
Side-Channel Analysis and Countermeasure Design
for Implementation of Curve448 on Cortex-M4
Mojtaba Bisheh-Niasar

∗

mbishehniasa2019@fau.edu
Florida Atlantic University

Boca Raton, Florida, USA

Mila Anastasova

manastasova2017@fau.edu
Florida Atlantic University

Boca Raton, Florida, USA

Abubakr Abdulgadir

abubakr.abdulgadir@pqsecurity.com
PQSecure Technologies, LLC

Boca Raton, Florida, USA

Hwajeong Seo

hwajeong84@gmail.com
Hansung University

Seoul, South Korea

Reza Azarderakhsh

razarderakhsh@fau.edu
Florida Atlantic University

PQSecure Technologies, LLC

Boca Raton, Florida, USA

Abstract
The highly secure Curve448 cryptographic algorithm has

been recently recommended by NIST. While this algorithm

provides 224-bit security over elliptic curve cryptography,

its implementation may still be vulnerable to physical side-

channel attacks. In this paper, we present a speed-optimized

implementation on a 32-bit ARMCortex-M4 platform achiev-

ing more than 40% improvement compared to the best previ-

ous work. Our design can perform 43 scalar multiplications

per second on an STM32F4 working at 168 MHz. At 24 MHz,

our proposed implementation takes only 3,740k clock cycles.

On the other hand, the security of Curve448 is thoroughly

evaluated to have a trade-off between performance and re-

quired protection. We apply different effective countermea-

sures to prevent a subset of side-channel and fault injection

attacks at the cost of 8%-22% overhead.

CCS Concepts: • Security and privacy→ Cryptanalysis
and other attacks.

Keywords: Cortex-M4, Curve448, elliptic curve cryptogra-

phy, hardware security, scalar multiplication, side-channel

ACM Reference Format:
Mojtaba Bisheh-Niasar, Mila Anastasova, Abubakr Abdulgadir,

Hwajeong Seo, and Reza Azarderakhsh. 2022. Side-Channel Analy-

sis and Countermeasure Design for Implementation of Curve448

on Cortex-M4. In Proceedings of Hardware and Architectural Support
for Security and Privacy (HASP’22). ACM, Chicago, Illinois, USA,

8 pages. https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

HASP’22, October 1, 2022, Chicago, Illinois
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Key exchange protocols establish secret keys between two

or more parties through an insecure channel such as the

internet. Classical elliptic curve cryptography (ECC) key ex-

change protocols such as Diffie-Hellman rely on the difficulty

of solving discrete logarithm problems. Recently, Curve448

has been recommended byNIST [11] and IETF [19] to address

backdoor issues in other ECC constructions [5], while Safe-

Curve policies [6] are considered in its design procedures.

Curve448, designed by Hamburg [17, 22], offers 224-bit se-

curity for applications at a higher security level as a part of

the TLS [25] and OpenSSH protocols.

On the other hand, although classical cryptosystems will

be broken by emerging large-scale quantum computers, we

have to develop hybrid cryptosystems to transition to post-

quantum cryptography (PQC) for maintaining accordance

with industry or government regulations while PQC updates

will be thoroughly applied. Therefore, classical cryptosys-

tems cannot be eliminated even if PQC will be developed.

The demand for Internet of Things (IoT) devices in the

everyday world is constantly increasing; thus, the most pop-

ular and highly used ARM-based platform, Cortex-M4, has

been a target of several research groups working on different

projects and topics. The simple architecture of the reduced

instruction set allows highly optimized energy and power

consumption and area efficiency of the platform, therefore,

it is used in most embedded and real-time systems.

A side-channel analysis attack (SCA) can extract the secret

key by analyzing the information leakage, including timing,

power consumption, and electromagnetic emissions, etc. Ac-

cording to the types of leakage, SCA can be categorized into

timing attack, simple power analysis (SPA) attack, differen-

tial power analysis attack (DPA), and electromagnetic attack.

Although there are intensive research and many published

papers dealing with Curve25519 [3, 9, 10, 16, 27], Curve448

has not been thoroughly investigated in the literature. To

the best of our knowledge, there appear to be extremely

https://orcid.org/0000-0002-1311-8679
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

HASP’22, October 1, 2022, Chicago, Illinois Mojtaba Bisheh-Niasar, Mila Anastasova, Abubakr Abdulgadir, Hwajeong Seo, and Reza Azarderakhsh

few Curve448 implementations. The only Curve448 imple-

mentation over Cortex-M4 was proposed by Seo et al. [31],

computing 26 scalar multiplications per second at 168 MHz.

Although this work did consider optimized field arithmetic,

it utilized extended affine and projective coordinates and

only investigated constant-time algorithms. Our proposed

architecture is both faster and more secure than [31].

This work builds upon [31] in two critical ways: (i) This

work employs a significantly improved field arithmetic with

careful memory management resulting in an 18% speedup in

low-level arithmetics. (ii) This work achieves 40% speedup

using efficient restricted-X coordinates wherein not only

does our architecture inherently provide protection against

timing and SPA attacks, but also advanced security mecha-

nisms can be included with a limited performance penalty

to avoid DPA attacks, which is missing in the literature.

Curve448 implementations and SCA evaluation over the

FPGA platformwere proposed in [7, 28, 29]. Additionally, the

scalar multiplication architectures over Ed448, equivalent

to Curve448, were presented on Cortex-M4, AVR, MSP, and

FPGA platforms in [2], [30], and [8], respectively.

Given the complexities of the Curve448 with extended

field size on resource constraint devices, a study on designing

speed-optimized implementation is well deserved; however,

the secure implementation challenges are intensified due to

information leakages. Note that the protected scheme should

be resistant against timing, SPA, and DPA attacks.

