
ar
X

iv
:2

20
9.

14
46

2v
4 

 [c
s.G

T]
  1

9 
Fe

b 
20

23

What Can Cryptography Do For Decentralized Mechanism Design?

Elaine Shi, Hao Chung, and Ke Wu∗

Carnegie Mellon University
{runting@cs, haochung@andrew, kew2@andrew}.cmu.edu

Abstract

Recent works of Roughgarden (EC’21) and Chung and Shi (SODA’23) initiate the study of a
new decentralized mechanism design problem called transaction fee mechanism design (TFM).
Unlike the classical mechanism design literature, in the decentralized environment, even the
auctioneer (i.e., the miner) can be a strategic player, and it can even collude with a subset of
the users facilitated by binding side contracts. Chung and Shi showed two main impossibility
results that rule out the existence of a dream TFM. First, any TFM that provides incentive
compatibility for individual users and miner-user coalitions must always have zero miner revenue,
no matter whether the block size is finite or infinite. Second, assuming finite block size, no non-
trivial TFM can simultaneously provide incentive compatibility for any individual user and for
any miner-user coalition.

In this work, we explore what new models and meaningful relaxations can allow us to cir-
cumvent the impossibility results of Chung and Shi. Besides today’s model that does not employ
cryptography, we introduce a new MPC-assisted model where the TFM is implemented by a
joint multi-party computation (MPC) protocol among the miners. We prove several feasibility
and infeasibility results for achieving strict and approximate incentive compatibility, respectively,
in the plain model as well as the MPC-assisted model. We show that while cryptography is not
a panacea, it indeed allows us to overcome some impossibility results pertaining to the plain
model, leading to non-trivial mechanisms with useful guarantees that are otherwise impossible
in the plain model. Our work is also the first to characterize the mathematical landscape of
transaction fee mechanism design under approximate incentive compatibility, as well as in a
cryptography-assisted model.

∗Author order is randomized.
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1 Introduction

The widespread adoption of blockchains and cryptocurrencies spurred a new class of decentralized
mechanism design problems. The recent works of Roughgarden [Rou20,Rou21] as well as Chung
and Shi [CS21] considered a particularly important decentralized mechanism design problem, that
is, transaction fee mechanism (TFM) design. In a transaction fee mechanism (TFM), we are
auctioning space in the block to users who want their transactions included and confirmed in the
block. If the block can contain up to k transactions, one can equivalently think of selling k identical
products to the bidders.

Prior works [LSZ19, Yao, BEOS19, BCD+, Rou20, Rou21, FMPS21] observed that transaction
fee mechanism design departs significantly from classical mechanism design [NRTV07]. The vast
majority of classical auctions assume that the auctioneer honestly implements the prescribed mech-
anism. In comparison, in a blockchain environment, the auctioneer (i.e., the miner of the block),
can be a strategic player in itself: it can deviate from the prescribed mechanism if it increases its
expected gain; or it can collude with a subset of the users, and play strategically to improve the
coalition’s joint utility. As earlier works pointed out [LSZ19,Yao,BEOS19,BCD+,Rou20,Rou21],
the existence of decentralized smart contracts in blockchain environments make it easy for the
miner and users to rendezvous and engage in binding side contracts. Such side contracts allow the
coalition to split their gains off the table in a binding fashion.

Observing the new challenges that arise in a decentralized environment, earlier works [LSZ19,
Yao,BEOS19,BCD+,Rou20,Rou21] formulated a set of desiderata for a “dream” TFM:

• User incentive compatibility (UIC): a user’s best strategy is to bid truthfully, even when the
user has observed others’ bids.

• Miner incentive compatibility (MIC): the miner’s best strategy is to implement the honest mech-
anism, even when the miner has observed all users’ bids.

• c-side-contract-proofness (c-SCP): playing honestly maximizes the joint utility of a coalition
consisting of the miner and at most c users, even after having observed all others’ bids.

A line of works explored how to get a dream TFM. However, assuming that the block size is
finite, i.e., there can be more bids than the block size, all known works fall short of achieving all
three properties at the same time. The closest we have come to in terms of achieving a dream TFM
is in fact Etherem’s EIP-1559. At a very high-level, when there is congestion, EIP-1559 behaves like
a first-price auction which is not UIC. When the block size is infinite (i.e., no congestion), EIP-1559
approximates the following “burning posted price” auction: there is a fixed reserve price r, every
bid that is at least r gets included and confirmed, and pays the price of r. All users’ payment is
burnt and the miner gets nothing1. Roughgarden [Rou20,Rou21] proved that when the block size
is infinite, indeed, the burning posted price auction achieves all three properties at the same time!

Subsequently, Chung and Shi [CS21] further explored the landscape of TFM. They proved two
interesting impossibility results:

1. Zero miner revenue. Any (possibly randomized) TFM that satisfies both UIC and SCP must
always have 0 miner revenue, even when the miner colludes with at most one user, and no matter
whether the block size is finite or infinite. This shows that the total burning in EIP-1559 is no
accident: it is necessary to achieve all three properties under infinite block size.

1In practice, the miner gets a fixed block reward that is irrelevant to our game-theoretic analysis, so we ignore the
fixed block reward in our modeling.
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2. Finite-block impossibility. Suppose that block size is finite, then no non-trivial (possibly ran-
domized) TFM can achieve UIC and SCP at the same time, even when the miner colludes with
at most one user. This shows that it is no accident that all prior works fail to achieve the dream
TFM for finite block sizes — indeed, there is a mathematical impossibility!

Given the status quo of our understanding, we ask the following natural question:

Are there meaningful new models or relaxations that allow us to circumvent the impossibility
results of Chung and Shi?

Chung and Shi [CS21] made an initial exploration along this line. They show a relaxation that
allows us to circumvent the impossibilities and achieve positive miner revenue under finite block
size. In particular, their relaxation requires the additional assumption that offending bids (e.g.,
overbid or fake transactions) that have been posted to the public cannot be retracted in the future,
and thus the offender may have to pay a cost when the offending transaction is confirmed in the
future. While this assumption holds for some cryptocurrencies such as Bitcoin, it may not be
universally true for all cryptocurrencies. Therefore, an important question is what other models or
relaxations allow us to circumvent the impossibilities.

In this paper, we explore two new directions, aiming to understand whether they allow us to
circumvent the impossibilities of Chung and Shi [CS21]: i) using an approximate notion of incentive
compatibility that allows an ε additive slack; and ii) having the miners jointly run a multi-party
computation (MPC) protocol to realize the TFM. Throughout the paper, we refer to the today’s
model, which does employ cryptography, as the plain model, and we refer to the case where the
TFM is realized with MPC as the MPC-assisted model.

1.1 Our Results and Contributions

Our paper makes novel contributions at both conceptual and technical levels. From a technical
perspective, prior to our work, we lacked techniques for characterizing the solution space of ap-
proximate incentive compatibility — in particular, classical tools like Myerson’s Lemma [Mye81]
breaks down when we allow ε slack in the incentive compatibility, and thus our classical insights
often fail. One of our main technical contributions is to develop new techniques for mathemat-
ically reasoning about approximate incentive compatibility. On the conceptual front, while an
elegant line of work has shown ways in which cryptography and game theory can help each
other [HT04, KN08, ADGH06, OPRV09, AL11, ACH11, GKM+13, GKTZ15, GTZ15, Kat08, DR07,
GLR10, CGL+18, WAS22, CCWS21, PS17, KMSW22, FW20, EFW22] (see Section 1.2 for more
discussions), our work is of a different nature. Our results reveal exciting new connections be-
tween cryptography and mechanism design, motivated by a practical problem. The popularity of
blockchains and decentralized applications poses many exciting new challenges for decentralized
mechanism design, and cryptography-meets-game-theory is a natural and promising paradigm. We
thus hope that our new conceptual contributions can provide fodder and inspire new works in this
exciting and much explored space.

We give a summary of our main results below.

1.1.1 Characterizing Miner Revenue under Approximate Incentive Compatibility

We first focus on the plain model that was studied in earlier works [LSZ19,Yao,BEOS19,Rou20,
Rou21,FMPS21,CS21]. Recall that assuming infinite block size, it is possible to achieve a dream
TFM (e.g., the burning posted price auction), but the miner revenue has to be zero. We ask the
following question: suppose we are willing to relax the incentive compatibility notion and allow an
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ε additive slack, can we circumvent the zero miner revenue lower bound? If so, exactly how much
miner revenue can we hope for?

More specifically, ε-incentive-compatibility (including ε-UIC, ε-MIC, and ε-SCP) requires that
any deviation cannot increase the strategic individual or coalition’s utility by more than ε. We
show that under ε-incentive-compatibility, we can achieve linear (in the number of users) miner
revenue assuming infinite block size. Moreover, we give matching upper- and lower-bounds that
tightly characterize exactly how much miner revenue can be attained.

Infinite block size. Consider the simple posted price auction with reserve price r ≤ ε
c where c

is the maximum number of users controlled by the strategic coalition: all bids that bid at least r
are confirmed. Each confirmed bid pays r. All payment goes to the miner. It is not hard to show
that the above auction satisfies strict UIC, strict MIC (for an arbitrarily sized miner-coalition),
and ε-SCP against c-sized coalitions. Further, the expected total miner revenue is Θ(n · ε

c) when
the users’ true values are not too small.

Although the above posted price achieves linear in n revenue, the drawback is that the miner
revenue is unscalable: even as the users’ bids scale up (e.g., by some multiplicative factor), the miner
revenue does not grow proportionally. We therefore ask if randomization can help achieve scalability
in miner revenue. We show that indeed the following randomized TFM achieves scalability in miner
revenue:

Proportional auction // Let r be a fixed reserve price.

• Every bid b ≥ r is confirmed with probability 1 and every candidate bid b < r is confirmed
with probability b/r. Each confirmed bid b pays p = min{ b

2 ,
r
2}.

• For each confirmed bid, miner gets a pre-determined threshold r′ =
√

2rε
9c if p ≥ r′.

For example, suppose all users’ bids are sampled independently from some distribution D, and
let m be the median of the distribution such that Prx∼D[x ≥ m] ≥ 1/2 (or any other constant).
Then, if we set r = m, the expected miner revenue (taken over the randomness of users’ bids as
well as of the TFM itself) is Ω(n ·min(m,

√
mε
c )).

Combining the posted price auction and the proportional auction, we have the following theo-
rem:

Theorem 1.1. Consider the hybrid auction which, given some bid distribution D with median m,
runs either the posted posted price auction with reserve price r = min( εc ,m) or the proportional
auction with the reserve price r = m, depending on which one has higher expected revenue. The
hybrid auction is strict UIC, strict MIC (for an arbitrarily sized miner coalition), and ε-SCP against
any miner-user coalition with at most c users. Further, it achieves Ω

(
n · (min( εc +

√
mε
c ,m))

)

expected total miner revenue.

Next, we prove a matching bound that shows the limitation on how much miner revenue can
be attained under approximate incentive compatibility, as stated in the following theorem — this
bound holds no matter whether the block size is finite or infinite.

Theorem 1.2 (Limit on miner revenue for infinite block size). For any possibly randomized TFM
(in the plain model) that satisfies ε-UIC, ε-MIC, and ε-SCP for miner-user coalitions with 1 user,
the expected total miner revenue over a random bid vector sampled from Dn must be upper bounded
by

Eb∼Dn [µ(b)] ≤ 6n · (ε+
√
ε ·Ex∼D[

√
x]),
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where µ(b) denotes the total miner revenue under the bid vector b, n is the number of users, Di

denotes the true value distribution of user i ∈ [n].

Finite block size. Another natural question is: can we circumvent the finite-block impossibil-
ity under approximate incentive compatibility? Unfortunately, although it is indeed possible to
overcome the finite-block impossibility with approximate incentive compatibility, we prove a new
impossibility result that rules out the existence of “useful” mechanisms whose social welfare (i.e.,
the sum of everyone’s utilities) scales up proportionally w.r.t. the bid distribution:

Theorem 1.3 (Scalability barrier for approximate incentive compatibility in the plain model). Fix
any ε > 0, and suppose that the block size is k. Any (possibly random) TFM in the plain model
that simultaneously satisfies ε-UIC, ε-MIC, and ε-SCP (even when the miner colludes with at most
one user) has at most Õ(k3ε) social welfare where k is the block size and Õ(·) hides logarithmic
factors.

1.1.2 Can We Circumvent the Finite-Block Impossibility with Cryptography?

Due to the negative result of Theorem 1.3, we want to seek other avenues that allow us to circumvent
the finite-block impossibility. Since cryptography is widely deployed in today’s blockchains, it is
natural to ask whether we can bring cryptography to the design of transaction fee mechanisms, to
help us achieve what is otherwise impossible.

New model: MPC-assisted TFM. Consider a scenario henceforth called the MPC-assisted
model, where a set of miners jointly run a multi-party computation (MPC) protocol to implement
the TFM. One may think of the MPC protocol as providing the following ideal functionality FTFM:

• Each player (either user or miner) may act as any number of identities (including 0), and on
behalf of each identity, submit a bid to FTFM.

• The ideal functionality FTFM executes the prescribed allocation rule of the TFM to decide which
transactions to include and confirm in the block; it executes the payment rule and miner revenue
rule of the TFM to decide how much each confirmed bid pays and the total miner revenue. FTFM

then sends to all players the set of bids that are confirmed, what price each confirmed bid pays,
and the total miner revenue.

We require that the total miner revenue does not exceed the total payment, and that the total
miner revenue is split among the miners.

We assume that there is a separate process to decide the set of miners whose job is to jointly
run the MPC protocol. For example, this decision can be made through either proof-of-work or
proof-of-stake. In the former case, the total miner revenue is effectively split among the miners
proportional to their mining power. In the latter case, the total miner revenue is effectively split
among the miners proportional to their stake.

We assume that the majority of the miners are honest and that the MPC provides guaranteed
output (i.e., the strategic miners cannot cause the MPC protocol to abort without producing
outcome). Note that if we can indeed design an incentive compatible protocol in the MPC-assisted
model, then, no miner would be incentivized to deviate from the honest protocol, and this reinforces
the honest majority assumption. We discuss how to extend our results to the setting of majority-
miner coalitions in Remark 1.5.

Intuitively, an MPC-assisted TFM restricts the strategy space for players in comparison with
the plain model:

6



R1 A strategic individual or coalition must decide its strategy without having seen honest users’
bids (c.f. in the plain model, a strategic individual or coalition can decide their strategy after
seeing other players’ bids).

R2 Once the set of bids are committed to, the allocation rule must be implemented honestly
(c.f. in the plain model, the winning miner or block proposer can strategically choose which
transactions to include in the block).

Exactly because of the MPC-assisted model imposes the above restrictions on the strategy
space, we are hopeful that it may allow us to circumvent impossibilities. Before we explain our
results, we first discuss how to define incentive compatibility in the MPC-assisted model.

Remark 1.4 (On the practicality of MPC). We start by assuming generic MPC, since this is a
good starting point as an initial feasibility exploration. All the impossibility results in our paper
hold even with generic MPC. However, for all the MPC-assisted mechanisms we propose, although
we initially describe the feasibility results using generic MPC for conceptual simplicity, it turns out
that we actually do not need generic MPC to actually instantiate these mechanisms. We discuss
how to efficiently instantiate our MPC-assisted mechanisms in Appendix E.

