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BESOV-SOBOLEV SPACES AND OPTIMAL EMBEDDINGS
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ABSTRACT. We study the behavior of Haar coefficients in Besov and
Triebel-Lizorkin spaces on R, for a parameter range in which the Haar
system is not an unconditional basis. First, we obtain a range of pa-
rameters, extending up to smoothness s < 1, in which the spaces F, ,
and Bj , are characterized in terms of doubly oversampled Haar co-
efficients (Haar frames). Secondly, in the case that 1/p < s < 1
and f € B, ,, we actually prove that the usual Haar coefficient norm,
{27 (f, hju)}iulley , remains equivalent to [|f|[s; . i.e., the classical
Besov space is a closed subset of its dyadic counterpart. At the end-
point case s = 1 and ¢ = oo, we show that such an expression gives
an equivalent norm for the Sobolev space W, (R), 1 < p < oo, which
is related to a classical result by Bockarev. Finally, in several endpoint
cases we clarify the relation between dyadic and standard Besov and
Triebel-Lizorkin spaces.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

In this paper we investigate the validity of norm characterizations for
elements f in Besov and Triebel-Lizorkin spaces, By ,(R) and Fj (R), in
terms of expressions involving its Haar coefficients or suitable variations
thereof. The novelty in the current paper is that we obtain results for a range
of the parameters (s, p,q) in which the Haar system is not an unconditional
basis of the above spaces (see Figures 1 and 2 below); this complements
earlier work of the authors [10, 11, 12, 13, 21] where a complete description
was given for the parameter range in which the unconditional or Schauder
basis property holds in each such space.
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We denote the (inhomogeneous) Haar system in R by
(1.1) A ={hj, + j>-1, pnel},
where we let h(z) = 11[07%)(95) - 11[%71)(@ and
(1.2) hju(z) == h(2x—p), fpeZ, j=0,1,2,...
Note that hj , is supported in the closure of the dyadic interval
iy = [277p,277 (n+1)).
In the case j = —1, we just let
hotp =1, = Lppy, neZ

Let Fj (R) and B, (R) denote the usual Triebel-Lizorkin and Besov
spaces [25]. It has been shown in [28, 21, 22| that ¢ is an unconditional
basis of F; (R) if and only if s belongs to the range

(1.3) nmx{Up—lJ/q—l}<S<Jmn{Up1MJ};

moreover in the range (1.3) we also have the Haar characterization

) Wl ~ (5 29[ S,
j=—1 pEZ

for all f € A.
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FIGURE 1. Parameter domain for # to be an unconditional
basis (left figure) or a Schauder basis (right figure) in F; (R).

It was also shown in [11] that J# is a Schauder basis of Fj (R) (with
respect to natural enumerations) in the larger range
(1.5) 1/p—1<s<min{1/p,l}, (for all 0 < ¢ < ).

At the endpoints, the Schauder basis property holds for £ if and only if
(1.6) s=1/p—1 and 1/2<p<1
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also for all 0 < ¢ < oo; see [12]. These regions are depicted in Figure 1.
For the spaces B, ,(R) there is no such distinction, and # is an uncon-

ditional basis under (1.5) (and also a Schauder basis under (1.6), if p = ¢q);

see [13]. Moreover in the range (1.5) we have the Haar characterization

(1.7) 1lss, ~ (D 2j(8—%>’1(2 2(f, hj,u>|”)q/p>l/q
j=—1 WEZ
for all f € A.

1.1. The oversampled Haar systems - Haar frames. A main feuture of this
paper is to show that the above characterizations in terms of Haar coeffi-
cients can be extended to larger regions depicted in Figure 2 below if we
doubly oversample with Haar type coefficients obtained by a shift.

More concretely, we now define

(1.8) hjv(x) == h(2z—%) ifj=0,1,2,... and v € Z.

Observe that for even v = 2u we recover the original Haar functions, Ejg‘u =
hj . supported in I, but for odd v we obtain a shifted Haar function

Ej,2u+1 = hyu(-—27771),

which is supported in the interval 277 (u+1/2),277 (u+3/2)) = I; ,+277 1.
As before, for j = —1 we just let

%71,1/ =ho1p =1 gy
Then the extended Haar system is defined by
(1.9) ot ={hjy + j= -1, ver}.

In what follows we will need to work with appropriate spaces of functions
and distributions on which the (generalized) Haar coefficients are well de-
fined. For a bounded interval define the linear functional (distribution) A;
by

(1.10) A (f) = /I f(z)dz.

Obviously A; extends to LllOC and we have the trivial inequality

(1.11) () < /I (@) d.

To deal with distributions associated with certain negative smoothness
parameters we choose as a reference space A of distributions the space

(1.12) % = B (R).
By standard embeddings, see e.g. [25, 2.7.1], we have
- 1 _ 1
(1.13) B, ,(R) — %, ifs>;—lors= —-land0<g<1,
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and
(1.14) FpR) =B, ifs>]—-1l,ors=1-land0<p<L
In particular, all the spaces that are used in Theorems 1.2-1.10 below are

embedded into 4.

Proposition 1.1. For a bounded interval I consider the distribution \; in
(1.10). Then

(i) A1 extends to a bounded linear functional on B, with operator norm
O(1+ |1)).

(ii) For every h € %" the linear functional f + (f,h) is bounded on %
with uniformly bounded operator norm.

(iii) If f € B and (f,h) =0, for all h € S, then f =0.

Remark. Clearly, using (1.11) one can also replace in (i) the space & with
K74 —i—LlfC. We note that L is not embedded in %, see the proof of Proposition
11.3 below.

In the rest of the paper, when f € %, we use the following notation,
combining the standard Haar coefficients with the coefficients obtained from
the shifted Haar functions:

(1.15) ¢u(F) = 2 |(f, hyopd| + 271 (F, hjour)]
when j =0,1,..., and
c—l,u(f) = <f7 h—l,u> = <f7 ]l[,u,,u+1)>'

Our first main result provides a characterization where in (1.7) the Haar
coefficients 27(f, h; ) are replaced with the ¢;,(f). This covers as well the
quasi-Banach range of parameters; see Figure 2 below.

Theorem 1.2. Let 1/2 <p < o0, 1/2 < q< o0 and
(1.16) max{l/p—1,1/g—1} <s<1.
Then F ,(R) is the collection of all f € % such that

(1.17) H<]§1 9Jsq P;ch’“(f)llﬂm q)l/‘al .

Moreover, the latter quantity represents an equivalent quasi-norm in F;q(R).

Using terminology introduced by Grochenig [15], one may say that 27°*¢
is a (quasi-)Banach frame' for FJ,(R). In signal processing language, this
can be interpreted by saying that one may stably recover f from the sampled
information {(f,h) : h € S},

n a Hilbert space H, a frame is a system of vectors {e;} C H, which for some
constants A, B > 0 satisfies A||f||% < S [(f,e;)? < B||fll% ,V f€ H.
J
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We remark that the condition s > % —1in (1.16) is necessary, in view of
the examples in [21]; see Remark 4.3 below. The analogous characterization
for Besov spaces is valid in a larger range:

Theorem 1.3. Let 1/2 < p < o0, 0 < g < oo and
I/p—1<s<1.
Then B, ,(R) is the collection of all functions f € % such that

( i Qj(s—l/p)q<z ‘cj’#(f)‘py/p)l/q < 0.
j=—1 HEZ

Moreover, the latter quantity represents an equivalent quasi-norm in By q(R).
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FIGURE 2. Parameter domain for 57" to be a characteriz-
ing frame for FJ (R) (left figure, Theorem 1.2) and B, ,(R)
(right figure, Theorem 1.3).

Figure 2 shows the regions of parameters where 7 is a characterizing
frame for each of the spaces F; (R) and B, ,(R).

We remark that a related result, in the special case of the Holder spaces
C% = By, (R), @ € (0,1), and using a 1/3-shifted Haar frame, has been
recently obtained by Jaffard and Krim; see [16, Thm1].

1.2. Characterization of W;(]R) via Haar frames. We now let s = 1, and
consider in the Banach range 1 < p < oo the Sobolev space WI}(R), endowed
with the usual norm

1 lwzy = 1fllp + 11 1lp-

We also let BV (R) be the subspace of L;(R) for which the distributional
derivative belongs to the space M of bounded Borel measures (with the
norm given by the total variation of the measure) and define

1flBv @y = 1111+ 1 e
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Note that by our definition BV C Li which deviates from the definition
in some other places in the literature. We have the following result, that
provides characterizations in terms of the oversampled Haar system #°*t,

Theorem 1.4. For all f € % the following hold.
(i) If 1 <p < oo then

o 1/p
71wz = sup 2700 (S jes(HIP)

HEZ

(ii) In the case p = 1 we have instead

1£llBv ~ sup > leju(f)]-

32_1MEZ
Clearly part (ii) implies the inequality
) <
(1.18) jsuplz 1€ (DS 1 T

2= HEZ

for all f € B. However the converse of this inequality fails as one checks by
testing it with f =19, € BV \ W{; we have sup; >, [€,u(Lo,17)| < oo
The fact that the Sobolev Wpl(]R) norm can be expressed in terms of a
discrete norm of b}wo type may seem surprising at first, but actually results
of this sort can be found in the literature since the 60s, see [1]. The theorem

is also reminiscent of characterizations via the uniform bounds for difference
quotients h=*(f(- + h) — f), see [24, Prop V.3] and more recently [5, 4].

1.3. Dyadic Besov spaces. In this section we present stronger results involv-
ing the standard Haar system ., and suitable dyadic variants Byo¥®® of
the Besov spaces.

