baseline leveraged a decision tree (J48)

model. The authors manually constructed 246 linguistic patterns

each mapping to a speciic app review label, e.g., reviews with

pattern [someone] should add [something] are mapped to feature

requests. Moreover, they generated a TF-IDF representation from the

textual content of the reviews and used the review’s sentiment score

in their feature space. Due to the diiculties in recreating the 246

linguistic patterns, we did not implement this approach ourselves

but rather used the tool provided by the authors to generate labels.

As such, we do not have the AUC and ROC scores for this baseline,

since computing them requires access to the model itself to evaluate

performance under diferent decision thresholds.

Finally, we include the proposed approach with two variant

baselines. The RVM baseline, where the Relevance Vector Ma-

chines (RVM) [42] with fast marginal likelihood maximization is

used as a baseline using our complete feature space (features are

concatenated into a single large feature space) and presented as

an alternative to using the multi-kernel learning approach. The

(MK-RVM) baseline where the multi-kernel approach is added to

the previous baseline and the problem is approached using a lat

classiication approach as an alternative to using a hierarchical

approach. Finally, (HMK-RVM), which is our proposed model, the

hierarchical multi-kernel RVM which combines the power of RVM

with multi-kernel learning and follows a hierarchical classiication

approach that leverages the existing hierarchical structure.

Experiment Setup: We formulated the learning task as a bi-

nary one-vs-the-rest problem by following earlier work. We chose

this formulation due to two reasons: the irst is that it supports

multi-label classiication (e.g., a review can contain both a bug re-

port and a feature request), and the second is due to its higher

reported performance than multi-class classiication. For example,

[25] reported that using multiple binary classiiers for app review

classiication performed signiicantly better than a single multi-

class classiier in all cases. To measure the accuracy of the models,

we used a train/test split of 80/20. To measure the robustness, i.e.,

performance on diferent datasets, we conducted the experiment

on both Maalej and Panichella datasets.

Experiment Results: In Table 5, we show a summary of the

results. We can observe that the traditional RVM that uses our

proposed feature space performs on par with the other baselines

introduced in prior work. This highlights the usefulness of lever-

aging the information from multiple aspects and shows that RVM

is on equal footing to other models such as Naive Bayes and De-

cision Trees in terms of accuracy. Moreover, it shows that using

a larger feature space on its own is not enough to gain a compet-

itive advantage as the diference between it and other baselines

is not that signiicant. Once we utilize the multi-kernel approach

we can observe a 2%-4%improvement in the overall model’s per-

formance (AUCPR) over traditional RVM on both datasets, and a

3%-15% improvement with the proposed hierarchical version of

the multi-kernel RVM classiier. We can also observe that most of

this improvement is due to a boost in the recall (93% increase on

Maalej and 40% on Panichella). As we discussed earlier, this is the

main advantage of leveraging the existing hierarchical relationship

between labels. Breaking the prediction task into multiple levels,

whereby in the irst, we predict (informative vs. non-informative)

and use the collective knowledge between the diferent children of

each branch can signiicantly boost the model’s recall, i.e., increases

our chance of identifying informative reviews correctly.

Overall, we can observe that the proposed hierarchical multi-

kernel RVM is outperforming all the baselines as it can ofer a

boost through the combination of two aspects. First, the multi-

kernel learning technique allows it to choose the best kernel(s)

for the current learning task through the assigned weights (e.g.,

565

Bayesian Learning for Integrated Classification and Summarization of App Revs. ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Table 5: Summary of the results comparing proposed approach to the start of the art

Approach
Maalej Dataset Panichella Dataset

AUCPR AUCROC mF1 MF1 MP MR AUCPR AUCROC mF1 MF1 MP MR

AR-miner [11] 0.402 0.804 0.496 0.445 0.363 0.634 0.432 0.806 0.472 0.444 0.345 0.699

Maalej [25] 0.472 0.843 0.565 0.513 0.463 0.597 0.668 0.898 0.677 0.640 0.645 0.647