Remark 1.5 (Extending our results to majority-miner coalitions). All the results in the paper
actually hold even when a coalition may control the majority of miners. When the majority of the
miners may be malicious, the MPC protocol cannot provide guaranteed output, it can only provide
“security with abort”. In other words, the ideal functionality that is realized by the MPC now
provides the following backdoor: an adversary controlling the majority of miners can send ⊥ to the
ideal functionality, which causes the protocol to abort and not produce any output.

Threfore, if we assume that the coalition can control the majority of miners, essentially the
strategy space includes one more move: the strategic coalition can cause the protocol to abort in
which case no block is mined, and no on obtains any utility. Obviously, a rational coalition should
never make such a move.

Ex post vs. Bayesian notions of incentive compatibility. In the plain model, because a
strategic individual or coalition can decide their bids after seeing others’ bids, prior works [Rou21,
CS21] considered an ex post notion of incentive compatibility. In the new MPC-assisted model,
since players must submit their bids to FTFM without seeing others’ bids, it also makes sense to
consider a Bayesian notion of equilibrium.

Informally, we say that an MPC-assisted TFM satisfies Bayesian Nash Equilibrium (BNE)
for a strategic coalition (or individual) C, following the honest strategy allows C to maximize its
expected gain, assuming that the bids of users not in C are drawn independently from some known
distribution. If the coalition C consists of an individual user, we say that the scheme satisfies
Bayesian UIC. When C consists of at most ρ fraction of the miners, we say that the scheme satisfies
Bayesian MIC against a ρ-sized miner-coalition, Finally, when the coalition C consists of at most
ρ fraction of miners as well as at least 1 and at most c users, we say that the scheme satisfies
Bayesian SCP against a (ρ, c)-sized coalition.

Jumping ahead, for the MPC-assisted model, all our mechanism designs achieve incentive com-
patibility even in the ex post setting — in other words, the incentive compatibility guarantees hold
even if FTFM leaks other players’ bids to the strategic players before they decide their own strategy.
On the other hand, all of our impossibilities hold even for the Bayesian setting. This makes both
our upper- and lower-bounds stronger.
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MPC-assisted TFM under strict incentive compatibility. Unfortunately, as shown in Ap-
pendix D, the MPC-assisted model does not help us circumvent the zero miner revenue lower bound,
even for Bayesian notions of equilibrium. Instead, the main question we care about here is whether
the MPC-assisted model allows us to circumvent the finite-block impossibility. It turns out that the
answer is not a simple binary one.

First, we show that absent user-user collusion, we can indeed circumvent the strong finite-
block impossibility of Chung and Shi [CS21]. Specifically, we can indeed construct a TFM that
simultaneously achieves UIC, MIC, and (ρ, c = 1)-SCP for any ρ. In particular, consider the
following posted price auction with random selection — recall that to specify an MPC-assisted
TFM, we only need to specify the allocation rule, the payment and miner revenue rules.

MPC-assisted, posted price auction with random selection

Let r be a fixed reserve price. Any bid that is at least r is considered as a candidate. Randomly
choose up to block size k candidates to confirm. Any confirmed bid pays r. All payment is
burnt and the miner revenue is 0.

Appendix E describes how to instantiate the above MPC-assisted mechanism efficiently without
using generic MPC.

Theorem 1.6 (MPC-assisted, posted price auction with random selection). The above MPC-
assisted, posted price auction with random selection satisfies UIC, MIC, and (ρ, 1)-SCP in the ex
post setting for an arbitrary ρ ∈ [0, 1].

Since Theorem 1.6 holds even in the ex post setting, another interpretation is that the enforce-
ment of the allocation rule (i.e., restriction R2, and not R1) is what allows us to circumvent the
finite-block impossibility when c = 1.

The above posted price auction with random selection works for c = 1, i.e. no user-user
collusion; however, it fails when the coalition may contain c ≥ 2 users. Imagine that the number of
users n = k + 1, and the coalition consists of two users and any fraction of miners. Now, suppose
one of the colluding users has true value v & r, and the other has true value v′ = r. In this case,
the user with true value v′ = r should simply drop out and not submit a bid. This guarantees that
the friend with large true value will be confirmed, and thus the coalition’s joint utility increases.

It turns out that this is no accident. We prove that for c ≥ 2, no MPC-assisted TFM can
achieve UIC, MIC, and SCP for (ρ, c)-sized coalitions at the same time for any choice of ρ. Further,
the impossibility holds even assuming Bayesian notions of incentive compatibility.

Theorem 1.7 (Finite-block impossibility in the MPC-assisted model for c ≥ 2). Let c ≥ 2 and let
ρ ∈ [0, 1]. No (possibly randomized) MPC-assisted TFM with non-trivial utility can simultaneously
achieve Bayesian UIC, Bayesian MIC, and Bayesian SCP for (ρ, c)-sized coalitions, assuming finite
block size.
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Table 1: Mathematical landscape of TFM. Results in blue background are shown in this
paper. ! means impossible and " means possible. Θ(·) means that we show matching upper and
lower bounds — here m is a term that depends on the scale of the bid distribution, and we ignore
terms related to c for simplicity. Unless otherwise noted, the impossibilities hold even for c = 1.

plain model MPC-assisted model

Infinite block
strict 0 miner rev [CS21] 0 miner rev

approximate Θ(n · (ε+
√
mε)) miner rev Θ(n · (ε+

√
mε)) miner rev

Finite block
strict ! [CS21] ": c = 1, !: c ≥ 2

approximate scalability ! (ignoring log terms) scalability "

MPC-assisted TFM under approximate incentive compatibility. Recall that in the plain
model, even with approximate incentive compatibility, we cannot have scalable TFMs whose social
welfare scales w.r.t. the bid distribution (Theorem 1.3). We show that if we consider approxi-
mate incentive compatibility in the MPC-assisted model, we can overcome this scalability barrier.
Specifically, we construct an MPC-assisted TFM called the “diluted posted price auction” that can
achieve up to Θ(M · k) social welfare when many people’s bids are large enough, where M is an
upper bound on users’ bid.

MPC-assisted, diluted posted price auction

• Let r be a fixed reserve price, let M be the maximum possible value of the bid, and let k
be the block size.

• Remove all bids that are less than r, and suppose that there are # bids left — these bids
form the candidate pool.

• Let N = max{c ·
√

kM
2ε , k}. If # < N , pad the candidate pool with fake 0 bids such that its

size is N .

• Choose k bids at random from the candidate pool. All real bids chosen are confirmed and
pay the reserve price r.

• The miner gets 2ε
c for each confirmed bid.

Appendix E describes how to instantiate the above MPC-assisted mechanism efficiently without
using generic MPC.

In the above mechanism, suppose we set the reserve price r ≤M/2, and further, imagine that
everyone’s true value is M , and they all bid their true value. Further, assume that there are many
more users than the block size k. In this case, the block will be filled with k confirmed bids, and
for each confirmed bid obtains utility M/2. Thus, we can achieve Θ(M · k) social welfare.

Theorem 1.8 (MPC-assisted, diluted posted price auction). The above MPC-assisted, diluted
posted price auction satisfies strict UIC, strict MIC, and ε-SCP for (ρ, c)-sized coalitions in the
ex post setting, for any choice of ρ and c. Further, the mechanism is scalable, i.e., it can achieve
Θ(M · k) expected social welfare under some bid configurations.
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Summary of landscape. Summarizing our understanding so far, we present the mathemati-
cal landscape of TFM in Table 1. Our results show that cryptography can help us circumvent
fundamental impossibilities of the plain model under finite block size. First, for strict incentive
compatibility, cryptography allows us to overcome the finite-block impossibility for c = 1 (Theo-
rem 1.6). Second, with approximate incentive compatibility, cryptography allows us to overcome
the scalability barrier for finite block size in the plain model.

On the other hand, cryptography is also not a panacea. For example, it does not fundamentally
help us improve miner revenue in the infinite block size setting.

1.2 Additional Related Work

We review some additional related works besides the most closely related works on transaction
mechanism design [LSZ19,Yao,BEOS19,BCD+,Rou20,Rou21,FMPS21,CS21] mentioned earlier.

Earlier, an elegant line of work [HT04, KN08, ADGH06, OPRV09, AL11, ACH11, GKM+13,
GKTZ15,GTZ15,Kat08,DR07,GLR10,CGL+18,WAS22,CCWS21,PS17,KMSW22,FW20,EFW22]
revealed ways in which cryptography and game theory can help each other. Among them, some
works [DR07] showed how to rely on cryptography to remove the trusted mediator assumption
in certain game theoretic notions such as correlated equilibrium. Some [HT04,ADGH06, IML05,
OPRV09, CGL+18,WAS22] showed that adopting game theoretic notions of fairness rather than
the more stringent cryptographic notions of fairness can allow us to circumvent well-known lower
bounds. Recently, Ferreira et al. [FW20] and Essaidi et al. [EFW22] showed that using crypto-
graphic commitments can help us circumvent lower bounds pertaining to credible auctions. As
Chung and Shi [CS21] explained, credible auction is of a different nature from transaction fee
mechanism design. Transaction fee mechanism is a new type of decentralized mechanism design
problem, and the new connections between cryptography and mechanism design revealed in our
paper differ in nature from the settings in prior works.

2 Model and Definitions

Notation. We use bold letters to denote vectors. For a vector b = (b1, . . . , bN ), we use bi to
represent the i-th entry of vector b. The notation b−i = (b1, b2, . . . , bi−1, bi+1, . . . , bN ) represents
all except the i-th entry. We often use (b−i, bi) and b interchangeably. Throughout the paper,
we use n to denote the number of users, and N to denote the number of bids. N is equal to n
if everyone behaves truthfully. However, strategic users may post zero or multiple bids — in this
case N may not be equal to n. Given a distribution D, we use the notation Supp(D) to denote its
support. We use R≥0 to denote non-negative real numbers.

2.1 Transaction Fee Mechanism in the Plain Model

We first define transaction fee mechanism (TFM) in the plain model. Henceforth, we use C to
denote a coalition of strategic players (or a strategic individual). In particular, C can be a user,
the miner of the present block, or a coalition of the miner and one or more users.

Plain model. In the plain model, a transaction fee mechanism (TFM) describes the following
game:

1. Users not in C submit their bids where each bid is represented by a single real value — let b−C
denote the resulting bid vector.
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2. The coalition C sees b−C , and then users in C submit their bids.

3. The miner of the present block, possibly a member of C, chooses up to k bids to include in the
block, where k denotes the maximum block size.

4. Among the at most k bids included in the block, the trusted blockchain decides 1) which of
them are confirmed, 2) how much each confirmed bid pays, and 3) how much revenue is paid to
the miner.

Therefore, to specify a transaction fee mechanism (TFM) in the plain model, it suffices to
specify the following rules which are possibly randomized functions:

• Inclusion rule: given a bid vector b, the inclusion rule chooses up to k bids to include in the
block;

• Confirmation and payment rules: Given the at most k bids included in the block, the confirma-
tion rule decides which ones to confirm, and the payment rule decides how much each confirmed
user pays.

• Miner revenue rule: Given the at most k bids included in the block, the miner revenue rule
decides how much the miner earns.

In particular, the inclusion rule is implemented by the miner, and if the miner is strategic, it may
not follow the prescribed inclusion rule but instead choose an arbitrary set of bids to include. By
contrast, the confirmation, payment, and miner revenue rules are implemented by the blockchain,
and honest implementation is guaranteed.

We assume that the (honest) TFM is symmetric in the following sense: if we apply any permu-
tation π to an input bid vector b = (b1, . . . , bN ), it does not change the distribution of the random
variable represented by the set {(bi, xi, pi)}i∈[N ] where xi and pi are random variables denoting the
probability that bid i is confirmed, and its payment, respectively. An equivalent, more operational
view of the above condition is the following. We may assume that the honest mechanism can al-
ways be equivalently described in the following manner: given a bid vector b where each bid may
carry some extra information such as identity or timestamp, the honest mechanism always sorts
the vector b by the bid amount first. During this step, if multiple bids have the same amount,
then arbitrary tie-breaking rules may be applied, and the tie-breaking can depend on the extra
information such as timestamp or identity. At this point, the inclusion rule and the confirmation
rules should depend only on the amount of the bids and their relative position in the sorted bid
vector. Note that our symmetry requirement is natural and quite general — it captures all the
mechanisms we know so far [LSZ19,Yao,BEOS19,BCD+, Rou20,Rou21,FMPS21]. In particular,
due to possible tie-breaking in the sorting step, our symmetry condition does not require two bids
of the same amount to receive the same treatment, i.e., the distribution of their outcomes can be
different.

Strategy space. A user’s truthful behavior is submit a single bid representing its true value.
However, strategic users may choose to submit zero to multiple bids, and the bids need not reflect
their true value.

An honest miner does not submit any bids and honestly implements the prescribed inclusion
rule. A strategic miner, on the other hand, may not honestly implement the prescribed inclusion
rule — it can pick an arbitrary set of up to k bids of its choice to include. A strategic miner can
also post fake bids. A coalition C’s strategy space is defined in the most natural manner, i.e., it
includes any strategic behavior of its members.
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FMPC: Ideal Functionality
// The functionality is parametrized with the allocation, payment, and miner revenue rules.

1. Receive a single bid bi from each identity. Let b be the resulting bid vector.

2. Run the allocation rule, the payment rule, and the miner revenue rule with the bid vector
b. The outputs include a bit vector indicating whether each bid in b is confirmed or not, a
payment vector where all unconfirmed bids must pay 0, and the total miner revenue. Send
the outputs to everyone.

Figure 1: Ideal functionality realized by the MPC protocol.

Notably, any strategic player in C can decide its actions after having observed the bids of the
remaining users not in C.

2.2 Transaction Fee Mechanism in the MPC-Assisted Model

Imagine that all miners jointly run an multi-party computation (MPC) protocol that implements
the TFM. Figure 1 depicts the natural ideal functionality (denoted FMPC) realized by the MPC
protocol. Further, the MPC protocol can achieve full security with guaranteed output as long as the
majority of the miners are honest. Therefore, following the modular composition [Can00] paradigm
in the standard cryptography literature, we can simply assume that a trusted party FMPC exists
— this is often referred to as the FMPC-hybrid model. We defer how to securely realize FMPC

to Appendix D.

MPC-assisted model. A transaction fee mechanism (TFM) in the MPC-assisted model de-
scribes the following game:

1. Every player (i.e., user or user) can take on zero to multiple identities, and every identity submits
a bid represented by a single real value to FMPC defined in Figure 1.

2. FMPC decides which bids to confirm, how much each confirmed bid pays, and the total miner
revenue. The total miner revenue is split among the miners.

Therefore, to specify a TFM in the MPC-assisted model, we need to specify the allocation rule,
the payment rule, and the miner revenue rule — we assume that these rules are possibly randomized,
polynomial-time algorithms, and the syntax of the rules are evident from FMPC in Figure 1. In
comparison with the plain model, here the inclusion rule and the confirmation rule are combined
into a single allocation rule, since both inclusion and confirmation decisions are made by FMPC.
Just like in the plain model, we assume that the (honest) TFM is symmetric.