We first recall the definition of the sequence spaces by, , and f; ;; see [9].
If s€ R and 0 < p,q < oo, we define, for 8 = {5 .};>-1,ucz,

1

W) Bl = (3 PS8
WEZL

j=—1
and if p < oo we let

(1.20) B, = (3 23 s, )

j=-—1 MEZ b

These expressions have the obvious interpretations if max{p, ¢} = oo.
We additionally define for every f € % the quantity

1 lggana = [ {270 13},
and the vector spaces

By (R) = {f € B : ||fll g < 00}

S
bp,q
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Observe that span # C Bys"™™!, so the spaces are not null. Also, the quan-
tity [|f|| gs.avaa is a quasi-norm (not just a semi-norm), by Proposition 1.1.
p.q

Since 27|(f, hj )| < ¢j.(f) we note the following immediate consequence of
Theorem 1.4.
Corollary 1.5. If 1 < p < oo then
(1.21) W, < Bpayed,
To avoid pathological cases, below we shall typically consider the range

1
(1.22) -—1<s<1,
p

and some end-point cases of these. Recall that in the smaller range (1.5)
we have By, = By of (1.7). We remark that when s > 1 (or s = 1

and 0 < ¢ < 00), the spaces B,l,jgyad contain no nontrivial C! functions (see
Proposition 11.1) while for s < 1/p — 1 the spaces are not complete (see
Proposition 11.2.)

Assume now that (1.22) holds. By Theorem 1.3 we have By , — B;jf}yad,
and the inclusion is proper provided that

(1.23) I/p<s<l1l, or s=1/p and ¢g<oo

(since in that range Haar functions do not belong to B, ). Our goal is to
prove converse inequalities of the form

(1.24) 1fllBs, < HfHBs,dyad7 provided that f € By (R).

Such inequalities will imply that || - || pydved is an equivalent norm in B, , a
result which may seem surprising outside the usual unconditionality region.

Our first result in this direction is the following.

Theorem 1.6. Let 1 < p <o00,0<¢qg<o00, and 1/p < s < 1. Then (1.24)
holds. In particular, By, , is a proper closed subspace of B;;gyad, and we have

(1.25) 133, = 1 fll ggavea: for all f € By, (R).

There are also some precedent results of this nature in the literature.
When p = ¢ = oo, a norm equivalence as in (1.25) (for continuous functions
in the interval [0,1]) was proved by Golubov [14, Corollary 6]; see also [18,
Corollary 3.2], [19, Theorem 7.c.3] and references therein.

1.4. Inclusions for the limiting case s = 1. In what follows the notation
X1 — X9 will indicate a continuous embedding of the space X1 in the space
X2. As already remarked above we may focus on the cases s < 1 or s = 1,
q = oo, cf. Proposition 11.1.

We now state inclusions into the spaces B;jgyad, in the case that s = 1
and ¢ = co. Note that in one of the inclusions we use the smaller space

Fldvad {f e . {2(f, hj’“>}jfe_zl € fl,oo}'
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Theorem 1.7. Let 1/2 < p < oo. Then the following hold.
(i) If 1/2 < p < oo then

(1.26) B, , < ByY* <« ¢<min{p,2},
(1.27) F, < By «— g¢<2.

For p = 0o we have

(1.28) Bl,, = By «— ¢<1.
(ii) For 1/2 < p < oo

(1.29) Fpg < Fyyed,

The next result is a converse inequality to (1.21), which in particular
implies that

. , 1/p
11l psna = sup 270712 (37 123, )P
e jz-1 HEZ

is an equivalent norm in W, (R). Lower bounds of this type, for abso-
lutely continuous functions in the interval [0, 1], can be found in the work
of Bo¢karev [1, Theorem 7], [2, Theorem 1.3.4], or [19, Corollary 7.b.2] and
references therein. Below we establish, by different methods, the following
result, which is complementary to Theorem 1.4.

Theorem 1.8. Let 1 < p < oo. Then
(1.30) Ifllwr S (£l graved, provided f € W, (R).
p p,00

In particular, I/Vp1 (R) is a proper closed subspace of le,jggad, and it holds
(131) ”f“Wl ~ HfHBl,dyad ~ ||f”F1,dyad, fOTf (S WPI(R)7 1 <p < o0.
P p,00 P,00

Remark. The inequality in (1.30) (and hence, the first equivalence in (1.31))
is also true when p = 1, due to the result of Bockarev [1]. The proof we give
here, however, is only valid for p > 1.

1.5. Inclusions for the limiting case s = 1/p — 1. We state inclusions into
the spaces B;;gyad, in the case that s = 1/p — 1 and ¢ = .
Theorem 1.9. (i) For 0 < p,u < oo the embedding B;/ﬁnfl — B;/qpfl’dyad
can only hold when q = co.

(i) If p > 1/2 then
(1.32) Byt — BP0 g < min{1, p}
(iii) If 1/2 < p < 1 then

(1.33) Fl/p oy pl/p-tdvad
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Remark. In case p = 1 we have for all f € L the straightforward inequality
sup Y (£, )| S f I
j=—1
UEZ

0,dyad
l,c0

in particular LN % C B

1.6. The case s = 1/p. When 1 < p < oo, the unconditionality of the Haar
basis implies that

1 1
B (R) = Big™(®), ——1<s< .

On the other hand, Theorem 1.6 implies the norm equivalence

1
7065, ~ 1 pggra - f € By - <s <L,

These two results might suggest that the norm equivalence could hold also
at the dividing line s = 1/p. Here we show that this is not the case, at least
when g = oo.

Theorem 1.10. Let 1 < p < co. Then

1) there exists a sequence { fn}%_. of functions in Bl/o% such that
q N=1 D,

1Fnll gr/pavea = 1 and | fn]l grw Z N,

(ii) BYZYd\ BlP g,

Remarks. (i) The following comments on the case s = 1/p as a dividing line

between Theorems 1.3 and 1.6 on which both theorems fail. If 1 < p < oo,
the embedding B;/o% (R) into B;,/o%dyad(R) which is established by Theorem
1.3 is proper, i.e., B;,/O%(R) - B;,/o%dyad(R). Moreover, on the smaller space

BII,/O%(R), the norms are not equivalent, that is,

(1.34) sup {[1 £l s + f € Byl and ||| gijpases = 1} = 00,

Both statements are an immediate consequence of Theorem 1.10.
(ii) Observe that BV (R) — Bll,oo(]R) and that for p = 1 we have the
embedding BV (R) — Bi’ggad(R) as an immediate consequence of Theorem

1.4. Theorem 1.10 shows that this embedding is also proper, i.e. Blljgg’ad(R)\
BV (R) # 0.

1.7. Further directions. We mention a few problems left open in this paper.
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1.7.1. Besov-type spaces. Concerning (1.34) in Theorem 1.10, we do not
know whether the inequality

(135) ”f”B;/opo <C Hf”le)/o%dyad

could be true for 1 < p < co when restricted to f € S(R). It is also open to
determine whether such inequality could hold if the B;,/o% norm is replaced
by B;/qp with ¢ < oo.

1.7.2. Fj, versus Fyd 1t would be interesting to establish an optimal
analogue of Theorems 1.6/1.8 for Triebel-Lizorkin spaces.

1.7.3. Wawvelet frames. The sharp results on the failure of unconditional con-
vergence of Haar expansions in [21] (described above) have been extended by
R. Srivastava [23] to classes of spline wavelets with more restrictive smooth-
ness assumptions. It is then natural to investigate extensions of our results
on Haar frames to suitable classes of oversampled systems of spline wavelets.

1.8. Structure of the paper. In §2 we introduce notation and review some
preliminary known results on maximal characterizations of function spaces,
and Chui-Wang wavelet bases that we need in the proofs of our results.

In §3 we clarify the role of the space # and proof Proposition 1.1.

In §4 we consider the characterization of function spaces via Haar frames
and give the proofs of Theorems 1.2 and 1.3 (as a combination of four Propo-
sitions 4.1, 4.4, 4.5 and 4.9).

In §5 we establish Haar frame characterizations of Sobolev and bounded
variation spaces and give a proof of Theorem 1.4.

In §6 we prove the sufficiency of the conditions for the embeddings into

By or Fp:$¥® in Theorem 1.7 and the sufficiency for the conditions of

1/p—1,dyad .
B,k

embedding into in Theorem 1.9.

In §7 we prove Theorems 1.6 and 1.8.

In §8 we prove necessary conditions for the embeddings into B;jggad.
Specifically, in Theorem 1.7 the necessary conditions ¢ < p in (1.26), ¢ < 2
in (1.27), (1.26), and ¢ < 1 in (1.28) correspond to Lemma 8.1, Lemma 8.2,

and Lemma 8.3, respectively.

In §9 we obtain necessary conditions in part (ii) of Theorem 1.9 for the
embeddings into B;/o%_l’dyad.
In §10 we prove Theorem 1.10.

In §11 we give a simple proof for the fact that C' functions in B;jf]iyad

are constant (Proposition 11.1); moreover show that Bya¥®® is not complete
when s < 1/p — 1 (Proposition 11.2) and finally prove part (i) of Theorem

1.9 (see Proposition 11.3).
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2. PRELIMINARIES ON FUNCTION SPACES AND WAVELET BASES

2.1. Definition of spaces. Let s € R and 0 < p,q < oo be given. We shall
use both definitions and characterizations of B; , and F} , in terms of dyadic
frequency decompositions and in terms of sequences of compactly supported
kernels with cancellation (see e.g. [26, 2.5.3, 2.4.6] or [27, §1.3,1.4] where
the terminology local means is used).

Consider two functions Sy, 8 € S(R) such that |Bo(¢)| > 0 when |¢] < 1
and |B(¢)| > 0 when 1/4 < |¢| < 1. Assume further that 3(-) has vanishing
moments up to a sufficiently large order M € N, that is,

(2.1) /Rﬁ(a:) x"dxr=0 when m <M.

The precise value of M is not relevant, but for the properties used in the
paper it will suffice with

(2.2) M >1/p+|s|+2.

