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Abstract. We study the behavior of Haar coefficients in Besov and
Triebel-Lizorkin spaces on R, for a parameter range in which the Haar
system is not an unconditional basis. First, we obtain a range of pa-
rameters, extending up to smoothness s < 1, in which the spaces F s

p,q

and Bs
p,q are characterized in terms of doubly oversampled Haar co-

efficients (Haar frames). Secondly, in the case that 1/p < s < 1
and f ∈ Bs

p,q, we actually prove that the usual Haar coefficient norm,

∥{2j⟨f, hj,µ⟩}j,µ∥bsp,q remains equivalent to ∥f∥Bs
p,q

, i.e., the classical

Besov space is a closed subset of its dyadic counterpart. At the end-
point case s = 1 and q = ∞, we show that such an expression gives
an equivalent norm for the Sobolev space W 1

p (R), 1 < p < ∞, which
is related to a classical result by Bočkarev. Finally, in several endpoint
cases we clarify the relation between dyadic and standard Besov and
Triebel-Lizorkin spaces.

1. Introduction and statement of main results

In this paper we investigate the validity of norm characterizations for
elements f in Besov and Triebel-Lizorkin spaces, Bs

p,q(R) and F s
p,q(R), in

terms of expressions involving its Haar coefficients or suitable variations
thereof. The novelty in the current paper is that we obtain results for a range
of the parameters (s, p, q) in which the Haar system is not an unconditional
basis of the above spaces (see Figures 1 and 2 below); this complements
earlier work of the authors [10, 11, 12, 13, 21] where a complete description
was given for the parameter range in which the unconditional or Schauder
basis property holds in each such space.
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We denote the (inhomogeneous) Haar system in R by

(1.1) H =
{
hj,µ : j ≥ −1, µ ∈ Z

}
,

where we let h(x) = 1[0, 1
2
)(x)− 1[ 1

2
,1)(x) and

(1.2) hj,µ(x) := h(2jx− µ), if µ ∈ Z, j = 0, 1, 2, . . .

Note that hj,µ is supported in the closure of the dyadic interval

Ij,µ =
[
2−jµ, 2−j(µ+ 1)

)
.

In the case j = −1, we just let

h−1,µ := 1I−1,µ = 1[µ,µ+1), µ ∈ Z.

Let F s
p,q(R) and Bs

p,q(R) denote the usual Triebel-Lizorkin and Besov
spaces [25]. It has been shown in [28, 21, 22] that H is an unconditional
basis of F s

p,q(R) if and only if s belongs to the range

(1.3) max
{
1/p− 1, 1/q − 1

}
< s < min

{
1/p, 1/q, 1

}
;

moreover in the range (1.3) we also have the Haar characterization

(1.4) ∥f∥F s
p,q

≈
∥∥∥( ∞∑

j=−1

2jsq
[∑
µ∈Z

2j |⟨f, hj,µ⟩|1Ij,µ
]q)1/q∥∥∥

p

for all f ∈ B.
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p,q
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Figure 1. Parameter domain for H to be an unconditional
basis (left figure) or a Schauder basis (right figure) in F s

p,q(R).

It was also shown in [11] that H is a Schauder basis of F s
p,q(R) (with

respect to natural enumerations) in the larger range

(1.5) 1/p− 1 < s < min
{
1/p, 1

}
, (for all 0 < q <∞).

At the endpoints, the Schauder basis property holds for F s
p,q if and only if

(1.6) s = 1/p− 1 and 1/2 < p ≤ 1
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also for all 0 < q <∞; see [12]. These regions are depicted in Figure 1.

For the spaces Bs
p,q(R) there is no such distinction, and H is an uncon-

ditional basis under (1.5) (and also a Schauder basis under (1.6), if p = q);
see [13]. Moreover in the range (1.5) we have the Haar characterization

(1.7) ∥f∥Bs
p,q

≈
( ∞∑

j=−1

2
j(s− 1

p
)q
(∑

µ∈Z
|2j⟨f, hj,µ⟩|p

)q/p)1/q

for all f ∈ B.

1.1. The oversampled Haar systems - Haar frames. A main feuture of this
paper is to show that the above characterizations in terms of Haar coeffi-
cients can be extended to larger regions depicted in Figure 2 below if we
doubly oversample with Haar type coefficients obtained by a shift.

More concretely, we now define

(1.8) h̃j,ν(x) := h(2jx− ν
2 ) if j = 0, 1, 2, . . . and ν ∈ Z.

Observe that for even ν = 2µ we recover the original Haar functions, h̃j,2µ =
hj,µ supported in Ij,µ but for odd ν we obtain a shifted Haar function

h̃j,2µ+1 = hj,µ(· − 2−j−1),

which is supported in the interval [2−j(µ+1/2), 2−j(µ+3/2)) = Ij,µ+2−j−1.
As before, for j = −1 we just let

h̃−1,ν := h−1,ν = 1[ν,ν+1).

Then the extended Haar system is defined by

(1.9) H ext =
{
h̃j,ν : j ≥ −1, ν ∈ Z

}
.

In what follows we will need to work with appropriate spaces of functions
and distributions on which the (generalized) Haar coefficients are well de-
fined. For a bounded interval define the linear functional (distribution) λI
by

(1.10) λI(f) =

∫
I
f(x)dx.

Obviously λI extends to Lloc
1 and we have the trivial inequality

(1.11) |λI(f)| ≤
∫
I
|f(x)|dx.

To deal with distributions associated with certain negative smoothness
parameters we choose as a reference space B of distributions the space

(1.12) B := B−1
∞,1(R).

By standard embeddings, see e.g. [25, 2.7.1], we have

(1.13) Bs
p,q(R) ↪→ B, if s > 1

p − 1, or s = 1
p − 1 and 0 < q ≤ 1,
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and

(1.14) F s
p,q(R) ↪→ B, if s > 1

p − 1, or s = 1
p − 1 and 0 < p ≤ 1.

In particular, all the spaces that are used in Theorems 1.2-1.10 below are
embedded into B.

Proposition 1.1. For a bounded interval I consider the distribution λI in
(1.10). Then

(i) λI extends to a bounded linear functional on B, with operator norm
O(1 + |I|).

(ii) For every h ∈ H ext the linear functional f 7→ ⟨f, h⟩ is bounded on B
with uniformly bounded operator norm.

(iii) If f ∈ B and ⟨f, h⟩ = 0, for all h ∈ H , then f = 0.

Remark. Clearly, using (1.11) one can also replace in (i) the space B with
B+Lloc

1 . We note that L1 is not embedded in B, see the proof of Proposition
11.3 below.

In the rest of the paper, when f ∈ B, we use the following notation,
combining the standard Haar coefficients with the coefficients obtained from
the shifted Haar functions:

(1.15) cj,µ(f) = 2j |⟨f, h̃j,2µ⟩|+ 2j |⟨f, h̃j,2µ+1⟩| ,
when j = 0, 1, . . . , and

c−1,µ(f) = ⟨f, h−1,µ⟩ = ⟨f,1[µ,µ+1)⟩.

Our first main result provides a characterization where in (1.7) the Haar
coefficients 2j⟨f, hj,µ⟩ are replaced with the cj,µ(f). This covers as well the
quasi-Banach range of parameters; see Figure 2 below.

Theorem 1.2. Let 1/2 < p <∞, 1/2 < q ≤ ∞ and

(1.16) max{1/p− 1, 1/q − 1} < s < 1 .

Then F s
p,q(R) is the collection of all f ∈ B such that

(1.17)
∥∥∥( ∞∑

j=−1

2jsq
∣∣∣∑
µ∈Z

cj,µ(f)1Ij,µ

∣∣∣q)1/q∥∥∥
p
<∞.

Moreover, the latter quantity represents an equivalent quasi-norm in F s
p,q(R).

Using terminology introduced by Gröchenig [15], one may say that H ext

is a (quasi-)Banach frame1 for F s
p,q(R). In signal processing language, this

can be interpreted by saying that one may stably recover f from the sampled
information {⟨f, h⟩ : h ∈ H ext}.

1In a Hilbert space H, a frame is a system of vectors {ej} ⊂ H, which for some
constants A,B > 0 satisfies A∥f∥2H ≤

∑
j

|⟨f, ej⟩|2 ≤ B∥f∥2H , ∀ f ∈ H.
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We remark that the condition s > 1
q − 1 in (1.16) is necessary, in view of

the examples in [21]; see Remark 4.3 below. The analogous characterization
for Besov spaces is valid in a larger range:

Theorem 1.3. Let 1/2 < p ≤ ∞, 0 < q ≤ ∞ and

1/p− 1 < s < 1 .

Then Bs
p,q(R) is the collection of all functions f ∈ B such that( ∞∑

j=−1

2j(s−1/p)q
(∑

µ∈Z
|cj,µ(f)|p

)q/p)1/q
<∞.

Moreover, the latter quantity represents an equivalent quasi-norm in Bs
p,q(R).

F s
p,q-spaces

1
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s
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1

1
q

1
q−1

−1
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1
p

s

1 2

1

−1

Figure 2. Parameter domain for H ext to be a characteriz-
ing frame for F s

p,q(R) (left figure, Theorem 1.2) and Bs
p,q(R)

(right figure, Theorem 1.3).

Figure 2 shows the regions of parameters where H ext is a characterizing
frame for each of the spaces F s

p,q(R) and Bs
p,q(R).

We remark that a related result, in the special case of the Hölder spaces
Cα = Bα

∞,∞(R), α ∈ (0, 1), and using a 1/3-shifted Haar frame, has been
recently obtained by Jaffard and Krim; see [16, Thm.1].

1.2. Characterization of W 1
p (R) via Haar frames. We now let s = 1, and

consider in the Banach range 1 ≤ p ≤ ∞ the Sobolev spaceW 1
p (R), endowed

with the usual norm

∥f∥W 1
p (R) = ∥f∥p + ∥f ′∥p.

We also let BV (R) be the subspace of L1(R) for which the distributional
derivative belongs to the space M of bounded Borel measures (with the
norm given by the total variation of the measure) and define

∥f∥BV (R) = ∥f∥1 + ∥f ′∥M.
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Note that by our definition BV ⊂ L1 which deviates from the definition
in some other places in the literature. We have the following result, that
provides characterizations in terms of the oversampled Haar system H ext.

Theorem 1.4. For all f ∈ B the following hold.

(i) If 1 < p ≤ ∞ then

∥f∥W 1
p
≈ sup

j≥−1
2j(1−1/p)

(∑
µ∈Z

|cj,µ(f)|p
)1/p

.

(ii) In the case p = 1 we have instead

∥f∥BV ≈ sup
j≥−1

∑
µ∈Z

|cj,µ(f)|.

Clearly part (ii) implies the inequality

(1.18) sup
j≥−1

∑
µ∈Z

|cj,µ(f)| ≲ ∥f∥W 1
1

for all f ∈ B. However the converse of this inequality fails as one checks by
testing it with f = 1[0,1] ∈ BV \W 1

1 ; we have supj
∑

µ |cj,µ(1[0,1])| <∞.

The fact that the Sobolev W 1
p (R) norm can be expressed in terms of a

discrete norm of b1p,∞ type may seem surprising at first, but actually results
of this sort can be found in the literature since the 60s, see [1]. The theorem
is also reminiscent of characterizations via the uniform bounds for difference
quotients h−1(f(·+ h)− f), see [24, Prop V.3] and more recently [5, 4].

1.3. Dyadic Besov spaces. In this section we present stronger results involv-

ing the standard Haar system H , and suitable dyadic variants Bs,dyad
p,q of

the Besov spaces.

We first recall the definition of the sequence spaces bsp,q and f sp,q; see [9].
If s ∈ R and 0 < p, q ≤ ∞, we define, for β = {βj,µ}j≥−1,µ∈Z,

(1.19) ∥β∥bsp,q :=
( ∞∑

j=−1

[
2j(s−1/p)

(∑
µ∈Z

|βj,µ|p
) 1

p
]q) 1

q
,

and if p <∞ we let

(1.20) ∥β∥fs
p,q

:=
∥∥∥( ∞∑

j=−1

∣∣∣2js ∑
µ∈Z

βj,µ1Ij,µ(·)
∣∣∣q)1/q∥∥∥

p
.

These expressions have the obvious interpretations if max{p, q} = ∞.

We additionally define for every f ∈ B the quantity

∥f∥
Bs,dyad

p,q
:=

∥∥∥{2j⟨f, hj,µ⟩}j,µ

∥∥∥
bsp,q

and the vector spaces

Bs,dyad
p,q (R) =

{
f ∈ B : ∥f∥

Bs,dyad
p,q

<∞
}
.
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Observe that spanH ⊂ Bs,dyad
p,q , so the spaces are not null. Also, the quan-

tity ∥f∥
Bs,dyad

p,q
is a quasi-norm (not just a semi-norm), by Proposition 1.1.

Since 2j |⟨f, hj,µ⟩| ≤ cj,µ(f) we note the following immediate consequence of
Theorem 1.4.

Corollary 1.5. If 1 ≤ p ≤ ∞ then

(1.21) W 1
p ↪→ B1,dyad

p,∞ .

To avoid pathological cases, below we shall typically consider the range

(1.22)
1

p
− 1 < s < 1,

and some end-point cases of these. Recall that in the smaller range (1.5)

we have Bs
p,q = Bs,dyad

p,q , cf. (1.7). We remark that when s > 1 (or s = 1

and 0 < q <∞), the spaces B1,dyad
p,q contain no nontrivial C1 functions (see

Proposition 11.1) while for s < 1/p − 1 the spaces are not complete (see
Proposition 11.2.)