Strategy space. A user’s honest behavior is to take on a single identity, submit a single bid
which reflects its true value. However, as mentioned above, any strategic user can take on zero or
multiple identities, submit zero or multiple bids that need not be its true value.

An honest miner does not take on any identities or submit any bids. However, a strategic
miner can take on one or more identities and submit fake bids. Unlike the plain model, here, a
strategic miner can no longer choose which bids to include in the block — the allocation rule (i.e.,
the counterpart of the inclusion + confirmation rules of the plain model) is enforced by FMPC.
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One technicality is whether the distribution of users’ identities matter, and whether choosing
identities strategically should be part of the strategy space. Jumping ahead, all of our mechanisms
are proven to be incentive compatible even when the strategic individual or coalition can arbitrarily
choose their identities as long as they cannot impersonate honest users’ identities. On the other
hand, all of our impossibility results hold even when the strategic individual or coalition is forced
to choose their identities from some a-priori known distribution. This makes both our feasibility
and infeasbility results stronger.

2.3 Defining Incentive Compatibility

Utility. Every user i ∈ [n] has a true value vi ∈ R≥0 if its transaction is confirmed. If user i’s
transaction is confirmed and the user pays pi, then its utility is defined as vi− pi. A miner’s utility
is simply its revenue.

The utility of any strategic coalition C is the sum of the utilities of all members of C. Considering
the joint utility of the coalition is appropriate since we assume that the coalition has a binding
mechanism (e.g., decentralized smart contracts) to split off their gains off the table.

Ex post incentive compatibility. We first define ex post incentive compatibility for both
the plain model and the MPC-assisted model. Roughly speaking, ex post incentive compatibility
requires that a strategic player or coalition’s best response is always to behave honestly, even after
observing the remaining users’ bids. Similary, ex post ε-incentive compatibility requires that no
strategy can increase a strategic player or coalition’s expected utility by more than ε in comparison
with the honest strategy, and this should hold even if the coalition can decide its strategy after
having observed the remaining users’ bids.

Below in our formal definitions, we define the approximate case that allows ε slack. When ε = 0,
we get strict incentive compatibiity — in this case, we can omit writing the ε.

Definition 2.1 (Ex post incentive compatibility). We say that a mechanism satisfies ex post ε-
incentive compatibility for a set of players C (possibly an individual), iff for any bid vector b−C
posted by users not in C, for any vector of true values vC of users in C, no strategy can increase C’s
expected utility by more than ε in comparison with honest behavior. Specifically,

• UIC. We say that a TFM (in either the plain or MPC-assisted model) satisfies ex post ε-user
incentive compatibility (UIC), iff for any n, for any i ∈ [n], for any bid vector b−i of all users
other than i, for any true value vi of user i, no strategy can increase i’s expected utility by more
than ε in comparison with truthful bidding.

• MIC. In the plain model, we focus on the miner of the present block when defining miner
incentive compatibility. We say a TFM in the plain model satisfies ex post ε-miner incentive
compatibility MIC, iff for any bid vector b, no strategy can increase the miner’s expected utility
by more than ε in comparison with honest behavior. Recall that that here, the miner’s honest
behavior is to honestly implement the inclusion rule and not inject any fake bids.

In the MPC-assisted model, we want MIC to hold for any coalition controlling at most ρ fraction
of the miners. Therefore, we say that an MPC-assisted TFM satisfies ex post ε-MIC against ρ-
sized coalitions, iff for any coalition controlling at most ρ fraction of the miners, for any bid
vector b, no strategy can increase the miner’s expected utility by more than ε in comparison
with honest behavior. In the FMPC-hybrid world, the miner’s honest behavior is simply not to
take on any identities and inject any fake bids.
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• SCP. In the plain model, we want side-contract-proofness to hold for any miner-user coalition
that involves the miner of the present block, and up to c users. We say that a TFM in the
plain model satisfies ex post ε-side-contract-proofness (SCP) for c-sized coalitions, iff for any
miner-user coalition consisting of the miner and up to c users, for any bid vector b−C posted by
users not in C, no strategy can increase C’s expected utility by more than ε in comparison with
honest behavior.

In the MPC-assisted model, we want SCP to hold for any miner-user coalition that involves up
to ρ fraction of the miners and up to c users. We say that an MPC-assisted TFM satisfies ex
post ε-SCP for (ρ, c)-sized coalitions, iff for any miner-user coalition2 consisting of at most ρ
fraction of the miners and up to c users, for any bid vector b−C posted by users not in C, no
strategy can increase the coalition’s utility by more than ε in comparison with honest behavior.

Bayesian incentive compatibility. For the MPC-assisted model, it also makes sense to con-
sider a Bayesian notion of incentive compatibility. In particular, the MPC-assisted model requires
that the strategic player or coalition decides its strategy without having seen the remaining users’
bids. We may assume that the strategic player or coalition has some a-prior belief of each honest
user’s true value distribution. We assume that all honest users’ true values are independently and
identically distributed (i.i.d.) and sampled from some distribution D. In Bayesian incentive com-
patibility, we imagine that a strategic individual or coalition cares about maximizing its expected
utility where the expectation is taken over not just the random coins of the mechanism, but also
the remaining honest users’ bids.

Henceforth, we denote the bid vector as b. Since the strategic players can choose to inject fake
bids or drop out, the length of b is not necessarily equal to the number of users. Given a set C
of users, we use b−C to denote the bids from users outside the coalition and D−C to denote the
joint distribution b−C . That is, D−C = Dh, where h is the number of honest users outside the
coalition. Similarly, for any fixed individual i, we use b−i to denote the bids from the remaining
users and D−i to denote the joint distribution of b−i. Again, we define ε-incentive compatibility
for the Bayesian setting below, where the corresponding strict incentive compatibility notions can
be obtained by setting ε = 0.

Definition 2.2 (Bayesian incentive compatibility). We say that an MPC-assisted TFM satisfies
Bayesian ε-incentive compatibility for a coalition or individual C, iff for any vC denoting the true
values of users in C, sample b−C ∼ D−C , then, no strategy can increase C’s expected utility by more
than ε in comparison with honest bevavior, where the expectation is taken over randomness of the
honest users bids b−C , as well as random coins consumed by the TFM. Specifically,

• UIC. We say that an MPC-assisted TFM satisfies Bayesian ε-UIC, iff for any n, for any user
i ∈ [n], for any true value vi ∈ R≥0 of user i, for any strategic bid vector bi from user i which
could be empty or consist of multiple bids,

E
b−i∼D−i

[
utili(b−i, vi)

]
≥ E

b−i∼D−i

[
utili(b−i,bi)

]
− ε

where utili(b) denotes the expected utility (taken over the random coins of the TFM) of user i
when the bid vector is b.
2We require the miner-user coalition to consist of a non-zero fraction the miners and at least one user — otherwise

the definition would degenerate to UIC or MIC.
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• MIC. We say that an MPC-assisted TFM satisfies Bayesian ε-MIC for ρ-sized coalitions, iff for
any miner coalition C controlling at most ρ fraction of the miners, for any strategic bid vector
b′ injected by the miner,

E
b−C∼D−C

[
utilC(b−C)

]
≥ E

b−C∼D−C

[
utilC(b−C ,b

′)
]
− ε

where utilC(b) denotes the expected utility (taken over the random coins of the TFM) of the
coalition C when the input bid vector is b.

• SCP. We say that an MPC-assisted TFM satisfies Bayesian ε-SCP for (ρ, c)-sized coalitions, iff
for any miner-user coalition consisting of at most ρ fraction of the miners and at most c users,
for any true value vector vC of users in C, for any strategic bid vector bC of the coalition (whose
length may not be equal to the number of users in C),

E
b−C∼D−C

[
utilC(b−C ,vC)

]
≥ E

b−C∼D−C

[
utilC(b−C ,bC)

]
− ε

Note that the Bayesian notions of incentive compatibility do not make sense in the plain model,
since in the plain model, the strategic individual or coalition can decide its move after having
observed the remaining honest users’ bids. This is why we adopt only the ex post notion in the
plain model. Formally, it is easy to show that any mechanism that satisfies Bayesian incentive
compatibility in the plain model also satisfies ex post incentive compatibility.

In the MPC-assisted model, both notions make sense, and the ex post notions are strictly
stronger than the Bayesian counterparts. Jumping ahead, all of our impossibility results for the
MPC-assisted model work even for the Bayesian notions, and all of our mechanism designs in the
MPC-assisted model work even for the ex post notions. This makes both our lower- and upper-
bounds stronger.

3 Approximate Incentive Compatibility for Infinite Block Size

In the plain model, no UIC and SCP mechanism (even for c = 1 and infinite block size) can achieve
positive miner revenue [CS21]. In Appendix C.1, we show that the same zero miner revenue lower
bound holds even in the MPC-assisted model. Therefore, we consider how to get meaningful miner
revenue using the relaxed notion of approximate incentive compatibility. In this section, we give
a tight characterization of approximate incentive compatibility for infinite block size. This tight
characterization applies to both the MPC-assisted model and the plain model.

3.1 Bounds on Miner Revenue

We first prove a limit on miner revenue in the MPC-assisted model, which holds even for in the
Bayesian setting. The same limit applies to the plain model for the ex post setting — to see this,
observe that the strategy space is strictly larger in the plain model, and moreover, for the plain
model, we only care about ρ = 1.

We now show an MPC-assisted mechanism simultaneously satisfies ε-UIC, ε-MIC and ε-SCP
even for the Bayesian setting and even for c = 1 and an arbitray choice ρ ∈ (0, 1], then the miner
can gain at most O(n · (ε+ ·

√
m∗ · ε))-miner revenue, where n is the number of users, and m∗ is a

term that depends on the “scale” of the bid distribution.
To prove the limit on the miner revenue, we care only about the probability of each bid being

confirmed, the expected payment of each bid, and the miner revenue. Therefore, we introduce the
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following notations to denote the outputs of the allocation, payment, and miner revenue rules — we
assume that each user’s true value is drawn i.i.d. from some distribution D since we are considering
the Bayesian setting:

• Allocation rule: given a bid vector b = (b1, . . . , bN ), the allocation rule outputs a vector
x(b) := (x1, . . . , xN ) ∈ [0, 1]N , where each xi denotes the probability of bi being confirmed.

• Payment rule: given a bid vector b = (b1, . . . , bN ), the payment rule outputs a vector p(b) :=
(p1, . . . , pN ) ∈ RN , where each pi denotes the expected payment of bi.

• Miner revenue rule: given a bid vector b = (b1, . . . , bN ), the miner revenue rule outputs
µ(b) ∈ R, denoting the amount paid to the miner.

We also define D−i := DN−1, and for the i-th user, we define

xi(·) = E
b−i∼D−i

[xi(b−i, ·)], pi(·) = E
b−i∼D−i

[pi(b−i, ·)], µi(·) = E
b−i∼D−i

[µ(b−i, ·)].

Henceforth, we often use (x,p, µ) to denote a TFM in the MPC-assisted model. The crux of our
proof is to characterize how miner revenue changes when we lower one user’s bid to 0 (Lemma 3.3).
We then apply this argument n times, and lower each user’s bid one by one to 0 to get the desired
bound. To make the second step work, we need to use approximate MIC to remove a user’s bid
from consideration once we have lowered it to zero — this ensures that in any step of our inductive
argument, the non-strategic users’ bids are always i.i.d. sampled from D.

Warmup. To understand how much the miner revenue changes when one user lowers its bid to 0,
we start from a simplified case where a TFM (x,p, µ) is Bayesian strict-UIC and Bayesian ε-SCP
for c = 1 and some ρ ∈ (0, 1]. By Myerson’s Lemma [Mye81], strict-UIC implies that, for any user
i, the allocation rule xi(·) must be non-decreasing. Moreover, the expected payment when bidding
b is specified as

pi(b) = b · xi(b)−
∫ b

0
xi(t)dt.

We care about how much the miner revenue can increase when user i bids r instead of 0. One
trivial upper bound can be obtained as follows. Imagine that user i’s true value is 0, but it bids r
instead. In this case, the user’s loss in utility (in comparison with truthful bidding) is represented
by the area of the gray triangle S in Figure 2a. Due to ε-SCP, the miner revenue increase when
user i bids r instead of 0 must be upper bounded by S + ε. This bound, however, is not tight. To
make it tighter, we consider bounding it in two steps by introducing a mid-point r′ ∈ (0, r). If user
i’s true value is 0, but it bids r′ instead, its utility loss is the area S1 of Figure 2b. By ε-SCP, we
conclude that µi(r′)− µi(0) ≥ S1 + ε. Now, imagine user i’s true value is r′ but it bids r instead.
Using a similar argument, we conclude that µi(r) − µi(r′) ≥ S2 + ε (see Figure 2b). Summarizing
the above, we have that µi(r)− µi(0) ≥ S1 + S2 + 2ε.
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(a) When user i changes its bid from 0 to r, it
loses utility S. Therefore, miner revenue changes
by no more than S + ε.
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S1

S2

(b) When user i changes its bid from 0 to r′,
it loses utility S1. Then when it changes its bid
from r′ to r, it loses utility S2.

Figure 2: User’s utility change

To get a tight bound, the key is how to choose the optimal number of steps L we use in the above
argument. Taking more steps makes the total area of the gray triangles smaller; however, every
step incurs an extra ε. Given the number of steps L, the sum of the L triangles is upper bounded by
r/L, and since each step incurs an additive ε term, our goal is to minimize the expression r/L+ εL.
Picking L =

√
r
ε minimizes the expression and thus we have that µi(r)− µi(0) ≤ 2

√
rε.

Full proof. The above warmup argument works for strict-UIC and ε-SCP. We want to prove
a limitation on miner revenue for Bayesian ε-UIC and ε-SCP. The challenge is that for ε-UIC,
Myerson’s lemma no longer holds — in particular, the allocation rule may not even be monotone
any more. The key idea our proof is to give a generalization of Myerson’s lemma to account for the
ε slack in incentive compatibility. We first prove a generalization of Myerson’s payment difference
sandwich for ε-UIC.

Lemma 3.1. Given any (possibly randomized) MPC-assisted TFM that is Bayesian ε-UIC, it must
be that for any user i, for any y ≤ z,

z · [xi(z)− xi(y)] + ε ≥ pi(z)− pi(y) ≥ y · [xi(z)− xi(y)]− ε. (1)

Proof. The proof is similar to the proof of Myerson’s Lemma. Note that user i’s expected utility
is v · xi(b)− pi(b) if its true value is v and its bid is b. By the definition of Bayesian ε-UIC, it must
be that

z · xi(z)− pi(z) + ε ≥ z · xi(y)− pi(y).

Otherwise if user i’s true value is z, bidding y can bring it strictly more than ε utility compared to
bidding truthfully, which contradicts Bayesian ε-UIC. By the same reasoning, we have

y · xi(y)− pi(y) + ε ≥ y · xi(z)− pi(z).