Contributions. In this work, we report speed record re-

sults for the implementation of Curve448 improving 40% of

the total time compared to the best previous work, targeting

the resource-restricted Cortex-M4. Our contributions are: (i)

We propose an optimized low-level field arithmetics based

on continuous alternation between addition/subtraction to

reduce memory access for the carry/borrow catcher tech-

nique. The newly proposed design permits to development of

two arithmetic operations working on long integers in paral-

lel show 18% performance improvement. (ii) We also utilize

the Refined-Operand Caching method achieved by a Cortex-

M4 DSP instruction and register optimization techniques

to reduce the memory access instructions. We also employ

the interleaved reduction technique into the multi-precision

multiplication providing 18% speedup. (iii) Ourmodular oper-

ation cleverly exploits the special form of the prime numbers

used in Curve448 to reduce the number of memory accesses

along with completely modifying the implementation. (iv)

Additionally, several side-channel and fault injection (FI)

countermeasures are implemented and evaluated to protect

the scheme from the most relevant attacks. We provide per-

formance results and side-channel countermeasures for our

implementation providing a trade-off between performance

and required protection.

The rest of this paper is organized as follows: In Sec. 2,

some relevant mathematical background are reviewed. In

Sec. 3, the proposed implementation is investigated. In Sec. 4,

the results and comparison with other works are discussed.

We evaluate SCA countermeausres in Sec. 5. Eventually, we

conclude this paper in Sec. 6.

2 Preliminaries
In this section, the mathematical background of Curve448

will be briefly introduced.

2.1 Curve448 Arithmetic
A Montgomery curve 𝐸 is expressed over 𝐺𝐹 (𝑝) is defined
by: 𝐸 : 𝑦2 ≡ 𝑥3 +𝐴 ·𝑥2 +𝑥 mod 𝑝 , where 𝑝 = 2

448−2224−1
and 𝐴 = 156326. This curve is birationally equivalent to

an untwisted Edwards curve called Edwards448 [19]. scalar

multiplication can be efficiently performed using the Double-

and-Add algorithm. However, this algorithm is vulnerable if

the point doubling and point addition can be visually distin-

guished in the power measurements of a scalar multiplica-

tion [13]. The Double-and-always-Add algorithm is used to

prevent timing and SPA attacks.

Group operation over the Montgomery curves can be

accelerated and also protected using the Montgomery lad-

der [23] using differential addition formulas presented in

projective coordinates. This algorithm provides fast and

constant-time execution of PA and PD. A point P = (𝑥,𝑦)
from affine is presented in projective coordinates such that

(𝑥,𝑦) = (𝑋/𝑍,𝑌/𝑍). Given two points P1 = (𝑋1, 𝑍1) and
P2 = (𝑋2, 𝑍2), and the difference P1 − P2 = (𝑋3, 𝑍3), a sin-
gle step of the Montgomery ladder computes two points

P𝑃𝐷 = 2 · P1 and P𝑃𝐴 = P1 + P2 such that:

𝑋𝑃𝐷 =(𝑋1 − 𝑍1)2 · (𝑋1 + 𝑍1)2 (1)

𝑍𝑃𝐷 =4𝑋1𝑍1 · (𝑋 2

1
+ 𝑑𝑋1𝑍1 + 𝑍 2

1
) (2)

𝑋𝑃𝐴 =𝑍3 ((𝑋1 − 𝑍1) · (𝑋2 + 𝑍2) + (𝑋1 + 𝑍1) · (𝑋2 − 𝑍2)) (3)

𝑍𝑃𝐴 =𝑋3 ((𝑋1 − 𝑍1) · (𝑋2 + 𝑍2) − (𝑋1 + 𝑍1) · (𝑋2 − 𝑍2)) (4)

Algorithm 1 shows the pointmultiplication based onMont-

gomery ladder step. After performing 448 steps of the Mont-

gomery ladder, a modular inversion is required to map the

result from projective to affine coordinates. By Fermat’s Little

Theorem, 𝑎−1 ≡ 𝑎𝑝−2 mod 𝑝 will be computed by consecutive

operations, including 447 squaring and 15 multiplications.

2.2 Side-Channel Protection
Implementations of scalar multiplication are known to be

vulnerable to side-channel analysis, e.g., [3, 15, 29]. SCA pro-

tection should be considered at both algorithmic and imple-

mentation levels.Performing inherently resistant algorithms,

e.g., Montgomery Ladder or Fermat’s little theorem, achieves

constant-time implementation and secret-independent im-

plementation. The authors in [13] introduced several coun-

termeasures to scalar multiplication to prevent DPA vulner-

ability, including point randomization, scalar blinding.

The point P = (𝑥𝑝 , 𝑦𝑝) can be projected using a random

value 𝜆 ∈ Z
2
448 \ {0} such that P𝑟 = (𝜆 · 𝑥𝑝 , 𝜆). Although the

Side-Channel Analysis and Countermeasure Design for Implementation of Curve448 on Cortex-M4 HASP’22, October 1, 2022, Chicago, Illinois

Algorithm 1 The Montgomery ladder based scalar multipli-

cation over Curve448

Input: 𝑘 , P = (𝑥𝑝 , 𝑦𝑝)
Require: the 𝑥-coordinate of Q = 𝑘 · P
Initial step: P1 = (𝑋1, 𝑍1) = (1, 0), P2 = (𝑋2, 𝑍2) = (𝑥𝑝 , 1)

1: for 𝑖 from 447 downto 0 do
2: if 𝑘𝑖 = 0 then
3: (P1,P2) = 𝑙𝑎𝑑𝑑𝑒𝑟𝑠𝑡𝑒𝑝 (𝑥𝑝 ,P1,P2)
4: else
5: (P2,P1) = 𝑙𝑎𝑑𝑑𝑒𝑟𝑠𝑡𝑒𝑝 (𝑥𝑝 ,P2,P1)
6: end if
7: end for
8: return 𝑥𝑞 = 𝑋1/𝑍1

point is randomized, the same pointQ = 𝑘 ·P𝑟 corresponding
to a constant scalar will be computed, i.e., 𝑥𝑝 = 𝑋

𝑍
= 𝜆𝑋

𝜆𝑍
.