Assume now that (1.22) holds. By Theorem 1.3 we have Bs
p,q ↪→ Bs,dyad

p,q ,
and the inclusion is proper provided that

(1.23) 1/p < s < 1, or s = 1/p and q <∞
(since in that range Haar functions do not belong to Bs

p,q). Our goal is to
prove converse inequalities of the form

(1.24) ∥f∥Bs
p,q

≲ ∥f∥
Bs,dyad

p,q
, provided that f ∈ Bs

p,q(R).

Such inequalities will imply that ∥ · ∥
Bs,dyad

p,q
is an equivalent norm in Bs

p,q, a

result which may seem surprising outside the usual unconditionality region.
Our first result in this direction is the following.

Theorem 1.6. Let 1 < p ≤ ∞, 0 < q ≤ ∞, and 1/p < s < 1. Then (1.24)

holds. In particular, Bs
p,q is a proper closed subspace of Bs,dyad

p,q , and we have

(1.25) ∥f∥Bs
p,q

≈ ∥f∥
Bs,dyad

p,q
, for all f ∈ Bs

p,q(R).

There are also some precedent results of this nature in the literature.
When p = q = ∞, a norm equivalence as in (1.25) (for continuous functions
in the interval [0,1]) was proved by Golubov [14, Corollary 6]; see also [18,
Corollary 3.2], [19, Theorem 7.c.3] and references therein.

1.4. Inclusions for the limiting case s = 1. In what follows the notation
X1 ↪→ X2 will indicate a continuous embedding of the space X1 in the space
X2. As already remarked above we may focus on the cases s < 1 or s = 1,
q = ∞, cf. Proposition 11.1.

We now state inclusions into the spaces Bs,dyad
p,q , in the case that s = 1

and q = ∞. Note that in one of the inclusions we use the smaller space

F 1,dyad
p,∞ :=

{
f ∈ B :

{
2j⟨f, hj,µ⟩

}
j≥−1
µ∈Z

∈ f1p,∞

}
.
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Theorem 1.7. Let 1/2 ≤ p ≤ ∞. Then the following hold.

(i) If 1/2 ≤ p <∞ then

B1
p,q ↪→ B1,dyad

p,∞ ⇐⇒ q ≤ min{p, 2} ,(1.26)

F 1
p,q ↪→ B1,dyad

p,∞ ⇐⇒ q ≤ 2 .(1.27)

For p = ∞ we have

(1.28) B1
∞,q ↪→ B1,dyad

∞,∞ ⇐⇒ q ≤ 1 .

(ii) For 1/2 < p <∞

(1.29) F 1
p,2 ↪→ F 1,dyad

p,∞ .

The next result is a converse inequality to (1.21), which in particular
implies that

∥f∥
B1,dyad

p,∞
= sup

j≥−1
2j(1−1/p)

(∑
µ∈Z

|2j⟨f, hj,µ⟩|p
)1/p

is an equivalent norm in W 1
p (R). Lower bounds of this type, for abso-

lutely continuous functions in the interval [0, 1], can be found in the work
of Bočkarev [1, Theorem 7], [2, Theorem I.3.4], or [19, Corollary 7.b.2] and
references therein. Below we establish, by different methods, the following
result, which is complementary to Theorem 1.4.

Theorem 1.8. Let 1 < p ≤ ∞. Then

(1.30) ∥f∥W 1
p
≲ ∥f∥

B1,dyad
p,∞

, provided f ∈W 1
p (R).

In particular, W 1
p (R) is a proper closed subspace of B1,dyad

p,∞ , and it holds

(1.31) ∥f∥W 1
p
≈ ∥f∥

B1,dyad
p,∞

≈ ∥f∥
F 1,dyad
p,∞

, for f ∈W 1
p (R), 1 < p <∞.

Remark. The inequality in (1.30) (and hence, the first equivalence in (1.31))
is also true when p = 1, due to the result of Bočkarev [1]. The proof we give
here, however, is only valid for p > 1.

1.5. Inclusions for the limiting case s = 1/p − 1. We state inclusions into

the spaces Bs,dyad
p,q , in the case that s = 1/p− 1 and q = ∞.

Theorem 1.9. (i) For 0 < p, u ≤ ∞ the embedding B
1/p−1
p,u ↪→ B

1/p−1,dyad
p,q

can only hold when q = ∞.

(ii) If p ≥ 1/2 then

(1.32) B1/p−1
p,q ↪→ B1/p−1,dyad

p,∞ ⇐⇒ q ≤ min{1, p}

(iii) If 1/2 < p ≤ 1 then

(1.33) F 1/p−1
p,∞ ↪→ B1/p−1,dyad

p,∞ .
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Remark. In case p = 1 we have for all f ∈ L1 the straightforward inequality

sup
j≥−1

∑
µ∈Z

|⟨f, hj,µ⟩| ≲ ∥f∥1;

in particular L1 ∩ B ⊂ B0,dyad
1,∞ .

1.6. The case s = 1/p. When 1 < p < ∞, the unconditionality of the Haar
basis implies that

Bs
p,q(R) = Bs,dyad

p,q (R) ,
1

p
− 1 < s <

1

p
.

On the other hand, Theorem 1.6 implies the norm equivalence

∥f∥Bs
p,q

≈ ∥f∥
Bs,dyad

p,q
, f ∈ Bs

p,q,
1

p
< s < 1.

These two results might suggest that the norm equivalence could hold also
at the dividing line s = 1/p. Here we show that this is not the case, at least
when q = ∞.

Theorem 1.10. Let 1 ≤ p <∞. Then

(i) there exists a sequence {fN}∞N=1 of functions in B
1/p
p,∞ such that

∥fN∥
B

1/p,dyad
p,∞

= 1 and ∥fN∥
B

1/p
p,∞

≳ N ,

(ii) B
1/p,dyad
p,∞ \B1/p

p,∞ ̸= ∅.

Remarks. (i) The following comments on the case s = 1/p as a dividing line
between Theorems 1.3 and 1.6 on which both theorems fail. If 1 < p < ∞,

the embedding B
1/p
p,∞(R) into B1/p,dyad

p,∞ (R) which is established by Theorem

1.3 is proper, i.e., B
1/p
p,∞(R) ⊊ B

1/p,dyad
p,∞ (R). Moreover, on the smaller space

B
1/p
p,∞(R), the norms are not equivalent, that is,

(1.34) sup
{
∥f∥

B
1/p
p,∞

: f ∈ B1/p
p,∞ and ∥f∥

B
1/p,dyad
p,∞

= 1
}
= ∞ .

Both statements are an immediate consequence of Theorem 1.10.

(ii) Observe that BV (R) ↪→ B1
1,∞(R) and that for p = 1 we have the

embedding BV (R) ↪→ B1,dyad
1,∞ (R) as an immediate consequence of Theorem

1.4. Theorem 1.10 shows that this embedding is also proper, i.e. B1,dyad
1,∞ (R)\

BV (R) ̸= ∅.

1.7. Further directions. We mention a few problems left open in this paper.
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1.7.1. Besov-type spaces. Concerning (1.34) in Theorem 1.10, we do not
know whether the inequality

(1.35) ∥f∥
B

1/p
p,∞

≤ C ∥f∥
B

1/p,dyad
p,∞

could be true for 1 < p <∞ when restricted to f ∈ S(R). It is also open to

determine whether such inequality could hold if the B
1/p
p,∞ norm is replaced

by B
1/p
p,q with q <∞.

1.7.2. F s
p,q versus F s,dyad

p,q . It would be interesting to establish an optimal
analogue of Theorems 1.6/1.8 for Triebel-Lizorkin spaces.

1.7.3. Wavelet frames. The sharp results on the failure of unconditional con-
vergence of Haar expansions in [21] (described above) have been extended by
R. Srivastava [23] to classes of spline wavelets with more restrictive smooth-
ness assumptions. It is then natural to investigate extensions of our results
on Haar frames to suitable classes of oversampled systems of spline wavelets.

1.8. Structure of the paper. In §2 we introduce notation and review some
preliminary known results on maximal characterizations of function spaces,
and Chui-Wang wavelet bases that we need in the proofs of our results.

In §3 we clarify the role of the space B and proof Proposition 1.1.

In §4 we consider the characterization of function spaces via Haar frames
and give the proofs of Theorems 1.2 and 1.3 (as a combination of four Propo-
sitions 4.1, 4.4, 4.5 and 4.9).

In §5 we establish Haar frame characterizations of Sobolev and bounded
variation spaces and give a proof of Theorem 1.4.

In §6 we prove the sufficiency of the conditions for the embeddings into

B1,dyad
p,∞ or F 1,dyad

p,∞ in Theorem 1.7 and the sufficiency for the conditions of

embedding into B
1/p−1,dyad
p,∞ in Theorem 1.9.

In §7 we prove Theorems 1.6 and 1.8.

In §8 we prove necessary conditions for the embeddings into B1,dyad
p,∞ .

Specifically, in Theorem 1.7 the necessary conditions q ≤ p in (1.26), q ≤ 2
in (1.27), (1.26), and q ≤ 1 in (1.28) correspond to Lemma 8.1, Lemma 8.2,
and Lemma 8.3, respectively.

In §9 we obtain necessary conditions in part (ii) of Theorem 1.9 for the

embeddings into B
1/p−1,dyad
p,∞ .

In §10 we prove Theorem 1.10.

In §11 we give a simple proof for the fact that C1 functions in B1,dyad
p,q

are constant (Proposition 11.1); moreover show that Bs,dyad
p,q is not complete

when s < 1/p − 1 (Proposition 11.2) and finally prove part (i) of Theorem
1.9 (see Proposition 11.3).
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2. Preliminaries on function spaces and wavelet bases

2.1. Definition of spaces. Let s ∈ R and 0 < p, q ≤ ∞ be given. We shall
use both definitions and characterizations of Bs

p,q and F
s
p,q in terms of dyadic

frequency decompositions and in terms of sequences of compactly supported
kernels with cancellation (see e.g. [26, 2.5.3, 2.4.6] or [27, §1.3,1.4] where
the terminology local means is used).

Consider two functions β0, β ∈ S(R) such that |β̂0(ξ)| > 0 when |ξ| ≤ 1

and |β̂(ξ)| > 0 when 1/4 ≤ |ξ| ≤ 1. Assume further that β(·) has vanishing
moments up to a sufficiently large order M ∈ N, that is,

(2.1)

∫
R
β(x)xm dx = 0 when m < M .

The precise value of M is not relevant, but for the properties used in the
paper it will suffice with

(2.2) M > 1/p+ |s|+ 2.

We let βk(x) := 2kdβ(2kx), k ≥ 1, and define for k ∈ N0 the convolution
operators

Lkf := βk ∗ f,
acting on distributions f ∈ S ′(R).

The Besov space Bs
p,q(R) is the set of all distributions f ∈ S ′(R) such that

(2.3) ∥f∥Bs
p,q

:=
( ∞∑

k=0

(
2ks∥Lkf∥p

)q)1/q
<∞.

If p <∞, the Triebel-Lizorkin space F s
p,q(R) is the set of all f ∈ S ′(R) such

that

(2.4) ∥f∥F s
p,q

:=
∥∥∥( ∞∑

k=0

2ksq|Lkf(x)|q
)1/q∥∥∥

p
<∞.

Different choices of β0, β give rise to the same spaces and equivalent quasi-
norms; see e.g. [27, Theorem 1.7]. From now on we will assume that

suppβ0 ⊂ (−1/2, 1/2) and supp β ⊂ (−1/2, 1/2).

We shall often use the following decomposition of distributions in S ′(R).
Let η0 ∈ C∞

0 (R) be supported on {|ξ| < 3/4} and such that η0(ξ) = 1 when
|ξ| ≤ 1/2. Define the convolution operators Λ0, and Λk for k ≥ 1, by

Λ̂0f(ξ) =
η0(ξ)

β̂0(ξ)
f̂(ξ)

Λ̂kf(ξ) =
η0(2

−kξ)− η0(2
−k+1ξ)

β̂(2−kξ)
f̂(ξ), k ≥ 1.
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Then, for all f ∈ S ′(R) we have

(2.5) f =
∞∑
k=0

LkΛkf

with convergence in S ′(R). Also, it holds( ∞∑
k=0

(
2ks∥Λkf∥p

)q)1/q
≲ ∥f∥Bs

p,q
,

and likewise for the F -norms.

2.2. Maximal functions. We follow Triebel [25, 26]. Given f ∈ Lloc
1 (R),

consider the Hardy-Littlewood maximal function, defined by

(2.6) Mf(x) := sup
x∈I

1

|I|

∫
I
|f(x)| dx ,

where the sup is taken over all intervals I that contain x. A classical result
of Fefferman and Stein asserts that, if 1 < p <∞ and 1 < q ≤ ∞ then

(2.7)
∥∥∥(∑

j

|Mfj |q
)1/q∥∥∥

p
≲

∥∥∥(∑
j

|fj |q
)1/q∥∥∥

p
.

for all sequences of measurable functions {fj} with finite right hand side.

Let us further define the Peetre maximal functions [20]. Given j ∈ N and
A > 0 we let

M∗∗
j,Af(x) = sup

h∈R

|f(x+ h)|
(1 + 2j |h|)A

.