The lemma thus follows by combining these two inequalities.
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Based on this payment difference sandwich, we have the following result about the expected
miner’s revenue for approximate incentive compatibility.

Lemma 3.2. Fix any ρ ∈ (0, 1]. For any (possibly randomized) MPC-assisted TFM that is Bayesian
εu-UIC and Bayesian εs-SCP against a (ρ, 1)-sized coalition, it must be that for any user i, for any
y ≤ z,

µi(z)− µi(y) ≤
1

ρ
(εu + εs + S(y, z)), (2)

where S(y, z) = (z − y)[xi(z) − xi(y)].

Proof. The utility of user i is v · xi(b) − pi(b) if its true value is v and it bids b. Imagine that the
user i’s true value is y. If user i overbids z > y instead of its true value y, then its expected utility
decreases by

∆ = y · xi(y)− pi(y)− [y · xi(z)− pi(z)]

= −y · [xi(z)− xi(y)] + (pi(z) − pi(y))

≤ −y · [xi(z)− xi(y)] + z · [xi(z) − xi(y)] + εu By Bayesian εu-UIC and (1)

= (z − y) · [xi(z) − xi(y)] + εu = S(y, z) + εu.

A graphical description of S(y, z) is shown in Figure 3 — note that S(y, z) can be negative since
the allocation rule xi(·) may not be monotone under approximate UIC.

0 y′ z′

1

b

x
i(
b)

(a) An illustrative example of S(y, z) in increas-
ing function. The size of the gray area in the
figure is exactly S(y, z).

0 y′ z′

1

b

x
i(
b)

(b) When the function decreases, S(y, z) can be
negative. S(y, z) is the negative of the dashed
rectangle area.

Figure 3: User’s utility change

By Bayesian εs-SCP, it must be that ρµi(z) − ρµi(y) ≤ ∆ + εs; otherwise, a strategic player
controlling ρ fraction of the miners can collude with user i, and ask user i to bid z instead of its
true value y. This increases the coalition’s utility by strictly more than εs compared to the honest
strategy, which contradicts Bayesian εs-SCP.

Lemma 3.3. Fix any ρ ∈ (0, 1]. For any (possibly randomized) MPC-assisted TFM that is Bayesian
εu-UIC and Bayesian εs-SCP against a (ρ, 1)-sized coalition, for any user i, for any value r, it must
be that

µi(r)− µi(0) ≤

{
2
ρ(εs + εu), if r ≤ εs + εu
2
ρ(
√

r(εs + εu)), if r > εs + εu.
(3)
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Proof. Let ε′ = εs + εu. To prove this Lemma, we consider the following two cases.

Case 1: If r ≤ ε′. In this case, by Lemma 3.2, we have that

µi(r)− µi(0) ≤
1

ρ
(εu + εs + S(0, r)) ≤

1

ρ
(εu + εs + r) ≤

2ε′

ρ
.

Case 2: If r > ε′. We choose a sequence of points that partitions the interval [0, r] as follows.
Let L = )

√
r
ε′ *. Set r0 = 0 and rL+1 = r. For l = 1, . . . , L, we set rl = l ·

√
rε′. Each segment

except the last one is of length
√
rε′, while the last one has length no more than

√
rε′.

Now we proceed to bound µi(r)− µi(0). Note that

µi(r)− µi(0) =
L∑

l=0

[µi(rl+1)− µi(rl)]

≤
L∑

l=0

1

ρ
[ε′ + S(rl, rl+1)] By Lemma 3.2

=
Lε′

ρ
+

1

ρ

L∑

l=0

(rl+1 − rl) · [xi(rl+1)− xi(rl)]

≤
Lε′

ρ
+

1

ρ

√
rε′

L∑

l=0

[xi(rl+1)− xi(rl)] By the choice of rl

≤
Lε′

ρ
+

1

ρ

√
rε′ By xi(r) ≤ 1

Since L = )
√

r
ε′ * ≤

√
r
ε′ , we have that

µi(r)− µi(0) ≤
2
√
rε′

ρ
.

Now, we want to bound the miner revenue by lowering each user’s bid to 0 one by one, and apply
Lemma 3.3 in each step. To make this argument work, one key insight is to rely on approximate
MIC to remove a user’s bid from consideration after lowering it to zero — see Equation (5) in the
proof of Theorem 3.4 below. This ensures that in any step of the induction, any honest user’s bid
is sampled from D.

Theorem 3.4 (Limit on miner revenue for approximate incentive compatibility). Suppose that
there are n users, whose true values are drawn i.i.d. from some distribution D. Given any (possi-
bly randomized) MPC-assisted TFM that is Bayesian εu-UIC, Bayesian εm-MIC against a ρ-sized
miner coalition and Bayesian εs-SCP against a (ρ, 1)-sized coalition, it must be that

E
b∼Dn

[µ(b)] ≤
2n

ρ

(
ε+ CD

√
ε
)
, (4)

where ε = εs+εu+εm, and CD = EX∼D[
√
X] is a term that depends on the “scale” of the distribution

D.
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Proof. Since the TFM is Bayesian εm-MIC, it must be that for any #,

E
b∼D!

[ρµ(b, 0)] ≤ E
b∼D!

[ρµ(b)] + εm. (5)

Otherwise, the strategic miner can inject a bid 0 and increase its miner revenue by strictly more
than εm, while it does not need pay anything for injecting this 0-bid. This violates Bayesian
εm-MIC.

Let f(·) be the p.d.f. of distribution D. By the law of total expectation,

E
b∼Dn

[µ(b)] =

∫ ∞

0
E

b′∼Dn−1
[µ(b′, r)]f(r)dr.

Let ε′ = εs + εu. Since the mechanism is Bayesian εu-UIC and Bayesian εs-SCP against (ρ, 1)-sized
coalition, by Lemma 3.3, it must be that

∫ ε′

0
E

b′∼Dn−1
[µ(b′, r)]f(r)dr ≤

∫ ε′

0

[
E

b′∼Dn−1
[µ(b′, 0)] +

2ε′

ρ

]
f(r)dr;

∫ ∞

ε′
E

b′∼Dn−1
[µ(b′, r)]f(r)dr ≤

∫ ∞

ε′

[

E
b′∼Dn−1

[µ(b′, 0)] +
2
√
rε′

ρ

]

f(r)dr.

Summing up the two inequalities above, we can bound the expected miner revenue with

E
b∼Dn

[µ(b)]

=

∫ ε′

0
E

b′∼Dn−1
[µ(b′, r)]f(r)dr +

∫ ∞

ε′
E

b′∼Dn−1
[µ(b′, r)]f(r)dr

≤
∫ ε′

0

[
E

b′∼Dn−1
[µ(b′, 0)] +

2ε′

ρ

]
f(r)dr +

∫ ∞

ε′

[
E

b′∼Dn−1
[µ(b′, 0)] +

2
√
rε′

ρ

]
f(r)dr

≤ E
b′∼Dn−1

[µ(b′, 0)] +
2ε′

ρ

∫ ε′

0
f(r)dr +

2
√
ε′

ρ

∫ ∞

ε′

√
rf(r)dr

By (5), we have that E
b′∼Dn−1

[µ(b′, 0)] ≤ E
b′∼Dn−1

[µ(b′)] + εm
ρ . Therefore,

E
b∼Dn

[µ(b)]

≤ E
b′∼Dn−1

[µ(b′, 0)] +
2ε′

ρ

∫ ε′

0
f(r)dr +

2
√
ε′

ρ

∫ ∞

ε′

√
rf(r)dr

≤ E
b′∼Dn−1

[µ(b′)] +
εm
ρ

+
2ε′

ρ
+

2
√
ε′

ρ
EX∼D[

√
X]

≤ E
b′∼Dn−1

[µ(b′)] +
2ε

ρ
+

2CD
√
ε

ρ
,

where the last step comes from the fact that ε = εs + εu + εm. The theorem follows by induction
on n, where in each induction step we repeat the argument above.

It is easy to see that the same miner revenue limit of Theorem 3.4 also holds in the plain model,
as stated in the following corollary.
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Corollary 3.5. Suppose that there are n users, whose true values are drawn i.i.d. from some
distribution D. Given any (possibly randomized) TFM in the plain model that is εu-UIC, εm-MIC,
and εs-SCP even for c = 1, it must be that

E
b∼Dn

[µ(b)] ≤ 2n
(
ε+CD

√
ε
)
, (6)

where ε = εs+εu+εm, and CD = EX∼D[
√
X] is a term that depends on the “scale” of the distribution

D.

Proof. Follows directly from Theorem 3.4 which holds in particular for ρ = 1, and the fact that the
strategy space in the plain model is strictly larger than in the MPC-assisted model.

3.2 Achieving Optimal Revenue: Proportional Auction

We now show that the limit on miner revenue in Theorem 3.4 is asymptotically tight, i.e., we
can indeed design a TFM, even in the plain model, whose miner revenue asymptotically matches
Equation (4) for some natural bid distribution.

Proportional Auction (plain model)

Parameters: the slack ε, the reserved price r where r ≥ 2ε.

Input: a bid vector b = (b1, . . . , bN ).

Mechanism:

• Inclusion rule. Include all bids in b.

• Confirmation rule. For each bid b, if b < r, it is confirmed with the probability b/r;
otherwise, if b ≥ r, it is confirmed with probability 1.

• Payment rule. For each confirmed bid b, if b < r, it pays b/2; otherwise, it pays r/2.

• Miner revenue rule. For each confirmed bid b, if b ≥
√
2rεa, then miner is paid

√
2rε
2 .

aThis guarantees that the miner revenue does not exceed the total payment.

The above mechanism is called the proportional mechanism since the user’s confirmation prob-
ability is proportional to the bid in the region [0, r], and any bid that is at least r is confirmed with
probability 1.

Theorem 3.6. The above proportional auction in the plain model is UIC, MIC and 5
4cε-SCP

against c-sized coalitions for arbitrary c ≥ 1.

Proof intuition. We provide the proof intuition and defer the full proof to Appendix A. First,
UIC and MIC are easy to prove. Observe that the allocation rule (i.e., the union of the inclusion and
confirmation rules) is monotone, and by design, the payment rule is the unique one that satisfies
Myerson’s Lemma. Therefore, the mechanism satisfies UIC. It is easy to see that injecting a bid
does not help the miner, since each bid’s contribution to the miner revenue is independent and
limited by the payment amount.

Proving that the mechanism satisfies 5
4cε-SCP is more technical. Here we give an illustrative

explanation to show that the joint utility of each user and the miner can increase by at most
5
4ε. Since underbidding does not increase the user’s utility or the miner’s revenue, we focus on
overbidding. Note that overbidding does not increase the joint utility for a user whose true value is
v ≥ r. Therefore, we focus in the case where the colluding user has true value v < r and overbids.
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If v ≥
√
2rε, the user’s utility loss when overbidding to v′ is represented by the gray triangle

in Figure 4a. Meanwhile, the miner’s expected revenue increases by
√
2rε
2 (v

′

r −
v
r ), which is the area

of the dashed rectangle in Figure 4a. Therefore, when the user overbids by v′ − v =
√
2rε
2 , the

coalition’s utility increase is maximized and equals to ε
4 .

If v <
√
2rε and the colluding user overbids to v′ ≥

√
2rε, then the user’s utility loss when

overbidding to v′ is represented by the area of the gray triangle in Figure 4b. The miner’s revenue

now increases by v′

r ·
√
2rε
2 , because the user’s utility would be 0 if the user behaves honestly. The

increase in the miner’s revenue is represented by the dashed rectangle in Figure 4b. The increase
in the joint utility of the coalition is maximized when v is arbitrarily close to

√
2rε and the user

overbids by v′ − v =
√
2rε
2 . In this case, the joint utility of the coalition increases by 5

4ε.

0
√
2rε r′

1

b

x
i(
b)

v v′

√
2rε
2

(a) An illustrative example of the coalition’s
joint utility change when the user’s true value
v ≥
√
2rε.

√
2rε r′

1

b

v′v

√
2rε
2

(b) An illustrative example of the coalition’s
joint utility change when the user’s true value
v <
√
2rε.

Figure 4: Coalition’s joint utility change when the miner colluding with one user

4 Characterization of Finite Block Size in the Plain Model

In real-world blockchains, we do not have an infinite block size. Chung and Shi [CS21] showed that
no non-trivial plain-model TFM can achieve strict UIC and strict SCP (even when c = 1) for finite
block size. In this section, we show that although approximate incentive compatibility can help
us overcome this impossibility, nonetheless we cannot get useful mechanisms whose social welfare
scales with the bid distribution (ignoring logarithmic terms).

Theorem 4.1. Suppose the block size is upper bounded by k. Fix any ε > 0. Given any TFM in
the plain model that satisfies ε-UIC, ε-MIC and ε-SCP when the miner can collude with at most
c = 1 user, and given any bid vector b, let M = max(b) be the maximum bid of any user, it must
be that

• the miner’s expected revenue is upper bounded by 12k2ε log
(
M
ε + 1

)
+ 2kε;

• every user’s expected utility is upper bounded by 12k2ε log
(
M
ε + 1

)
+ (2k + 1)ε conditioned on

the bid being included in the block, and assuming the bid reflects its true value;

• the expected social welfare is upper bounded by O
(
k3ε log

(
M
ε + 1

)
+ k2ε

)
.
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A direct corollary of Theorem 4.1 is that there is no non-trivial mechanism that satisfies ap-
proximate incentive compatibility if the user’s true value is unbounded. This implies that there is
no universal mechanism that works for all bid distributions. Formally,

Corollary 4.2. Suppose the block size is upper bounded by k. Fix any ε > 0. If users’ true values are
unbounded, then no (possibly randomized) non-trivial TFM in the plain model can simultaneously
satisfy ε-UIC and ε-SCP, even if the miner colludes with only one user.

Proof. For the sake of contradiction, assume that there exists an ε > 0, such that there exists a
non-trivial TFM satisfying ε-UIC and ε-SCP. Recall that xi(b) denotes the probability of user i’s
bid being confirmed given that the world consists of the bid vector b (assuming the mechanism
is honestly implemented). We define x̃i(b′) to be the probability of user i’s bid being confirmed
conditioned on its bid being included in the block configuration b′. According to the assumption
that the mechanism is non-trivial, there must exist an i ∈ [k] and a block configuration b′ = (b∗,b−i)
such that b∗ has a positive probability x̃i(b′) of being confirmed.

Now imagine the world consists of the bid vector b where

b = (b1, b2, . . . , bk−1,M,M, . . . ,M︸ ︷︷ ︸
T

),

where T ≥ 2k
x̃i(b′) and M is some large number (larger than max{b1, . . . , bk}) that we will specify

later.
Since the block size is bounded by k, there must exist a user j whose true value is M yet its

probability of being confirmed is no more than k
T ≤

1
2 x̃i(b

′) by our choice of T . Therefore, user j’s
utility (assuming the mechanism is honestly implemented) is at most M · 1

2 x̃i(b
′). Now consider

the coalition of the miner and user j. By Theorem 4.1, their joint utility when behaving honestly
is at most

M ·
1

2
x̃i(b

′) + 12k2ε log

(
M

ε
+ 1

)
+ 2kε.