The scalar blinding can be achieved by adding amultiple of

group order #𝐸 such that 𝑘𝑟 = 𝑘 +𝑟 × #𝐸 where 𝑟 is a random

value. However, the same point Q = 𝑘𝑟 · P corresponding

to a constant base point will be computed, as proven as

𝑘𝑟 · P = (𝑘 + 𝑟 × #𝐸) · P = 𝑘 · P + 𝑟 · O = 𝑘 · P.

2.3 TVLA
Test vector leakage assessment (TVLA), introduced in [4],

provides a robust test using a 𝑡-test to evaluate the differ-

ences between sets of acquisitions to determine if one set

of measurement can be distinguished from the other. This

technique can detect different types of leakages, providing a

clear indication of leakage or lack thereof [34].

Given two sets of traces with 𝑛1 and 𝑛2 samples, we com-

pute the corresponding sample means, 𝑥1 and 𝑥2, and respec-

tive sample standard deviations, 𝜎1 and 𝜎2. A 𝑡-statistic using

Welch’s 𝑡-test can be computed such that:

𝛼 =
𝑥1 − 𝑥2√︃
𝜎2

1

𝑛1

+ 𝜎2

1

𝑛2

(5)

In practice, observing 𝛼 greater than a specific threshold

indicates the presence of leakage. The confidence threshold

in [34] was set to 4.5, leading to many false positives, par-

ticularly when the captured trace is significantly extended.

To avoid the false positives, the authors in [3] computed

the confidence threshold for Curve25519 scalar multiplica-

tion using the threshold formula proposed in [14] and [24]

equal to 7. Fig. 1 depicts the confident threshold for different

captured trace length based on [14].

3 Proposed Algorithm and Architecture
3.1 Cortex-M4 Microarchitecture
We use the NIST recommended STM32F407-VG platform to

implement our proposed protected Curve448 architecture.

100 102 104 106 108

Sample…No.

4

5

6

7

8

t-v
al

ue

Figure 1. TVLA threshold as a function of the number

of samples per trace. The value is calculated based on [14]

assuming a statistical confidence level < 0.00001 and a large

degree of freedom.

The Cortex-M4 architecture offers 16 general purpose reg-

ister (GPR) set, including reserved registers for the Stack

Pointer (SP), Link Register (LR), and Program Counter (PC).

Although LR is a special register, its value can bemanipulated

when previously stored in the memory.

The 3-stage pipeline architecture of the platform allows a

throughput of one RISC instruction per cycle. However, the

load/store instructions may take up to 2 clock cycles when

not properly scheduled. The consecutive memory accesses

ensure pipelined execution of the instructions. The simplic-

ity of the instruction set of the target platform makes the

ARMv7-M architecture suitable for the execution of complex

problems efficiently.

The powerful Multiply ACcumulate (MAC) instructions

perform one multiplication storing the result in two different

32-bit registers, ensuring the entire result of 64-bit value.

Possibly another two 32-bit additions can be executed where

the value of the destination registers is added to the result.

3.2 Field Arithmetic
In the implementation design of the hand-coded assembly

subroutines, we use the previously described instruction to

speed up the low level field arithmetic operations.

The modular addition makes use of the powerful ADD{S},
ADC{S}, SUB{S}, and SBC{S} to propagate the carry/borrow

among the words of the operands. In addition, we imple-

ment a carry/borrow catcher technique, which allows to

develop two arithmetic operations working on long integers

in parallel. In our proposed implementation, 𝐴 + 𝐵 − 𝑃 is

performed on blocks of the operands, where we implement

𝐴[0−3]+𝐵 [0−3]−𝑃 [0−3] and store the carry/borrow results

of the last addition/subtraction in registers to later propagate

to the following blocks. The carry/borrow catcher technique

allows to significantly reduce the number of memory access-

ing instructions, thus reducing the latency of operations.

We utilized the Refined-Operand Caching method with a

width of 4 for optimal 448-bit wise multi-precision multipli-

cation, which is achieved by powerful UMAAL instruction and

register optimization techniques. The UMAAL instruction per-

forms the MAC operation without overflow conditions. For

this reason, no additional carry catcher registers are required.

The beginning of multiplication is performed with the UMULL

HASP’22, October 1, 2022, Chicago, Illinois Mojtaba Bisheh-Niasar, Mila Anastasova, Abubakr Abdulgadir, Hwajeong Seo, and Reza Azarderakhsh

A[0]B[0]

A[0]B[13]

A[13]B[13]

C[0]C[13]C[26]

1
A[13]B[0]

2

3

4

.

Figure 2. 448-bit wise multi-precision multiplication.

instruction. This instruction can initialize destination reg-

isters and avoid the register initialization step efficiently.

The order of instructions was also optimized to reduce the

number of pipeline stalls by removing the interdependency

between registers since memory access and instructions can

be performed in a parallel way.

Figure 2 shows detailed descriptions of 448-bit wise multi-

precision multiplication. Let 𝐴 and 𝐵 be operands of length

448 bits each. Each operand is written as𝐴 = (𝐴[13], ..., 𝐴[1],
𝐴[0]) and 𝐵 = (𝐵 [13], ..., 𝐵 [1], 𝐵 [0]). The 896-bit result

𝐶 = 𝐴 · 𝐵 is represented as 𝐶 = (𝐶 [27], ..., 𝐶 [1], 𝐶 [0]).
In the rhombus form, the lowest indices (𝑖 , 𝑗 = 0) of the

product appear at the rightmost corner, whereas the highest

indices (𝑖 , 𝑗 = 13) appear at the leftmost corner. A black arrow

over a point indicates the processing of a partial product.