We let Bi(x) := 2kB(2%x), k > 1, and define for k € Ny the convolution
operators

Lk’f = Bk * f7
acting on distributions f € S'(R).
The Besov space B, ,(R) is the set of all distributions f € S'(R) such that

(2.3) 1, = (3 (212e1,)") " < .

k=0

If p < oo, the Triebel-Lizorkin space F}; ,(R) is the set of all f € S'(R) such
that

(2.0 115, o= (2 as@in) ™| <o
k=0

Different choices of 5y, 5 give rise to the same spaces and equivalent quasi-
norms; see e.g. [27, Theorem 1.7]. From now on we will assume that

supp fp C (—1/2,1/2) and suppf C (—1/2,1/2).

We shall often use the following decomposition of distributions in S'(R).
Let 9 € C§°(R) be supported on {|¢| < 3/4} and such that 79(§) = 1 when
|€] < 1/2. Define the convolution operators Ag, and Ay for k > 1, by

Rof(€) = gzg f©)

e M0(27F) —mo(27F L)
Apf(€) = Tare) f€), k>1.
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Then, for all f € §'(R) we have

(2.5) F=3 Lihet

k=0
with convergence in §’(R). Also, it holds

(f) (2180 £1)") " < £z,

k=0
and likewise for the F-norms.

2.2. Maximal functions. We follow Triebel [25, 26]. Given f € LI°°(R),
consider the Hardy-Littlewood maximal function, defined by

(2.6) Mf(x) —supu|/|f x)|dz,

zel

where the sup is taken over all intervals I that contain x. A classical result
of Fefferman and Stein asserts that, if 1 < p < oo and 1 < ¢ < oo then

(2.7) H(zj]Mfﬂq)l/q‘pS H(Zj:lfj\q)l/qu.

for all sequences of measurable functions {f;} with finite right hand side.

Let us further define the Peetre maximal functions [20]. Given j € N and

A >0 we let
|f(z+ h)|

M5af (@) = S0 o i) A

Let &; be the set of distributions f € S’(R) such that suppfis supported
in an interval of diameter < 272, Then for all f € &; it holds

kok S 1/s
(2.8) M f(2) Saa [M(F)()] ",
provided that s > 1/A; see [20] or [25, Theorem 1.3.1]. In particular, if
0<p<ooand A > 1/p then

(2.9) 154 fllp < Cpallfllps [ €&

Also, from (2.7) and (2.8),if0 < p < 00,0 < ¢ < oo and A > max{1/p,1/q},
then

(2.10) H(Z| M )/qu<cp,q,AH(erj|Q)1/qu
J

for all sequences of functions (f;) such that f; € &;.
Below we shall also use the (smaller) maximal functions

(2.11) M;f(z) = sup |f(x+h)| and M f(z)= sup |[f(z+h)

|hl< |h|<277+2

Note that for all A > 0 it holds
My f(z) <M fx) S M7y f(2),
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so in particular, for all 0 < p < oo we have
(2.12) Hi’ﬁ}‘f\lp Sl fe&;

We shall also make use of the following elementary inequality: if 0 < p < oo
then

(2.13) 19005 £llp S 277 190 fllp, €2 0.

To prove this assertion, if we let z,, = ¥2-U19 then we have

WMf(x) < sup (Myefletw) < (S0 Myafa+m)l)’

lv|<26+2 |v|<26+2
Then, taking L, quasi-norms one easily obtains (2.13).

2.3. Chui-Wang wavelets. The proofs of Theorems 1.2 and 1.3 will require
a characterization in terms of a wavelet basis generated by the Chui- Wang
polygon and its dual.

Define the m-fold convolution N, of characteristic functions of [0, 1), i.e.
N1 = Tjo), and, for m > 2, Ny, = N1 1jg1). In particular we get for
m = 2 the hat function

x, x €10, 1],
(2.14) No(z) =} 2 —z, x €[1,2],
0, x € R\ [0,2].

Let
Nojo(x) = Ng(zjx -v), j=>0,vez,
which is a hat function adapted to supp N2, = 2771, 277 (v + 2)].
The next elementary observation will be crucial in what follows.

Lemma 2.1. If f is locally absolutely continuous in R, then for all 7 > 1
and v € Z it holds

(215) ' Nagw) = =2 (F.hjo10),
while for 7 =0 it holds

(f'\Now) = —(f h—1) + (f,h—141), VvEL.
Proof. Integrating by parts one has

(f'\ Nayj) = —=(f, Nagjw)')-
Now, a simple computation gives
W) = 2 Lomivoiwrn) = 2 Lia-i(r) 2-i(w42))
= Y15, - Y1, = 2 hj_1,,

where the last equality follows from the definition of the shifted Haar system
n (1.8) (if j > 1). Combining the two expressions one obtains (2.15). The
case j = 0 is similar. O

sv+1
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The Chui-Wang polygon [7, Theorem 1], [6, 6.2.5, 6.2.6] is the compactly
supported wavelet given by

2
0(@) = 5 3 (DN + DA (22— 0),
=0

2
(2.16) :72 NG (L 4+ 1)) (-1 <>N22x—J—€)

7=0
= Zbk N2 (22 — k)

kEZ

with a finite sequence (b;). The wavelet ¢ is compactly supported and has
two vanishing moments, i.e., [¢(z)dz = [z¢(z)dz = 0. For j € Ny and
wE 7 let

Yiu(@) = Y@z — p),
while for j = —1 we let
w—lau@) = /\/’2;07“(30) = Nz(ac — ,u).
Then we have the orthogonality relations with respect to different scales

(i thjrp) =0, j#4"

In contrast to that it only forms a Riesz basis within one and the same
scale with respect to different translations. The dual basis can be computed
precisely [8] and does not provide compact support. However, the coefficients

0.2

) . . . . AN . . ;
— o
05 10 15 20 25 3.0 -4 -2 ) 6 8 10
-02
af
-0.4

FIGURE 3. The Chui-Wang wavelet v, of order 2 and its dual 5

(2.17) )= ap(z—k

are exponentially decaying; see the paper [8] for explicit formulas for ag.
Observe from (2.17) that also ¢* has two vanishing moments.

Using this construction, Derevianko and Ullrich provided the following
characterization for the Fj and B, , spaces; see [8, Theorem 5.1].
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Theorem 2.2. [8] Let 0 < p < 00, 0 < ¢ < 00.

(i) If p < 0o and
(2.18) max{1/p,1/q} —2 <r <1+ min{l/p,1/¢,1}
then we have for all f € B;o2,1(R)

@19 e, < [( X 2 2w, |)
j=—1 ez
(ii) If
(2.20) 1/p—2 <r <max{1+1/p,2}
then we have for all f € B;fl(]R)
(2.21) ”fHB;,q ~ ( Z Qj(r—l/P)Q[Z |2j<f, ¢j’#>|p} q/p)l/q.

j=—1 KEZ

Remark 2.3. Concerning part (i), we remark that the result stated in [8,
Theorem 5.1], requires the additional restriction r < 1, which comes from a
similar restriction in [8, Proposition 5.4]. This restriction, however, can be
lifted and replaced by r < 1+ max{1/p,1/q}, using a complex interpolation
argument which involves part (ii) (case p = q), as we discuss in Step 3 of
Proposition 4.5 below.

3. HAAR FUNCTIONS AS LINEAR FUNCTIONALS ON Z%:
PRrROOF OF PROPOSITION 1.1

3.1. Proof of (i) and (ii). Since every h €  is a difference of two charac-
teristic functions of intervals of length < 1 part (ii) is an immediate conse-
quence of part (i). It suffices to analyze A; on A, for each bounded interval
I. Let fe B = Bgol’l(R). Using the decomposition in (2.5) we can write

[ =>"r20 Lk fr. where the Fourier transform fy is supported in {€:)¢1 < 2%}
and the fj satisfy

(3.1) Y27 koo S 1f1l5s
k>0

here, Ly f = By * f where Sy, S are even functions in C°(—1/2,1/2), and
B = 2kp(2F.), for k > 1. Also, [ B(x)dz = 0.

Note that
(3.2) [LoLsllx S 1]
By (3.1) one needs to show that ||Lx17]1 < 27% for £ > 1 but one actually
gets the better estimate
(3-3) ILkr]y S min{|7],27%}, k> 1.
Hence [(f, 11)| < max{|I],1}> ;5 27%|| frlloo and we deduce that \; ex-

~

tends to a bounded linear functional on %, with ||A7|| 2« < max{1,|I|}.
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It remains to verify (3.3). Fix I, with center y;, and assume first that
27k > |I|. Then the function Lyl; = ; * 1; is supported in an interval
centered at y; with length O(27%) and satisfies |8 * 17(z)| < ||Belloo I117]1 <
2F|I|. Thus we obtain ||Bg * 17]j1 < |I| which is in (3.3) in this case.

Now assume 27% < |I|. Let y; and y_ be the endpoints of I. Let Uy,
be the union of the two closed intervals of length 27%+2 centered at vy and
y_. Then S * 1 is supported in Uy, which has size [Uy| = O(27%). This
assertion, combined with ||k * 17|lco < ||Bk]l1 = O(1), also implies (3.3) in
this case.

3.2. Proof of (iii). For the argument below we shall use the dyadic averaging
operators, defined for N > 0 by

(3.4) Enf(z) := Z 2N (f, 11y ,) Ly, (2).
MEZL

In view of (i), these operators can be defined acting on distributions f € £
such that Ey : & — Lo, has operator norm O(2V).

Let now f € 2% such that (f,h) = 0, for all h € . Since each Iy,
belongs to span H, this implies that Ex f = 0, for all N > 0. We then must
show that f = 0, which is a direct consequence of part (b) in the following
lemma.

Lemma 3.1. (a) The operators En satisfy the uniform bound

sup HEN||%_>B<:0100 < o0.
N>0 ’
(b)If f € # then |Enf— fllp=1_ — 0 as N — oo.

Proof. Part (a) is implicit in [13]. Indeed, it follows by combining the esti-
mates stated in the four propositions in [13, §4], for the cases s = —1 and
p = oo.

We now show part (b). Let f € & and write f = > ;2 Lifi as at the
beginning of §3.1. The above series converges in S’ and also in the Z-norm.
Then, given ¢ > 0 one can find g = Zgzo Ly fi, such that

If —gllz <e.