However, the miner can ask user j to bid b∗ instead of its true valueM and include (b1, . . . , bk−1, b∗)
into the block, where the bid b∗ comes from user j. Since the payment cannot exceed the bid, now
the utility of user j is at least

M · x̃i(b′)− b∗.

As long as M is large enough such that

M · x̃i(b′)− b∗ ≥M ·
1

2
x̃i(b

′) + 12k2ε log

(
M

ε
+ 1

)
+ 2kε+ ε,

the coalition gains ε more joint utility comparing to honest strategy. This contradicts ε-SCP. Note
that since user’s true value can be unbounded, such M must exist. Therefore, there does not exist
a non-trivial mechanism that satisfies ε-UIC and ε-SCP simultaneously.

The rest of Section 4 is dedicated to proving Theorem 4.1.

4.1 Proof Roadmap

We first explain the blueprint. To prove that the total social welfare is small, we first show that
the miner revenue must be Õ(k2ε) for any bid configuration. If we can show this, then given
that the block size is finite, we can show that every user i’s utility conditioned on being included
is small, which then allows us to bound the total social welfare. Suppose this is not the case,
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i.e., suppose that under some bid configuration b := (b1, . . . , bN ), there is a user i with expected
utility (conditioned on being included) significantly larger than the maximum possible expected
miner revenue (which is upper bounded by Õ(k2ε)). Then, imagine a world consisting of b and
additionally (infinitely) many users whose true value is the same as bi. In this case, there must be
one such user j whose expected utility is almost 0. Thus, if j is the miner’s colluding friend, the
miner would be willing to sacrifice all of its revenue, pretend that the world consists of b where the
i-th coordinate is replaced with j’s bid, and run the honest mechanism subject to j being included.
In this case, the coalition can increase its expected joint utility since user j would be doing much
better than the honest case.

The crux of our proof, therefore, is to show that the expected miner revenue must be bounded
for any bid vector. To show this, we take two main steps. First, we show that if the world consists of
only bids of value M , the expected miner revenue must be small (see Lemma 4.5). Using the above
as base case, we then go through an inductive argument to show that in fact, for any bid vector
where users do not necessarily bid M , the miner revenue must be small too (see Lemma 4.6). Note
that showing the first step itself relies on another inductive argument that inducts on the length of
the bid vector.

4.2 Detailed Proof

4.2.1 Individual User’s Influence on Miner Revenue is Bounded

Before proving Theorem 4.1, we introduce some useful lemmas. The following lemma states that
if, given some bid configuration, a user’s expected utility is not too large, then, the miner’s expected
revenue should not drop too much when we lower that user’s bid to 0.

Lemma 4.3. Given any (possibly randomized) TFM in the plain model that satisfies ε-UIC, ε-MIC
and ε-SCP against 1-sized coalition, for any b−i and v, we have the following where utili(b) denotes
user i’s expected utility and µ(b) is the expected miner revenue when the bid vector is b:

µ(b−i, v)− µ(b−i, 0) ≤

{
4ε, v ≤ 2ε

utili(b−i, v) + 3ε log v
ε + 4ε, v > 2ε.

Proof. Henceforth, we use x(b) to denote the vector of probabilities that each bid in b is included
and confirmed, and let p(b) denote the vector of expected payments for every user when the bid
vector is b.

First, observe that Lemma 3.1 and Equation (7) still hold in the plain model where the terms
xi(·), pi(·), and µ(·) are now replaced with xi(b−i, ·) pi(b−i, ·), and µ(bi, ·) respectively, i.e., we
now fix an arbitrary fixed b−i rather than taking expectation over the random choice b−i.

Specifically, Lemma 3.1 implies that for any b−i, for any b ≤ b′,

b′ · [xi(b−i, b
′)− xi(b−i, b)] + ε ≥ pi(b−i, b

′)− pi(b−i, b) ≥ b · [xi(b−i, b
′)− xi(b−i, b)]− ε. (7)

Lemma 3.2 implies that for any b−i, for any b ≤ b′,

µ(b−i, b
′)− µ(b−i, b) ≤ 2ε+ (b′ − b) · [xi(b−i, b

′)− xi(b−i, b)]. (8)

Henceforth in this proof, we always fix an arbitrary b−i. For simplicity, in this proof, we omit
b−i and use the short-hand notations xi(v) := xi(b−i, v), pi(v) := pi(b−i, v), and µ(v) := µ(b−i, v).
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For v ≤ 2ε, the lemma directly follows from (8). In the rest of the proof, we focus on the case

where v > 2ε. Define a function ui(b) such that
∫ b
0 ui(t)dt = b · xi(b) − pi(b). For any b ≤ b′, the

payment when bidding b is

pi(b) = b · xi(b)−
∫ b

0
ui(t)dt.

Since we do not have the guarantee that the utility increases with the bids, it can be that ui(b) ≤ 0

for some b. However, we have that guarantee that at any point,
∫ b
0 ui(t)dt is non-negative.

By Equation (7), we know that for any b ≤ b′, we have pi(b′)− pi(b) ≤ b′[xi(b′)− xi(b)] + ε, i.e.,
[
b′ · xi(b′)−

∫ b′

0
ui(t)dt

]
−

[
b · xi(b)−

∫ b

0
ui(t)dt

]
≤ b′ · [xi(b′)− xi(b)] + ε,

which is equivalent to

ξ(b, b′) := (b′ − b) · xi(b)−
∫ b′

b
ui(t)dt ≤ ε. (9)

Intuitively, the meaning of ξ(b, b′) is how much we are over-estimating if we use a rectangle of width
b′− b and height xi(b) to approximate the area-under-curve3 for ui, between b and b′. For example,
the blue area in Figure 5a represents ξ(b, b′), whereas the red area minus the gray area is ξ(b′′, v).

Now consider the following sequence: bl = v − v
2l

for l = 0, . . . , L where L = +log v
2ε,. By (8),

the miner revenue
µ(bl)− µ(bl−1) ≤ 2ε+ S(bl−1, bl),

where S(bl−1, bl) := (bl−bl−1)·[xi(bl)−xi(bl−1)]. Summing up the miner revenue difference together,
we have

µ(v)− µ(0) = µ(v)− µ(bL) +
L∑

l=1

µ(bl)− µ(bl−1)

≤2ε+ (v − bL) · [xi(v)− xi(bL)] +
L∑

l=1

(S(bl−1, bl) + 2ε) By (8)

≤4ε+ 2Lε+
L∑

l=1

S(bl−1, bl). By v − bL ≤ 2ε

Now we proceed to bound the sum
∑L

l=1 S(bl−1, bl). For each l = 1, . . . , L, by the choice of the
sequence, we have

bl − bl−1 =
v

2l
= v − bl, and S(bl−1, bl) = (v − bl) · [xi(bl)− xi(bl−1)]

For simplicity, let bL+1 := v. We have the following:

L∑

l=1

S(bl−1, bl) =
L∑

l=1

(v − bl) · [xi(bl)− xi(bl−1)]

=(v − bL) · xi(bL) +
L−1∑

l=1

(bl+1 − bl) · xi(bl)

=
L∑

l=1

(bl+1 − bl) · xi(bl). By v = bL+1

3We may assume that any area under 0 contributes negatively to the area-under-curve.
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In other words, the sum
∑L

l=1 S(bl−1, bl) is equal to the total area of the dashed rectangles in

Figure 5b. We want to show that the sum
∑L

l=1 S(bl−1, bl) is not significantly greater than utili(v),
i.e., the area under the ui-curve. The follow calculation says that this difference is upper bounded
by

∑L
l=1 ξ(bl, bl+1). Formally,

L∑

l=1

S(bl−1, bl)−
∫ v

0
ui(t)dt =

L∑

l=1

(bl+1 − bl)xi(bl)−
∫ v

0
ui(t)dt

≤
L∑

l=1

{
(bl+1 − bl) · xi(bl)−

∫ bl+1

bl

ui(t)dt

}
By

∫ b1

0
ui(t) ≥ 0

=
L∑

l=1

ξ(bl, bl + 1) ≤
L∑

l=1

ε = Lε. By (9)

Putting it together, the change in miner revenue µ(v)− µ(0) is upper bounded by

µ(v)− µ(0) ≤ 4ε+ 2Lε+
L∑

l=1

S(bl−1, bl)

≤4ε+ 2Lε+ Lε+

∫ v

0
ui(t)dt ≤ utili(b−i, v) + 3ε log

v

ε
+ 4ε,

where the last step comes from the fact that L ≤ log v
ε by our choice of L.

b b′ b′′ v

0

1 xi(·)
ui(·)

ξ(b, b′)

ξ(b′′, v)

(a) The blue area denotes ξ(b, b′), and the red
area minus the gray area denotes ξ(b′′, v).

b0 b1 b2 b3 v

0

1 xi(·)
ui(·)

ξ(b2, b3)

ξ(b3, v)

ξ(b1, b2)

(b) The sum of the dashed rectangles is equal

to
∑L

l=1
S(bl, bl+1). The difference between∑L

l=1
S(bl, bl+1) and the area under the ui(·)

curve is upper bounded by
∑L

l=1
ξ(bl, bl+1), rep-

resented by the sum of the blue areas minus the
gray area.

Figure 5: Graphical explanation of the proof to Lemma 4.3

Because the miner can inject a bid 0 for free, Lemma 4.3 implies the following corollary, which
says that if we remove a bid, the miner revenue should not be affected by too much.
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Corollary 4.4. Let (x,p, µ) denote any (possibly randomized) TFM in the plain model that satisfies
ε-UIC, ε-MIC and ε-SCP against 1-sized coalition. For any b−i and v,

µ(b−i, v)− µ(b−i) =

{
5ε, v ≤ 2ε

utili(b−i, v) + 3ε log v
ε + 5ε, v > 2ε.

Proof. Because the miner can inject a bid 0 for free, by ε-MIC, it must be

µ(b−i, 0) − µ(b−i) ≤ ε. (10)

The corollary is now directly implied by Equation (10) and Lemma 4.3.

4.2.2 Bounds on Miner Revenue

We now prove bounds for the miner’s revenue. To do this, we first prove a bound on miner revenue
when everyone bids the same value M (see Lemma 4.5). Then, we generalize to the case when
everyone’s bids need not be the same (see Lemma 4.6).

Notation. Henceforth, for t ∈ N ∪ {0}, we define mt := (M, . . . ,M) where |mt| = t; that is, mt

consists of t copies of M . Recall that µ(b) denote the expected miner revenue given that the world
consists of the bid vector b (assuming the mechanism is honestly implemented). We define µ̃(b′)
to be the expected miner revenue given that the block configuration is b′.

Lemma 4.5. Suppose that the block size is upper bounded by k. Fix an arbitrary any ε > 0 and
M > 2ε and let mt := (M,M, . . . ,M) be a vector containing t repetitions of M . Then, for any
(possibly randomized) TFM in the plain model that satisfies ε-UIC, ε-MIC and ε-SCP even when
the miner colludes with at most c = 1 user, it holds that µ̃(mt) ≤ 12k2ε log M

ε for all t ≤ k.

Proof. Imagine the world consists of the bid vector mK where K > Mk
ε is sufficiently large. Let

mt∗ be the block configuration that gives the miner optimal revenue; that is t∗ = argmaxt≤k µ̃(mt).
Clearly, it must be µ̃(mt∗) ≥ µ(mK). Because of ε-MIC, we have µ(mt∗) ≥ µ̃(mt∗)− ε. Otherwise,
if µ(mt∗) < µ̃(mt∗) − ε, when the world is mt∗ , the miner could simply choose mt∗ as the block
configuration so that the revenue becomes µ̃(mt∗), which is more than ε higher than its honest
utility µ(mt∗). Combining the two inequalities, we have µ(mt∗) ≥ µ(mK)− ε.

Recall that utili(b) denotes user i’s expected utility when the bid vector is b. Next, we will
show that for any t ≤ K and any user i ∈ [t], it must be

µ(mt) + utili(mt) ≤ µ(mK) + 2ε. (11)

For the sake of reaching a contradiction, suppose there is an integer t and user i such that µ(mt)+
utili(mt) > µ(mK)+ 2ε. Imagine that the world is mK , where K > Mk

ε . There must exist a user j

whose confirmation probability is at most xj(mK) ≤ k
K < ε

M , as at most k bids can be included in
a block. Therefore, user j’s utility is at most utilj(mK) ≤ xj(mK) ·M < ε. Imagine that the miner
now colludes with user j. The miner implements the inclusion rule as if the world consists of the
bid vector mt where the i-th position is occupied by user j’s bid. Since the TFM is symmetric, and
both users bid M , user j’s expected utility is now utili(mt). The joint utility of the coalition now is
µ(mt)+ utili(mt) > µ(mK)+2ε > µ(mK)+ utilj(mK)+ ε, which contradicts ε-SCP. Consequently,
Equation (11) must hold for any t ≤ K and any user i ∈ [t].
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According to Equation (11), we have µ(mt∗) + utili(mt∗) ≤ µ(mK) + 2ε for any user i. As we
have shown, it must be µ(mt∗) ≥ µ(mK)− ε. Combining these two inequalities, we have

utili(mt∗) ≤ µ(mK) + 2ε− µ(mt∗) ≤ µ(mK) + 2ε− µ(mK) + ε = 3ε.

Since the utility of user i is bounded, by applying Corollary 4.4, it must be

µ(mt∗)− µ(mt∗−1) ≤ utili(mt∗) + 3ε log
M

ε
+ 5ε ≤ 8ε+ 3ε log

M

ε
. (12)

Consequently, we have

utili(mt∗−1) ≤ µ(mK) + 2ε− µ(mt∗−1) By (11)

≤µ(mK) + 2ε− µ(mt∗) + 8ε+ 3ε log
M

ε
By (12)

≤µ(mK) + 2ε− µ(mK) + ε+ 8ε+ 3ε log
M

ε
By µ(mt∗) ≥ µ(mK)− ε

=11ε+ 3ε log
M

ε
.

Then, we can apply Corollary 4.4 again, and we have

µ(mt∗−1)− µ(mt∗−2) ≤ utili(mt∗−1) + 3ε log
M

ε
+ 5ε ≤ 16ε+ 6ε log

M

ε
.

By the same reason, for any r ≤ t∗, we have

µ(mt∗−r)− µ(mt∗−r−1) ≤ (8r + 8)ε+ (3r + 3) · ε log
M

ε
. (13)

Since M ≥ 2ε, we have ε log M
ε ≥ ε. By Eq.(13), we have

µ(mt∗)− µ(m0) =
t∗−1∑

r=0

µ(mt∗−r)− µ(mt∗−r−1)

≤ (8t∗ + 4(t∗ − 1)t∗) ε+

(
3t∗ +

3(t∗ − 1)t∗

2

)
· ε log

M

ε

≤11(t∗)2ε log
M

ε
. By ε log

M

ε
≥ ε and t∗ ≥ 1

Notice that µ(m0) = 0, so we have

µ(mt∗) ≤ 11(t∗)2ε log
M

ε
.