ARdoc [33, 34] - - 0.338 0.267 0.341 0.325 - - 0.376 0.307 0.642 0.344

RVM 0.506 0.869 0.433 0.399 0.583 0.308 0.702 0.927 0.655 0.617 0.736 0.536

MK-RVM 0.516 0.870 0.421 0.377 0.502 0.304 0.729 0.930 0.685 0.652 0.741 0.567

HMK-RVM 0.519 0.798 0.615 0.541 0.503 0.594 0.806 0.882 0.771 0.729 0.709 0.753

meta-information might be more useful to bug reports than feature

requests, leading to a higher weight for the corresponding kernel

than other kernels, or LDA topics may introduce more noise than

true signals for bug reports, hence setting the LDA kernel’s weight

to very small can improve the model’s accuracy). Second, the hi-

erarchical approach ofers a boost in the model’s recall through

leveraging existing hierarchical relationships between the difer-

ent labels. Moreover, through the learning process, the proposed

approach has identiied, on average, 45 relevant vectors (varies by

classiier/dataset). Those relevant vectors should be the most repre-

sentative reviews (i.e., reviews that best summarize the content),

which provides us with two additional advantages beyond accu-

racy. The irst is a computational advantage, as we can limit future

training and prediction to those relevant vectors since other points

are already represented by them, which signiicantly cuts down the

original dataset size. The second is a summarization advantage, as

those reviews should highlight the reviews that best summarize

the dataset, which developers can use for requirement extraction.

RQ3: How accurate is the summarization of the
proposed HMK-RVM approach compared to the
state of the art?

Building on the classiication step, which helped us identify the set

of informative reviews and ilter out the non-informative ones, the

next goal is to summarize the feedback in the set of informative

reviews for the purpose of requirement extraction. We propose to

leverage the set of relevant vectors, which HMK-RVM learns as

part of the classiication task as a way to potentially summarize

the users’ feedback. As a result, we achieve both the classiication

and summarization tasks simultaneously using the same model. In

this section, we will evaluate the set of reviews identiied as the

most informative by HMK-RVM for requirement extraction against

multiple baselines that were used in the literature for this purpose

or for summarization in general.

Baselines:We will use the set of relevant vectors identiied by

theHMK-RVMmodel presented in RQ2 as our proposed approach

and compare it to the following baselines:

First, we will compare against approaches that were proposed

by prior work. We will build upon the classiication experiment to

further summarize the content of the reviews based on the recom-

mendation of the original authors. For AR-Miner [11] and ARdoc

[33, 34], Latent Dirichlet Allocation (LDA) will be used to group the

set of reviews predicted as informative, and then the review with

the highest probability for each topic will be picked as the most

informative one. The size of the inal list of selected reviews will

be equal to the number of topics. As for Maalej [25], where the

original authors did not propose any summarization approach, we

will apply K-means to the set of reviews classiied as informative to

cluster them, and then use the review at the center of each cluster

as the most informative review. We will also compare against Star

Clustering [1], which creates a graph where each node is a review

and an edge is created if the cosine similarity between two reviews

is larger than a given alpha, and then use the set of nodes with the

highest degree to be the set of center stars, i.e., most informative

reviews for requirement extraction.

Second, for the purpose of completeness, we will use random

sampling as a baseline where we randomly picked n points as the

set of most informative reviews. Additionally, we will compare

against widely used summarization techniques such as K-means

and Latent Dirichlet Allocation (LDA) in the same way described

earlier but applied to the complete dataset.

To keep this comparison fair, we made the selection of the hyper-

parameters, e.g., number of topics for LDA, in a manner that pro-

vided us with a inal set of informative reviews that is equal in size

for all baselines.

Experimental Setup: To evaluate this aspect of the proposed

HMK-RVM approach, we asked two graduate Ph.D. students (in

computing) to read the reviews in the Panichella dataset and gener-

ate a list of the requirements discussed, and then label each review

with 1) a requirement id(s), 2) a level of informativeness ranging

from one to three, where one is a review with no requirements, two

is a review that is relevant to a requirement but without enough in-

formation to extract it (e.g., due to missing info, poor readability, or

not being explicit enough, i.e., requiring the developer to guess/infer

the meaning), and three is a review with an explicit requirement

and enough information to extract it. We show examples of this la-

beling in Table 6. The two students annotated the dataset separately

and then compared their labels. Disagreements were resolved in

566

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Moayad Alshangiti, Weishi Shi, Eduardo Lima, Xumin Liu, and Qi Yu

Table 6: Examples of real-world reviews from the Panichella

dataset and how they were labeled for RQ3. Requirement ID

5 refers to users’ request for additional login options.