Observe that g is bounded, since

J J
lglloe < D 1Lefilloo S D filloo S 2711f 12
k=0 k=0

A similar reasoning shows that ||¢'||cc < 00, so in particular g is uniformly
continuous. Thus exists an integer Ny € N such that

lg — Englloo < &, for all N > Nj.
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Combining these assertions, and using the trivial embeddings

Loy < B — B!

00,007

we obtain, for all N > Ny,

1~ Enfllge < 1f —glle+llg — Englloc + [Ex(g — llpo_
< 2409 fllaSe

where in the second inequality we have used part (a). O

4. CHARACTERIZATIONS BY HAAR FRAMES:
PROOFS OF THEOREMS 1.2 AND 1.3

The proofs of Theorems 1.2 and 1.3 will follow from the four Propositions
4.1, 4.4, 4.5 and 4.9 stated below.

The first proposition is a strengthening of [28, Proposition 2.8]. It gives
one of the inclusions asserted in Theorems 1.2 and 1.3. The region of indices
is the same as in Figure 2. We set ¢(f) = {¢;j .(f)}j>—1,uez With ¢;,(f) as
in (1.15).

Proposition 4.1. Let 0 < p,q < oo and s € R.
(i) If p < 00 and max{1/p —1,1/q — 1} < s <1, then for all f € FJ,

(4.1) e gz, S N Sflleg, -
(ii) If 1/p —1 < s < 1, then for all f € B, ,
le(P)llos, S 1 fllBs,-

p,q "~

Proof. To avoid dealing separately with l~zj7y with v even or odd, we prove a
slightly more general result. For a fixed § € [0,1] and for j > 0 and p € Z,
consider the shifted Haar function

hiu(l’) = hju(x —0277) = h(2z — (n+9)),

whose support is the interval I, + 0277, When j = —1, we just let
h(s—l,u = h_1, = 1y, 41). Part (i) will then be a consequence of the fol-
lowing estimate

(4.2) H (5_:1 9isq

where the constants are independent of § € [0, 1]. Indeed, (4.1) follows from
(4.2) applied to 6 =0 and 6 = 1/2.
We now prove (4.2) for a fixed ¢ € [0, 1]. In the proof below we denote by

A . the set of discontinuity points of h?-, .o that is

ANju={(p+s+9277 : i=0,31}.

a\ 1/q
)| <1l

Z 2j<f’ h?:/L) 1z,
MEZL
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Lemma 4.2. Let g € L'°(R), k € Ng and j > —1. Then

a) If k > j then

(43) 249, Lihg )| 2707 Y 7 Mu(g)(2);
ZGA]‘#

moreover, for every A > 0,

|27(g, LihS, )| 11, (x) < 27 F7) 903 (g) ()
<

(4.4) S
2~ (=9 2= DA (9) ().

b) If j > k then, for every A > 0,

2~ G=F) 9y (g) ()
2GR 9 (9) (a)-

‘2j<ngkh ‘ ]]-IJ#

) S
4.5
(4.5) <

Proof. a) If k > j then the function Lkh?,u = Py * hg',u is supported in
Aj, +O0(27%) and has size

18k * 1S lloe < 18kl = O(1).
This immediately gives (4.3). Now, if z € A; , and x € I}, we have

Meg(z) = sup |g(z+h)] <  sup |g(z +u)| =M(g)(x)
|h|<2-* jul <2-3+2

S 20 (9) (@),
which together with (4.3) proves (4.4).

b) If k < j and x € I}, then the function Lkhg',u = B * h?-’# is supported in
x4+ O(27%), and we can bound its size by

(4.6) |Lihd ,(u)] < 22(k=j)

This last assertion follows from the property [ hj , = 0, by writing
Lt @] = | [ (Gl 9) = Bl =) 1, ) dy
= ‘ //0 Br(u— (1 —t)z — ty) dt (x — y) b, () dy’

2k—2;
258

A

using in the last step that |z —y| < 2777! when z € I;,, and y € supp h?-,#.
Combining the above support and size estimates, one easily obtains (4.5).
O
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We continue the proof of Proposition 4.1.i. Let f € FJ . and write it as
[ = k—o Lifr with fr = Agf as in (2.5). Note that, since F;j, C %, we
have
o0

<f7 ]u> Z<fk7Lkh_(7s,u>

k=0

Now, the estimates in Lemma 4.2, suitably applied to each fx, can be
grouped into

Z\% FRS 1, () S0 2 Wil At gy (£ (a)
k>0

(4.7) =k S Y a(t, )M 4lf1d(@) = Gj(x),
Lel

where we set f,,, =0 for m < 0 and

26 . 1<,
(4.8) a(l, A) = { 9(A-1L . y> 0.

At this point one takes Ly(¢,) quasi-norms of the above expressions. Letting
u := min{p, ¢, 1}, and using the u-triangle inequality we obtain

(X Fal)"],

(4.9) < (Z[ 0, A)2~ st ‘(2’2 (j+0)s ]+£A[fj+é]($)|q>l/qu}u>1/u

LeZ JEZ

w\1/u
<l (3 (e 0279") ™ <15l

LeZ

where in the last line we use Peetre’s maximal inequality (2.10) and A >
max{1/p,1/q}, and in the last step we additionally need that A—1 < s < 1.
This can always be achieved for an appropriate choice of A because of our
assumption max{f “t—-1<s<1.

As before, part (ii) in Proposition 4.1 will be a consequence of the more
general estimate

ary (3 2 (S or) ) < 1,

j=-—1 KEZ

for 6 € [0,1]. Notice that

(4.11) Bj;:2—j/P(Z\2j<f,h );'_HZ\W (f, S L,
1
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We shall argue a bit differently to refine the pointwise estimate in (4.7).
Observe from Lemma 4.2 that we can also write

Yok, s 27 O in ey i)
I

P
wew S 22 (],
= alk—5.3) |,

using in the last step the definition of a(¢, A) in (4.8). So, letting as before
w := min{p, ¢, 1}, and using the u-triangle inequality we obtain
1

( > (stBj)q> 'S

i>—1
) /ayuy 1/u
(412) 5 <Z [a(ﬁ, %) 9—st <Z |2(j+e)s||mj+z[fj+g]HZ)l KI} )1
LeT JEZ
w\ /v
Sl (X (et 279") ™ < 111,
LeZ

Observe that this time we apply the simpler estimate |9 [fx]llp < | frllp,
see (2.12), while the very last step requires 1/p — 1 < s < 1. O

Remark 4.3. In view of the examples in [21], the condition s > 1/¢g — 1 is
necessary in Proposition 4.1.i, even for the validity of the weaker inequality

. /
S 2 gt ) S 160,
MEZL

oo
(418)  [[flpsdoea 1= H( S o
=—1

Indeed, arguing as in [21, §6], for each N > 2 one constructs a (smooth)

function f = fy € Fpl,{]qfl(]R) and a finite set? £ = Ey C J such that if
0 < ¢ <p<oothen

1/q 1+
(4.14) Hf”F;,{;q*l(R) 5 N and HPE(f)”F;,/qqfl(R) > N a,
where Pg(f) denotes the projection onto span{h},cp. Now observe that
£l ggasos > 1 PEC) s Z 1P,

using in the last step the inequality in (4.20) (which holds for s = 1/q — 1).
Thus, we conclude from (4.14) that

11 g3 -rvna 2 N Sl pajaen:

We turn to the converse inequalities in Theorems 1.2 and 1.3, which will

be proved in Proposition 4.9 below. Before doing so we shall need some

2In the notation of [21, §6], one should consider sets A of consecutive Haar frequencies,
so that the associated “density” number in [21, (43)] takes the value Z = N.
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results concerning the inclusions Fjyg¥d < F; , (and likewise for B-spaces)
for the usual Haar system. Results of this nature can be found in [28,
Proposition 2.6], but we give here direct proofs which are valid in a larger
range of indices. These may have an independent interest.

The first result is obtained by duality from Proposition 4.1, but the range
of indices is restricted to 1 < p,q < co. Recall the definitions of the sequence
spaces by, ., f5, in (1.19) and (1.20).

Proposition 4.4. Let 1 < p,q < oo.
(i) If =1 < s <min{1/p,1/q} and B = {B; .} € f,, then

(4.15) F=>> Biuhju

j=—1pez

converges in F; (R) and

(4.16) 17, S 1B,

(i) If =1 < s < 1/p and B = {Bju} € b, then (4.15) converges in
B, ,(R) and

(4.17) £z, < 181,

Proof. Consider the following duality pairing for sequences

<Oé 5> _ZQ ]Zamﬁju
5 (St o) (5 ) < ol
“/ »q

We define the so-called analysis (or sampling) operator <7 by
A Fp(R) — frg

fr—= A (G, 1) =22(f, hjp)-
Its dual operator &/’ (the synthesis operator) is given by

(4.19) A'B(x) =) Bjuhju(x)
Jott

Indeed, if f € Fj, and 8 = {f;,} is a finite sequence, then

(1) = 227 D b B
- / F@) 303 Bruhsle)do = [ f(a) '5la)da

By Proposition 4.1, the operator < : F, (R) — f5  is bounded when
max{1l/p—1,1/¢g—1} < s < 1. Hence, if we assume that 1 < p,q < oo, then

(4.18)
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/" will be bounded from f %, to I, %, (R), where
—1< —s<min{l/p,1/¢'}.
In other words, if —1 < s < min{1/p,1/q} and 1 < p,q < oo then

| 2 Bihsa,. S 181153,
Jolt

The proof of part (ii) is completely analogous. O

s
FPaq

In the following proposition we extend the previous estimate to the quasi-
Banach range of parameters. The proof, which is now more involved, uses
a non-trivial interpolation argument from [28, Proposition 2.6]. The range
of indices we obtain is larger than in [28]; see Figure 4 below.

s s w
e
L ra
e
1/q RN SRR Y L
,/ ,’ ¢ )
1 ny ,’ 1 p p
S = = ¢ ’ Y ’
2 ; P ’
v 7 P 7
L o 1_g L L’
p y ST - y
,’ 2 ’
1 2 1/p 1 2 1/p
y ’
’ 7’
I . . .
—1 F? -spaces _ ] {——— ’ B: _-spaces
p,q P D,q 1%

FIGURE 4. Parameter domain for the validity of Proposition
4.5, for FJ (R) (left figure) and B, ,(R) (right figure).