The lowermost points represent the results 𝐶 [𝑖] from the

rightmost corner (𝑖 = 0) to the leftmost corner (𝑖 = 27).

The order of computation is from 1○ to 4○. Since the size of

caching width is 4, i.e., 128-bit, the computation is performed

in 4 steps, i.e., 448/128=3.5.

3.3 Group Operations
To implement scalar multiplication of Curve448, we employ

both Double-and-always-Add or Montgomery ladder algo-

rithms which results in constant-time implementation. The

design of these algorithms is important, where about 90% of

the time for scalar multiplication is spent.

The Double-and-always-Add algorithm requires perform-

ing one point doubling and one point addition operation. We

utilized extended projective coordinates and extended affine

coordinates to perform point addition, while the result will

be presented in extended projective coordinates. Addition-

ally, point doubling can be executed in extended projective

coordinates. Hence, the point addition and doubling require

7M + 6A and 3M + 4S + 6A, whereM, S, and A are a multipli-

cation, a squaring, and an addition cost, respectively.

Our implementation uses the Montgomery ladder in ho-

mogeneous projective coordinates to perform a variable-base

scalar multiplication.With respect to Algorithm 1, Algorithm

2 presents the proposed computation in one step of Mont-

gomery ladder requiring only two additional field operands

𝑡0 and 𝑡1. The modular multiplication of 𝜆 with 𝑋2 is used

Algorithm 2Montgomery ladder step in randomized pro-

jective coordinates over Curve448.

Input: 𝑥𝑃 , 𝜆 ∈ Z2448 \ {0}, P1 = (𝑋1, 𝑍1), and P2 = (𝑋2, 𝑍2)
Initial Step: (𝑋3, 𝑍3) = (𝜆 · 𝑥𝑝 , 𝜆)
Require: P𝑃𝐷 = 2 · P1, P𝑃𝐴 = P1 + P2
1: 𝑡0 ← 𝑋1 + 𝑍1
2: 𝑍1 ← 𝑋1 − 𝑍1
3: 𝑋1 ← 𝑋2 + 𝑍2
4: 𝑋2 ← 𝑋2 − 𝑍2
5: 𝑋2 ← 𝑋2 × 𝑡0
6: 𝑋1 ← 𝑋1 × 𝑍1
7: 𝑡1 ← 𝑋1 + 𝑋2

8: 𝑍2 ← 𝑋2 − 𝑋1

9: 𝑋2 ← 𝑡1 × 𝑡1
10: 𝑋2 ← 𝑋2 × 𝑍3
11: 𝑍2 ← 𝑍2 × 𝑍2
12: 𝑍2 ← 𝑍2 × 𝑋3

13: 𝑡1 ← 𝑡0 × 𝑡0
14: 𝑍1 ← 𝑍1 × 𝑍1
15: 𝑡0 ← 𝑡1 − 𝑍1
16: 𝑋1 ← 𝑡1 × 𝑍1
17: 𝑍1 ← 𝑡0 × 39081
18: 𝑍1 ← 𝑍1 + 𝑡1
19: 𝑍1 ← 𝑍1 × 𝑡0
20: return P𝑃𝐷 = (𝑋1, 𝑍1), P𝑃𝐴 = (𝑋2, 𝑍2)

for randomization. Therefore, a differential point addition

and point doubling formula can be performed at the cost of

5M + 4S + 1k + 8A, where k is a cost of multiplication with

a constant. Hence, the Montgomery ladder provides more

efficient implementation.

3.4 Memory Management
The target platform features 1MB of flash memory and an-

other 192KB of RAM [32]. To eliminate the slow 16KB of

SRAM, we have modified the linker file, where we have spec-

ified only the first 112KB as an SRAM.

4 Experimental Results and Comparison
The implementations are benchmarked on STM32F407-VG

Discovery board equipped with 32-bit ARM Cortex-M4 mi-

crocontrollers clocked at 24MHz and 168MHz. The higher

frequency is more suitable for real-world application, while

24MHz requires fewer cycles due to the speed of the memory

controller. The arithmetic implementations are implemented

in the ARM assembly, and the libraries are compiled by GCC

with optimization flags set to -O3.

4.1 Scalar Multiplication
As shown in [18], the measured cycle counts on the same

Cortex-M4 can be different based on the clock frequency set

on the chip. Hence, we report the latency requirements in

two different operating frequencies. Different clock frequen-

cies set may cause stalls on the controller if the memory is

Side-Channel Analysis and Countermeasure Design for Implementation of Curve448 on Cortex-M4 HASP’22, October 1, 2022, Chicago, Illinois

slower. For instance, the proposed multiplier employing the

memory operations uses 3% more cycles when the controller

is set to a 7× higher frequency.

We implement the scalar multiplication over Curve448

using two different algorithms, i.e., Double-and-always-Add

and Montgomery ladder. Table 1 summarizes the number

of clock cycles and latency requirements for the proposed

implementation in our unprotected scheme. Both these al-

gorithms are constant-time, while the Montgomery ladder

is faster, taking 3.7 × 106 cycles, and more secure compared

to Double-and-always-Add. Our results show 29% perfor-

mance improvement by using the Montgomery ladder over

the 𝑋 -coordinate at the cost of a 40% memory utilization

penalty. Compared to the previous work [31], our proposed

implementation results in 1.6× speedup computing almost

43 scalar multiplications per second at 168 MHz.

Compared to other platforms, Curve448 scalar multiplica-

tion on Cortex-M4 shows more than 20× and 27× speedup in
terms of cycle counts compared to 16-bit MSP430 and 8-bit

AVR ATmega processors reported in [30], respectively.