Review Req. Id Informative

Level

Blinq Okay NA 1 (Low)

Login Facebook? Nope. App 5 2 (Medium)

immediately deleted

FB and without FB can Blinq 5 3 (High)

not work?? There must also

be an alternative logon options!

Ratio of most informative reviews (lvl 3)

Ratio of least informative reviews (lvl 1)

20%

48%

76%

15%

63%

24%

47%

28%

71%

13%

72%

18%

69%

17%0%

25%

50%

75%

100%

AR−miner

HMK−RVM
K−means LDA

Maalej w/ Kmeans

Random Sampling

Star Clustering

C
o

v
e

ra
g

e

Level 1 (Low) Level 2 (Medium) Level 3 (High)

 Informativeness

Figure 5: The results of the summarization evaluation. The

Y-axis represents the coverage, i.e., percentage of require-

ments that were captured by the selected set of informative

reviews. The higher the score the better. The color provides

a visual representation of how informative are the reviews

selected by each approach. The more green and the less red,

the better the approach.

group discussions. More details on this process can be found in the

replication package1. We found a substantial inter-rater agreement

(kappa=0.87) between the annotators. It is important to know that

the reviews are sharing the same context (same app, same version)

to assume that they are discussing the same requirement, which is

why we only used the Panichella dataset for this evaluation as it

provides the app information in addition to the review, whereas,

this information is missing in the Maalej dataset.

We use two metrics to evaluate each approach. First, how in-

formative are the selected reviews for requirement extraction, i.e.,

were the selected reviews mostly of level two and three of informa-

tiveness (medium and high), or were they mostly level one (noise).

Second, as part of the labeling process we compiled a list of re-

quirements that are discussed in the reviews, and using this ground

truth, we want to evaluate the coverage of each approach, i.e., how

many of the existing discussed requirements were mentioned in

the selected set. However, we argue that not all requirements are

equal. The more mentioned/discussed a requirement is, the more

valuable, and vice versa. As such, we measured coverage only for

requirements mentioned in three or more reviews. As most ma-

chine learning models require a certain level of statistical presence

to learn patterns, two may not be suicient to show the statistical

signiicance. Meanwhile, setting a higher threshold (e.g., four or

more) may miss some meaningful requirements.

Experimental Results: We show the evaluation results in Fig-

ure 5. We can observe that the proposed HMK-RVM signiicantly

outperforms all the baselines. First, looking at coverage where the

higher the score the better the model at capturing all the discussed

requirements, we can see that it is 11% better than LDA (the second

best model) and roughly 50% better than all other baselines. This

means it is able to select at least one review for each discussed

requirement with a much higher success rate than the state of

the art. Second, looking at informativeness, which is a key aspect

of requirement extraction, we can see that the reviews selected

by HMK-RVM have the highest level of informativeness, and the

least level of noise. HMK-RVM had 74% more informative reviews

than the second-best baseline. Additionally, it picked 50% less noisy

reviews than the second-best baseline. This means that it is far

superior at picking the most informative reviews and avoiding the

least informative (noisy) reviews for requirements extraction than

the state of the art.

Table 7: Analyzing the model’s insight: What and the

learned weights tell us about the underlying data?

Maalej Dataset ϕwe (x) ϕmeta (x) ϕt f idf (x) ϕlda (x)

Informative 0.496 0.533 0.474 0.511

Feature Request 0.489 0.504 0.522 0.521

Bug Report 0.512 0.475 0.513 0.512

User Experience 0.505 0.383 0.001 0.892

RQ4: Beyond accuracy, what insights can we gain
from using the proposed HMK-RVM approach?

Experimental Setup: To address this question, we evaluated the

weights assigned to each of the kernels.

Experimental Results: For the irst aspect, we report the as-

signed weights per kernel in Table 7 for the Maleej dataset. We can

observe that the learned weights per kernel vary between roughly

12% on average, which indicates a diferent priority based on the

learned task. For example, for the informative classiier, kernels with

higher representation (i.e., Meta and LDA) were assigned higher

weights, which can be due to the fact that the majority of reviews

at the irst level of classiication are non-informative reviews (70%),

mostly rating reviews (i.e., a strong positive or negative rating with

a short sentimental text). As such, they can be easily identiied

with a more broad view of the reviews. Also, for the feature request

and bug report classiiers, we can observe a higher assigned weight

to the TF-IDF kernel, which may be due to the fact that such re-

views can be identiied through a few frequently used words that

are captured by TF-IDF (e.g., add, feature, bug, crash, etc.). Finally,

the user experience classiier shows a signiicant weight diference

567

Bayesian Learning for Integrated Classification and Summarization of App Revs. ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

between kernels. The LDA kernel and word embedding kernel are

highly utilized, whereas the TF-IDF kernel is essentially ignored.