Proposition 4.5. Let 0 < p,q < 0.

(i) If p < oo and max{1/p,1/q,1} —2 < s < min{1/p, 1/q}, then for every
5 ?df]‘;’q the series in (4.15) converges to a distribution f in F; (R), and it
olds

(4.20) 1flEs, S UB s,

Moreover if ¢ < oo the series in (4.15) converges unconditionally in F ,
and otherwise in F; 5(R), for all e > 0.

(ii) If max{1/p,1} =2 < s < 1/p, then for every B € by, . the series in (4.15)
converges to a distribution f in By (R), and it holds

(4.21) 1£1lBs., < 1813,

p,q "~

Moreover, if ¢ < oo the series in (4.15) converges unconditionally in the

norm of By ,, and otherwise in the quasi-norm of By 5(R), for all € > 0.
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Proof. Tt suffices to prove the results when [ = ij_l ZueZ Bj,uhj s With
(Bj,u) a finite sequence of scalars. The other assertions will then follow by
completeness of the spaces.

Step 1. Let Lg, k > 0, be the local convolution operators from Section 2.1.
If j > —1 is fixed, then we have

(422) L (Y Biin) ()] < 3 1Bil - 1(Lhin) (@)] = Gy(e).
HEZ pHEZ

Arguing as in Lemma 4.2, one sees that, in the case { = j — k > 0, then

(4.23) supp Lihj, C p277 +0(27%) and  |(Lihj,)(2)| S 972

while in the case £ = j — k < 0 we have

(4.24) supp Lihj, C p277 +0(277) and  |(Lphj,) ()] S 1.

The following lemma is a variation of a result by Kyriazis; see [17, Lem.
7.1]. For r > 0 we denote

M, (g)(x) = [M(lg]")(@)]"",

where M is the usual Hardy-Littlewood maximal operator.

Lemma 4.6. Let 0 < r < 1. Then, it holds

(4.25) Gir(@) S a(j— k) M (Y 18
I

11,],,“) ().

where a() = 272027 if ¢ >0, and a(f) =1 if £ < 0.

Proof. Assume that ¢ = j — k > 0. If x € I;,, for some fixed v € Z, then
the size and support estimates in (4.23) give

Gjk(T)" S Z |1Bj,

pi|p—v| <29k

r 2—227”'

On the other hand, if x € I,

MLl 10, ) @) 2 2 Lo (St 1, ) s
> Y gl

pi|p—v| <29k
These two estimates clearly give (4.25) in the case £ > 0. The case ¢ <0 is
proved similarly using (4.24). O

We continue with the proof of Proposition 4.5.i. Below we shall agree that
Bmu = 0 and Gy, = 0 whenever m < —1. Then letting v = min{p, ¢, 1},
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we can apply the u-triangle inequality and the above results to obtain

e, = J(Senar)™], < [(Se 3 wanr) ™,

k>0 (€7

3 0 (5 4 6 (St )
Lez k>0 LEZ
H( <2m5 Wm,u‘]lfm,u>q>g »

WEZL

N

uq L
:|u
p

N

where the last line is justified by the Fefferman-Stein inequality (2.7), pro-
vided r < min{p, q,1}, and the finite summation in ¢ € Z holds whenever
1/r —2 < s < 0. Such an r can always be chosen under the assumption

max{1l/p,1/q,1} —2<s<0

(which in particular implies p,q > 1/2). We shall see in Step 3 below how
to enlarge this range to cover as well the cases s > 0.

Step 2. We now prove (4.21). The same notation as above gives

755, = (30 @ 1Lef1)?) " < (@1 Grrenl)?) "

k>0 k>0 ez

At this point we distinguish two cases, £ > 0 and ¢ < 0. In the first case we
use literally the same arguments as above; since for the ¢,(L,) quasi-norm
we just use the scalar Hardy-Littlewood maximal inequality we only need
to impose r < min{1, p}, together with s > 1/r — 2. Such an r can always
be chosen under the assumption

max{1/p, 1} —2 < s.

To control the sum over ¢ < 0 we must replace the crude bound in (4.24) by
the sharper estimate

(4.26) supp Lihj, C Ajp + O(27j) and }(Lkhj,u)(a:)‘ <1,

where A; , are the discontinuity points of h; ,; see the proof of Lemma 4.2.a.
So, if £ =35 —k <0 we have

1/
|Grserll, S TWFWP(Z \5k+z,u|p> "

WEZL
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Using as before the u-triangle inequality, this yields

( kz>0 (ka H 52:6 Griok Hp> q) Va
N [Z guls—3)¢ ( Z (2(k+£)(57%) ( Z ’ﬁk+e,u|p> 1/p) %}

1
u

£<0 k>0 HeZ
1 1
< (ZSZO 2u(s—%)£) u (Wgz (2m(s—%) (% B p) 1/1)) a

where the sum in ¢ < 0 is a finite constant due to the assumption s < 1/p.
This completes the proof of part (ii) in Proposition 4.5.

Step 3. In the Triebel-Lizorkin case, the direct argument in Step 1 only
allows for s < 0 (and p,q > 1/2), which is the desired region only when
g = o0 or p — oo. By Step 2, the range of parameters can be extended
to s < 1/p when p = q. Then, a complex interpolation argument in the
three indices (s,1/p,1/q), as proposed by Triebel in [28, Prop. 2.6], gives
the validity of the result for all max{1/p,1/q,1} —2 < s < min{1/p,1/q};
see Figure 5. O

FIGURE 5. Parameter domain for F-spaces in Steps 1 and 2
(left figure), and after the interpolation argument in Step 3
(right figure) of the proof of Proposition 4.5.

Remark 4.7. We remark that the decomposition of a distribution f € S’ as
an infinite series

(4.27) f= Z Zﬁj,uhw
Jj2—1pez

may not necessarily be unique. For instance, the Dirac delta satisfies

oo oo

§=1Tp1)+ Y 2hjo=T109— Y 2h;1 inS(R).
j=0 j=0

In this example, the coeflicient sequences belong to by , if s < % — 1 (or

s = % — 1 and ¢ = 00), and the same happens for the property ¢ € By  (R).
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For such cases of non-uniqueness, Proposition 4.5 should be interpreted as

1135, S inf {11(Bia)ll, + (4.27) holds },

P,q "~

and likewise for the F}) -quasinorms.

The next result shows that uniqueness holds when s > 1/p — 1.

Corollary 4.8. Let 0 < p,q < o0 and s € R.
(i) If p < 0o and max{1/p—1,1/q — 2} < s < min{l/p, 1/q} then for all
f e % it holds

0 A . /
(428) ||f”F§7q S H( Z ‘2]5 Z2j<fa h‘juu'>ll-lj“u q)l QH .
j=-1 WEZ P
(i) If 1/p—1<s<1/p then for all f € A it holds
(4.29) HfHB;hq < ( Z 2j(s—1/p)q<z |2J‘<f, hj’uﬂp)q/P)l/q.

j=-—1 KEZ

Proof. Let f € % be such that the right hand side of (4.28) is finite. By
Proposition 4.5 this implies the convergence of the series

g:= > > Y i

j=—1peZ

to some distribution g € F)J, < . Due to the range of parameters, and the
convergence in F;VQE(R) for € small enough, we also have convergence in Z.
We deduce that (g, h) = (f, h) for all h € #, and therefore, by Proposition
1.1, that f = g. Finally, Proposition 4.5 gives (4.28). The proof for (4.29)
works analogously. O

We finally turn to the remaining implications in Theorems 1.2 and 1.3,
which are also valid in a larger range.

Proposition 4.9. Let 0 < p,q < 00 and s € R be such that

1 1
——l<s<1+4+ -
p b

(i) If p < oo and additionally 1/q —2 < s < 2+ 1/q, then for all f € B
(4.30) £, S Nelgs,

(i) For all f € A it holds
(4.31) 1f1Bg,, < NleCHllsg,

Pq "
Proof. Note that, for all f € §'(R), it holds
(132) £, % Wl g + 1 g
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see e.g. [25, 2.3.8]. We shall bound each of the summands in (4.32) by the
right hand side of (4.30).

Clearly HfHF;El S IfllBy, for any s —1 < r. We distinguish two cases.
In case s > 1/p we choose r := 1/p — ¢, for a sufficiently small € > 0 so that

(4.33) I/p—1<r<l/p and s—1<r<s;

this is possible by the assumption s < 1+ 1/p. In case s < 1/p we put
r = s —¢, for some ¢ > 0 so that (4.33) also holds (this time using the
assumption s > 1/p — 1). Hence, from the embeddings By, — oo L and
bq < bpps together with Corollary 4.8.ii, we obtain

(4.34) N fllpsr S Sy, S 2 hd iullen, S €0 () Yl g,

We now take care of the second term in (4.32). Here we quote the analog
of Corollary 4.8.i for the Chui-Wang system {1);,}, which can be obtained
from [8, Proposition 5.4] and Remark 2.3 above. Letting » = s — 1, this
gives

(435) ey, S| 2
j>—1

provided

517 st o).

MEZL P

max{1l/p—1,1/¢g—2} =1 <r <1+min{l/p,1/q},

which holds when 1/p—1<s<1/p+1land1/¢g—2<s<2+1/q.
Now, recall that
(4.36) Vi) = beNa(2M iz — (2u+ ),
kEZ

for a finite sequence of coefficients by; see (2.16). In addition, we know from
Lemma 2.1 that
(437)  (f N ) = =2 f by, 20, vEL

(and a similar expression for j = —1). So, combining (4.36) and (4.37),
we obtain an estimate for |27 (f’,1; )| in terms of ¢;, (f) coefficients, which
inserted into (4.35) gives

£ ey, S 1Cein()inll g,
This, together with (4.34) concludes the proof of part (i).