Table 2 compares some pre and post-quantum schemes on

embedded processors to the proposed design over the same

architecture (i.e., ARMv7-M). Amore technology-independent

comparison is the required cycle. An operating frequency

in a limited range is mostly considered to reduce the re-

quired power. Thus, our Curve448 implementation improves

5.2× and 8.9× required cycle counts compared to Secp384r1

[33] and Secp521r1 [33], respectively. However, our imple-

mentation requires 4.3× and 3.9× more cycles compared to

Curve25519 [16] and Secp256r1 [20].

Curve448 can provide 224-bit security compared to the

Curve25519 and Secp256r1 with 128-bit security. Therefore,

higher security levels come with a performance penalty, and

industry usually resists them. On the other hand, although

we are confident with the security of ECC, there is always

the possibility that algorithmic improvements reduce the

required computation to break ECC. Therefore, moving to

a higher security level will help keep a margin against un-

known attack improvements. Hence, we propose an imple-

mentation for a level of security that can still be feasible

subject to the performance requirement of the target appli-

cation, such as high-end servers of constrained devices (par-

ticularly, compared to other implementations in this level,

e.g., Secp384r1, Secp521r1.).

4.2 SCA-Protected Performance Results
Table 3 lists the performance results for the different SCA

countermeasures. While implementing the Montgomery lad-

der algorithm accelerates computation over Curve448, it

would also be a straightforward countermeasure against tim-

ing, SPA, and sign change fault attacks [15]. Taking advan-

tage of the Curve448 specification, some countermeasures,

such as a point validity check, is not required.

Table 1. Cortex-M4 implementation results. Our Design

I and II are based on Double-and-always-Add, and Mont-

gomery ladder algorithms, respectively.

Algorithm Freq. Latency Time Throughput Memory
[MHz] [CC×103] [ms] [Op/Sec] [B]

Seo et al. [31]
24

6,218 259.1 3.9 -

Our Design I 5,269 219.5 4.6 564

Our Design II 3,740 155.8 6.4 788

Seo et al. [31]
168

6,286 37.4 26.7 -

Our Design I 5,532 32.9 30.4 564

Our Design II 3,917 23.3 42.9 788

Table 2. Implementation results on Embedded Processors

Algorithm pre/post Cortex Freq. Latency Time Throughput
quantum [MHz] [CC×103] [ms] [Op/Sec]

Curve25519 [16] pre M4 48 907 18.9 52.9

Secp256r1 [20] pre M4 64 994 15.5 64.3

FourQ [21] pre M4 168 511 3.0 328.8

Secp384r1 [33] pre M3 100 20,200 202 4.9

Secp521r1 [33] pre M3 100 35,100 351 2.8

SIKEp434 KeyGen [1] post M4 24 68,260 2,844 0.3

Curve448 [This Work] pre M4 168 3,917 23.3 42.9

Base point randomization requires 11 multiplication oper-

ations per Montgomery ladder step, while the unprotected

scheme needs 10 modular multiplication operations. Hence,

as one can see, base point randomization increases 8% la-

tency due to extending the Montgomery ladder step cycles.

Additionally, the required memory for implementing this

countermeasure will be increased to 796 B.

Scalar blinding is an effective countermeasure to avoid

DPA, cross-correlation, safe-error, and differential fault anal-

ysis attacks. However, it can be defeated by advanced online

template attacks [3] and carry-based attacks [15]. Although

the scalar blinding countermeasure performs a similar Mont-

gomery ladder step in an unprotected scheme, the number of

iterations will be extended. Performing 512 iterations of the

Montgomery ladder step corresponding to 64-bit random-

ization of scalar results in 13% latency extension, while the

memory usage will be unchanged.

Stand-alone scalar blinding can be broken by the methods

described in [26]. Further, stand-alone base point random-

ization can be broken by refined power analysis. Hence, our

fourth profile combines all countermeasures in order to in-

vestigate their interaction. The latency in terms of clock

cycles per operation is increased significantly due to the ex-

tended size of the secret scalar (512 bits instead of 448 bits).

In addition, since we have to include an additional multipli-

cation by 𝑍3, the latency is increased as well. Therefore, the

required time is increased by 22% for performing a scalar

multiplication.

Although a software implementation cannot be protected

against arbitrarily powerful fault attackers [3], we imple-

ment a flow-counter countermeasure to improve protection

against FI loop-abort attacks with negligible latency over-

head. Hence, an incremental counter is implemented to de-

tect changes in the execution flow. The attack can be detected

HASP’22, October 1, 2022, Chicago, Illinois Mojtaba Bisheh-Niasar, Mila Anastasova, Abubakr Abdulgadir, Hwajeong Seo, and Reza Azarderakhsh

Table 3. Protected Cortex-M4 implementation results in

terms of latency and dynamic memory requirements

Countermeasure Freq. Latency Time Throughput Memory
[MHz] [CC×103] [ms] [Op/Sec] [B]

Unprotected

24

3,740 155.8 6.4 788

Point Randomization 4,043 168.4 5.9 796

Scalar Blinding 4,226 176.1 5.7 788

Both Countermeasures 4,572 190.5 5.2 796

Unprotected

168

3,917 23.3 42.9 788

Point Randomization 4,222 25.1 39.8 796

Scalar Blinding 4,417 26.3 38.0 788

Both Countermeasures 4,789 28.5 35.1 796

at the end of scalar multiplication if the stored value in the

counter would not be matched with the expected value.

5 SCA Evaluation
Curve448 private key can be ephemeral or static. In the

ephemeral case, the secret scalar is used only for one opera-

tion, allowing the attacker to collect one side-channel trace.