Let Ej be the set of distributions f ∈ S ′(R) such that supp f̂ is supported
in an interval of diameter ≤ 2j+2. Then for all f ∈ Ej it holds

(2.8) M∗∗
j,Af(x) ≲s,A

[
M(|f |s)(x)

]1/s
,

provided that s ≥ 1/A; see [20] or [25, Theorem 1.3.1]. In particular, if
0 < p ≤ ∞ and A > 1/p then

(2.9) ∥M∗∗
j,Af∥p ≤ Cp,A∥f∥p, f ∈ Ej .

Also, from (2.7) and (2.8), if 0 < p <∞, 0 < q ≤ ∞ and A > max{1/p, 1/q},
then

(2.10)
∥∥∥(∑

j

|M∗∗
j,Afj |q

)1/q∥∥∥
p
≤ Cp,q,A

∥∥∥(∑
j

|fj |q
)1/q∥∥∥

p

for all sequences of functions (fj) such that fj ∈ Ej .
Below we shall also use the (smaller) maximal functions

(2.11) Mjf(x) = sup
|h|≤2−j

|f(x+ h)| and M∗
jf(x) = sup

|h|≤2−j+2

|f(x+ h)|.

Note that for all A > 0 it holds

Mjf(x) ≤ M∗
jf(x) ≲ M∗∗

j,Af(x),
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so in particular, for all 0 < p ≤ ∞ we have

(2.12)
∥∥M∗

jf∥p ≲ ∥f∥p, f ∈ Ej .
We shall also make use of the following elementary inequality: if 0 < p ≤ ∞
then

(2.13) ∥M∗
jf∥p ≲ 2ℓ/p ∥Mj+ℓf∥p, ℓ ≥ 0.

To prove this assertion, if we let xν = ν2−(j+ℓ), then we have

M∗
jf(x) ≤ sup

|ν|≤2ℓ+2

|Mj+ℓf(x+ xν)| ≤
( ∑

|ν|≤2ℓ+2

|Mj+ℓf(x+ xν)|p
) 1

p
.

Then, taking Lp quasi-norms one easily obtains (2.13).

2.3. Chui-Wang wavelets. The proofs of Theorems 1.2 and 1.3 will require
a characterization in terms of a wavelet basis generated by the Chui-Wang
polygon and its dual.

Define the m-fold convolution Nm of characteristic functions of [0, 1), i.e.
N1 = 1[0,1), and, for m ≥ 2, Nm = Nm−1 ∗ 1[0,1). In particular we get for
m = 2 the hat function

(2.14) N2(x) =


x, x ∈ [0, 1],

2− x, x ∈ [1, 2],

0, x ∈ R \ [0, 2].
Let

N2;j,ν(x) := N2(2
jx− ν), j ≥ 0, ν ∈ Z,

which is a hat function adapted to suppN2;j,ν = [2−jν, 2−j(ν + 2)].

The next elementary observation will be crucial in what follows.

Lemma 2.1. If f is locally absolutely continuous in R, then for all j ≥ 1
and ν ∈ Z it holds

(2.15) ⟨f ′,N2;j,ν⟩ = −2j ⟨f, h̃j−1,ν⟩,
while for j = 0 it holds

⟨f ′,N2;0,ν⟩ = −⟨f, h−1,ν⟩+ ⟨f, h−1,ν+1⟩, ν ∈ Z.

Proof. Integrating by parts one has

⟨f ′,N2;j,ν⟩ = −⟨f, (N2;j,ν)
′⟩.

Now, a simple computation gives

(N2;j,ν)
′ = 2j1(2−jν,2−j(ν+1)) − 2j1(2−j(ν+1),2−j(ν+2))

= 2j1Ij,ν − 2j1Ij,ν+1 = 2j h̃j−1,ν ,

where the last equality follows from the definition of the shifted Haar system
in (1.8) (if j ≥ 1). Combining the two expressions one obtains (2.15). The
case j = 0 is similar. □
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The Chui-Wang polygon [7, Theorem 1], [6, 6.2.5, 6.2.6] is the compactly
supported wavelet given by

ψ(x) =
1

2

2∑
ℓ=0

(−1)ℓN4(ℓ+ 1)N ′′
4 (2x− ℓ) ,

=
1

2

2∑
ℓ=0

(−1)ℓN4(ℓ+ 1)
2∑

j=0

(−1)j
(
2

j

)
N2(2x− j − ℓ)

=
∑
k∈Z

bk · N2(2x− k)

(2.16)

with a finite sequence (bk). The wavelet ψ is compactly supported and has
two vanishing moments, i.e.,

∫
ψ(x)dx =

∫
xψ(x)dx = 0. For j ∈ N0 and

µ ∈ Z let

ψj,µ(x) = ψ(2jx− µ),

while for j = −1 we let

ψ−1,µ(x) = N2;0,µ(x) = N2(x− µ).

Then we have the orthogonality relations with respect to different scales

⟨ψj,µ, ψj′,µ′⟩ = 0 , j ̸= j′ .

In contrast to that it only forms a Riesz basis within one and the same
scale with respect to different translations. The dual basis can be computed
precisely [8] and does not provide compact support. However, the coefficients

0.5 1.0 1.5 2.0 2.5 3.0

-0.4

-0.2

0.2

0.4

0.6

0.8

-4 -2 2 4 6 8 10

-2

-1

1

2

3

Figure 3. The Chui-Wang wavelet ψ2 of order 2 and its dual ψ∗
2

in

(2.17) ψ∗(x) =
∑
k∈Z

akψ(x− k)

are exponentially decaying; see the paper [8] for explicit formulas for ak.
Observe from (2.17) that also ψ∗ has two vanishing moments.

Using this construction, Derevianko and Ullrich provided the following
characterization for the F s

p,q and Bs
p,q spaces; see [8, Theorem 5.1].
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Theorem 2.2. [8] Let 0 < p ≤ ∞, 0 < q ≤ ∞.

(i) If p <∞ and

(2.18) max{1/p, 1/q} − 2 < r < 1 + min{1/p, 1/q, 1}
then we have for all f ∈ B−2

∞,1(R)

(2.19) ∥f∥F r
p,q

≈
∥∥∥( ∞∑

j=−1

2jrq
∣∣∣∑
µ∈Z

2j⟨f, ψj,µ⟩1Ij,µ
∣∣∣q)1/q∥∥∥

p
.

(ii) If

(2.20) 1/p− 2 < r < max{1 + 1/p, 2}
then we have for all f ∈ B−2

∞,1(R)

(2.21) ∥f∥Br
p,q

≈
( ∞∑

j=−1

2j(r−1/p)q
[∑
µ∈Z

|2j⟨f, ψj,µ⟩|p
]q/p)1/q

.

Remark 2.3. Concerning part (i), we remark that the result stated in [8,
Theorem 5.1], requires the additional restriction r < 1, which comes from a
similar restriction in [8, Proposition 5.4]. This restriction, however, can be
lifted and replaced by r < 1+max{1/p, 1/q}, using a complex interpolation
argument which involves part (ii) (case p = q), as we discuss in Step 3 of
Proposition 4.5 below.

3. Haar functions as linear functionals on B:
Proof of Proposition 1.1

3.1. Proof of (i) and (ii). Since every h ∈ H is a difference of two charac-
teristic functions of intervals of length ≤ 1 part (ii) is an immediate conse-
quence of part (i). It suffices to analyze λI on B, for each bounded interval
I. Let f ∈ B = B−1

∞,1(R). Using the decomposition in (2.5) we can write

f =
∑∞

k=0 Lkfk where the Fourier transform f̂k is supported in {ξ : |ξ| ≤ 2k}
and the fk satisfy

(3.1)
∑
k≥0

2−k∥fk∥∞ ≲ ∥f∥B;

here, Lkf = βk ∗ f where β0, β are even functions in C∞
c (−1/2, 1/2), and

βk = 2kβ(2k·), for k ≥ 1. Also,
∫
β(x)dx = 0.

Note that

(3.2) ∥L01I∥1 ≲ |I|.
By (3.1) one needs to show that ∥Lk1I∥1 ≲ 2−k for k ≥ 1 but one actually
gets the better estimate

(3.3) ∥Lk1I∥1 ≲ min{|I|, 2−k}, k ≥ 1.

Hence |⟨f,1I⟩| ≲ max{|I|, 1}
∑

k≥0 2
−k∥fk∥∞ and we deduce that λI ex-

tends to a bounded linear functional on B, with ∥λI∥B∗ ≲ max{1, |I|}.
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It remains to verify (3.3). Fix I, with center yI , and assume first that
2−k > |I|. Then the function Lk1I = βk ∗ 1I is supported in an interval
centered at yI with length O(2−k) and satisfies |βk∗1I(x)| ≤ ∥βk∥∞ ∥1I∥1 ≲
2k|I|. Thus we obtain ∥βk ∗ 1I∥1 ≲ |I| which is in (3.3) in this case.

Now assume 2−k ≤ |I|. Let y+ and y− be the endpoints of I. Let Uk

be the union of the two closed intervals of length 2−k+2 centered at y+ and
y−. Then βk ∗ 1I is supported in Uk, which has size |Uk| = O(2−k). This
assertion, combined with ∥βk ∗ 1I∥∞ ≤ ∥βk∥1 = O(1), also implies (3.3) in
this case.

3.2. Proof of (iii). For the argument below we shall use the dyadic averaging
operators, defined for N ≥ 0 by

(3.4) ENf(x) :=
∑
µ∈Z

2N ⟨f,1IN,µ
⟩1IN,µ

(x).

In view of (i), these operators can be defined acting on distributions f ∈ B
such that EN : B → L∞ has operator norm O(2N ).

Let now f ∈ B such that ⟨f, h⟩ = 0, for all h ∈ H . Since each IN,µ

belongs to spanH, this implies that ENf = 0, for all N ≥ 0. We then must
show that f = 0, which is a direct consequence of part (b) in the following
lemma.

Lemma 3.1. (a) The operators EN satisfy the uniform bound

sup
N≥0

∥∥EN∥B→B−1
∞,∞

<∞.

(b) If f ∈ B then ∥ENf − f∥B−1
∞,∞

→ 0 as N → ∞.

Proof. Part (a) is implicit in [13]. Indeed, it follows by combining the esti-
mates stated in the four propositions in [13, §4], for the cases s = −1 and
p = ∞.

We now show part (b). Let f ∈ B and write f =
∑∞

k=0 Lkfk as at the
beginning of §3.1. The above series converges in S ′ and also in the B-norm.
Then, given ε > 0 one can find g =

∑J
k=0 Lkfk such that

∥f − g∥B < ε.

Observe that g is bounded, since

∥g∥∞ ≤
J∑

k=0

∥Lkfk∥∞ ≲
J∑

k=0

∥fk∥∞ ≲ 2J∥f∥B.

A similar reasoning shows that ∥g′∥∞ < ∞, so in particular g is uniformly
continuous. Thus exists an integer N0 ∈ N such that

∥g − ENg∥∞ < ε, for all N ≥ N0.
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Combining these assertions, and using the trivial embeddings

L∞ ↪→ B ↪→ B−1
∞,∞,

we obtain, for all N ≥ N0,

∥f − ENf∥B−1
∞,∞

≤ ∥f − g∥B + ∥g − ENg∥∞ + ∥EN (g − f)∥B−1
∞,∞

≲ 2ε+ C ∥g − f∥B ≲ ε,

where in the second inequality we have used part (a). □

4. Characterizations by Haar frames:
Proofs of Theorems 1.2 and 1.3

The proofs of Theorems 1.2 and 1.3 will follow from the four Propositions
4.1, 4.4, 4.5 and 4.9 stated below.

The first proposition is a strengthening of [28, Proposition 2.8]. It gives
one of the inclusions asserted in Theorems 1.2 and 1.3. The region of indices
is the same as in Figure 2. We set c(f) = {cj,µ(f)}j≥−1,µ∈Z with cj,µ(f) as
in (1.15).

Proposition 4.1. Let 0 < p, q ≤ ∞ and s ∈ R.
(i) If p <∞ and max{1/p− 1, 1/q − 1} < s < 1 , then for all f ∈ F s

p,q

(4.1) ∥c(f)∥fs
p,q

≲ ∥f∥F s
p,q
.

(ii) If 1/p− 1 < s < 1, then for all f ∈ Bs
p,q

∥c(f)∥bsp,q ≲ ∥f∥Bs
p,q
.

Proof. To avoid dealing separately with h̃j,ν with ν even or odd, we prove a
slightly more general result. For a fixed δ ∈ [0, 1] and for j ≥ 0 and µ ∈ Z,
consider the shifted Haar function

hδj,µ(x) := hj,µ(x− δ2−j) = h
(
2jx− (µ+ δ)

)
,

whose support is the interval Ij,µ + δ2−j . When j = −1, we just let

hδ−1,µ = h−1,µ = 1[µ,µ+1). Part (i) will then be a consequence of the fol-
lowing estimate

(4.2)
∥∥∥( ∞∑

j=−1

2jsq
∣∣∣∑
µ∈Z

2j⟨f, hδj,µ⟩ 1Ij,µ
∣∣∣q)1/q∥∥∥

p
≲ ∥f∥F s

p,q
,

where the constants are independent of δ ∈ [0, 1]. Indeed, (4.1) follows from
(4.2) applied to δ = 0 and δ = 1/2.