Recall that we define t∗ = argmaxt≤k µ̃(mt). By definition, µ̃(mt) ≤ µ̃(mt∗) for all t ≤ k. As we
have shown at the beginning, it must be µ(mt∗) ≥ µ̃(mt∗) − ε. Thus, we have µ̃(mt) ≤ µ̃(mt∗) ≤
µ(mt∗) + ε for all t ≤ k. Combine the arguments above, we have µ̃(mt) ≤ 11k2ε log M

ε + ε ≤
12k2ε log M

ε for all t ≤ k.

Lemma 4.6. Suppose the block size is upper bounded by k. Fix any ε > 0. For any (possibly
randomized) TFM in the plain model that satisfies ε-UIC, ε-MIC and ε-SCP (even when the miner
only colludes with one user), for any block configuration b, the following must hold where M is the
maximum bid amount in the bid vector b:

µ̃(b) ≤

{
2kε, if M < 2ε,

12k2ε log M
ε + 2kε, if M ≥ 2ε.
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Proof. Given any block configuration b, the miner revenue must be upper bounded by the sum of
the bids in b. Thus, if M < 2ε, the miner revenue is upper bounded by 2kε.

Henceforth, we focus on the case M ≥ 2ε. Throughout the proof, we say that a bid b is a low
bid if b < M . Then, any block configuration, up to reordering, can be represented by (mt,L) for
some t ≥ 1, where mt consists of t repetitions of M , L which is possibly of length 0, contains only
low bids. We prove the following claim by induction on the length of L:

For any L consisting of only low bids, for any t such that t + |L| ≤ k, the miner revenue
µ̃(mt,L) ≤ τ + 2|L|ε, where we set τ := 12k2ε log M

ε .

For the base case where |L| = 0, i.e. the block does not contain any low bid, it is proven by
Lemma 4.5.

Now, suppose we have proven that for any L′ of length R, for any t, the miner revenue
µ̃(mt,L′) ≤ τ + 2Rε. We are going to show that for any L of length R + 1, for any t, the
miner revenue µ̃(mt,L) ≤ τ + 2(R + 1)ε.

For the sake of contradiction, suppose there exists a bid L of length R + 1 and there exists
a t, such that for the block configuration (mt,L) = (mt, d1, . . . , dR, dR+1), the miner’s revenue is
τ +2(R+1)ε+ δ for some δ > 0. Now, imagine that the world consists of (mK , d1, . . . , dR), where
K > kM

ε . In this case, the block configuration output by the honest inclusion rule must be of the
form (mt∗ ,d) for some t∗ ≤ k − |d| and d ⊆ {d1, . . . , dR} consists of only low bids. Since (mt∗ ,d)
only contains at most R low bids, the miner revenue µ̃(mt∗ ,d) ≤ τ +2Rε by induction hypothesis.

By our choice of K, there must exist a user i with true value M , whose confirmation probability
xi(mK , d1, . . . , dR) ≤ k

K < ε
M when the miner is honest. Thus, user i’s utility is at most

M · xi(mK , d1, . . . , dR) < ε. Now the miner can collude with user i, ask user i to bid dR+1 instead
of its true value M and include (mt, d1, . . . , dR, dR+1) in the block. Since dR+1 < M and the
payment never exceeds the bid, user i’s utility is at least zero. This implies that the decrease of
the utility of user i is strictly less than ε. Now the miner revenue is τ + 2(R + 1)ε + δ by our
assumption, whereas the miner revenue in the honest case is at most τ + 2Rε. Thus, the miner
revenue increases by more than 2ε compared to the honest case. Thus, the joint utility of the
coalition increases by more than ε, which contradicts ε-SCP. Therefore, by induction, we have that
µ(mt,L) ≤ τ + 2|L|ε for any L and any t where |L| + t ≤ k. Finally, since |L| ≤ k, we conclude
that µ̃(b) ≤ 12k2ε log M

ε + 2kε.

4.2.3 Completing the Proof of Theorem 4.1

We now complete the proof of Theorem 4.1. To do so, we prove that each user’s utility conditioned
on being included must be bounded given that the miner revenue is bounded (see Lemma 4.7),
which then leads to our conclusion that the total social welfare must be small.

Lemma 4.7. Suppose that the block size is upper bounded by k. Fix any ε > 0. For any (possibly
randomized) TFM in the plain model satisfies ε-UIC and ε-SCP (even when the miner colludes
with only one user), for any bid vector b where M := max(b), for and any user i, conditioned
on user i being included in the block, user i’s utility must be upper bounded by U + ε where U =

max
|b′|≤k,max(b′)≤M

µ̃(b′), i.e., U is the maximum possible revenue the miner can get among all possible

block configurations where all bids are at most M .

Proof. For the sake of contradiction, suppose that under some bid vector b′ where all bids are at
most M , some user j’s expected utility conditioned on being included in the block is strictly more
than U + ε. This implies that there must exist a block configuration b = (b1, . . . , b|b|) where all
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bids are at most M , and some i ≤ |b|, such that under conditioned on the block configuration
being b, the i-th bid bi in the block has expected utility at least U + ε+ δ for some positive δ. Let
T = + bikδ ,+ 1. Imagine that the world consists of the bid vector b′ of length T + |b| where

b′ = (b, bi, bi, . . . , bi︸ ︷︷ ︸
T

).

Because the block size is upper bounded by k, there must exist a user j whose bid is bi while its
confirmation probability is at most k

T . Therefore, if user j bids truthfully, its utility is at most

bi · k
T < δ. By our assumption, the miner revenue is at most U under any block configuration

where bids are upper bounded by M . Thus, when behaving honestly, the miner and user j have
joint utility strictly less than U + δ. However, the miner can collude with user j and prepare
the block where the block configuration is b and the i-th position is replaced with user j’s bid
instead. In this case, user j’s utility is U + ε + δ. Because the coalition does not inject any fake
bid, the miner’s utility is at least zero. Thus, by deviating from the mechanism, the joint utility
of the coalition becomes at least U + ε + δ, which exceeds the honest case by more than ε. This
contradicts ε-SCP.

Proof of Theorem 4.1. Suppose the world consists of an arbitrary bid vector b. Let M =
max(b). If M < 2ε, the miner can have at most 2kε-miner revenue by Lemma 4.6. For any
user i who is bidding truthfully, its true value must be upper bounded by M since M = max(b).
Moreover, each confirmed user’s utility is at most its true value, which is upper bounded by M < 2ε.
Since there are at most k number of confirmed user, the expected social welfare is

∑
i util

i(b) plus
the miner’s expected utility, which is upper bounded by 4kε.

In the rest of the proof, we assume M ≥ 2ε and we define ûtil
i
(b) to be the utility of user i

conditioned on being confirmed when the world consists of the bid vector b. By Lemma 4.6, the

miner can have at most
(
12k2ε log M

ε + 2kε
)
-miner revenue. By Lemma 4.7, for any i, ûtil

i
(b) ≤

12k2ε log M
ε + (2k+1)ε. Let γi be the probability that user i is included in the block given the bid

vector b. Observe that
∑

i γi ≤ k for any b. Therefore, the expected total utility of all users is
upper bounded by

∑

i

utili(b) =
∑

i

ûtil
i
(b) · γi ≤

(
12k2ε log

M

ε
+ (2k + 1)ε

)
·
∑

i

γi = O

(
k3ε log

M

ε

)
.

The expected social welfare is
∑

i util
i(b) plus the miner’s expected utility. Clearly, it is also upper

bounded by O
(
k3ε log M

ε

)
.

Combine the argument above, because log
(
M
ε + 1

)
is always non-negative, the theorem follows.

5 Characterization for Finite Block Size in the MPC-Assisted

Model

5.1 Characterization for Strict Incentive Compatibility

In this section, we give a characterization of strict incentive compatibility in the MPC-assisted
model for finite block size. We show that cryptography helps us overcome the finite-block impos-
sibility [CS21] for c = 1, but for c ≥ 2, the impossibility still holds.
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5.1.1 Feasibility for c = 1

In the MPC-assisted model, we indeed can have a mechanism that achieves UIC, MIC, and (ρ, 1)-
SCP against a coalition controlling ρ ∈ (0, 1] fraction of the miners and c = 1 user.

MPC-assisted, posted price auction with random selection
Parameters: the reserved price r, and a block size k.
Input: a bid vector b = (b1, . . . , bN ).
Mechanism:

• Allocation rule. Any bid that is at least r is considered as a candidate. Randomly select k
bids from the candidates to confirm.

• Payment rule. Each confirmed bid pays r.

• Miner revenue rule. Miner gets 0 revenue.

In the above mechanism, the miner gains zero revenue. This is inevitable as shown in Theorem C.5
of Appendix C.1. Even in the MPC-assisted model, the miner must have zero revenue if we insist
on strict incentive compatibility (even under Bayesian notions of equilibrium).

Theorem 5.1. Assuming a finite block size k. The above MPC-assisted, posted price auction with
random selection in the MPC-assisted model satisfies UIC, MIC, and (ρ, 1)-SCP (in the ex post
setting) for arbitrary ρ ∈ (0, 1].

Proof. We will prove the three incentive compatibility properties separately.

UIC. Let vi denote the true value of user i. First, refusing to bid cannot increase its utility.
Moreover, injecting bids does not help either. To see this, assume that user i bids its true value vi
and injects a bid b′. If b′ < r, then it does not influence user i’s utility. If b′ ≥ r, it either decreases
the probability of user i being confirmed if vi ≥ r, or it brings user i negative expected utility if
vi < r.

Thus, we only need to argue that overbidding or underbidding does not increase the user’s
utility. If user i’s true value vi < r, then its utility when overbidding b ≥ r is q · (vi− r) < 0, where
q is the probability of b being confirmed. If user i’s true value vi ≥ r, then underbidding b < r
brings it 0-utility, whereas the honest utility q(vi − r) is positive. Therefore, no matter how user i
deviates from the protocol, its utility does not increase.

MIC. Since the total miner revenue is always 0, injecting fake bids does not increase the colluding
miner’s utility. The miner cannot increase its utility by deviating from the protocol.

SCP. No matter how the coalition deviates, the colluding miner’s revenue is always 0. Therefore,
the joint utility of the coalition is at most the utility of the colluding user. By strict UIC, the joint
utility does not increase.

Note that the above mechanism does not work for c = 2. Imagine that the miner colludes with
two users i and j, where user i has true value exactly r and user j has a sufficiently large true value.
User i may choose not to bid to increase the probability of user j being confirmed. This brings the
coalition strictly more utility than behaving honestly.
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5.1.2 Impossibility for c ≥ 2

Unfortunately, even in the MPC-assisted model, no mechanism with non-trivial utility can achieve
UIC, MIC, and (ρ, 2)-SCP, even for Bayesian notions of incentive compatibility. To see this, observe
that under the strict incentive compatible notion, (ρ, c)-SCP implies that any coalition of ≤ c
users cannot benefit from any deviation4, since the miner revenue has to be 0 by Theorem C.5 of
Appendix C.1. Similar to the proof in Goldberg and Hartline [GH05], we show that any mechanism
that is Bayesian UIC and Bayesian SCP against a (ρ, 2)-sized coalition (for an arbitrary ρ ∈ (0, 1]
must satisfy the following condition: no matter how a user j changes its bid, user i’s utility should
not change. Formally,

Lemma 5.2. Given any (possibly random) mechanism in the MPC-assisted model that is Bayesian
UIC and Bayesian SCP against (ρ, 2)-sized coalition for some ρ ∈ (0, 1], and suppose each user’s
true value is drawn i.i.d. from a distribution D. Then, for any user i and user j, for any bid bj
and b′j, it must be that for any # ≥ 1,

E
(v,b−i,j )∼D!

[utili(v, bj ,b−i,j)] = E
(v,b−i,j )∼D!

[utili(v, b′j ,b−i,j)],

where b−i,j represents all except user i and user j’s bids.

The proof of this lemma is deferred to Appendix C.2. This lemma implies that no matter how
user j changes its bid, the expected utility of user i should not change if user i’s true value is
sampled randomly from D. Consequently, we have the following result stating that user i’s utility
should remain the same when bidding its true value, regardless of how many users are there.

Lemma 5.3. Given any (possibly randomized) mechanism in the MPC-assisted model that achieves
Bayesian UIC and Bayesian SCP against (ρ, 2)-sized coalition for some ρ ∈ (0, 1], it holds that for
any user i and j, for any bid bj , for any # ≥ 1,

E
(vi,b−i,j)∼D!

[utili(vi, bj ,b−i,j)] ≤ E
(vi,b−i,j)∼D!

[utili(vi,b−i,j)],

where vid (bid) denotes a bid v (b) coming from identity id.

Proof roadmap for Lemma 5.3. By Lemma 5.2, E
vi,b−i,j∼D!

[utili(vi, bj ,b−i,j)] = E
vi,b−i,j∼D!

[utili(vi, 0j ,b−i,j)].

Therefore, to prove Lemma 5.3, it suffices to prove that

E
b−i,j∼D!−1

[utili(vi, 0j ,b−i,j)] ≤ E
b−i,j∼D!−1

[utili(vi,b−i,j)].

This claim is relatively easy to prove if we are willing to assume a strong symmetry assumption
explained below. With a technically more involved proof, we can eventually get rid of this strong
symmetry assumption and prove it under our current (much weaker) symmetry assumption defined
in Section 2.1.

Strong symmetry assumption. On top of our current symmetric assumption defined in Section 2.1,
we additionally assume that for any bid vector b := (b1, . . . , bN ), if for i /= j, bi = bj, then
the random variables (xi, pi) and (xj , pj) are identically distributed, where (xi, pi) are random
variables denoting i’s confirmation probability and i’s payment, respectively, and (xj , pj) are
similarly defined.

4We credit Bahrani, Garimidi, Roughgarden, Shi, and Weinberg for making this observation.
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In other words, the strong symmetry assumption additionally assumes that two bids of the same
amount receive the same treatment, on top of our existing symmetry assumption — note that this
is a very strong assumption, and this is why we want to get rid of it eventually. If the above strong
symmetry assumption holds, then we have that for any identity i′ that injects a 0 bid,

E
b−i,j∼D!−1

[utili(vi, 0j ,b−i,j)] = E
b−i,j∼D!−1

[utili(vi, 0i′ ,b−i,j)],

This is because under the strong symmetry assumption, anyone who bids the same amount as i has
the same expected utility, and moreover, this utility is not affected by whether the 0 bid is posted
by j or i′. Finally, we have for any vi,

E
b−i,j∼D!−1

[utili(vi, 0i′ ,b−i,j)] ≤ E
b−i,j∼D!−1

[utili(vi,b−i,j)].

Otherwise, user i can inject a 0-bid using an arbitrary identity i′, which strictly increases its utility.
This contradicts Bayesian UIC. We refer the reader to Appendix C.3 for a full proof of Lemma 5.3
without relying on the strong symmetry assumption.

Lemma 5.4. Given any (possibly randomized) mechanism in the MPC-assisted model that achieves
Bayesian UIC, MIC and Bayesian SCP against (ρ, 2)-sized coalitions for some ρ ∈ (0, 1], it holds
that for any user i, any value vi, for any # ≥ 1,

E
vi,b−i∼D!

[utili(vi,b−i)] = E
vi∼D

utili(vi).