We believe that this is due to the rich and lengthy nature of such

reviews (reviews with user experience are very descriptive). Having

that nature in mind with the fact that app reviews are usually full

of typos and alternatively spelled words would put a representation

that relies on exact terms such as TF-IDF at a disadvantage, whereas

a semantic capturing representation such as word embedding or

a topic capturing representation such as LDA is at a clear advan-

tage. As such, we can conclude that the user experience classiier’s

predictions rely heavily on the LDA and word embedding represen-

tation, i.e., in order to maintain a healthy user experience classiier,

we need to maintain those representations. Such insight into the

classiier’s learning patterns is valuable to the understanding and

interpretation of the classiier’s behavior.

5 DISCUSSION

How is the proposed approach diferent from the current

state of the art (SOTA)? The existing SOTA approaches use a

pipeline of two dedicated models, one for classiication and an-

other for summarization. This allows them to ine-tune each model

for its speciic task. However, this also complicates the process

of implementation and maintainability. In contrast, our proposed

approach is designed to achieve both the classiication and sum-

marization tasks using a single model. Although we do not have

the option to ine-tune the results for each task, we still demon-

strated that we were able to provide equal or better results on one

task (i.e., classiication) and outperform all baselines on the other

(i.e., summarization), which shows that we did not compromise

on the accuracy when we attempted to merge the two tasks. In

fact, the summarization aspect is the most important aspect for

requirements extraction, in which our approach outperforms all

baselines in by a large margin.

How does the proposed approach improve the extraction of

requirements? How is this tested? The key improvement lies in

the amount of efort that the proposed approach can reduce in terms

of the human efort for requirements extraction. To measure this

aspect, we introduced two metrics, coverage and informative level.

For the former, a high coverage implies that analyzing the model-

identiied subset of reviews would allow the developer to extract

most requirements. The saving of efort is achieved as the rest of

the reviews can be safely ignored. As for the latter, reviews with

a higher level of informativeness can help developers more easily

and accurately extract the requirements without cross-checking

other reviews. In our experiment, the set of informative reviews

constitutes around 35%-40% of the entire dataset whereas the set

of representative reviews that HMK-RVM identiied includes only

around 5% of the dataset. This implies that by using HMK-RVM,

we can efectively reduce the human efort needed to extract the

requirements from manually analyzing 35%-40% of the dataset to

only 5%. In addition, the reviews identiied by HMK-RVM are of a

high level of informativeness, which can improve the easiness and

accuracy of requirement extraction from these reviews.

What are the limitations of the approach? One limitation is

that RVM tends to pick from highly representative regions as a

result of maximizing the model evidence in Eq. 4. While it is highly

desirable to choose a small number of reviews to represent the

whole set, it may also miss some requirements from less represen-

tative regions. Our results show that HMK-RVM achieved a 70%

coverage by just using a small number of representative reviews,

which clearly demonstrates its efectiveness. An interesting future

direction is to augment RVM’s learning process to include a few

reviews from less representative regions to enhance the coverage

further. Another limitation is that as we go down the hierarchy, we

are expected to have less data which may afect the performance.

Thus, another interesting direction is to study the efect of adding

more hierarchical levels on the performance of the model.

6 THREATS TO VALIDITY

In terms of internal validity, the main threat is that we used two

datasets in our experiment coming from previous work. We did not

participate in the collection or preparation of those datasets. Thus,

any issues with the reviews content or the labels are a potential

risk factor. The Maalej dataset provided both the reviews and the

labels, whereas, the Panichella dataset provided only the reviews.

As such, we had to manually label the reviews ourselves for the

Panichella dataset. In both cases, whether the ground truth was

handed to us, or whether we manually labeled the reviews, there

is the risk of human coders mistakes. To reduce this threat to our

labels, we created a coding guide that precisely deines the app

review types with an example of each, and we employed two teams

each with two members to label the dataset separately. Once both

teams completed their task, we sat down and extensively discussed

any disagreements. In terms of external validity, we believe our

results should have high generalizability for app reviews as we

evaluated it on two diferent real-world datasets that were carefully

constructed, i.e., sampled randomly from diferent apps and app

stores. As such, they should provide a reasonable approximation of

the general population.