We now prove (4.2) for a fixed δ ∈ [0, 1]. In the proof below we denote by
∆j,µ the set of discontinuity points of hδj,µ, that is

∆j,µ =
{
(µ+ δ + i)2−j : i = 0, 12 , 1

}
.
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Lemma 4.2. Let g ∈ Lloc
1 (R), k ∈ N0 and j ≥ −1. Then

a) If k ≥ j then

(4.3)
∣∣2j⟨g, Lkh

δ
j,µ⟩

∣∣ ≲ 2−(k−j)
∑

z∈∆j,µ

Mk(g)(z);

moreover, for every A > 0,∣∣2j⟨g, Lkh
δ
j,µ⟩

∣∣1Ij,µ(x) ≲ 2−(k−j)M∗
j (g)(x)

≲ 2−(k−j) 2(k−j)AM∗∗
k,A(g)(x).

(4.4)

b) If j > k then, for every A > 0,∣∣2j⟨g, Lkh
δ
j,µ⟩

∣∣1Ij,µ(x) ≲ 2−(j−k)Mk(g)(x)

≲ 2−(j−k)M∗∗
k,A(g)(x).

(4.5)

Proof. a) If k ≥ j then the function Lkh
δ
j,µ = βk ∗ hδj,µ is supported in

∆j,µ +O(2−k) and has size

∥βk ∗ hδj,µ∥∞ ≤ ∥βk∥1 = O(1).

This immediately gives (4.3). Now, if z ∈ ∆j,µ and x ∈ Ij,µ we have

Mkg(z) = sup
|h|≤2−k

|g(z + h)| ≤ sup
|u|≤2−j+2

|g(x+ u)| = M∗
j (g)(x)

≲ 2(k−j)AM∗∗
k,A(g)(x),

which together with (4.3) proves (4.4).

b) If k < j and x ∈ Ij,µ, then the function Lkh
δ
j,µ = βk ∗hδj,µ is supported in

x+O(2−k), and we can bound its size by

(4.6) |Lkh
δ
j,µ(u)| ≲ 22(k−j).

This last assertion follows from the property
∫
hδj,µ = 0, by writing

|Lkh
δ
j,µ(u)| =

∣∣∣ ∫ (
βk(u− y)− βk(u− x)

)
hδj,µ(y) dy

∣∣∣
=

∣∣∣ ∫ ∫ 1

0
β′k

(
u− (1− t)x− ty

)
dt (x− y)hδj,µ(y) dy

∣∣∣
≲ 22k−2j ,

using in the last step that |x− y| ≤ 2−j+1 when x ∈ Ij,µ and y ∈ supphδj,µ.

Combining the above support and size estimates, one easily obtains (4.5).
□
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We continue the proof of Proposition 4.1.i. Let f ∈ F s
p,q, and write it as

f =
∑

k=0 Lkfk with fk = Λkf as in (2.5). Note that, since F s
p,q ⊂ B, we

have

⟨f, hδj,µ⟩ =
∞∑
k=0

⟨fk, Lkh
δ
j,µ⟩.

Now, the estimates in Lemma 4.2, suitably applied to each fk, can be
grouped into∑

µ

∣∣2j⟨f, hδj,µ⟩∣∣1Ij,µ(x) ≲
∑
k≥0

2−|k−j|2A (k−j)+ M∗∗
k,A(fk)(x)

(ℓ = k − j) ≲
∑
ℓ∈Z

a(ℓ, A)M∗∗
j+ℓ,A[fj+ℓ](x) =: Gj(x),(4.7)

where we set fm ≡ 0 for m < 0 and

(4.8) a(ℓ, A) =

{
2ℓ : ℓ < 0,

2(A−1)ℓ : ℓ ≥ 0 .

At this point one takes Lp(ℓq) quasi-norms of the above expressions. Letting
u := min{p, q, 1}, and using the u-triangle inequality we obtain∥∥∥( ∑

j≥−1

∣∣∣2jsGj

∣∣∣q)1/q∥∥∥
p

≲
(∑

ℓ∈Z

[
a(ℓ, A)2−sℓ

∥∥∥(∑
j∈Z

|2(j+ℓ)sM∗∗
j+ℓ,A[fj+ℓ](x)|q

)1/q∥∥∥
p

]u)1/u

≲ ∥f∥F s
p,q

(∑
ℓ∈Z

(
a(ℓ, A)2−sℓ

)u)1/u
≲ ∥f∥F s

p,q
,

(4.9)

where in the last line we use Peetre’s maximal inequality (2.10) and A >
max{1/p, 1/q}, and in the last step we additionally need that A−1 < s < 1.
This can always be achieved for an appropriate choice of A because of our
assumption max{1

p ,
1
q} − 1 < s < 1.

As before, part (ii) in Proposition 4.1 will be a consequence of the more
general estimate

(4.10)
( ∞∑

j=−1

2j(s−1/p)q
(∑

µ∈Z
|2j⟨f, hδj,µ⟩|p

)q/p)1/q
≲ ∥f∥Bs

p,q
,

for δ ∈ [0, 1]. Notice that

(4.11) Bj := 2−j/p
(∑

µ

∣∣2j⟨f, hδj,µ⟩∣∣p) 1
p
=

∥∥∥∑
µ

∣∣2j⟨f, hδj,µ⟩∣∣1Ij,µ∥∥∥
p
.
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We shall argue a bit differently to refine the pointwise estimate in (4.7).
Observe from Lemma 4.2 that we can also write∥∥∥∑

µ

∣∣2j⟨fk, hδj,µ⟩∣∣1Ij,µ∥∥∥
p

≲ 2−|k−j|∥∥M∗
min{j,k}(fk)

∥∥
p

by (2.13) ≲ 2−|k−j| 2
(k−j)+

p
∥∥Mk(fk)

∥∥
p

= a(k − j, 1p)
∥∥Mk(fk)

∥∥
p
,

using in the last step the definition of a(ℓ, A) in (4.8). So, letting as before
u := min{p, q, 1}, and using the u-triangle inequality we obtain( ∑

j≥−1

(2jsBj)
q
) 1

q
≲

≲
(∑

ℓ∈Z

[
a(ℓ, 1p) 2

−sℓ
(∑

j∈Z
|2(j+ℓ)s

∥∥Mj+ℓ[fj+ℓ]
∥∥q
p

)1/q]u)1/u

≲ ∥f∥Bs
p,q

(∑
ℓ∈Z

(
a(ℓ, 1p) 2

−sℓ
)u)1/u

≲ ∥f∥Bs
p,q
.

(4.12)

Observe that this time we apply the simpler estimate ∥Mk[fk]∥p ≲ ∥fk∥p,
see (2.12), while the very last step requires 1/p− 1 < s < 1. □

Remark 4.3. In view of the examples in [21], the condition s > 1/q − 1 is
necessary in Proposition 4.1.i, even for the validity of the weaker inequality

(4.13) ∥f∥
F s,dyad
p,q

:=
∥∥∥( ∞∑

j=−1

2jsq
∣∣∣∑
µ∈Z

2j⟨f, hj,ν⟩1Ij,µ
∣∣∣q)1/q∥∥∥

p
≲ ∥f∥F s

p,q
.

Indeed, arguing as in [21, §6], for each N ≥ 2 one constructs a (smooth)

function f = fN ∈ F
1/q−1
p,q (R) and a finite set2 E = EN ⊂ H such that if

0 < q ≤ p <∞ then

(4.14) ∥f∥
F

1/q−1
p,q (R) ≲ N1/q and ∥PE(f)∥F 1/q−1

p,q (R) ≥ N
1+ 1

q ,

where PE(f) denotes the projection onto span{h}h∈E . Now observe that

∥f∥
F s,dyad
p,q

≥ ∥PE(f)∥F s,dyad
p,q

≳ ∥PE(f)∥F s
p,q
,

using in the last step the inequality in (4.20) (which holds for s = 1/q − 1).
Thus, we conclude from (4.14) that

∥f∥
F

1/q−1,dyad
p,q

≳ N ∥f∥
F

1/q−1
p,q

.

We turn to the converse inequalities in Theorems 1.2 and 1.3, which will
be proved in Proposition 4.9 below. Before doing so we shall need some

2In the notation of [21, §6], one should consider sets A of consecutive Haar frequencies,
so that the associated “density” number in [21, (43)] takes the value Z = N .
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results concerning the inclusions F s,dyad
p,q ↪→ F s

p,q (and likewise for B-spaces)
for the usual Haar system. Results of this nature can be found in [28,
Proposition 2.6], but we give here direct proofs which are valid in a larger
range of indices. These may have an independent interest.

The first result is obtained by duality from Proposition 4.1, but the range
of indices is restricted to 1 < p, q <∞. Recall the definitions of the sequence
spaces bsp,q, f

s
p,q in (1.19) and (1.20).

Proposition 4.4. Let 1 < p, q <∞.

(i) If −1 < s < min{1/p, 1/q} and β = {βj,µ} ∈ f sp,q then

(4.15) f :=
∞∑

j=−1

∑
µ∈Z

βj,µhj,µ

converges in F s
p,q(R) and

(4.16) ∥f∥F s
p,q

≲ ∥β∥fs
p,q

(ii) If −1 < s < 1/p and β = {βj,µ} ∈ bsp,q then (4.15) converges in
Bs

p,q(R) and

(4.17) ∥f∥Bs
p,q

≲ ∥β∥bsp,q .

Proof. Consider the following duality pairing for sequences〈
α, β

〉
:=

∑
j

2−j
∑
µ

αj,µ βj,µ

=
∑
j

∫ ∞

−∞

(∑
µ

αj,µ1Ij,µ(x)
)(∑

µ′

βj,µ′1j,µ′(x)
)
dx ≤ ∥α∥fs

p,q
∥β∥f−s

p′,q′
.

We define the so-called analysis (or sampling) operator A by

A : F s
p,q(R) −→ f sp,q

f 7−→ A f(j, µ) = 2j⟨f, hj,µ⟩.
(4.18)

Its dual operator A ′ (the synthesis operator) is given by

A ′β(x) =
∑
j,µ

βj,µhj,µ(x) .(4.19)

Indeed, if f ∈ F s
p,q and β = {βj,µ} is a finite sequence, then

⟨A f, g′⟩ =
∑
j

2−j
∑
µ

2j⟨f, hj,µ⟩ · βj,µ

=

∫
f(x)

∑
j

∑
µ

βj,µhj,µ(x) dx =

∫
f(x)A ′β(x) dx.

By Proposition 4.1, the operator A : F s
p,q(R) → f sp,q is bounded when

max{1/p−1, 1/q−1} < s < 1. Hence, if we assume that 1 ≤ p, q <∞, then
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A ′ will be bounded from f−s
p′,q′ to F

−s
p′,q′(R), where

−1 < −s < min{1/p′, 1/q′} .

In other words, if −1 < s < min{1/p, 1/q} and 1 < p, q ≤ ∞ then∥∥∥∑
j,µ

βj,µhj,µ

∥∥∥
F s
p,q

≲ ∥β∥fs
p,q
.

The proof of part (ii) is completely analogous. □

In the following proposition we extend the previous estimate to the quasi-
Banach range of parameters. The proof, which is now more involved, uses
a non-trivial interpolation argument from [28, Proposition 2.6]. The range
of indices we obtain is larger than in [28]; see Figure 4 below.

F s
p,q-spaces

1/p

s

1 2

1

−1

1
q − 2

s = 1
p

s = 1
p −2

1/q

Bs
p,q-spaces

1/p

s

1 2

1

−1

Figure 4. Parameter domain for the validity of Proposition
4.5, for F s

p,q(R) (left figure) and Bs
p,q(R) (right figure).

Proposition 4.5. Let 0 < p, q ≤ ∞.

(i) If p < ∞ and max{1/p, 1/q, 1} − 2 < s < min{1/p, 1/q}, then for every
β ∈ f sp,q the series in (4.15) converges to a distribution f in F s

p,q(R), and it
holds

(4.20) ∥f∥F s
p,q

≲ ∥β∥fs
p,q
.

Moreover if q < ∞ the series in (4.15) converges unconditionally in F s
p,q,

and otherwise in F s−ε
p,∞ (R), for all ε > 0.

(ii) If max{1/p, 1}−2 < s < 1/p, then for every β ∈ bsp,q the series in (4.15)
converges to a distribution f in Bs

p,q(R), and it holds

(4.21) ∥f∥Bs
p,q

≲ ∥β∥bsp,q .

Moreover, if q < ∞ the series in (4.15) converges unconditionally in the
norm of Bs

p,q, and otherwise in the quasi-norm of Bs−ε
p,∞(R), for all ε > 0.
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Proof. It suffices to prove the results when f =
∑

j≥−1

∑
µ∈Z βj,µhj,µ, with

(βj,µ) a finite sequence of scalars. The other assertions will then follow by
completeness of the spaces.

Step 1. Let Lk, k ≥ 0, be the local convolution operators from Section 2.1.
If j ≥ −1 is fixed, then we have

(4.22)
∣∣∣Lk

(∑
µ∈Z

βj,µhj,µ

)
(x)

∣∣∣ ≤ ∑
µ∈Z

|βj,µ| · |(Lkhj,µ)(x)| =: Gj,k(x).