The trace can then be used to recover the shared secret. In

the static case, the secret scalar can be reused an arbitrary

number of times. This allows the attacker to collect several

side-channel traces and target the static key. Hence, the static

use case requires more robust protection compared to the

ephemeral setting. As will be shown, our protected imple-

mentation eliminates scalar-dependent leakage in the case of

the static key, which is favorable to the attacker. However, to

reduce the protection cost, either base point randomization

or scalar blinding with a fewer length of randomization can

be used for ephemeral implementation.

To evaluate scalar-dependent leakage, we adopt a pro-

cedure similar to [29] to evaluate the countermeasures in-

crementally. Specifically, we define four different leakage

detection profiles to evaluate our main countermeasures

gradually. The first profile provides a reference since all coun-

termeasures are disabled. This profile allows us to confirm

the validity of our test setup and serves as a baseline for the

leakage assessment. The second and third profiles investigate

the point randomization and scalar blinding countermea-

sures individually. Eventually, the fourth profile evaluates

our fully protected implementation with both countermea-

sures enabled in combination. Hence, our leakage detection

experiments are listed as follows:

• The unprotected implementation, without any counter-

measures except constant-time operations, including

field arithmetic and Montgomery ladder.

• The protected implementation with base point ran-

domization countermeasure enabled.

• The protected implementation with scalar blinding

countermeasure enabled.

• The protected implementation with both base point

randomization and scalar blinding countermeasures

enabled.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
Sample…No. 1e7

30

20

10

0

10

20

30

t-v
al

ue

0 20000 40000 60000 80000 100000
Sample…No.

30

20

10

0

10

20

30

t-v
al

ue

Figure 3. Overall and the part of leakage detection test on

the unprotected implementation using 10,000 traces: (Up)

𝑡-test values for scalar multiplication using the Montgomery

ladder, (Down) Magnified 𝑡-test values for 100,000 samples.

According to Fig. 1, the TVLA threshold for all our exper-

iments is computed greater than 7; thus, we assume that

peaks above 7 indicate leakage.

5.1 Side-channel analysis setup
Our experimental setup for power trace collection comprises

the following components:

1. AnARMCortex-M4-based target board (NewAECW308T-

STM32F). The target is mounted on a NewAE CW308

UFO board [12] used to connect the target to the Chip-

whisperer Lite board.

2. The NewAE Chipwhisperer Lite board [12]. This board

is used to communicate with the target board and is

connected to the control PC.

3. A control PC that sends test vectors one at a time to

the control board and collects power traces from the

oscilloscope.

4. A USB3-based oscilloscope (Picoscope 3000). This os-

cilloscope has a bandwidth of 200 MHz and an 8-bit

sample resolution.

We run the target Cortex-M4 at 25 MHz in all our ex-

periments. The power traces are collected in AC through a

passive probe connected to the CW308 UFO at a sampling

rate of 125 MS/s. The control PC is simply connected to the

ChipWhisperer Lite with a USB to micro-USB cable. The

power trace is measured using the onboard shunt resistor lo-

cated in the CW305 board. A trigger signal is asserted at the

Side-Channel Analysis and Countermeasure Design for Implementation of Curve448 on Cortex-M4 HASP’22, October 1, 2022, Chicago, Illinois

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
Sample…No. 1e7

30

20

10

0

10

20

30

t-v
al

ue

Figure 4. Protected implementation by point randomization

after applying TVLA with a pool of 10,000 measurements.

0.0 0.5 1.0 1.5 2.0 2.5
Sample…No. 1e7

8

6

4

2

0

2

4

6

8

t-v
al

ue

Figure 5. Protected implementation by scalar blinding after

applying TVLA with a pool of 10,000 measurements.

start of the scalar multiplication to instruct the oscilloscope

to start collecting data to ensure trace alignment.

In all our leakage detection profiles, we evaluate scalar-

dependent leakage and collect 10,000 traces using a non-

specific fixed-vs-random TVLA. Specifically, we randomly

interleave between feeding the target board with a fixed

scalar and a randomly generated scalar.

We utilized the setup described above to perform the

leakage assessment experiments. Profile 1, i.e., the unpro-

tected implementation, is a constant-time implementation

that makes it resistant to timing attacks and is not leaking

any information about the scalar through timing. However,

it can still leak the scalar through power consumption. Eval-

uating this implementation confirms the setup’s ability to

detect leakage and serves as a baseline for the tests.

Fig. 3 depicts the results of the 𝑡-tests for the unprotected

implementation. In the case of the unprotected implemen-

tation, the highest peak is reaching 22, showing a signifi-

cant information leakage for our unprotected baseline im-

plementation. Fig. 3 (Down) magnifies 100,000 samples of

the measured 𝑡-values. According to this figure, we can see

that the information leaks periodically in each step of the

Montgomery ladder.

With the same measurement setup, we then evaluate the

leakage with enabling base point randomization and scalar

blinding countermeasures individually. The second leakage

0.0 0.5 1.0 1.5 2.0 2.5
Sample…No. 1e7

8

6

4

2

0

2

4

6

8

t-v
al

ue
0 20000 40000 60000 80000 100000

Sample…No.

8

6

4

2

0

2

4

6

8

t-v
al

ue

Figure 6. Overall and the part of leakage detection test on

protected scalar multiplication by both base point random-

ization and scalar blinding after applying TVLA with a pool

of 10,000 measurements: (Up) 𝑡-test values for scalar multipli-

cation, (Down) Magnified 𝑡-test values for 100,000 samples.

detection profile investigates the individual security gain

by base point randomization without scalar blinding coun-

termeasures. The results are shown in Fig. 4. Although the

observed leakage is reduced compared with the unprotected

implementation, the leakage is significant. This is expected

since the countermeasure randomizes the point only, and

scalar-dependent leakage is not prevented.