7 CONCLUSION

In this paper, we proposed Hierarchical Multi-Kernel RVM (HMK-

RVM) where we extended and customized the use of RVM in a

novel way to facilitate requirement extraction from app reviews

by ofering an integrated process that is easier to implement, inter-

pret, and maintain. The proposed approach classiies reviews in a

hierarchical fashion, leading to a more accurate model. In addition,

we showed that the assigned weights to each kernel can provide

an insight into what the classiier has learned from the underlying

data. Moreover, we leveraged RVM’s inner working mechanism

to accomplish the summarization task as part of the classiication

learning process, and we have demonstrated its ability to outper-

form the state of the art in terms of summarization accuracy while

achieving a competitive classiication accuracy.

ACKNOWLEDGMENTS

This researchwas supported in part by an NSF IIS award IIS-1814450

and an ONR award N00014-18-1- 2875. The views and conclusions

contained in this paper are those of the authors and should not be

interpreted as representing any funding agency.

568

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Moayad Alshangiti, Weishi Shi, Eduardo Lima, Xumin Liu, and Qi Yu

REFERENCES
[1] Javed A. Aslam, Katya Pelekhov, and Daniela Rus. 1998. Static and Dynamic

Information Organization with Star Clusters. In CIKM. ACM, 208ś217.
[2] Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah. 2014. Mining questions

asked by web developers. In Proceedings of the 11th Working Conference on Mining
Software Repositories, MSR. ACM, 112ś121.

[3] Anton Barua, Stephen W. Thomas, and Ahmed E. Hassan. 2014. What are
developers talking about? An analysis of topics and trends in Stack Overlow.
Empirical Software Engineering 19, 3 (2014), 619ś654.

[4] Andrew Begel and Thomas Zimmermann. 2014. Analyze this! 145 questions for
data scientists in software engineering. In Proceedings of the 36th International
Conference on Software Engineering, ICSE. ACM, 12ś23.

[5] Dimitri P Bertsekas. 1997. Nonlinear programming. Journal of the Operational
Research Society 48, 3 (1997), 334ś334.

[6] Christopher M Bishop and Nasser M Nasrabadi. 2006. Pattern recognition and
machine learning. Vol. 4. Springer.

[7] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet
Allocation. Journal of Machine Learning Research 3 (2003), 993ś1022.

[8] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017.
Enriching Word Vectors with Subword Information. TACL 5 (2017), 135ś146.

[9] Laura V. Galvis Carreño and Kristina Winbladh. 2013. Analysis of user comments:
an approach for software requirements evolution. In Proceedings of the 35th
International Conference on Software Engineering, ICSE. IEEE Computer Society,
582ś591.

[10] Eya Ben Charrada. 2016. Which One to Read? Factors Inluencing the Use-
fulness of Online Reviews for RE. In Proceedings of the 24th IEEE International
Requirements Engineering Conference, RE. IEEE Computer Society, 46ś52.

[11] Ning Chen, Jialiu Lin, Steven C. H. Hoi, Xiaokui Xiao, and Boshen Zhang. 2014.
AR-miner: mining informative reviews for developers from mobile app market-
place. In Proceedings of the 36th International Conference on Software Engineering,
ICSE. ACM, 767ś778.

[12] Bin Fu, Jialiu Lin, Lei Li, Christos Faloutsos, Jason I. Hong, and Norman M. Sadeh.
2013. Why people hate your app: making sense of user feedback in a mobile
app store. In Proceedings of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD. ACM, 1276ś1284.

[13] Cuiyun Gao, Jichuan Zeng, David Lo, Chin-Yew Lin, Michael R. Lyu, and Irwin
King. 2018. INFAR: insight extraction from app reviews. In Proceedings of the 2018
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena
Vista, FL, USA, November 04-09, 2018. ACM, 904ś907.

[14] Giovanni Grano, Andrea Di Sorbo, Francesco Mercaldo, Corrado Aaron Visag-
gio, Gerardo Canfora, and Sebastiano Panichella. 2017. Android apps and user
feedback: a dataset for software evolution and quality improvement. In Proceed-
ings of the 2nd ACM SIGSOFT International Workshop on App Market Analytics,
WAMA@ESEC/SIGSOFT FSE 2017, Paderborn, Germany, September 5, 2017. ACM,
8ś11.