Proof. We first show that for any j, user i’s expected utility should not change if user j refuses to
bid. Formally, for any bj ,

E
vi,b−i,j∼D!

[utili(vi, bj ,b−i,j)] = E
vi,b−i,j∼D!

[utili(vi,b−i,j)]. (14)

To see this, by Lemma 5.3, we have

E
vi,b−i,j∼D!

[utili(vi, bj ,b−i,j)] ≤ E
vi,b−i,j∼D!

[utili(vi,b−i,j)].

Next, we are going to show that

E
vi,b−i,j∼D!

[utili(vi, bj ,b−i,j)] = E
vi,b−i,j∼D!

[utili(vi, 0j ,b−i,j)] ≥ E
vi,b−i,j∼D!

[utili(vi,b−i,j)].

To see why this holds, note that the first equality follows from Lemma 5.2. The inequality comes
from 2-SCP: Since by MIC, it must be that E

b−i,j∼D!
[µ(vi, 0j ,b−i,j)] ≤ E

b−i,j∼D!
[µ(vi,b−i,j)], there-

fore, it must be that E
vi,b−i,j∼D!

[utili(vi, 0j ,b−i,j)] ≥ E
vi,b−i,j∼D!

[utili(vi,b−i,j)]. Otherwise, if there

exists a vi such that this does not hold, the miner can collude with user i and user j with true
value 0, and ask user j not to bid. This strategy strictly increases the coalition’s joint utility and
thus contradicts Bayesian SCP against (ρ, 2)-sized coalition. Equation (14) thus follows.

Let f(·) denote the p.d.f. of D. By definition of expectation,

E
vi,b−i∼D!

[utili(vi,b−i)] =

∫ ∞

0
E

vi,b−i,1∼D!−1
[utili(vi, z1,b−i,1)]f(z1)dz1

=

∫ ∞

0
E

vi,b−i,1∼D!−1
[utili(vi,b−i,1)]f(z1)dz1 By Equation (14)

= E
vi,b−i,1∼D!−1

[utili(vi,b−i,1)].

The lemma follows by repeating the above argument.
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Now we are ready to prove the theorem stating that there is no mechanism that gives non-
zero utility to either users or miners and yet satisfies Bayesian UIC and SCP against (ρ, 2)-sized
coalitions.

Theorem 5.5. Suppose the block size is k. No MPC-assisted mechanism with non-trivial utility
simultaneously achieves Bayesian UIC, MIC and Bayesian SCP against (ρ, 2)-sized coalitions.

Proof. By Theorem C.5, the miner-revenue has to be 0. Therefore, it suffices to prove that every
user must have 0-utility.

Consider a crowded world with K number of users and all of their bids are sampled indepen-
dently at random from D. There must exist a user j∗ whose probability of being confirmed is at
most k/K, and thus its expected utility is at most max(D) · k/K where k is the block size. Thus,
E

b∼DK
[utilj

∗

(b)] = 0 by taking K to be arbitrarily large.

By Lemma 5.4, it must be that E
vj∗∼D

utili(vj∗) = 0. Since E
vi∼D

utili(vi) = E
vj∼D

utilj(vj) for all user i

and j, every user’s expected utility must be the 0 where the expectation is taken over the randomness
of bids as well as the randomness of the mechanism, i.e., for any user i, any # ≥ 1, we have
E

b∼D!
[utili(b)] = 0. Since user’s utility is non-negative, this implies that E

b−i∼D!−1
[utili(v,b−i)] = 0.

5.2 Feasibility of Approximate Incentive Compatibility

Although strict (even Bayesian) incentive compatibility is impossible to achieve for c ≥ 2 in the
MPC-assisted model, we have meaningful feasibility results if we allow ε additive slack. Still, we use
k to denote the finite block size and M to denote the upper bound of the true values. Specifically,
we can achieve Θ(kM) social welfare as long as many people place high enough bids, which is
asymptotically the best possible social welfare one can hope for.

MPC-assisted, Diluted Posted Price Auction

Parameters: the block size k, an upper bound c of the number of users colluding with the
miner, an upper bound M of users’ true values, a slack ε ≥ 0, and a posted-price r such that
r ≥ ε

2c .

Input: a bid vector b = (b1, . . . , bN ).

Mechanism:

1. Allocation rule.

• Given a bid vector b = (b1, . . . , bN ), remove all bids which are smaller than r. Let
b̃ = (̃b1, . . . , b̃$) denote the resulting vector.

• Let T = max

(
2c
√

kM
ε , k

)
. If # ≥ T , let d = b̃. Else, let d = (̃b1, . . . , b̃$, 0, . . . , 0) such

that |d| = T . In other words, d is b̃ appended with T − # zeros.

• Randomly choose a set S of size k from d, and every non-zero bid in S is confirmed.

2. Payment rule. For each confirmed bid b, it pays r.

3. Miner revenue rule. For each confirmed bid b, the miner is paid ε
2c .
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Theorem 5.6. Suppose there exists an upper bound M on users’ true values. The above MPC-
assisted, diluted posted price auction satisfies UIC, MIC, and ε-SCP (in the ex post setting) against
(ρ, c)-sized coalitions for arbitrary ρ ∈ (0, 1] and c ≥ 1.

Proof. We will prove the three incentive compatibility properties separately. Note that in this
mechanism, refusing to bid is equivalent to underbidding some value less than r. So we mainly
focus on the strategy space of bidding untruthfully and injecting bids. When we say the expected
utility of a user, the randomness is taken over the randomness in the mechanism.

UIC. Fix any user i, and let v denote the true value of user i. In the mechanism, any confirmed
bid pays r and any bid less than r must be unconfirmed. Thus, if v ≤ r, bidding untruthfully
cannot give a postive utility, so bidding truthfully and getting 0-utility is optimal.

Below we focus on the case when v > r. In this case, the bid has a non-negative probability of
being confirmed and it pays r. So following the honest strategy leads to positive utility. Bidding
less than r will cause the bid to be unconfirmed and will not help the user. Therefore, we may
assume that the user bids at least r and may inject some fake bids. Observe that any bid that is
at least r is treated the same by the mechanism. Moreover, injecting fake bids either make no
difference (when # ≤ T after injecting), or it reduces the probability of bid v being elected into the
set S (when # > T after injecting). Therefore, bidding untruthfully and/or injecting fake bids does
not help the user.

MIC. By injecting fake bids, the strategic miner cannot increase the expected number of real
bids in the vector d. Thus, injecting fake bids cannot increase other bids’ contribution towards
the miner’s revenue. Therefore, the expected gain in miner revenue must be upper bounded by the
fake bids’ contribution towards miner revenue minus the expected payments of the fake bids. For
each confirmed bid, the miner revenue is fixed to ε

2c , which is no more than the payment of the bid.
Thus, the expected miner revenue cannot increase through injecting fake bids, i.e., the mechanism
is MIC.

ε-SCP. First, we argue that injecting bids does not help the coalition. Specifically, using a similar
proof as UIC, injecting bids does not help improve the utility of any user in the coalition. Using a
similar argument as MIC, injecting bids does not improve the miner’s revenue minus the payment
of the injected bids. Therefore, injecting bids will not increase the coalition’s joint utility.

Now it suffices to argue that underbidding or overbidding does not increase the coalition’s joint
utility by more than ε. Suppose when bidding honestly, the number of bids in b̃ is #. Each bid in b̃
is confirmed with probability k

max{T,$} . Assume that by bidding untruthfully, the coalition changes

the length of b̃ to #′. Now each bid in b̃ is confirmed with probability k
max{T,$′} .

We partition the players in the coalition into the following groups:

• Those whose true values are less than r and bid less than r. Their expected utility does not
change.

• Those whose true values are less than r and bid higher than or equal to r. Their expected utility
does not increase.

• Those whose true values are at least r and bid less than r. Their expected utility does not
increase.
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• Those whose true values are at least r and bid at least r. For each of these users, its expected
utility increases by at most

(v − r)
k

max{T, #′}
− (v − r)

k

max{T, #}
. (15)

Note that for #′ ≥ #, then (15) ≤ 0. Therefore, we only need to consider the case where #′ < #.
If # ≤ T , then (15) is 0. If # > T , then (15) is upper bounded by

(15) ≤ (v − r)

[
k

#′
−

k

#

]

≤ (v − r)

[
k

#− c
−

k

#

]
≤ (v − r)

ck

#(#− c)

≤M ·
ck

T (T − c)
.

By the choice of T , we have that T (T − c) ≥ 1
2T

2. Thus,

(15) ≤M ·
ck

T (T − c)
≤

2Mck

T 2
≤

ε

2c
.

This implies that each user’s utility can increase by at most ε
2c . Meanwhile, for each user in the

coalition, it can increase the miner’s revenue by no more than ε
2c via bidding untruthfully. Since

there are at most c users in the coalition, the coalition can gain at most ε more utility in total,
no matter how they deviate.
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A Full Proof of Theorem 3.6

We now prove Theorem 3.6 of Section 3.2, i.e., the propotional auction in the plain model satisfies
UIC, MIC, and 5

4cε-SCP against any miner-user coalition with an arbitrary c ≥ number of users.

Proof of Theorem 3.6. We prove the three properties individually.

UIC. Because the confirmation and the payment of each bid are independent of other bids,
injecting fake bids does not help to increase any user’s utility. Next, suppose user i’s true value is
vi. If user i bids bi, its expected utility is

{(
vi − bi

2

)
bi
r , if bi < r,

vi − r
2 , if bi ≥ r.

By direct calculation, the expected utility is maximized when bi = vi. Thus, proportional auction
is strict UIC.

MIC. Since the block size is infinite, the miner’s best strategy is to include all bids to maximize its
revenue. Notice that the confirmation of each bid and the miner revenue of each bid are independent
of other bids. Thus, injecting fake bids does not change the miner revenue from “other bids.”
Moreover, for each confirmed bid, the miner revenue is upper bounded by the payment of that bid.
Thus, the increment of the miner revenue never exceeds the cost of the injected fake bids. Thus,
the miner revenue cannot increase by injecting fake bids, so the mechanism is strict MIC.

5
4cε-SCP. As we have shown in the argument for strict UIC and strict MIC, injecting fake bids
does not change the colluding miner’s revenue. Because the confirmation and the payment of each
bid are independent of other bids, injecting fake bids does not help to increase any user’s utility.
Thus, in the rest of the proof, we assume the only deviation of the coalition is to change the bids
from colluding users’ true values to other values. Let user i be a colluding user. We will show
that the joint utility increases at most by 5

4ε if user i changes its bid from its true value to other
values, no matter what other bids are. Because there are at most c colluding users, the mechanism
is 5

4cε-SCP for all c.
Let user i be a colluding user with true value vi, and let bi be user i’s bid. We now proceed to

analyze the utility of coalition based on how users in the coalition bid untruthfully.

1. Underbidding. Suppose bi < vi. Notice that the miner can get the payment from bi only

when bi is confirmed, and the miner is paid
√
2rε
2 if bi ≥

√
2rε. When user i underbids, the miner’s

revenue can not increase. Because the mechanism is strict UIC, underbidding does not increase
user i’s utility either. Thus, the joint utility does not increase if bi < vi.

2. Overbidding. Suppose bi > vi. We first consider the following cases based on whether the
true value vi is less than r.

• If vi ≥
√
2rε. If vi ≥ r, bidding truthfully already guarantees user i’s bid to be confirmed,

and the miner is paid
√ rε

2 . Thus, when vi ≥ r, overbidding does not increase the joint utility.
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In the following, we assume vi < r. Let ∆ = min(bi − vi, r− vi) > 0. If user i bids truthfully,
its bid is confirmed with the probability vi

r , so its expected utility is
(
vi −

vi
2

) vi
r
.

Next, suppose user i bids bi > vi. Then, bi is confirmed with the probability vi+∆
r , and the

payment is vi+∆
2 if bi is confirmed. Thus, user i’s expected utility is

(
vi −

vi +∆

2

)
vi +∆

r
.

Hence, compared to bidding truthfully, user i’s expected utility decreases by
(
vi −

vi
2

) vi
r
−

(
vi −

vi +∆

2

)
vi +∆

r
=

∆2

2r
> 0.

On the other hand, if user i bids truthfully, the miner’s expected revenue is vi
r

√ rε
2 . If user i

bids bi > vi, the miner’s expected revenue is vi+∆
r

√rε
2 . Thus, compared to bidding truthfully,

the miner’s expected utility increases by

vi +∆

r

√
rε

2
−

vi
r

√
rε

2
=

∆

r

√
rε

2
.

Combine the argument above, the joint utility increases by

∆

r

√
rε

2
−

∆2

2r
. (16)

The maximum of Eq.(16) is ε
4 , so overbidding bi can only increase the joint utility by ε

4 .

• If vi <
√
2rε. Because the mechanism is strict-UIC, overbidding does not increase user i’s

utility. If bi <
√
2rε, the miner revenue is still zero. Thus, we assume bi ≥

√
2rε. From

the argument in the previous case, we know that compared to bidding truthfully, user i’s
expected utility decreases by ∆2

2r . However, if user i bids truthfully, the miner’s revenue is

zero. If user i bids bi > vi, the miner’s expected revenue is vi+∆
r

√
rε
2 . Thus, compared to

bidding truthfully, the miner’s expected revenue increases by vi+∆
r

√
rε
2 . Consequently, the

joint utility increases by
vi
r

√
rε

2
+

∆

r

√
rε

2
−

∆2

2r
. (17)

Because the maximum of Eq.(16) is ε
4 , the maximum of Eq.(17) when vi <

√
2rε is at most

5ε
4 . Thus, overbidding bi can only increase the joint utility by 5ε

4 .

To sum up, among all cases, overbidding bi can only increase the joint utility by at most 5
4ε. The

theorem thus follows.

Proportional auction for the MPC-assisted model. In the MPC-assisted model, we want
to ensure incentive compatibility for any miner-user coalition controlling at most ρ fraction of the
miners and at most c users — recall that the total miner revenue is split among the miners. By
contrast, in the plain model, effectively ρ is always equal to 1 since we always focus on the miner of
the present block. Therefore, to make the proportional auction work in the MPC-assisted model,
we make a small modification to the scheme and proof. For the scheme, the only modification is
that we now allow the miner revenue to scale up w.r.t. 1

ρ (up to the total user payment), such that
the miner revenue can be larger if we only want to be resilient against coalitions controlling small
fraction of the miners — see the formal description below.
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Proportional Auction for the MPC-assisted Model

Parameters: the approximate factor ε, upper bound ρ on the fraction of the colluding miners
and the reserved price r such that r ≥ 2ε.

Input: a bid vector b = (b1, . . . , bN ).

Mechanism:

• Allocation rule. For each bid b, if b < r, it is confirmed with the probability b/r; otherwise,
if b ≥ r, it is confirmed with probability 1.

• Payment rule. For each confirmed bid b, if b < r, it pays b/2; otherwise, if b ≥ r, it pays
r/2.

• Miner revenue rule. For each confirmed bid b, let p be the payment of b, and the miner is

paid min
(
p,

√
2rε
2ρ

)
.a

aThe minimum guarantees that the miner revenue never exceed the payment.