To evaluate the effectiveness of scalar blinding counter-

measure, we show the 𝑡-test result in Fig. 5. Again, we capture

10,000 power traces, while each scalar is blinded externally

using a 64-bit random value. As one can see, this counter-

measure avoids any detectable scalar-dependent leakage.

Fig. 6 demonstrates the fourth evaluation profile com-

bining all techniques in order to analyze and evaluate the

interaction of both countermeasures. As we expect, first-

order side-channel information leakage for Curve448 scalar

multiplication cannot be observed. Fig. 6 (Down) magni-

fies 100,000 samples of the measured 𝑡-values showing no

side-channel leakage compared to periodical leaking on un-

protected implementation.

6 Conclusion
We present a secure implementation of Curve448 targeting

a 224-bit security level for the 32-bit ARM Cortex-M4 archi-

tecture that performs the scalar multiplication computation

in about 23 milliseconds at 168 MHz. We use randomized

HASP’22, October 1, 2022, Chicago, Illinois Mojtaba Bisheh-Niasar, Mila Anastasova, Abubakr Abdulgadir, Hwajeong Seo, and Reza Azarderakhsh

projective coordinates for the base point and scalar blind-

ing countermeasures, reducing the speed by approximately

8% and 13%, respectively. However, we note that combining

these techniques increases 22% total latency. Our leakage

assessment with 10,000 power measurements shows that

our implementation does not leak side-channel information

while the scalar blinding and point randomization counter-

measures are enabled.

Acknowledgments
The authors would like to thank the comments by reviewers.

This work is supported in parts by NSF 1801341 and 2101085.

References
[1] Mila Anastasova, Mojtaba Bisheh-Niasar, Reza Azarderakhsh, and

Mehran Mozaffari Kermani. 2021. Compressed SIKE Round 3 on ARM

Cortex-M4. In SecureComm 2021, September 6-9, 2021, Proceedings, Part
II, Vol. 399. Springer, 441–457.

[2] Mila Anastasova, Mojtaba Bisheh-Niasar, Hwajeong Seo, Reza Azarder-

akhsh, and Mehran Mozaffari Kermani. 2022. Efficient and Side-

Channel Resistant Design of High-Security Ed448 on ARM Cortex-M4.

In IEEE International Symposium on Hardware Oriented Security and
Trust, HOST 2022, McLean, VA, USA, June 27-30, 2022. IEEE, 93–96.

[3] Lejla Batina, Lukasz Chmielewski, Björn Haase, Niels Samwel, and Pe-

ter Schwabe. 2021. SCA-secure ECC in software - mission impossible?

IACR Cryptol. ePrint Arch. (2021), 1003.
[4] Georg T. Becker, Jim Cooper, Elizabeth K. DeMulder, Gilbert Goodwill,

Joshua Jaffe, Gary Kenworthy, T. Kouzminov, Andrew J. Leiserson,

Mark E. Marson, Pankaj Rohatgi, and Sami Saab. 2013. Test Vector

Leakage Assessment (TVLA) methodology in practice.

[5] Daniel J. Bernstein and Tanja Lange. 2011. Security dangers of the

NIST curves.

[6] D. J. Bernstein and T. Lange. 2016. SafeCurves: choosing safe curves

for elliptic-curve cryptography. url: https://safecurves.cr.yp.to/..
[7] Mojtaba Bisheh Niasar, Reza Azarderakhsh, and Mehran Mozaffari

Kermani. 2020. Efficient Hardware Implementations for Elliptic Curve

Cryptography over Curve448. In 21st International Conference on Cryp-
tology, Indocrypt 2020, India, December 13-16, 2020.

[8] Mojtaba Bisheh-Niasar, Reza Azarderakhsh, and Mehran Mozaffari-

Kermani. 2021. Area-Time Efficient Hardware Architecture for Signa-

ture Based on Ed448. IEEE Trans. Circuits Syst. II Express Briefs 68, 8
(2021), 2942–2946.

[9] Mojtaba Bisheh-Niasar, Reza Azarderakhsh, and Mehran Mozaffari-

Kermani. 2021. Cryptographic Accelerators for Digital Signature Based

on Ed25519. IEEE Trans. Very Large Scale Integr. Syst. 29, 7 (2021), 1297–
1305.

[10] Mojtaba Bisheh Niasar, Rami El Khatib, Reza Azarderakhsh, and

Mehran Mozaffari Kermani. 2020. Fast, Small, and Area-Time Effi-

cient Architectures for Key-Exchange on Curve25519. In 27th IEEE
Symposium on Computer Arithmetic, ARITH 2020, Portland, OR, USA,
June 7-10, 2020. 72–79.

[11] Lily Chen, Dustin Moody, Andrew Regenscheid, and Karen Randall.

2019. Recommendations for Discrete Logarithm-Based Cryptography:

Elliptic Curve Domain Parameters. Computer Security, Draft NIST
Special Publication, National Institute of Standards and Technology 800-

186 (2019).

[12] New Technology Inc.: CHIPWHISPERER. 2021. url: https://www.
newae.com/chipwhisperer.

[13] Jean-Sébastien Coron. 1999, Worcester, MA, USA. Resistance against

Differential Power Analysis for Elliptic Curve Cryptosystems. In Cryp-
tographic Hardware and Embedded Systems, CHES’99, Çetin Kaya Koç

and Christof Paar (Eds.). 292–302.

[14] A. Adam Ding, Liwei Zhang, François Durvaux, François-Xavier Stan-

daert, and Yunsi Fei. 2017. Towards Sound and Optimal Leakage De-

tection Procedure. In Smart Card Research and Advanced Applications -
16th International Conference, CARDIS 2017, Lugano, Switzerland, No-
vember 13-15, 2017, Revised Selected Papers (Lecture Notes in Computer
Science, Vol. 10728). Springer, 105–122.