The result for B, , in part (ii) goes similarly, using instead Corollary 4.8.ii,
and the corresponding version for the Chui-Wang system {4 ,} which can
be obtained from [8, Proposition 5.3]. O

We are finally ready to give the

Proof of Theorems 1.2 and 1.3. Just combine Proposition 4.1 and Proposi-
tion 4.9. Note that the smallest range of parameters corresponds to that in
Proposition 4.1. O
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5. Wp1 AND BV: PROOF OF THEOREM 1.4

The proof has three steps. We use the classical norm definition for WI} (R),
when 1 < p < 0o, namely

£l = 1Ll + 11l -

Step 1. We show that, for 1 < p < o0, it holds

. L~ 1/
(5:1) s POV (ST R) S I g f € WER),
jz-1 vEZ !

moreover

(5.2) sup 27(f, hju)| S I flBv,  f € BV(R),

jz= veZ

In view of Lemma 2.1, for every j > 0 we have

63) PR < [P @Ngu @] e s2 [ |71 de

Iy

)

]1/12

where I, = suppNojr1,, = [v/27H1, (v +2) /2711, Hence,

. L~ 1/p
sup2](1_1/p)<z 127, hj,y>‘p) N Hf’”zr

320 VEZ
Likewise, if j = —1 we simply have
~ » 1/p
(ol =] [ r@da| < ([ 1f(@)Par)
10,1/ IO,U
and hence

(S 1 inr) 1l

VEZL
We have thus established (5.1). To handle (5.2) we work with an ap-
proximation of the identity, {®;} where ®, = 2/®(2%.) with ® € C° and
J® = 1. Let f € BV (which implies f € Ls). Then ®, « f € W] with
|| Dy * wall S IfllBy and @ % f(x) — f(z) almost everywhere. By domi-

nated convergence (®y * f, ﬁjﬂ,) — (f, Ej’,) and by a further application of
Fatou’s lemma and (5.1)

D 127 (f )| < liminf Y [20(f 5 @y, )| S liminf [ £l S 1 f sy,
ez {—00 = l—o0

where the implicit constants are independent of j. This yields (5.2).
Step 2. We show that, for 1 < p < oo, we have

. L~ 1/
17l < sup 27019 (37 2047 Ry)lP) = Alp) = A
JI== vEZ
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Recall from Lemma 3.1.b that Exf — f in §’. Assuming (as we may) that
f € % has finite right hand side it suffices to show that En f converges in
L, and sup =g HENpr < A. To see this, one expands

]ENf = Eof + Z Z Qj <f’ hj:/i>hj,ua
0<j<N pez
and notes that
l .
I 228 bl = 272 (31290 hydlP)” < 279 4,
WEZ ez

hence |[En, f — En, fll, $ 27N A, for all No > Ny, and thus
I£llp < sup [Ex £y < A
Step 3. We finally show, for 1 < p < oo, that
‘ . 1/
11y S sup 2010 (37 pif Ry, ) P) = 4,
jz-1 VEZ

and when p = 1 then f’ is a finite Borel measure and || f’||pm < A. Consider
the multiresolution analysis in Ls(R) generated by the subspaces

VN = Span {NN,u = J\/Q(ZN+1 S—p) € Z} , N=-1,0,1,2,...

That is, Vi consists of continuous piecewise linear functions with nodes in
2-N-17Z. Let N*(-) be the (polygonal) function which generates the dual
Riesz basis to {Ny, : p € Z}; see e.g. [7, §3]. Then, the operator

h € Ly Py(h) =Y 2N(h, N )N,

WEZL

is the orthogonal projection onto V. Let
gn(@) =Y 2N N )N () -
HEZL
Using Lemma 2.1, we have the uniform bound
1 - 1
275 (31N Nwl) T S 2N (SN Rl) T < A< o0
WEZ REZL

So, the exponential decay of N*(-) guarantees that the series defining gy (x)
converges, and moreover

1/
(5.4) lonlly S 272 (32 12V (M) < A

MEZL

3Note that, in view~of Proposition 1.1, one can give a meaning to the identity
(f',Nn,) = —2YT1(f hx,) in Lemma 2.1 also for distributions f € 4.
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Then, if p > 1 there exists g € L, which is the weak *-limit of a subsequence
of {gn}. Now, if j,v are fixed, for all N > j we have

(5:5)  aws i) = (I D0 2V Wi N DN ) = (50,

UEZ

because Py (1) = ;.. Thus, taking limits as N — oo in (5.5) we obtain

<gawjl/>:<f/7wjl/>v for allj,l/.

This implies that g = f’ € L, and || ||, S A.
When p = 1 the weak® sequential-compactness argument only provides
that ||g|lm < A and then || f/|| v S A. O

6. EMBEDDINGS INTO BS;Sgad: THE CASES s =1 AND s =1/p—1

In this section we prove the sufficiency of the conditions for the embed-

dings into B;;Sgad or Fpl,éioyad in Theorem 1.7 and the sufficiency for the

1/p—1,dyad .
Bp7m

conditions of embedding into in Theorem 1.9.

Lemma 6.1. Let 1/2 < p < oo, % —1<s<1. Then B;}mm{p’l} s stggad

s a continuous embedding.

Proof. Using the notation in the proof of part (ii) of Proposition 4.1 we can
write

11 g = sup 27 B

where Bj is defined as in (4.11) with 6 = 0. Letting v = min{p,1}, we
obtain for each j, arguing as in relation (4.12)

28 5 ([ 2 Il )

LeZ

< (swp a6, 127) Ifllsy...
LeZ

where a(¢,1/p) = 20/P=D for ¢ > 0 and a(¢,1/p) = 2¢ for £ < 0. Since
supyey, a(f,1/p)27%¢ < oo whenever 1/p — 1 < s < 1, we obtain the desired
inequality || f]| gs.ayea < |1 £l O

p,min{p,1}

Proposition 6.2. Let 1/2 < p < co. Then F;Q — F,};Soyad s a continuous
embedding.

Proof. Let f € F;Q. we must show that

1F | pavaa = || sup 27 " [27(f, )| 11,
e 271 ez

LSl



HAAR FRAMES AND DYADIC BESOV-SOBOLEV SPACES 31

With the notation from Section 2.1, we write f = Zkzo Ly fi, and for each
j > —1wesplit f =1II; f 4+ IT; f where

J
f =Y Life, and IIjf:=) Lgfp
k=0

k>j

If j = —1, we understand that II_;f = 0 and II+,f = f. We shall first
bound

P’

Ay = H sup 2/ Z |2j(ij, hju)l 1y,
320 VEZ
The same argument in the proof of [12, Lemma 3.3] gives

27U £, hy)] S A (277 () ) (2), @ € L
Thus,
27 Z |2j<ij7 hj#)’ ﬂIj,u (x) 5 ;iA((HJf)/) (1‘), z €R,
VEZL
and taking a supremum over all j > 0, and then L,-norms, we obtain

(6.1) Ao S Higlg (A, < ijlzlgl(ﬂjf)’al,

using (2.10) in the last step with A > 1/p. Now, the maximal function
characterization of the h? = FZE{2 norms yields

62)  |lsup (T FY1], = | sup L, <17 e, < 150k,

To estimate the remaining part involving Hj- f, we may quote the standard
proof in Proposition 4.1 above, which gives
. —
(63)  Av=| sup 2 2 £y 1, @] S 1 e s
iz=1 ez
provided that s > max{1/p,1/q} — 1, with s =1 and ¢ = co. So, we obtain

A1 S gy S I ller,
under the assumption that p > 1/2. Finally, (6.1), (6.2), (6.3) yield the
desired estimate || f|| p1.avaa S [ f][F1,- O
p,00 p,

Corollary 6.3. Let 1/2 <p < oo and ¢ < min{p,2}. Then B;,q — B},;ggad
s a continuous embedding.

Proof. For ¢ < p < 1 this follows from Lemma 6.1. For 1/2 < p < 1 it
follows from Proposition 6.2 together with the inequality
(64) 11 ggazes S 16
and the inequality
17 e, S W

AThat is, the part of the proof of Proposition 4.1 involving the indices £ = k — j > 0.
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the latter being a consequence of Minkowski’s inequalities.

Inequality (6.4) in turn follows by definition from the sequence space
inequality ||B|[es . < [|Bl[s;.. (in the case s = 1), i.e. from the elementary
inequality

. 1/p
(6.5) sup(Z/l ’2jsﬂj,yllj’u($)’pdx)
J Jope

HEZL I

. P \1/p
< (/ [sup 97s Zﬁmnw(x)ﬂ dm) O
J WEZ
We now consider the other limiting case, where s —1/p — 1.

. 1 L_q dyad |
Proposition 6.4. Let 1/2 <p <1, ¢ <oo. Then Fyy — Bj is a

continuous embedding.

1 9 1 4
Proof. Since Fyq — Fj« it suffices to prove this for ¢ = oco.
Let f € FZ}/JZ}_I, which as before we shall split as
f=15,f +1I; f.

This time, the standard proof in Proposition 4.1 (that is, the part of the
proof involving the indices ¢ = k — j < 0) gives

H(%%stq% 2L £y 1y, ) N, S 1415,
1= v

provided that s < 1. So in particular, letting s = 1/p — 1 and ¢ = oo we
obtain (after trivial embeddings)

(6.6) sup 2/(1/p=1) H > (I, f by 1,
J20 veEZ

< 1
o S 1913

whenever p > 1/2.