Arguing as in Lemma 4.2, one sees that, in the case ℓ = j − k > 0, then

(4.23) suppLkhj,µ ⊂ µ2−j +O(2−k) and
∣∣(Lkhj,µ)(x)

∣∣ ≲ 2−2ℓ,

while in the case ℓ = j − k ≤ 0 we have

(4.24) suppLkhj,µ ⊂ µ2−j +O(2−j) and
∣∣(Lkhj,µ)(x)

∣∣ ≲ 1.

The following lemma is a variation of a result by Kyriazis; see [17, Lem.
7.1]. For r > 0 we denote

Mr(g)(x) =
[
M(|g|r)(x)

]1/r
,

where M is the usual Hardy-Littlewood maximal operator.

Lemma 4.6. Let 0 < r ≤ 1. Then, it holds

(4.25) Gj,k(x) ≲ a(j − k)Mr

(∑
µ

|βj,µ|1Ij,µ
)
(x).

where a(ℓ) = 2−2ℓ2ℓ/r if ℓ > 0, and a(ℓ) = 1 if ℓ ≤ 0.

Proof. Assume that ℓ = j − k > 0. If x ∈ Ij,ν , for some fixed ν ∈ Z, then
the size and support estimates in (4.23) give

Gj,k(x)
r ≲

∑
µ:|µ−ν|≤2j−k

|βj,µ|r 2−2ℓr.

On the other hand, if x ∈ Ij,ν ,

M
(∑

µ

|βj,µ|r 1Ij,µ
)
(x) ≳ 2k

∫
|y−2−jν|≤2·2−k

(∑
µ

|βj,µ|r 1Ij,µ
)
(y) dy

≥ 2k−j
∑

µ:|µ−ν|≤2j−k

|βj,µ|r .

These two estimates clearly give (4.25) in the case ℓ > 0. The case ℓ ≤ 0 is
proved similarly using (4.24). □

We continue with the proof of Proposition 4.5.i. Below we shall agree that
βm,µ = 0 and Gm,k ≡ 0 whenever m < −1. Then letting u = min{p, q, 1},
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we can apply the u-triangle inequality and the above results to obtain

∥f∥F s
p,q

=
∥∥∥(∑

k≥0

|2ksLkf |q
)1/q∥∥∥

p
≤

∥∥∥(∑
k≥0

(2ks
∑
ℓ∈Z

Gk+ℓ,k)
q
)1/q∥∥∥

p

≲
[∑
ℓ∈Z

(
a(ℓ) 2−ℓs

)u∥∥∥(∑
k≥0

[
2(k+ℓ)sMr

(∑
µ∈Z

|βk+ℓ,µ|1Ik+ℓ,µ

)]q) 1
q
∥∥∥u
p

] 1
u

≲
∥∥∥( ∑

m∈Z

(
2ms

∑
µ∈Z

|βm,µ|1Im,µ

)q) 1
q
∥∥∥
p
,

where the last line is justified by the Fefferman-Stein inequality (2.7), pro-
vided r < min{p, q, 1}, and the finite summation in ℓ ∈ Z holds whenever
1/r − 2 < s < 0 . Such an r can always be chosen under the assumption

max{1/p, 1/q, 1} − 2 < s < 0

(which in particular implies p, q > 1/2). We shall see in Step 3 below how
to enlarge this range to cover as well the cases s ≥ 0.

Step 2. We now prove (4.21). The same notation as above gives

∥f∥Bs
p,q

=
(∑

k≥0

(
2ks∥Lkf∥p

)q)1/q
≤

(∑
k≥0

(2ks
∥∥∑

ℓ∈Z
Gk+ℓ,k

∥∥
p
)q
)1/q

.

At this point we distinguish two cases, ℓ > 0 and ℓ ≤ 0. In the first case we
use literally the same arguments as above; since for the ℓq(Lp) quasi-norm
we just use the scalar Hardy-Littlewood maximal inequality we only need
to impose r < min{1, p}, together with s > 1/r − 2. Such an r can always
be chosen under the assumption

max{1/p, 1} − 2 < s.

To control the sum over ℓ ≤ 0 we must replace the crude bound in (4.24) by
the sharper estimate

(4.26) suppLkhj,µ ⊂ ∆j,k +O(2−j) and
∣∣(Lkhj,µ)(x)

∣∣ ≲ 1,

where ∆j,µ are the discontinuity points of hj,µ; see the proof of Lemma 4.2.a.
So, if ℓ = j − k ≤ 0 we have

∥∥Gk+ℓ,k

∥∥
p
≲ 2−(k+ℓ)/p

(∑
µ∈Z

|βk+ℓ,µ|p
)1/p

.
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Using as before the u-triangle inequality, this yields(∑
k≥0

(
2ks

∥∥∑
ℓ≤0

Gk+ℓ,k

∥∥
p

)q)1/q

≲
[∑
ℓ≤0

2
u(s− 1

p
)ℓ
(∑

k≥0

(
2
(k+ℓ)(s− 1

p
)
(∑

µ∈Z
|βk+ℓ,µ|p

)1/p)u
q
] 1

u

≲
(∑

ℓ≤0

2
u(s− 1

p
)ℓ
) 1

u
( ∑

m≥Z

(
2
m(s− 1

p
)
(∑

µ∈Z
|βm,µ|p

)1/p) 1
q
,

where the sum in ℓ ≤ 0 is a finite constant due to the assumption s < 1/p.
This completes the proof of part (ii) in Proposition 4.5.

Step 3. In the Triebel-Lizorkin case, the direct argument in Step 1 only
allows for s < 0 (and p, q > 1/2), which is the desired region only when
q = ∞ or p → ∞. By Step 2, the range of parameters can be extended
to s < 1/p when p = q. Then, a complex interpolation argument in the
three indices (s, 1/p, 1/q), as proposed by Triebel in [28, Prop. 2.6], gives
the validity of the result for all max{1/p, 1/q, 1} − 2 < s < min{1/p, 1/q};
see Figure 5. □

1
p 1

q

s

2 2
1
p 1

q

s

2 2

Figure 5. Parameter domain for F -spaces in Steps 1 and 2
(left figure), and after the interpolation argument in Step 3
(right figure) of the proof of Proposition 4.5.

Remark 4.7. We remark that the decomposition of a distribution f ∈ S ′ as
an infinite series

(4.27) f =
∑
j≥−1

∑
µ∈Z

βj,µhj,µ

may not necessarily be unique. For instance, the Dirac delta satisfies

δ = 1[0,1) +

∞∑
j=0

2jhj,0 = 1[−1,0) −
∞∑
j=0

2jhj,−1 in S′(R).

In this example, the coefficient sequences belong to bsp,q if s < 1
p − 1 (or

s = 1
p − 1 and q = ∞), and the same happens for the property δ ∈ Bs

p,q(R).
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For such cases of non-uniqueness, Proposition 4.5 should be interpreted as

∥f∥Bs
p,q

≲ inf
{
∥(βj,µ)∥bsp,q : (4.27) holds

}
,

and likewise for the F s
p,q-quasinorms.

The next result shows that uniqueness holds when s > 1/p− 1.

Corollary 4.8. Let 0 < p, q ≤ ∞ and s ∈ R.
(i) If p <∞ and max{1/p− 1, 1/q − 2} < s < min{1/p, 1/q} then for all

f ∈ B it holds

(4.28) ∥f∥F s
p,q

≲
∥∥∥( ∞∑

j=−1

∣∣∣2js ∑
µ∈Z

2j⟨f, hj,µ⟩1Ij,µ
∣∣∣q)1/q∥∥∥

p
.

(ii) If 1/p− 1 < s < 1/p then for all f ∈ B it holds

(4.29) ∥f∥Bs
p,q

≲
( ∞∑

j=−1

2j(s−1/p)q
(∑

µ∈Z
|2j⟨f, hj,µ⟩|p

)q/p)1/q
.

Proof. Let f ∈ B be such that the right hand side of (4.28) is finite. By
Proposition 4.5 this implies the convergence of the series

g :=
∞∑

j=−1

∑
µ∈Z

2j⟨f, hj,µ⟩hj,µ ,

to some distribution g ∈ F s
p,q ↪→ B. Due to the range of parameters, and the

convergence in F s−ε
p,q (R) for ε small enough, we also have convergence in B.

We deduce that ⟨g, h⟩ = ⟨f, h⟩ for all h ∈ H , and therefore, by Proposition
1.1, that f = g. Finally, Proposition 4.5 gives (4.28). The proof for (4.29)
works analogously. □

We finally turn to the remaining implications in Theorems 1.2 and 1.3,
which are also valid in a larger range.

Proposition 4.9. Let 0 < p, q ≤ ∞ and s ∈ R be such that

1

p
− 1 < s < 1 +

1

p
.

(i) If p <∞ and additionally 1/q − 2 < s < 2 + 1/q, then for all f ∈ B

(4.30) ∥f∥F s
p,q

≲ ∥c(f)∥fs
p,q

(ii) For all f ∈ B it holds

(4.31) ∥f∥Bs
p,q

≲ ∥c(f)∥bsp,q

Proof. Note that, for all f ∈ S ′(R), it holds

(4.32) ∥f∥F s
p,q

≈ ∥f∥F s−1
p,q

+ ∥f ′∥F s−1
p,q

,
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see e.g. [25, 2.3.8] . We shall bound each of the summands in (4.32) by the
right hand side of (4.30).

Clearly ∥f∥F s−1
p,q

≲ ∥f∥Br
p,p

for any s − 1 < r. We distinguish two cases.

In case s > 1/p we choose r := 1/p− ε, for a sufficiently small ε > 0 so that

(4.33) 1/p− 1 < r < 1/p and s− 1 < r < s;

this is possible by the assumption s < 1 + 1/p. In case s ≤ 1/p we put
r := s − ε, for some ε > 0 so that (4.33) also holds (this time using the
assumption s > 1/p − 1). Hence, from the embeddings Br

pp ↪→ F s−1
pq and

f spq ↪→ brpp, together with Corollary 4.8.ii, we obtain

(4.34) ∥f∥F s−1
p,q

≲ ∥f∥Br
p,p

≲ ∥{2j⟨f, hj,µ⟩}jµ∥brpp ≲ ∥{cj,µ(f)}j,µ∥fs
pq
.

We now take care of the second term in (4.32). Here we quote the analog
of Corollary 4.8.i for the Chui-Wang system {ψj,µ}, which can be obtained
from [8, Proposition 5.4] and Remark 2.3 above. Letting r = s − 1, this
gives

(4.35) ∥f ′∥F r
p,q

≲
∥∥∥( ∑

j≥−1

2jrq
∣∣∣∑
µ∈Z

2j⟨f ′, ψj,µ⟩1Ij,µ(x)
∣∣∣q)1/q∥∥∥

p
,

provided

max{1/p− 1, 1/q − 2} − 1 < r < 1 + min{1/p, 1/q},
which holds when 1/p− 1 < s < 1/p+ 1 and 1/q − 2 < s < 2 + 1/q.

Now, recall that

(4.36) ψj,µ(x) =
∑
k∈Z

bkN2(2
j+1x− (2µ+ k)

)
,

for a finite sequence of coefficients bk; see (2.16). In addition, we know from
Lemma 2.1 that

(4.37) ⟨f ′,N2(2
j+1 · −ν)⟩ = −2j+1⟨f, h̃j,ν⟩, j ≥ 0, ν ∈ Z

(and a similar expression for j = −1). So, combining (4.36) and (4.37),
we obtain an estimate for |2j⟨f ′, ψj,µ⟩| in terms of cj,ν(f) coefficients, which
inserted into (4.35) gives

∥f ′∥F r
p,q

≲ ∥(cj,µ(f))j,µ∥fs
pq
.

This, together with (4.34) concludes the proof of part (i).

The result for Bs
p,q in part (ii) goes similarly, using instead Corollary 4.8.ii,

and the corresponding version for the Chui-Wang system {ψj,µ} which can
be obtained from [8, Proposition 5.3]. □

We are finally ready to give the

Proof of Theorems 1.2 and 1.3. Just combine Proposition 4.1 and Proposi-
tion 4.9. Note that the smallest range of parameters corresponds to that in
Proposition 4.1. □
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5. W 1
p and BV : Proof of Theorem 1.4

The proof has three steps. We use the classical norm definition forW 1
p (R),

when 1 ≤ p ≤ ∞, namely

∥f∥W 1
p
:= ∥f∥p + ∥f ′∥p .

Step 1. We show that, for 1 ≤ p ≤ ∞, it holds

(5.1) sup
j≥−1

2j(1−1/p)
(∑

ν∈Z
|2j⟨f, h̃j,ν⟩|p

)1/p
≲ ∥f∥W 1

p
, f ∈W 1

p (R),

moreover

(5.2) sup
j≥−1

∑
ν∈Z

|2j⟨f, h̃j,ν⟩| ≲ ∥f∥BV , f ∈ BV (R),

In view of Lemma 2.1, for every j ≥ 0 we have

(5.3)
∣∣2j+1⟨f, h̃j,ν⟩

∣∣ ≤ ∫
|f ′(x)N2;j+1,ν(x)| dx ≲ 2−j/p′

[ ∫
Ĩj,ν

|f ′|p dx
]1/p

,

where Ĩj,ν = suppN2;j+1,ν = [ν/2j+1, (ν + 2)/2j+1]. Hence,

sup
j≥0

2j(1−1/p)
(∑

ν∈Z
|2j⟨f, h̃j,ν⟩|p

)1/p
≲ ∥f ′∥p .