[15] Junfeng Fan, Xu Guo, Elke De Mulder, Patrick Schaumont, Bart Pre-

neel, and Ingrid Verbauwhede. 2010. State-of-the-art of Secure ECC

Implementations: A Survey on Known Side-channel Attacks and Coun-

termeasures. In HOST2010, 13-14 June 2010, California, USA. 76–87.
[16] Hayato Fujii and Diego F. Aranha. 2017. Curve25519 for the Cortex-M4

and Beyond. In Progress in Cryptology - LATINCRYPT 2017, Havana,
Cuba, September 20-22, 2017, Tanja Lange and Orr Dunkelman (Eds.),

Vol. 11368. Springer, 109–127.

[17] Mike Hamburg. 2015. Ed448-Goldilocks, a new elliptic curve. IACR
Cryptology ePrint Archive 2015 (2015), 625.

[18] B Hasse. 2017. Memory bandwidth influence makes Cortex M4 bench-

marking difficult. CHES2017 rump session (2017).

[19] A. Langley, M. Hamburg, and S. Turner. 2016. Elliptic Curves for

Security.

[20] Emill Lenngren. 2021. P256-Cortex-M4. url: https://github.com/Emill/
P256-Cortex-M4.

[21] Zhe Liu, Patrick Longa, Geovandro C. C. F. Pereira, Oscar Reparaz,

and Hwajeong Seo. 2017. FourQ on embedded devices with strong

countermeasures against side-channel attacks. IACR Cryptol. ePrint
Arch. (2017), 434.

[22] Mike Hamburg. 2015. Ed448-Goldilocks, A new high-strength curve

and implementation. url: https://csrc.nist.gov/csrc/media/events/
workshop-on-elliptic-curve-cryptography-standards/documents/
presentations/session7-hamburg-michael.pdf.

[23] Peter L. Montgomery. 1987. Speeding the Pollard and Elliptic Curve

Methods of Factorization. Math. Comp. 48 (1987), 243–264.
[24] Louiza Papachristodoulou, Apostolos P. Fournaris, Kostas Papa-

giannopoulos, and Lejla Batina. 2019. Practical Evaluation of Protected

Residue Number System Scalar Multiplication. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2019, 1 (2019), 259–282.

[25] Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol

Version 1.3. RFC 8446. https://doi.org/10.17487/RFC8446
[26] Thomas Roche, Laurent Imbert, and Victor Lomné. 2019. Side-channel

attacks on blinded scalar multiplications revisited. In International Con-
ference on Smart Card Research and Advanced Applications. Springer.

[27] Pascal Sasdrich and Tim Güneysu. 2015. Implementing Curve25519

for Side-Channel-Protected Elliptic Curve Cryptography. ACM Trans-
actions on Reconfigurable Technology and Systems 9, 1 (2015), 3:1–3:15.

[28] Pascal Sasdrich and Tim Güneysu. 2017. Cryptography for Next Gen-

eration TLS: Implementing the RFC 7748 Elliptic Curve448 Cryptosys-

tem in Hardware. In Proceedings of the 54th Annual Design Automation
Conference, DAC 2017, Austin, TX, USA, June 18-22, 2017. 16:1–16:6.

[29] Pascal Sasdrich and Tim Guneysu. 2018. Exploring RFC 7748 for Hard-

ware Implementation: Curve25519 and Curve448 with Side-Channel

Protection. J. Hardware and Systems Security 2, 4 (2018), 297–313.

[30] Hwajeong Seo. 2019. Compact implementations of Curve Ed448 on

low-end IoT platforms. ETRI Journal 41, 6 (2019), 863–872.
[31] Hwajeong Seo and Reza Azarderakhsh. 2020. Curve448 on 32-Bit

ARM Cortex-M4. In Information Security and Cryptology - ICISC 2020 -
23rd International Conference, Seoul, South Korea, December 2-4, 2020,
Proceedings (Lecture Notes in Computer Science, Vol. 12593), Deukjo
Hong (Ed.). Springer, 125–139.

[32] ST. 2020. STM32F405xx STM32F407xx Datasheet - production data.

[33] Hannes Tschofenig and Manuel Pegourie-Gonnard. 2015. Performance

of State-of-the-Art Cryptography on ARM-based Microprocessors.

[34] Michael Tunstall and Gilbert Goodwill. 2016. Applying TVLA to Public

Key Cryptographic Algorithms. IACR Cryptol. ePrint Arch. (2016), 513.

https://safecurves.cr.yp.to/.
https://www.newae.com/chipwhisperer
https://www.newae.com/chipwhisperer
https://github.com/Emill/P256-Cortex-M4
https://github.com/Emill/P256-Cortex-M4
https://csrc.nist.gov/csrc/media/events/workshop-on-elliptic-curve-cryptography-standards/documents/presentations/session7-hamburg-michael.pdf
https://csrc.nist.gov/csrc/media/events/workshop-on-elliptic-curve-cryptography-standards/documents/presentations/session7-hamburg-michael.pdf
https://csrc.nist.gov/csrc/media/events/workshop-on-elliptic-curve-cryptography-standards/documents/presentations/session7-hamburg-michael.pdf
https://doi.org/10.17487/RFC8446

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Curve448 Arithmetic
	2.2 Side-Channel Protection
	2.3 TVLA

	3 Proposed Algorithm and Architecture
	3.1 Cortex-M4 Microarchitecture
	3.2 Field Arithmetic
	3.3 Group Operations
	3.4 Memory Management

	4 Experimental Results and Comparison
	4.1 Scalar Multiplication
	4.2 SCA-Protected Performance Results

	5 SCA Evaluation
	5.1 Side-channel analysis setup

	6 Conclusion
	Acknowledgments
	References