[15] Xiaodong Gu and Sunghun Kim. 2015. "What Parts of Your Apps are Loved
by Users?" (T). In Proceedings of the 30th IEEE/ACM International Conference on
Automated Software Engineering, ASE. IEEE Computer Society, 760ś770.

[16] Emitza Guzman and Walid Maalej. 2014. How Do Users Like This Feature? A
Fine Grained Sentiment Analysis of App Reviews. In Proceedings of the IEEE
22nd International Requirements Engineering Conference, RE, Tony Gorschek and
Robyn R. Lutz (Eds.). IEEE Computer Society, 153ś162.

[17] Elizabeth Ha and David A. Wagner. 2013. Do Android users write about electric
sheep? Examining consumer reviews in Google Play. In Proceedings of the 10th
IEEE Consumer Communications and Networking Conference, CCNC. IEEE, 149ś
157.

[18] MarkHarman, Yue Jia, and Yuanyuan Zhang. 2012. App storemining and analysis:
MSR for app stores. In Proceedings of the 9th IEEE Working Conference of Mining
Software Repositories, MSR. IEEE Computer Society, 108ś111.

[19] Minqing Hu and Bing Liu. 2004. Mining and summarizing customer reviews. In
Proceedings of the Tenth ACM International Conference on Knowledge Discovery
and Data Mining, SIGKDD. ACM, 168ś177.

[20] Claudia Iacob and Rachel Harrison. 2013. Retrieving and analyzing mobile
apps feature requests from online reviews. In Proceedings of the 10th Working
Conference on Mining Software Repositories, MSR. IEEE Computer Society, 41ś44.

[21] Hammad Khalid, Emad Shihab, Meiyappan Nagappan, and Ahmed E. Hassan.
2015. What Do Mobile App Users Complain About? IEEE Software 32, 3 (2015),
70ś77.

[22] Daphne Koller and Mehran Sahami. 1997. Hierarchically Classifying Documents
Using Very Few Words. In Proceedings of the Fourteenth International Conference
on Machine Learning (ICML. Morgan Kaufmann, 170ś178.

[23] Johannes V. Lochter, Pedro R. Pires, Carlos Bossolani, Akebo Yamakami, and
Tiago A. Almeida. 2018. Evaluating the impact of corpora used to train distributed
text representation models for noisy and short texts. In Proceedings of the 2018
International Joint Conference on Neural Networks, IJCNN. IEEE, 1ś8.

[24] Walid Maalej, Zijad Kurtanovic, Hadeer Nabil, and Christoph Stanik. 2016. On
the automatic classiication of app reviews. Requir. Eng. 21, 3 (2016), 311ś331.

[25] Walid Maalej and Hadeer Nabil. 2015. Bug report, feature request, or simply
praise? On automatically classifying app reviews. In Proceedings of the 23rd IEEE
International Requirements Engineering Conference, RE. IEEE Computer Society,
116ś125.

[26] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Intro-
duction to Information Retrieval.

[27] Stuart McIlroy, Weiyi Shang, Nasir Ali, and Ahmed E. Hassan. 2017. User reviews
of top mobile apps in Apple and Google app stores. Commun. ACM 60, 11 (2017),
62ś67.

[28] Tomas Mikolov, Kai Chen, Greg Corrado, and Jefrey Dean. 2013. Eicient
Estimation of Word Representations in Vector Space. In ICLR (Workshop Poster).

[29] Azad Naik and Huzefa Rangwala. 2018. Large Scale Hierarchical Classiication:
State of the Art. Springer.

[30] Kamal Nigam, Andrew McCallum, Sebastian Thrun, and Tom M. Mitchell. 2000.
Text Classiication from Labeled and Unlabeled Documents using EM. Machine
Learning 39, 2/3 (2000), 103ś134.

[31] Dennis Pagano and Walid Maalej. 2013. User feedback in the appstore: An empir-
ical study. In Proceedings of the 21st IEEE International Requirements Engineering
Conference, RE. IEEE Computer Society, 125ś134.

[32] Fabio Palomba, Pasquale Salza, Adelina Ciurumelea, Sebastiano Panichella, Har-
ald C. Gall, Filomena Ferrucci, and Andrea De Lucia. 2017. Recommending and
localizing change requests for mobile apps based on user reviews. In Proceedings
of the 39th International Conference on Software Engineering,ICSE. IEEE / ACM,
106ś117.