Likewise, if j = −1 we simply have

|⟨f, h̃−1,ν⟩| =
∣∣∣ ∫

I0,ν

f(x)dx
∣∣∣ ≤ (∫

I0,ν

|f(x)|pdx
)1/p

and hence (∑
ν∈Z

|⟨f, h̃−1,ν⟩|p
)1/p

≲ ∥f∥p .

We have thus established (5.1). To handle (5.2) we work with an ap-
proximation of the identity, {Φℓ} where Φℓ = 2ℓΦ(2ℓ·) with Φ ∈ C∞

c and∫
Φ = 1. Let f ∈ BV (which implies f ∈ L∞). Then Φℓ ∗ f ∈ W 1

1 with
∥Φℓ ∗ f∥W 1

1
≲ ∥f∥BV and Φℓ ∗ f(x) → f(x) almost everywhere. By domi-

nated convergence ⟨Φℓ ∗ f, h̃j,ν⟩ → ⟨f, h̃j,ν⟩ and by a further application of
Fatou’s lemma and (5.1)∑
ν∈Z

|2j⟨f, h̃j,ν⟩| ≤ lim inf
ℓ→∞

∑
ν∈Z

|2j⟨f ∗ Φℓ, h̃j,ν⟩| ≲ lim inf
ℓ→∞

∥Φℓ ∗ f∥W 1
1
≲ ∥f∥BV ,

where the implicit constants are independent of j. This yields (5.2).

Step 2. We show that, for 1 ≤ p ≤ ∞, we have

∥f∥p ≲ sup
j≥−1

2j(1−1/p)
(∑

ν∈Z
|2j⟨f, h̃j,ν⟩|p

)1/p
=: A(p) = A.
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Recall from Lemma 3.1.b that ENf → f in S ′. Assuming (as we may) that
f ∈ B has finite right hand side it suffices to show that ENf converges in
Lp and supN≥0

∥∥ENf
∥∥
p
≲ A. To see this, one expands

ENf = E0f +
∑

0≤j<N

∑
µ∈Z

2j⟨f, hj,µ⟩hj,µ,

and notes that∥∥∑
µ∈Z

2j⟨f, hj,µ⟩hj,µ
∥∥
p
= 2−j/p

(∑
µ∈Z

|2j⟨f, hj,µ⟩|p
) 1

p ≤ 2−j A,

hence ∥EN1f − EN2f∥p ≲ 2−N1 A, for all N2 > N1, and thus

∥f∥p ≤ sup
N

∥ENf∥p ≤ A.

Step 3. We finally show, for 1 < p ≤ ∞, that

∥f ′∥p ≲ sup
j≥−1

2j(1−1/p)
(∑

ν∈Z
|2j⟨f, h̃j,ν⟩|p

)1/p
=: A,

and when p = 1 then f ′ is a finite Borel measure and ∥f ′∥M ≲ A. Consider
the multiresolution analysis in L2(R) generated by the subspaces

VN = span
{
NN,µ := N2(2

N+1 · −µ) : µ ∈ Z
}

, N = −1, 0, 1, 2, ...

That is, VN consists of continuous piecewise linear functions with nodes in
2−N−1Z. Let N ∗(·) be the (polygonal) function which generates the dual
Riesz basis to {NN,µ : µ ∈ Z}; see e.g. [7, §3]. Then, the operator

h ∈ L2 7−→ PN (h) :=
∑
µ∈Z

2N ⟨h,N ∗
N,µ⟩NN,µ

is the orthogonal projection onto VN . Let

gN (x) :=
∑
µ∈Z

2N ⟨f ′,NN,µ⟩N ∗
N,µ(x) .

Using Lemma 2.1,3 we have the uniform bound

2
−N

p

(∑
µ∈Z

|2N ⟨f ′,NN,µ⟩|p
) 1

p
≲ 2

N(1− 1
p
)
(∑

µ∈Z
|2N ⟨f, h̃N,µ⟩|p

) 1
p ≤ A <∞.

So, the exponential decay of N ∗(·) guarantees that the series defining gN (x)
converges, and moreover

∥gN∥p ≲ 2−N/p
(∑

µ∈Z
|2N ⟨f ′,NN,µ⟩|p

)1/p
≤ A.(5.4)

3Note that, in view of Proposition 1.1, one can give a meaning to the identity

⟨f ′,NN,µ⟩ = −2N+1 ⟨f, h̃N,µ⟩ in Lemma 2.1 also for distributions f ∈ B.
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Then, if p > 1 there exists g ∈ Lp which is the weak ∗-limit of a subsequence
of {gN}. Now, if j, ν are fixed, for all N ≥ j we have

(5.5) ⟨gN , ψj,ν⟩ =
〈
f ′,

∑
µ∈Z

2N ⟨ψj,ν ,N ∗
N,µ⟩NN,µ

〉
= ⟨f ′, ψj,ν⟩,

because PN (ψj,ν) = ψj,ν . Thus, taking limits as N → ∞ in (5.5) we obtain

⟨g, ψj ν⟩ = ⟨f ′, ψj ν⟩, for all j, ν.

This implies that g = f ′ ∈ Lp and ∥f ′∥p ≲ A.

When p = 1 the weak* sequential-compactness argument only provides
that ∥g∥M ≲ A and then ∥f ′∥M ≲ A. □

6. Embeddings into Bs,dyad
p,∞ : The cases s = 1 and s = 1/p− 1

In this section we prove the sufficiency of the conditions for the embed-

dings into B1,dyad
p,∞ or F 1,dyad

p,∞ in Theorem 1.7 and the sufficiency for the

conditions of embedding into B
1/p−1,dyad
p,∞ in Theorem 1.9.

Lemma 6.1. Let 1/2 ≤ p ≤ ∞, 1
p − 1 ≤ s ≤ 1. Then Bs

p,min{p,1} ↪→ Bs,dyad
p,∞

is a continuous embedding.

Proof. Using the notation in the proof of part (ii) of Proposition 4.1 we can
write

∥f∥
Bs,dyad

p,∞
= sup

j≥−1
2jsBj

where Bj is defined as in (4.11) with δ = 0. Letting u = min{p, 1}, we
obtain for each j, arguing as in relation (4.12)

2jsBj ≲
(∑

ℓ∈Z

[
a(ℓ, 1p) 2

js
∥∥Mj+ℓ(fj+ℓ)

∥∥
p

]u)1/u

≲
(
sup
ℓ∈Z

a(ℓ, 1p)2
−ℓs

)
∥f∥Bs

p,u
,

where a(ℓ, 1/p) = 2(1/p−1)ℓ for ℓ > 0 and a(ℓ, 1/p) = 2ℓ for ℓ < 0. Since
supℓ∈Z a(ℓ, 1/p)2

−sℓ < ∞ whenever 1/p− 1 ≤ s ≤ 1, we obtain the desired
inequality ∥f∥

Bs,dyad
p,∞

≲ ∥f∥Bs
p,min{p,1}

. □

Proposition 6.2. Let 1/2 < p < ∞. Then F 1
p,2 ↪→ F 1,dyad

p,∞ is a continuous
embedding.

Proof. Let f ∈ F 1
p,2. we must show that

∥f∥
F 1,dyad
p,∞

=
∥∥ sup
j≥−1

2j
∑
ν∈Z

|2j⟨f, hj,ν⟩|1Ij,ν
∥∥
p
≲ ∥f∥F 1

p,2
.
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With the notation from Section 2.1, we write f =
∑

k≥0 Lkfk, and for each

j ≥ −1 we split f = Πjf +Π⊥
j f where

Πjf :=

j∑
k=0

Lkfk, and Π⊥
j f :=

∑
k>j

Lkfk.

If j = −1, we understand that Π−1f = 0 and Π⊥
−1f = f . We shall first

bound
A0 :=

∥∥ sup
j≥0

2j
∑
ν∈Z

|2j⟨Πjf, hj,ν⟩|1Ij,ν
∥∥
p
.

The same argument in the proof of [12, Lemma 3.3] gives

|2j⟨Πjf, hj,ν⟩| ≲ M∗∗
j,A

(
2−j(Πjf)

′)(x), x ∈ Ij,ν .

Thus,

2j
∑
ν∈Z

|2j⟨Πjf, hj,ν⟩|1Ij,ν (x) ≲ M∗∗
j,A

(
(Πjf)

′)(x), x ∈ R,

and taking a supremum over all j ≥ 0, and then Lp-norms, we obtain

(6.1) A0 ≲
∥∥ sup

j≥0
M∗∗

j,A

(
(Πjf)

′)∥∥
p
≲

∥∥ sup
j≥0

|(Πjf)
′|
∥∥
p
,

using (2.10) in the last step with A > 1/p. Now, the maximal function
characterization of the hp = F 0

p,2 norms yields

(6.2)
∥∥ sup

j≥0
|(Πjf)

′|
∥∥
p
=

∥∥ sup
j≥0

|Πj(f
′)|
∥∥
p
≲ ∥f ′∥F 0

p,2
≲ ∥f∥F 1

p,2
.

To estimate the remaining part involving Π⊥
j f , we may quote the standard

proof in Proposition 4.14 above, which gives

(6.3) A1 :=
∥∥ sup
j≥−1

2j
∑
ν∈Z

|2j⟨Π⊥
j f, hj,ν⟩|1Ij,ν (x)

∥∥
p
≲ ∥f∥F 1

p,∞
,

provided that s > max{1/p, 1/q} − 1, with s = 1 and q = ∞. So, we obtain

A1 ≲ ∥f∥F 1
p,∞

≲ ∥f∥F 1
p,2
,

under the assumption that p > 1/2. Finally, (6.1), (6.2), (6.3) yield the
desired estimate ∥f∥

F 1,dyad
p,∞

≲ ∥f∥F 1
p,2
. □

Corollary 6.3. Let 1/2 ≤ p <∞ and q ≤ min{p, 2}. Then B1
p,q ↪→ B1,dyad

p,∞
is a continuous embedding.

Proof. For q ≤ p ≤ 1 this follows from Lemma 6.1. For 1/2 < p ≤ 1 it
follows from Proposition 6.2 together with the inequality

(6.4) ∥f∥
B1,dyad

p,∞
≲ ∥f∥

F 1,dyad
p,∞

and the inequality
∥f∥F 1

p,2
≲ ∥f∥B1

p,min{p,2}
;

4That is, the part of the proof of Proposition 4.1 involving the indices ℓ = k − j ≥ 0.
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the latter being a consequence of Minkowski’s inequalities.

Inequality (6.4) in turn follows by definition from the sequence space
inequality ∥β∥bsp,∞ ≤ ∥β∥fs

p,∞ (in the case s = 1), i.e. from the elementary
inequality

(6.5) sup
j

(∑
µ∈Z

∫
Ij,µ

|2jsβj,µ1Ij,µ(x)|pdx
)1/p

≤
(∫ [

sup
j

2js
∣∣∣∑
µ∈Z

βj,µ1Ij,µ(x)
∣∣∣]pdx)1/p

. □

We now consider the other limiting case, where s− 1/p− 1.

Proposition 6.4. Let 1/2 < p ≤ 1, q ≤ ∞. Then F
1
p
−1

p,q ↪→ B
1
p
−1,dyad

p,∞ is a
continuous embedding.

Proof. Since F
1
p
−1

p,q ↪→ F
1
p
−1

p,∞ it suffices to prove this for q = ∞.

Let f ∈ F
1/p−1
p,∞ , which as before we shall split as

f = Πjf +Π⊥
j f.

This time, the standard proof in Proposition 4.1 (that is, the part of the
proof involving the indices ℓ = k − j ≤ 0) gives∥∥∥(∑

j≥0

2jsq
∑
ν∈Z

|2j⟨Πjf, hj,ν⟩|q 1Ij,ν
)1/q∥∥∥

Lp(R)
≲ ∥f∥F s

p,q

provided that s < 1. So in particular, letting s = 1/p − 1 and q = ∞ we
obtain (after trivial embeddings)

(6.6) sup
j≥0

2j(1/p−1)
∥∥∥∑
ν∈Z

2j⟨Πjf, hj,ν⟩1Ij,ν
∥∥∥
Lp(R)

≲ ∥f∥
F

1
p−1

p,∞
,

whenever p > 1/2.

So, it remains to establish a similar estimate with Π⊥
j f instead of Πjf .

We borrow some notation from [12]. Let Dj denote the dyadic intervals of
length 2−j . If I ∈ Dj is fixed and k ≥ j we let

(a) Dk(∂I) =
{
J ∈ Dk : J̄ ∩ ∂I ̸= ∅

}
(b) ω(J) = {x ∈ J : dist(x, ∂I) ≥ 2−k−1}, when J ∈ Dk(∂I).

We will use the maximal function M∗
kg (cf. (2.11)) and note that, as in [12,

(42)], when J ∈ Dk(∂I), k > j, it holds

(6.7) sup
x∈J

|g(x)| ≤
[
−
∫
ω(J)

|M∗
kg|p

] 1
p
, 0 < p <∞.