So, it remains to establish a similar estimate with Hjl f instead of II; f.
We borrow some notation from [12]. Let D; denote the dyadic intervals of
length 277, If I € D; is fixed and k > j we let

(a) Dy(8I)={J €Dy : JNOI #0}

() w(J)={x e J : dist(z,0I) > 2%}, when J € Dy(0I).
We will use the maximal function 9} g (cf. (2.11)) and note that, as in [12,
(42)], when J € Dy(0I), k > j, it holds

1

(6.7) suplgla)| < [fmig]”, 0<p<cx.
e w(J)

Now, let I = I;,, € D; be fixed, and let I be its dyadic sons. For each k > 7,
the function Lg(h;,) has support contained in the union of the intervals J
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belonging to Dg(0IF), and |Lg(hj,)| < 1. Thus, since we are assuming
p <1, we have

(@ h, TEAP <> [(Le(@hy0), fi)]”

k>j
§ ZQi(kij)p Z ka”ioo(!])
k>j JED(OIF)

which, by (6.7), is bounded by
PIERLI Y ][ sl S22 [ sup |26 D f de
k>j JED,(OI%) I k>j

where I* is the 2-fold dilation of the interval /. Summing up in all intervals
I =1;, € D; we obtain

> 1@y, 105 £ < 207 / sup p%—”k M fe |-
VEZ R k>j
This implies

/p
6.8) 97 By TIE ) "< / 2Dk g p, 7))
( sup (V%\ hj, f\) N(Rilil;\ , kfk|>

Now, Mig < M;*,g for any A > 0, so choosing A > 1/p and using (2.10)
we have

1 1)k 1 1)k
6.9)  [sup2s o pil| < [[sup 25V A S AN 0
k>0 k>0 Ffloo
Finally, the inequality
<
Hf”Bp%!;l,dyad ~ HfHFp%i;l

follows by combining (6.6), (6.8) and (6.9). O

We now consider the remaining endpoint case where the two limiting cases
coincide, that is, we have both s =1 and s = 1/p—1, and thus p = 1/2 (the
corresponding Besov embedding is already covered in Lemma 6.1).

Proposition 6.5. For p = 1/2 we have the continuous embedding

1,dyad

1
F1/2,2 — B1/27Oo .

Proof. We examine the proof of Propositions 6.4 and 6.2 and note that (6.8)
and (6.9) remain valid for p = 1/2, that is

sup 2 (@ hi L DE) 2 1l

1/2,00
VEZ
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Similarly, the arguments in (6.1) and (6.2) do not require a restriction on p,
so we also have
lsup2 3 2L sl S 15 ey,
= VEZ
Now the proposition follows from the trivial embeddings Fll/2 5 < Fll/2 ~
and f11/2,oo — b%/Q,oo (cf- (6.5)). O

7. NORM EQUIVALENCES ON SUITABLE SUBSPACES:
THE PROOFS OF THEOREMS 1.6 AND 1.8

7.1. A bootstrapping lemma. Consider a sequence a = {a;,} indexed by
j€NU{0} and p € Z. As in (1.19) let by , be the set of all a for which

(7.1) HaHb;’q — (in(s;)Q[Z ;. p} %)1/11 .
=0

REZL

We split each sequence as a = a®¥*” + a°dd, where

a; if o is even 0 if v is even
even :{ YN H and odd _{ 1%

al a? =
s 0 if p is odd, TH aj, if pis odd.
Then
o a1/
_ Jj(s—3)a , PANA.
oMy, = (2 [ Zsaet]")
7=0 VEZ
o, = (2P S lasaal]) "
ey, T\ aj20+1
7=0 VEZL

The key result is the following lemma, which, under suitable conditions,
allows us to control [lalps , in terms of [|a®"[lps . The general hypothesis
in (7.3) will be linked later to a refinement condition which will appear in

(7.6).
Lemma 7.1. Let 0 < p,q < 00, s € R and X = (Xos A1, A2) € C3 such that
(7.2) | <27,

Then, there exists C = C(p,q, s, X) > 0 such that for every sequence a € by, ,
satisfying the condition

2

(7.3) |lajovt1] < Z [Ael laj1,a042+0], forall j =0, v € Z.
(=0

we have

7.4 < C ||a®¥" .

(7.4) lalfy, < Cflal,,
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Proof. Let p = min{1, p, ¢}, and for simplicity write 0 = s — 1/p. Condition
(7.3) together with the p-triangle inequality gives

o o a/p\ p/a
Ha dd Z)S < Z ‘)\£|p(22] q[Z\aJH4y+2H| :| )
P 01,2 veZ
> q/p\ p/4q
:(|/\1’2 <22]+1)UQ[Z|GJ+14V+3|P} >
VEZ
; q/p\ r/4q
+ > (A2 (ZQ(J-H)JQ{Z ‘aj+1,4u+2+€|p} ) .
0=0,2 =0 veZ

Using the assumptions [A;| < 27 and a € b}

5> the previous display implies
‘)‘1 odd
(1 200 ) la

be < (Rol” + [X2]?)27 7P a1l
p.q P.q

This gives
1/p
dd
lall, < (a2, + fla™e)f, )
< ’)‘Olp + |/\2’p 1/p even
W It ||b;,
which finishes the proof. O

7.2. Proof of Theorem 1.6. We must show (1.24), that is
(7.5) 1£1Bs., S W fll psasaa,  provided f & By,

which, as we shall see, holds actually in the larger range
1 1
- <s<1+-.
p p

By part (ii) of Proposition 4.9, we know that

£ lB;,, < Hejn(F)} s> o+ e el = A+ B

Clearly, B is bounded by the right hand side of (7.5), so we focus on A.
Define a sequence a = a(f) = {a;,} by

ajuVZQij?fij,V”? j€N07 v e Z.
Observe from the definition of the coefficients ¢; ,(f) in (1.15) that
A3 lallys,-

Note also from (1.8) that ajsa, = 27|(f, hj )|, so in particular
s, = [[{27(f, By }i20

Therefore, we have reduced matters to prove that

s, <l gy

even

la

b, S Ha b,



36 G. GARRIGOS A.SEEGER T. ULLRICH

We shall do so using Lemma 7.1, so we need to verify the hypothesis (7.3),
for suitable scalars (Ag, A1, A2). This will follow from an elementary property
of the spline functions

Nju(@) = Naj (@) = No(202 — p),

defined in §2.3. Recall that these are piecewise linear functions supported
in the intervals [277pu, 277 (1 + 2)]. It is then straightforward to verify that

(7.6) Niju(z) = %Njﬂ,?u(@ + Njt12u+1(z) + %/\/}+1,2u+2(93)3
see Figure 6. We refer to (7.6) as the refinement identity.

1/2

1
§J\/j+1,2u+2

v v+1 v+2 X
237 27 27

FIGURE 6. Refinement equation for N, (z); see (7.6).

Now, if p = 2v+1 is an odd integer, then the integration by parts formula
and the refinement identity give

L 1.,
= 2N i)l = 5 1 N

1 1 1
by (16) S o (s Njsz,20)] + 3 (s Njrz2ua1)| + 1 (s Njs2,2042)]

1 1
by (2.15) = 5 G412 T Qj412p+1 + 5 Qj+1,2u+25

which coincides with (7.3) with (Ao, A1, A2) = (1/2,1,1/2). So we can apply
Lemma 7.1, under the assumption

1
|/\1’ =1< 25_5,
which holds precisely when s > %. This completes the proof. O

7.3. Proof of Theorem 1.8. We first show that, if 1 < p < ocoand f € Wpl (R),
then

0 . 1/p
£y ~ sup 2070 (3123 (f, gyl

MEZL
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In view of Theorem 1.4, this reduces to prove

A := sup 21(1=1/p) < Z ‘Cj,u(f)’p> w

Jj=-1

€z
(77) ) " ) 1/p
< sup 27/0-1/P) ( Z 127(f, hj,p)’p> ;

j=—-1 WEZ

whenever A is finite. The argument is completely analogous to that for prov-
ing Theorem 1.6, this time using the spaces b]lwo. Note, that this argument
only needs that 1 =s > 1/p.

Finally, the assertion in (1.31), for f € Wpl, follows now easily from
£y < 1 gpma < 0l ppama < 01, = 11wy,

where the third inequality was shown in part (ii) of Theorem 1.7 and for the
last three steps we assume p < oo. O

8. NECESSARY CONDITION FOR THE EMBEDDINGS FOR s = 1

We prove the necessary conditions in Theorem 1.7 for various embeddings

: 1,dyad
into Bpsd™“.

Lemma 8.1. Suppose 1/2 < p < co. Then
(8.1) By, = By = q<p

Proof. We shall work with an example that has been used in [13, §6.2] to
prove lower bounds for the norms of Ex on B;’q. Let u € C2° be supported
in (1/8,7/8) so that u(z) =1 on [1/4,3/4]. For N > 1 and N/4 < j < N/2
define _
g s(w) = u(N(x — 2)) s
and let fn(z) =3 n/4<j<n/o 277gn j(z). Then by [13, Lemma 29] (Lemma
6.3 in arxiv:1901:09117) we have | fy|py, < N~/P719 for p < q. We
show that || fxlgiavea 2 1 for large N, which will imply that B}, is not
p,00 )

continuously embedded into B},;Sg *d when q>p.

To see this we prove lower bounds for many of the Haar coefficients of fy
at Haar frequency 2. Let JNJ = (QN] + T QW] + 3); we Observe that fgr
fixed N the intervals JV+/ are disjoint and that fy(z) = e*' 2™ for x € JNV.
We get by a Taylor expansion
(8.2) (v ) = 272V 2 (27N (0 + 5)) + Rv

with [Ry | < 273N supy, . |fn]. Let ZN:J be the set of all integers u such
that 27V and 27V (u + 1) belong to JNJ; then for u € Zy,;

|<fN’ hjvﬂ>| = |<2_JgN,]7h]7u>‘ =21 2_2N_2 + 0(23—3N)
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and hence

HfNHB}»,’ggad = NU=1/D) ( Z Z fNa JM)‘ )l/p.