[33] Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado Aaron Vis-
aggio, Gerardo Canfora, and Harald C. Gall. 2015. How can i improve my app?
Classifying user reviews for software maintenance and evolution. In Proceedings
of the 2015 IEEE International Conference on Software Maintenance and Evolution,
ICSME. IEEE Computer Society, 281ś290.

[34] Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado Aaron Visag-
gio, Gerardo Canfora, and Harald C. Gall. 2016. ARdoc: app reviews development
oriented classiier. In Proceedings of the 24th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, FSE. ACM, 1023ś1027.

[35] Dae Hoon Park, Mengwen Liu, ChengXiang Zhai, and Haohong Wang. 2015.
Leveraging User Reviews to Improve Accuracy for Mobile App Retrieval. In
Proceedings of the 38th International ACM SIGIR Conference on Research and
Development in Information Retrieval, Santiago, Chile, August 9-13, 2015. ACM,
533ś542.

[36] Jefrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove:
Global Vectors for Word Representation. In EMNLP. ACL, 1532ś1543.

[37] Anand Rajaraman and Jefrey David Ullman. 2011. Mining of Massive Datasets.
Cambridge University Press, New York, NY, USA.

[38] Christofer Rosen and Emad Shihab. 2016. What are mobile developers asking
about? A large scale study using stack overlow. Empirical Software Engineering
21, 3 (2016), 1192ś1223.

[39] Dwaipayan Roy, Debasis Ganguly, Sumit Bhatia, Srikanta Bedathur, and Mandar
Mitra. 2018. Using Word Embeddings for Information Retrieval: How Collection
and Term Normalization Choices Afect Performance. In Proceedings of the 27th
ACM International Conference on Information and Knowledge Management, CIKM.
ACM, 1835ś1838.

[40] Andrea Di Sorbo, Sebastiano Panichella, Carol V. Alexandru, Junji Shimagaki,
Corrado Aaron Visaggio, Gerardo Canfora, and Harald C. Gall. 2016. What would
users change in my app? summarizing app reviews for recommending software
changes. In Proceedings of the 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE. ACM, 499ś510.

[41] Andrea Di Sorbo, Sebastiano Panichella, Carol V. Alexandru, Corrado Aaron
Visaggio, and Gerardo Canfora. 2017. SURF: summarizer of user reviews feedback.
In Proceedings of the 39th International Conference on Software Engineering, ICSE.
IEEE Computer Society, 55ś58.

[42] Michael E. Tipping. 1999. The Relevance Vector Machine. In Advances in Neu-
ral Information Processing Systems 12, [NIPS Conference, Denver, Colorado, USA,
November 29 - December 4, 1999]. The MIT Press, 652ś658.

[43] Lorenzo Villarroel, Gabriele Bavota, Barbara Russo, Rocco Oliveto, and Massim-
iliano Di Penta. 2016. Release planning of mobile apps based on user reviews.
In Proceedings of the 38th International Conference on Software Engineering, ICSE.
ACM, 14ś24.

[44] Phong Minh Vu, Tam The Nguyen, Hung Viet Pham, and Tung Thanh Nguyen.
2015. Mining User Opinions in Mobile App Reviews: A Keyword-Based Approach
(T). In Proceedings of the 30th IEEE/ACM International Conference on Automated
Software Engineering, ASE. IEEE Computer Society, 749ś759.

[45] Phong Minh Vu, Hung Viet Pham, Tam The Nguyen, and Tung Thanh Nguyen.
2016. Phrase-based extraction of user opinions in mobile app reviews. In Pro-
ceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering, ASE. ACM, 726ś731.

569

	Abstract
	1 Introduction
	2 Related Work
	2.1 Summarizing User Reviews
	2.2 Classifying User Reviews
	2.3 Other Related Studies on App Reviews

	3 Methodology
	3.1 Hierarchical User Review Classification
	3.2 Multi-Kernel Relevance Vector Machines
	3.3 Why Extend RVM?
	3.4 Constructing the Kernels

	4 Evaluation and Results
	4.1 Datasets
	4.2 Experiment and Results

	5 Discussion
	6 Threats to Validity
	7 Conclusion
	Acknowledgments
	References