Now, let I = Ij,ν ∈ Dj be fixed, and let I± be its dyadic sons. For each k > j,
the function Lk(hj,ν) has support contained in the union of the intervals J
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belonging to Dk(∂I
±), and |Lk(hj,ν)| ≲ 1. Thus, since we are assuming

p ≤ 1, we have∣∣⟨2jhj,ν ,Π⊥
j f⟩

∣∣p ≤
∑
k>j

∣∣⟨Lk(2
jhj,ν), fk⟩

∣∣p
≲

∑
k>j

2−(k−j)p
∑

J∈Dk(∂I±)

∥fk∥pL∞(J)

which, by (6.7), is bounded by∑
k>j

2−(k−j)p
∑

J∈Dk(∂I±)

−
∫
ω(J)

|M∗
kfk(x)|p ≲ 2jp

∫
I∗

sup
k>j

∣∣2( 1p−1)k
M∗

kfk
∣∣p dx ,

where I∗ is the 2-fold dilation of the interval I. Summing up in all intervals
I = Ij,ν ∈ Dj we obtain∑

ν∈Z

∣∣⟨2jhj,ν ,Π⊥
j f⟩

∣∣p ≲ 2jp
∫
R
sup
k>j

∣∣2( 1p−1)k
M∗

kfk
∣∣p.

This implies

(6.8) sup
j

2−j
(∑

ν∈Z

∣∣⟨2jhj,ν ,Π⊥
j f⟩

∣∣p)1/p
≲

(∫
R
sup
k>j

∣∣2( 1p−1)k
M∗

kfk
∣∣p)1/p

.

Now, M∗
kg ≲ M∗∗

k,Ag for any A > 0, so choosing A > 1/p and using (2.10)
we have

(6.9)
∥∥ sup

k≥0
2
( 1
p
−1)k

M∗
kfk

∥∥
p
≲

∥∥ sup
k≥0

2
( 1
p
−1)k |fk|

∥∥
p
≲ ∥f∥

F
1
p−1

p,∞
.

Finally, the inequality

∥f∥
B

1
p−1,dyad

p,∞
≲ ∥f∥

F
1
p−1

p,∞

follows by combining (6.6), (6.8) and (6.9). □

We now consider the remaining endpoint case where the two limiting cases
coincide, that is, we have both s = 1 and s = 1/p−1, and thus p = 1/2 (the
corresponding Besov embedding is already covered in Lemma 6.1).

Proposition 6.5. For p = 1/2 we have the continuous embedding

F 1
1/2,2 ↪→ B1,dyad

1/2,∞ .

Proof. We examine the proof of Propositions 6.4 and 6.2 and note that (6.8)
and (6.9) remain valid for p = 1/2, that is

sup
j≥−1

2−j
(∑

ν∈Z

∣∣⟨2jhj,ν ,Π⊥
j f⟩

∣∣ 12)2
≲ ∥f∥F 1

1/2,∞
.
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Similarly, the arguments in (6.1) and (6.2) do not require a restriction on p,
so we also have∥∥ sup

j≥0
2j

∑
ν∈Z

|2j⟨Πjf, hj,ν⟩|hj,ν
∥∥
1/2

≲ ∥f∥F 1
1/2,2

.

Now the proposition follows from the trivial embeddings F 1
1/2,2 ↪→ F 1

1/2,∞
and f11/2,∞ ↪→ b11/2,∞ (cf. (6.5)). □

7. Norm equivalences on suitable subspaces:
The proofs of Theorems 1.6 and 1.8

7.1. A bootstrapping lemma. Consider a sequence a = {aj,µ} indexed by
j ∈ N ∪ {0} and µ ∈ Z. As in (1.19) let bsp,q be the set of all a for which

(7.1) ∥a∥bsp,q =
( ∞∑

j=0

2
j(s− 1

p
)q
[∑
µ∈Z

|aj,µ|p
] q

p
)1/q

<∞.

We split each sequence as a = aeven + aodd, where

aevenj,µ =

{
aj,µ if µ is even

0 if µ is odd,
and aoddj,µ =

{
0 if µ is even

aj,µ if µ is odd.

Then ∥∥aeven∥∥
bsp,q

=
( ∞∑

j=0

2
j(s− 1

p
)q
[∑
ν∈Z

|aj,2ν |p
] q

p
)1/q

∥∥aodd∥∥
bsp,q

=
( ∞∑

j=0

2
j(s− 1

p
)q
[∑
ν∈Z

|aj,2ν+1|p
] q

p
)1/q

The key result is the following lemma, which, under suitable conditions,
allows us to control ∥a∥bsp,q in terms of ∥aeven∥bsp,q . The general hypothesis

in (7.3) will be linked later to a refinement condition which will appear in
(7.6).

Lemma 7.1. Let 0 < p, q ≤ ∞, s ∈ R and λ⃗ = (λ0, λ1, λ2) ∈ C3 such that

(7.2) |λ1| < 2
s− 1

p .

Then, there exists C = C(p, q, s, λ⃗) > 0 such that for every sequence a ∈ bsp,q
satisfying the condition

(7.3) |aj,2ν+1| ≤
2∑

ℓ=0

|λℓ| |aj+1,4ν+2+ℓ|, for all j ≥ 0, ν ∈ Z.

we have

(7.4)
∥∥a∥∥

bsp,q
≤ C

∥∥aeven∥∥
bsp,q

.
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Proof. Let ρ = min{1, p, q}, and for simplicity write σ = s− 1/p. Condition
(7.3) together with the ρ-triangle inequality gives∥∥aodd∥∥ρ

bsp,q
≤

∑
ℓ=0,1,2

|λℓ|ρ
( ∞∑

j=0

2jσq
[∑
ν∈Z

|aj+1,4ν+2+ℓ|p
]q/p)ρ/q

= (|λ1|2−σ)ρ
( ∞∑

j=0

2(j+1)σq
[∑
ν∈Z

|aj+1,4ν+3|p
]q/p)ρ/q

+
∑
ℓ=0,2

(|λℓ|2−σ)ρ
( ∞∑

j=0

2(j+1)σq
[∑
ν∈Z

|aj+1,4ν+2+ℓ|p
]q/p)ρ/q

.

Using the assumptions |λ1| < 2σ and a ∈ bsp,q, the previous display implies(
1− |λ1|ρ

2σρ

)∥∥aodd∥∥ρ
bsp,q

≤ (|λ0|ρ + |λ2|ρ)2−σρ∥aeven∥ρbsp,q .

This gives

∥a∥bsp,q ≤
(
∥aodd∥ρbsp,q + ∥aeven∥ρbsp,q

)1/ρ

≤
( |λ0|ρ + |λ2|ρ

2σρ − |λ1|ρ
+ 1

)1/ρ
∥aeven∥bsp,q ,

which finishes the proof. □

7.2. Proof of Theorem 1.6. We must show (1.24), that is

(7.5) ∥f∥Bs
p,q

≲ ∥f∥
Bs,dyad

p,q
, provided f ∈ Bs

p,q,

which, as we shall see, holds actually in the larger range

1

p
< s < 1 +

1

p
.

By part (ii) of Proposition 4.9, we know that

∥f∥Bs
p,q

≲
∥∥{cj,µ(f)}j≥0,µ∈Z

∥∥
bsp,q

+
∥∥{⟨f, h−1,µ⟩

}
µ∈Z

∥∥
ℓp

= A+B.

Clearly, B is bounded by the right hand side of (7.5), so we focus on A.
Define a sequence a = a(f) = {aj,ν} by

aj,ν = 2j |⟨f, h̃j,ν⟩|, j ∈ N0, ν ∈ Z.

Observe from the definition of the coefficients cj,µ(f) in (1.15) that

A ≲ ∥a∥bsp,q .

Note also from (1.8) that aj,2µ = 2j |⟨f, hj,µ⟩|, so in particular

∥aeven∥bsp,q =
∥∥{2j⟨f, hj,µ⟩}j≥0,µ∈Z

∥∥
bsp,q

≤ ∥f∥
Bs,dyad

p,q
.

Therefore, we have reduced matters to prove that∥∥a∥∥
bsp,q

≲
∥∥aeven∥∥

bsp,q
.
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We shall do so using Lemma 7.1, so we need to verify the hypothesis (7.3),
for suitable scalars (λ0, λ1, λ2). This will follow from an elementary property
of the spline functions

Nj,µ(x) := N2;j,µ(x) = N2(2
jx− µ),

defined in §2.3. Recall that these are piecewise linear functions supported
in the intervals [2−jµ, 2−j(µ+ 2)]. It is then straightforward to verify that

(7.6) Nj,µ(x) =
1
2 Nj+1,2µ(x) + Nj+1,2µ+1(x) +

1
2 Nj+1,2µ+2(x);

see Figure 6. We refer to (7.6) as the refinement identity.

x

1

1/2

ν
2j

ν+1
2j

ν+2
2j

Nj,ν

1
2Nj+1,2ν

1
2Nj+1,2ν+2

Nj+1,2ν+1

Figure 6. Refinement equation for Nj,ν(x); see (7.6).

Now, if µ = 2ν+1 is an odd integer, then the integration by parts formula
and the refinement identity give

aj,µ = 2j |⟨f, h̃j,µ⟩| =
1

2
|⟨f ′,Nj+1,µ⟩|

by (7.6) ≤ 1

4
|⟨f ′,Nj+2,2µ⟩|+

1

2
|⟨f ′,Nj+2,2µ+1⟩|+

1

4
|⟨f ′,Nj+2,2µ+2⟩|

by (2.15) =
1

2
aj+1,2µ + aj+1,2µ+1 +

1

2
aj+1,2µ+2,

which coincides with (7.3) with (λ0, λ1, λ2) = (1/2, 1, 1/2). So we can apply
Lemma 7.1, under the assumption

|λ1| = 1 < 2
s− 1

p ,

which holds precisely when s > 1
p . This completes the proof. □

7.3. Proof of Theorem 1.8. We first show that, if 1 < p ≤ ∞ and f ∈W 1
p (R),

then

∥f∥W 1
p
≈ sup

j≥−1
2j(1−1/p)

(∑
µ∈Z

|2j⟨f, hj,µ⟩|p
)1/p

.
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In view of Theorem 1.4, this reduces to prove

A := sup
j≥−1

2j(1−1/p)
(∑

µ∈Z
|cj,µ(f)|p

)1/p

≲ sup
j≥−1

2j(1−1/p)
(∑

µ∈Z
|2j⟨f, hj,µ⟩|p

)1/p
,

(7.7)

whenever A is finite. The argument is completely analogous to that for prov-
ing Theorem 1.6 , this time using the spaces b1p,∞. Note, that this argument
only needs that 1 = s > 1/p.

Finally, the assertion in (1.31), for f ∈W 1
p , follows now easily from

∥f∥W 1
p
≲ ∥f∥

B1,dyad
p,∞

≲ ∥f∥
F 1,dyad
p,∞

≲ ∥f∥F 1
p,2

≡ ∥f∥W 1
p
,

where the third inequality was shown in part (ii) of Theorem 1.7 and for the
last three steps we assume p <∞. □

8. Necessary condition for the embeddings for s = 1

We prove the necessary conditions in Theorem 1.7 for various embeddings

into B1,dyad
p,∞ .

Lemma 8.1. Suppose 1/2 ≤ p <∞. Then

(8.1) B1
p,q ↪→ B1,dyad

p,∞ =⇒ q ≤ p

Proof. We shall work with an example that has been used in [13, §6.2] to
prove lower bounds for the norms of EN on B1

p,q. Let u ∈ C∞
c be supported

in (1/8, 7/8) so that u(x) = 1 on [1/4, 3/4]. For N ≫ 1 and N/4 ≤ j ≤ N/2
define

gN,j(x) = u
(
N(x− 2j

N )
)
e2πi2

jx

and let fN (x) =
∑

N/4≤j≤N/2 2
−jgN,j(x). Then by [13, Lemma 29] (Lemma

6.3 in arxiv:1901:09117) we have ∥fN∥B1
p,q

≲ N−(1/p−1/q) for p ≤ q. We

show that ∥fN∥
B1,dyad

p,∞
≳ 1 for large N , which will imply that B1

p,q is not

continuously embedded into B1,dyad
p,∞ when q > p.

To see this we prove lower bounds for many of the Haar coefficients of fN
at Haar frequency 2N . Let JN,j = (2jN + 1

4N ,
2j
N + 3

4N ); we observe that for

fixed N the intervals JN,j are disjoint and that fN (x) = e2
j2πix for x ∈ JN,j .

We get by a Taylor expansion

⟨fN , hN,µ⟩ = 2−2N−2f ′N
(
2−N (µ+ 1

2)
)
+RN,µ(8.2)

with |RN,µ| ≤ 2−3N supIj,µ |f
′′
N |. Let ZN,j be the set of all integers µ such

that 2−Nµ and 2−N (µ+ 1) belong to JN,j ; then for µ ∈ ZN,j

|⟨fN , hj,µ⟩| = |⟨2−jgN,j , hj,µ⟩| = 2π 2−2N−2 +O(2j−3N )
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and hence

∥fN∥
B1,dyad

p,∞
≥ 2N(1−1/p)

( ∑
N
4
<j<N

2

∑
µ∈ZN,j

∣∣2N ⟨fN , hj,µ⟩
∣∣p)1/p

.