T j<f nE€ZN,;

Since #(ZN9) ~ 2NN~ for large N and N/4 < j < N/2 we obtain
”fNHBIl)’ggad Z L. O

Lemma 8.2. Suppose 1/2 < p < co. Then

(8.3) Fy, = By — g <2,
(8.4) B, By — g<2.

Proof. We consider the same example that was used in [12, §7.2.1]. Namely,
let ¢ € C2°(0,1) with ¢» =1 in [1/4,3/4], and for each large N > 1, let

(8.5) In={jeN: N/4<j<N/2}
and
(8.6) fi(x) == jez:})N 74]'2(jt)627ri2jx U(z), te [0’ 1]’

where 7;(t), t € [0, 1], are the usual Rademacher functions. Using Lemma
7.3 from [12] one can verify that

(8.7) sup | fill g1, S NV
te(0,1]

a similar argument also gives

(838) sup | fillgy,, S NV

te(0,1]
Let ¢;(z) = 271 e2m 2Ty, (1) for j € 3, and let Zy be the set of all y € Z
such that Iy, C (1/4,3/4). Using the Taylor expansion as in (8.2) one sees
that

(8.9) (W5, 2V by )| = 2027V £ 0(272Y), e 2y,
Now observe that
1
(8.10) 1fell gy ayaa > 2VC=1/P) < S Kft’zNhN,M)’p)p
HEZN

So, raising to the p-th power and taking the expectation in the ¢ variable,
we obtain from Khintchine’s inequality

/|ftHBldyad ) > 1_7 Z/ ‘ZTJ T/JJ,QNhNH‘pdt)

HEZN JE3N

2N(1—%)( Z { Z |<¢j’2NhN,u>‘2]§> .

HEZN JE3N

3=

vV
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An application of (8.9), together with the cardinalities of 3 and Zy, then
gives

1 1
([ 15l gatt)” 2 V.
0 P00

This together with (8.7), (8.8) implies that the inclusions B < Bpdyad

and F, , — By can only hold if ¢ < 2. .

Lemma 8.3. For p = oo we have
(8.11) Bl,,— B — g<1.

Proof. We assume that Bl ¢ Bééflé'gd, and we shall prove that necessarily

q < 1. Let Zy be as in (85) and consider the function
fla) = Y 27T (),
JE3N
which is defined as in (8.6), but with all the r;(¢) set equal to 1. This time
we shall assume that ¢ € C2°(—1/2,1/2) with ¢ = 1in (—1/4,1/4). Asin
(8.8) we have

(8.12) £, S NV
On the other hand, note that
(8.13) 1l g = 2V [(£,2V By o).

Arguing as in (8.2) we see that
(£.2Vhno) = D (. 2Vhwo) = D [27727V2(0) + 02 )]

JE3N JE3N
= 2mi27 V"2 Card (3n) 4+ O(273V/?),
which inserted into (8.13) gives
(5.14) 7y 2 N

The lemma is proved after combining (8.12), (8.14) and letting N — oco. O

1/p—1,dyad
9. NECESSARY CONDITION FOR EMBEDDING INTO Bp/Z 14

Proposition 9.1. Let 0 < p,q < oo0. Then
1/p—1 1/p—1,dyad .
Bp/qp - Bp,/opo Y€ = ¢ <min{l, p}.
Proof. We first assume 1 < p < co. Suppose the embedding B, , < B;:ggad

holds, with s = 1/p — 1. By definition of the latter space we have the
inequality

i(—1—s
(9.1) [(F i) S 257 ] g gsna,
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so the assumed embedding would then imply that h;, defines a bounded
1+1/p 5—1+1/p

linear functional on B, g4 (or in the subspace By g4 defined by the
closure of § in the By, ;H/ P norm, in case that p or ¢ are o). By the duality

identities of Besov spaces, see [25, §2.11], this means that h;, € B;/g: which
cannot be the case if ¢’ < 0o, i.e. if 1 < ¢ < 0.

Let p < 1. We use an example from [13, §10.1]. We let n;(z) = 2!n(2'x)
where € C°(R) is an odd function supported in (—1/2,1/2) such that

f01/2 n(s)ds = 1 and such that f01/2 n(s)s"ds =0 forn =1,2,..., M, for a

sufficiently large integer M. Let

fN(x) = Z amnN—i-m(x - 27N+5m)’

m=1

By [13, (85)] we have

= 1/q
1l g < (Zl aml?) .
m=

On the other hand a calculation shows (fx,hy 25,,) = am and thus

1l gy s > (10w ) 2 (3 faml?)
m

m=1

which forces ¢ < p. U

1 1/p,dyad
10. By/P anp ByP¥*. Tug proOF OF THEOREM 1.10

10.1. Proof of part (i) of Theorem 1.10. Let
N-1

(10.1) fn =Y hjo, for N=1,2,...
j=0

Observe that

(102) 7wl ggaa = sup2 P [ 32 [P (v hyl) P =1, it s =1/,
7 J= MEZL

However, using the characterization with differences of order 1 for the By -
norm (if s € (0,1)), see [25, Theorem 2.5.12], we have

N,
Iinllge 2 2Y7 80w (W],
0 p 1
> oN/p [/ > (hole+27Y) = ()| da] "
27N Toen
Now a simple computation shows that, if § € (0,27771], then

hjo(-+0) = hjo() = L—50) = 2L pg-i1_g2-5-1) + Lja—i_g52-)
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and then also
AZhjo = 1_o5_6) — 2Lp-i-1_952-i-1_5) + Lpg-i_a5.2-i_5)
~Li—s0) + 2Lp-s-152-5-1) = Lp-is2-)
and therefore, setting 6 = 27V we get
A2 yhjo(z) =1, for x € [-2"N 27Ny and j=0,...,N - 1.
Hence, for 1 <p < o0
N 2
(103) ||fN"le){o% 22 /pHAQ—NfNHpZN’

and hence part (i) of Theorem 1.10 follows. O

10.2. Proof of part (ii) of Theorem 1.10. Consider this time the function
o
=Y hjo.
j=0
and as before fy = Z?[;Ol hjo,ie. f=Ilimy_ o fn With convergence in L,,.

Indeed
(10.4) 1f = fnllp < hjolly = D 279/7 ~ 27N/,

Jj=N Jj=N
As in (10.2), it is again easy to verify that

(10.5) Hf”B;(ozgdyad =1

We claim that f ¢ B,l,,/o%. Indeed, for large N we have
Iflgre 2 29[ Ag-n (f = f) + Dgon fv],

27 ([| A fll, = 2015 = Snlo).

Inserting the bounds (10.3) and (10.4) into (10.6) gives

1 g 2 2Y77 [|Ag-n(fn)]], = O(1) 2 N,

(10.6)

AV

which letting N ' oo proves the assertion. O

11. SOME PATHOLOGIES OF THE SPACES Bjyg"*!

We include in this section some pathologies of the spaces Big*! when
s>1,0ors =1,¢ < oo, or s < 1/p — 1, which were mentioned in the

introduction.
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11.1. Failure of embedding into B;jgyad fors > 1 o0ors=1, qg < oco. The
following proposition is a simple result on the theme of Brezis’ paper [3] on
how to recognize constant functions.

Proposition 11.1. Let 0 < p,q < 0o and assume that either (i) s > 1, or
(ii) s =1 and q < oo.
Then every f € C1(R) N B;jgyad(R) is a constant function.

Remark. Bockarev’s results [1] indicate that less restrictive assumptions can
be made but we will not pursue the problem of optimal hypotheses here.

Proof. We argue as in the proof of Lemma 8.1, now using Taylor’s formula
in the form

sup sup [f(y) = £(b) = f'(0)(y — b)| = o(e)

beK |b—y|<e
for any compact K. Take b =b, = 277 (u+ %) to see that
(11.1) (frhjp) = F'27 (p+ 3)27772 + 0(27)

with uniformity in the remainder as b, ranges over a compact set.

Now assume that f € C' and that f’ is not identically zero. Then there
is a dyadic interval J = [127¢, (v41)27¢) and ¢ > 0 such that for j > jo > ¢

|(f, hjud] > 27

Hence
Wlggms 2 (L P( T witrnap)’]’)’
J=jo wlj N
3 7(s—1/p)o(i—0)/p s9—i | . .- i(s—1)q)
> <jzj:o [2 2 c2 }) 2%(]22 )

with ¢, > 0. Hence | f|| gs.ayaa = 00 when s > 1 or when s =1 and ¢ < oo.
p,q

We conclude that for this range we have f/ = 0 for every f € C1n Bgyay?d
and Proposition 11.1 follows. O

11.2. The dyadic Besov-spaces for s < 1/p — 1: Failure of completeness.

Proposition 11.2. Let 0 < p,q < oo. If s < 1/p — 1 then the spaces

B9 (R) are not complete.

Proof. Consider the functions

N-1

(11.2) fn=Tpn+ Y 2hjo=2"1psn), N=12,..
j=0
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It is easily seen that, under the assumption s < 1/p — 1, then

-

j _1
1ar = Pvlgpaa = (S RCPTI)0)7 o,

N<j<M

when M > N — 0o. So, {fn}n>1 is a Cauchy sequence in By2¥*®. However,

the distributional limit of fy is the Dirac measure §, which does not belong
to the space 4. O

11.3. Failure of an embedding for s = 1/p — 1. A small variation of the
last example shows also part (i) of Theorem 1.9 and at the same time the
optimality of the condition s > 1/p — 1 in part (ii) of Proposition 4.1 when
q < 0.

Proposition 11.3. Let 0 < p,u < co. Then
1/p—1 1/p—1,dyad
BYp=t oy Blptdvad g < g < o

Proof. Consider fyn as in (11.2), and let g = fny — fn(—:) be its odd
extension. Then, it was shown in [13, Proposition 52] (Proposition 13.3 in
arXiv:1901:09117) that

lgnllgrp-1 S 1,

for all 0 < p,u < oo. However, it is easily seen that

HgNHBIl)/qp—Ldyad > HfNHB;/qp—Ldyad > Nl/q- U
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