Since #(ZN,j) ≈ 2NN−1 for large N and N/4 < j < N/2 we obtain
∥fN∥

B1,dyad
p,∞

≳ 1. □

Lemma 8.2. Suppose 1/2 ≤ p <∞. Then

F 1
p,q ↪→ B1,dyad

p,∞ =⇒ q ≤ 2,(8.3)

B1
p,q ↪→ B1,dyad

p,∞ =⇒ q ≤ 2.(8.4)

Proof. We consider the same example that was used in [12, §7.2.1]. Namely,
let ψ ∈ C∞

c (0, 1) with ψ ≡ 1 in [1/4, 3/4], and for each large N ≫ 1, let

(8.5) ZN = {j ∈ N : N/4 < j < N/2}

and

(8.6) ft(x) :=
∑
j∈ZN

rj(t)

2j
e2πi2

jx ψ(x), t ∈ [0, 1],

where rj(t), t ∈ [0, 1], are the usual Rademacher functions. Using Lemma
7.3 from [12] one can verify that

(8.7) sup
t∈[0,1]

∥ft∥F 1
p,q

≲ N1/q;

a similar argument also gives

(8.8) sup
t∈[0,1]

∥ft∥B1
p,q

≲ N1/q.

Let ψj(x) = 2−je2πi2
jxψ(x), for j ∈ ZN , and let ZN be the set of all µ ∈ Z

such that IN,µ ⊂ (1/4, 3/4). Using the Taylor expansion as in (8.2) one sees
that

(8.9) |⟨ψj , 2
NhN,µ⟩| = 2π2−N−2 +O(2j−2N ), µ ∈ ZN .

Now observe that

(8.10) ∥ft∥B1,dyad
p,∞

≥ 2N(1−1/p)
( ∑

µ∈ZN

|⟨ft, 2NhN,µ⟩|p
) 1

p
.

So, raising to the p-th power and taking the expectation in the t variable,
we obtain from Khintchine’s inequality(∫ 1

0
∥ft∥p

B1,dyad
p,∞

dt
) 1

p ≥ 2
N(1− 1

p
)
( ∑

µ∈ZN

∫ 1

0

∣∣ ∑
j∈ZN

rj(t)⟨ψj , 2
NhN,µ⟩

∣∣pdt) 1
p

≳ 2
N(1− 1

p
)
( ∑

µ∈ZN

[ ∑
j∈ZN

∣∣⟨ψj , 2
NhN,µ⟩

∣∣2] p
2
) 1

p
.
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An application of (8.9), together with the cardinalities of ZN and ZN , then
gives (∫ 1

0
∥ft∥p

B1,dyad
p,∞

dt
) 1

p
≳

√
N.

This together with (8.7), (8.8) implies that the inclusions B1
p,q ↪→ B1,dyad

p,∞

and F 1
p,q ↪→ B1,dyad

p,∞ can only hold if q ≤ 2. □

Lemma 8.3. For p = ∞ we have

(8.11) B1
∞,q ↪→ B1,dyad

∞,∞ =⇒ q ≤ 1.

Proof. We assume that B1
∞,q ↪→ B1,dyad

∞,∞ , and we shall prove that necessarily
q ≤ 1. Let ZN be as in (8.5) and consider the function

f(x) :=
∑
j∈ZN

2−je2πi2
jx ψ(x),

which is defined as in (8.6), but with all the rj(t) set equal to 1. This time
we shall assume that ψ ∈ C∞

c (−1/2, 1/2) with ψ = 1 in (−1/4, 1/4). As in
(8.8) we have

(8.12) ∥f∥B1
p,q

≲ N1/q.

On the other hand, note that

(8.13) ∥f∥
B1,dyad

∞,∞
≥ 2N |⟨f, 2NhN,0⟩|.

Arguing as in (8.2) we see that

⟨f, 2NhN,0⟩ =
∑
j∈ZN

⟨ψj , 2
NhN,0⟩ =

∑
j∈ZN

[
2−j2−N−2ψ′

j(0) +O(2j−2N )
]

= 2πi2−N−2Card (ZN ) +O(2−3N/2),

which inserted into (8.13) gives

(8.14) ∥f∥
B1,dyad

∞,∞
≳ N.

The lemma is proved after combining (8.12), (8.14) and letting N → ∞. □

9. Necessary condition for embedding into B
1/p−1,dyad
p,∞

Proposition 9.1. Let 0 < p, q ≤ ∞. Then

B1/p−1
p,q ↪→ B1/p−1,dyad

p,∞ =⇒ q ≤ min{1, p}.

Proof. We first assume 1 < p ≤ ∞. Suppose the embedding Bs
p,q ↪→ Bs,dyad

p,∞
holds, with s = 1/p − 1. By definition of the latter space we have the
inequality

(9.1) |⟨f, hj,µ⟩| ≲ 2
j( 1

p
−1−s)∥f∥

Bs,dyad
p,∞

,
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so the assumed embedding would then imply that hj,µ defines a bounded

linear functional on B
−1+1/p
p,q (or in the subspace B̊

−1+1/p
p,q defined by the

closure of S in the B
−1+1/p
p,q norm, in case that p or q are ∞). By the duality

identities of Besov spaces, see [25, §2.11], this means that hj,µ ∈ B
1/p′

p′,q′ which

cannot be the case if q′ <∞, i.e. if 1 < q ≤ ∞.

Let p ≤ 1. We use an example from [13, §10.1]. We let ηl(x) = 2lη(2lx)
where η ∈ C∞

c (R) is an odd function supported in (−1/2, 1/2) such that∫ 1/2
0 η(s)ds = 1 and such that

∫ 1/2
0 η(s)snds = 0 for n = 1, 2, . . . ,M , for a

sufficiently large integer M . Let

fN (x) =

∞∑
m=1

amηN+m(x− 2−N+5m).

By [13, (85)] we have

∥fN∥
B

1/p−1
p,q

≲
( ∞∑

m=1

|am|q
)1/q

.

On the other hand a calculation shows ⟨fN , hN,25m⟩ = am and thus

∥fN∥
B

1/p−1,dyad
p,∞

≥
(∑

µ

|⟨fN , hN,µ⟩|p
)1/p

≳
( ∞∑

m=1

|am|p
)1/p

which forces q ≤ p. □

10. B
1/p
p,q and B

1/p,dyad
p,q : The proof of Theorem 1.10

10.1. Proof of part (i) of Theorem 1.10. Let

(10.1) fN =
N−1∑
j=0

hj,0, for N = 1, 2, . . .

Observe that

(10.2) ∥fN∥
Bs,dyad

p,∞
= sup

j≥0
2
j(s− 1

p
)[∑

µ∈Z
|2j⟨fN , hj,µ⟩|p

]1/p
= 1, if s = 1/p.

However, using the characterization with differences of order 1 for the Bs
p,q-

norm (if s ∈ (0, 1)), see [25, Theorem 2.5.12], we have

∥fN∥
B

1/p
p,∞

≳ 2N/p
∥∥∆2−N (fN )

∥∥
p

≥ 2N/p
[ ∫ 0

−2−N

∣∣∣ ∑
0≤j<N

(
hj,0(x+ 2−N )− hj,0(x)

)∣∣∣p dx] 1
p
.

Now a simple computation shows that, if δ ∈ (0, 2−j−1], then

hj,0(·+ δ)− hj,0(·) = 1[−δ,0) − 21[2−j−1−δ,2−j−1) + 1[2−j−δ,2−j)
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and then also

∆2
δhj,0 = 1[−2δ,−δ) − 21[2−j−1−2δ,2−j−1−δ) + 1[2−j−2δ,2−j−δ)

− 1[−δ,0) + 21[2−j−1−δ,2−j−1) − 1[2−j−δ,2−j)

and therefore, setting δ = 2−N we get

∆2
2−Nhj,0(x) = 1, for x ∈ [−21−N ,−2−N ) and j = 0, . . . , N − 1.

Hence, for 1 ≤ p <∞

(10.3) ∥fN∥
B

1/p
p,∞

≳ 2N/p
∥∥∆2

2−N fN
∥∥
p
≥ N,

and hence part (i) of Theorem 1.10 follows. □

10.2. Proof of part (ii) of Theorem 1.10. Consider this time the function

f =
∞∑
j=0

hj,0,

and as before fN =
∑N−1

j=0 hj,0, i.e. f = limN→∞ fN with convergence in Lp.
Indeed

(10.4) ∥f − fN∥p ≤
∑
j≥N

∥∥hj,0∥p = ∑
j≥N

2−j/p ≈ 2−N/p.

As in (10.2), it is again easy to verify that

(10.5) ∥f∥
B

1/p,dyad
p,∞

= 1.

We claim that f /∈ B
1/p
p,∞. Indeed, for large N we have

∥f∥
B

1/p
p,∞

≳ 2N/p
∥∥∆2−N (f − fN ) + ∆2−N fN

∥∥
p

≥ 2N/p
(∥∥∆2−N fN

∥∥
p
− 2∥f − fN∥p

)
.(10.6)

Inserting the bounds (10.3) and (10.4) into (10.6) gives

∥f∥
B

1/p
p,∞

≳ 2N/p
∥∥∆2−N (fN )

∥∥
p
−O(1) ≳ N,

which letting N ↗ ∞ proves the assertion. □

11. Some pathologies of the spaces Bs,dyad
p,q

We include in this section some pathologies of the spaces Bs,dyad
p,q when

s > 1, or s = 1, q < ∞, or s < 1/p − 1, which were mentioned in the
introduction.
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11.1. Failure of embedding into Bs,dyad
p,q for s > 1 or s = 1, q < ∞. The

following proposition is a simple result on the theme of Brezis’ paper [3] on
how to recognize constant functions.

Proposition 11.1. Let 0 < p, q ≤ ∞ and assume that either (i) s > 1, or
(ii) s = 1 and q <∞.

Then every f ∈ C1(R) ∩Bs,dyad
p,q (R) is a constant function.

Remark. Bočkarev’s results [1] indicate that less restrictive assumptions can
be made but we will not pursue the problem of optimal hypotheses here.

Proof. We argue as in the proof of Lemma 8.1, now using Taylor’s formula
in the form

sup
b∈K

sup
|b−y|≤ε

|f(y)− f(b)− f ′(b)(y − b)| = o(ε)

for any compact K. Take b ≡ bµ = 2−j(µ+ 1
2) to see that

(11.1) ⟨f, hj,µ⟩ = f ′(2−j(µ+ 1
2))2

−2j−2 + o(2−2j)

with uniformity in the remainder as bµ ranges over a compact set.

Now assume that f ∈ C1 and that f ′ is not identically zero. Then there
is a dyadic interval J = [ν2−ℓ, (ν+1)2−ℓ) and c > 0 such that for j ≥ j0 > ℓ

|⟨f, hj,µ⟩| ≥ c2−2j .

Hence

∥f∥
Bs,dyad

p,q
≥

( ∞∑
j=j0

[
2
j(s− 1

p
)
( ∑

µ:Ij,µ∩J
|2j⟨f, hj,µ⟩|p

) 1
p
]q) 1

q

≥
( ∞∑

j=j0

[
2j(s−1/p)2(j−ℓ)/pc2−j

]q) 1
q ≥ cℓ

( ∞∑
j=j0

2j(s−1)q
)1/q

with cℓ > 0. Hence ∥f∥
Bs,dyad

p,q
= ∞ when s > 1 or when s = 1 and q <∞.

We conclude that for this range we have f ′ ≡ 0 for every f ∈ C1∩Bs,dyad
p,q

and Proposition 11.1 follows. □

11.2. The dyadic Besov-spaces for s < 1/p− 1: Failure of completeness.

Proposition 11.2. Let 0 < p, q ≤ ∞. If s < 1/p − 1 then the spaces

Bs,dyad
p,q (R) are not complete.

Proof. Consider the functions

(11.2) fN = 1[0,1) +

N−1∑
j=0

2jhj,0 = 2N1[0,2−N ), N = 1, 2, . . .
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It is easily seen that, under the assumption s < 1/p− 1, then

∥fM − fN∥
Bs,dyad

p,q
=

( ∑
N≤j<M

[2
j(s+1− 1

p
)
]q
) 1

q → 0,

whenM > N → ∞. So, {fN}N≥1 is a Cauchy sequence in Bs,dyad
p,q . However,

the distributional limit of fN is the Dirac measure δ, which does not belong
to the space B. □

11.3. Failure of an embedding for s = 1/p − 1. A small variation of the
last example shows also part (i) of Theorem 1.9 and at the same time the
optimality of the condition s > 1/p− 1 in part (ii) of Proposition 4.1 when
q <∞.

Proposition 11.3. Let 0 < p, u ≤ ∞. Then

B1/p−1
p,u ̸↪→ B1/p−1,dyad

p,q , 0 < q <∞.

Proof. Consider fN as in (11.2), and let gN = fN − fN (−·) be its odd
extension. Then, it was shown in [13, Proposition 52] (Proposition 13.3 in
arXiv:1901:09117) that

∥gN∥
B

1/p−1
p,u

≲ 1,

for all 0 < p, u ≤ ∞. However, it is easily seen that

∥gN∥
B

1/p−1,dyad
p,q

≥ ∥fN∥
B

1/p−1,dyad
p,q

≥ N1/q. □
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Zürich, 2010.

Gustavo Garrigós, Department of Mathematics, University of Murcia, 30100
Espinardo, Murcia, Spain

Email address : gustavo.garrigos@um.es

Andreas Seeger, Department of Mathematics, University of Wisconsin, 480
Lincoln Drive, Madison, WI,53706, USA

Email address : seeger@math.wisc.edu

Tino Ullrich, Fakultät für Mathematik, Technische Universität Chemnitz,
09107 Chemnitz, Germany

Email address : tino.ullrich@mathematik.tu-chemnitz.de