It is not hard to see that our proof of Theorem 3.6 can be easily modified to work for the
MPC-assisted model. The only difference is that when the colluding user’s true value vi is smaller

than the threshold
√
2rε
ρ , overbidding to vi + ∆ <

√
2rε
ρ also increases the joint utility. There are

two cases:

• When a user with true value vi overbids to vi +∆ <
√
2rε
ρ , the coalition of the miner and this

colluding user can gain at most ε more utility if ∆ =
√
2rε.

• When a user with true value vi overbids to vi +∆ ≥
√
2rε
ρ , the coalition of the miner and this

colluding user can gain at most 9
4ε more utility when ∆ =

√
2rε and vi is arbitrarily close to

√
2rε
ρ .

B Feasibility: Approximate Incentive Compatibility for Finite

Blocks

In this section, we give a mechanism, called staircase mechanism, that is ε-UIC, MIC, and ε-SCP
for c = 1 in the plain model. The staircase mechanism can in the best case achieve Θ(k2ε) social
welfare. Recall that in Theorem 4.1, we showed that any plain-model mechanism that works
for finite block size suffers from poor scaling of the social welfare w.r.t. the bid distribution. In
particular, we showed that the social welfare is upper bounded by O(k3ε log(M/ε)) where M is an
upper bound on the social welfare. Our staircase mechanism can achieve Θ(k2ε) social welfare in
the best case. Thus, we still have a gap between the upper and lower bounds. Bridging this gap is
an interesting open problem.

Staircase Mechanism

Parameters: the block size k, the upper bound c of the colluding users, the upper bound
M of the true value, the approximate factor ε.
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Notations: We define

F0 =

{
M − kε, if )Mε * ≥ k,

M − )Mε *ε, if otherwise.

For all i = 1, . . . , k, we define
Fi = F0 + i · ε.

Input: a bid vector b = (b1, . . . , bN ).

Mechanism:

1. Inclusion rule. Given the bid vector b = (b1, . . . , bN ), choose the top k bids.

2. Confirmation rule.

• Let c = (c1, . . . , cN ′) denote the bid vector in the block, where c1 ≥ c2 ≥ · · · ≥ cN ′ and
N ′ ≤ k.

• If c1 < F1, set t = 0. Otherwise, set t = maxi{i : ci ≥ Fi}.
• If t = 0, no one is confirmed. Otherwise, c1, . . . , ct are confirmed.

3. Payment rule. For each confirmed bid, it pays Ft.

4. Miner revenue rule. Miner is paid t · ε.

In the staircase mechanism, the more bids confirmed, the higher the price. For example, let
M = 10 be the maximum possible bid, let ε = 1, and let the block size be k = 5. Thus, if only one
user is confirmed, then the price would be set to 6; if two users are confirmed, the price would be
7; and so on. Now, if the bid vector is 10, 9, 5, 3, 1, the mechanism would confirm the top two bids
and they each pay 7. One can see that the mechanism achieves at least Θ(k2ε) social welfare in
the best case: suppose )Mε * ≥ k and k/2 users have true value M while the remaining users have
a value of 0. Then, all the k/2 bids at M will be confirmed and each bid pays Fk/2 = M − (kε/2).
In this case, the mechanism achieves Θ(k2ε) social welfare.

Notice that the miner’s revenue grows linearly in t, the number of the confirmed bids in the block.
On the other hand, any confirmed user’s payment also grows linearly in t, so each confirmed user’s
utility actually decreases linearly in t. The miner’s revenue and any user’s utility as the functions
of t can be visualized by Figure 6, which explains why the mechanism is called “staircase”.
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Figure 6: The miner’s revenue and any user’s utility as the functions of the number of the
confirmed bids in the block.

Intuitively, for any coalition consisting of the miner and a user, they do not have incentive to
manipulate the number of confirmed bids, as the increase in miner revenue cancels out the decrease
in the colluding user’s utility. The following example shows that a user or a miner-user coalition
may have ε extra utility by deviation. Suppose M = k = 10, and ε = 1. In this case, F0 = 0.
Imagine that there are five users with the true values 8, 7, 6, 4.95, 4.9, respectively. If everyone bids
truthfully, then 8, 7, 6, 4.95 will be confirmed, since F4 = 4 and F5 = 5. Notice that the fifth user
(with the true value 4.9) is unconfirmed, so its utility is zero. However, if the fifth user bids 4.96
instead, its bid will be confirmed, and 4.95 will be unconfirmed. The fifth user pays F4 = 4, and
gets the utility 4.9 − 4 = 0.9. Notice that the number of the confirmed bids does not change, so
the miner is always paid 4ε. Thus, if the miner colludes with the fifth user, their utility increases
by 0.9. One can easily modify the true values so that the strategic gain is arbitrarily close to ε.

The following theorem shows that a strategic user or miner-user coalition cannot gain more
than ε.

Theorem B.1. The staircase mechanism above satisfies ε-UIC, strict-MIC, and ε-SCP when the
miner colludes with at most 1 user.

Proof. We prove the three incentive compatibility properties separately.

ε-UIC. Let vi be user i’s true value. Without loss of generality, we assume a strategic user i
always first injects some fake bids, and then changes its true bid (not the fake bids) from the
true value to some other value. We will show that user i’s utility does not increase in either step.
Consequently, user i’s utility can never increase even if it plays strategically.

First, we show that regardless of the current bid vector. If user i injects one more fake bid,
its utility does not increase. Suppose b = (b1, . . . , bN ) is the current bid vector, where some bids
might be fake bids injected by user i, and bi = vi is user i’s true bid. If bi is already confirmed,
i.e. xi(b−i, vi) = 1, injecting another fake bid can never lower t. Thus, user i’s payment can never be
lower after injecting another fake bid. On the other hand, if bi is unconfirmed, i.e. xi(b−i, vi) = 0,
bi must still be unconfirmed after injecting another fake bid. Thus, injecting fake bids does not
increase user i’s utility.
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Second, we show that no matter what the current bid vector is, if user i changes its true bid
from the true value to some other value, its utility does not increase. Suppose b = (b1, . . . , bN ) is
the current bid vector, where some of the bids might be the fake bids injected by user i, and bi = vi
is user i’s true bid. Let t∗ = maxi{i : bi ≥ Fi}. There are two cases.

• Case 1: bi is confirmed under the bid vector b. Notice that the payment never exceeds
the bid, so user i’s utility is always non-negative when user i bids truthfully. Thus, if user
i’s bid becomes unconfirmed after changing the bid, user i’s utility does not increase. On the
other hand, if user i’s bid is still confirmed after changing the bid, the number of confirmed
bids in the block is still t∗ because changing the bid only permutes the order of the top t∗

bids. Thus, user i’s payment is still Ft∗ , so user i’s utility does not change.

• Case 2: bi is unconfirmed when the bid vector is b. If user i underbids, its bid must
still be unconfirmed. If user i overbids, the number of the confirmed bids must be at least
t∗, so the payment for each confirmed bid is at least Ft∗ . Because xi(b−i, vi) = 0, it must be
vi ≤ Ft∗+1 = Ft∗ + ε. Thus, if user i’s bid becomes confirmed because of overbidding, user i’s
utility is at most vi − Ft∗ ≤ ε.

Strict-MIC. Without loss of generality, we assume the strategic miner prepares the block in the
following order: the miner chooses a subset of the bids c′ = (c′1, . . . , c

′
$′) from the bid vector (not

necessarily the top k) where c′1 ≥ · · · ≥ c′$′ ; then, the miner injects some fake bids into c′. We will
show that the miner’s utility does not increase in either step.

First, let c = (c1, . . . , ck) denote the top k bids in the current bid vector (if the number of bids
is less than k, append zeros), where c1 ≥ c2 ≥ · · · ≥ ck. Because ci ≥ c′i for all i, the number of
the confirmed bids in c′ cannot be more than the number of the confirmed bids in c. Thus, not
choosing the top k bids into the block never increases miner’s revenue.

Second, let d = (d1, . . . , dr) denote the bid vector that the miner prepares, where d1 ≥ d2 ≥
· · · ≥ dr for some r. Here, d may or may not contain fake bids injected by the miner. We will show
that if the miner injects one more fake bid f , its utility does not increase. Let t∗ = maxi{i : di ≥ Fi}.
In this case, it must be dt∗+1 < Ft∗+1. To increase the miner’s utility, the number of the confirmed
bids after injecting f must increase, so we assume it is the case. Because dt∗+1 < Ft∗+1, if the
number of the confirmed bids increases, it must be that f is confirmed and f ≥ Ft∗+1. Moreover,
because the miner only injects one more fake bid to d, the number of the confirmed bids after
injecting the fake bid is at most t∗ +1. Thus, the revenue that the miner gets increases by at most
ε. The extra cost for injecting f is Ft∗+1 ≥ ε for any t ≥ 0. Therefore, the overall utility does not
increase.

ε-SCP. Let user j be the colluding user. Let d = (d1, . . . , dk) denote the top k bids that the miner
includes if both the miner and user j are honest, where d1 ≥ · · · ≥ dk. Let t = maxi{i : di ≥ Fi};
that is, if the miner is honest, t bids will be confirmed. Next, suppose the coalition strategically
includes the bids d′ = (d′1, . . . , d

′
r) for some r, where d′1 ≥ d′2 ≥ . . . ≥ d′r. Let t

′ = maxi{i : d′i ≥ Fi}.
First, to increase the joint utility of the coalition, user j’s bid must be confirmed when the

block is d′ — if user j’s bid is not included under d′, then by strict-MIC, the miner’s utility cannot
increase when it chooses d′ to be the block, and obviously user j’s utility cannot increase either if
it is not confirmed under d′. Henceforth, we assume user j’s bid is confirmed when the block is d′.
There are two possible cases.

• Case 1: User j’s bid is confirmed if the block is d. In this case, user j’s bid is
confirmed under both d and d′, so the change of user j’s utility only depends on its payment.
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The payment changes from Ft to Ft′ , so user j’s utility increases by Ft − Ft′ = (t− t′)ε — if
t− t′ is negative, user j’s utility actually decreases. On the other hand, the miner’s revenue
decreases by (t − t′)ε. Therefore, the increase in user j’s utility cancels out the decrease in
the miner’s revenue, and their joint utility does not change.

• Case 2: User j’s bid is unconfirmed if the block is d. In this case, user j’s true value
vj must be smaller than Ft+1. Since user j’s bid is unconfirmed when the block is d, its
utility is zero. Since user j’s bid is confirmed when the block is d′, its utility now becomes
vj − Ft′ < Ft+1 − Ft′ . Thus, user j’s utility increases by vj − Ft′ < Ft+1 − Ft′ = (t+ 1− t′)ε.
On the other hand, the miner’s revenue decreases by (t − t′)ε. Therefore, the joint utility
increases by at most ε.

C Deferred Proofs of Section 5

C.1 Strict Incentive Compatibility in MPC-Assisted Model: Necessity of Zero
Miner Revenue

Chung and Shi [CS21] showed that the posted-price auction with burning gives strict incentive
compatibility in the plain model, assuming infinite block size. One may hope that with the Bayesian
notion of incentive compatibility, we can achieve larger miner revenue. Unfortunately, in this section
we show that zero-miner revenue is the best we can hope for strict incentive compatibility, even in
the Bayesian setting.

Prelimary: Myerson’s lemma for the Bayesian setting. We first review the Bayesian ver-
sion of Myerson’s lemma. Recall that b−i denotes all but user i’s bid, and (b−i, bi) = b. We also
let D−i to denote D1 × · · ·×Di−1×Di+1× · · ·×Dn, which denotes the distribution of other users’
true values.

Lemma C.1 (Myerson’s Lemma [Mye81]). Let D = D1× · · ·×Dn be the joint distribution of users’
true values. Let (x,p, µ) be a single-parameter TFM that is Bayesian UIC. Then, it must be that

1. The allocation rule x is monotonically non-decreasing. Formally, for any user i, and any b′i > bi,
it must be that Eb−i∼D−i

[xi(b−i, b′i)] ≥ Eb−i∼D−i
[xi(b−i, bi)].

2. The payment rule p is defined as follows. For any user i, and bid bi from user i, it must be

Eb−i∼D−i
[pi(b−i, bi)] = Eb−i∼D−i

[
bi · xi(b−i, bi)−

∫ bi

0
xi(b−i, t)dt

]
. (18)

Lemma C.2 (Technical lemma implied by the proof of Myerson’s Lemma [Mye81,Har]). Let f(z)
be a non-decreasing function. Suppose that z · (f(z′)− f(z)) ≤ g(z′)− g(z) ≤ z′ · (f(z′)− f(z)) for
any z′ ≥ z ≥ 0, and moreover, g(0) = 0. Then, it must be that

g(z) = z · f(z)−
∫ z

0
f(t)dt.
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Necessity of zero miner revenue. Henceforth we use the following simplified notation.

xi(·) = E
b−i∼D−i

[x(b−i, ·)], pi(·) = E
b−i∼D−i

[p(b−i, ·)], µi(·) = E
b−i∼D−i

[µ(b−i, ·)].

The following technical lemma was given in [CS21].

Lemma C.3 (Lemma 4.8 in [CS21]). Let (x,p, µ) be any (possibly randomized) TFM in the
Bayesian setting. If (x,p, µ) is Bayesian SCP against a (ρ, 1)-sized coalition, then for any bid
vector b, user i, and r, r′ such that r < r′, it must be

r ·
(
xi(r

′)− xi(r)
)
≤ π(r′)− π(r) ≤ r′ ·

(
xi(r

′)− xi(r)
)
,

where π(r) := pi(r)− ρµi(r).

The following result shows that if we allow the strategic players to inject fake bids, then the
miner’s revenue can only be 0 if the mechanism is UIC, MIC, and 1-SCP. Actually, in the proof of
the lower bound, we only need the deviation where the miners in the coalition injecting fake bids,
and colluding users only bid untruthfully.

We first show that if a TFM is Bayesian UIC and Bayesian SCP against (ρ, 1)-sized coalition,
then the miner revenue must be independent from each user’s bid. Without loss of generality, we
assume that 0 is the minimum value in the support of Di for i ∈ [n].

Lemma C.4. Let D = D1 × · · · × Dn be the joint distribution of users’ true values. Let (x,p, µ)
be any (possibly randomized) TFM in the MPC model. If (x,p, µ) is Bayesian UIC and Bayesian
SCP against a (ρ, 1)-sized miner-user coalition, then for any user i, any bid b, it must be

µi(b) = µi(0). (19)

In other words, the miner’s revenue is a constant that is independent of user i’s bid b when
other bids b−i are drawn from the distribution D−i.

Proof. Define π̃(r) as
π̃(r) = pi(r)− ρµi(r)− (pi(0) − ρµi(0)).

By Lemma C.3, and the fact that definition of π̃(r) and π(r) differs by only a fixed constant, it
must be that

r ·
(
xi(r

′)− xi(r)
)
≤ π̃(r′)− π̃(r) ≤ r′ ·

(
xi(r

′)− xi(r)
)
. (20)

Therefore, we have the following two inequalities:

r · [xi(r′)− xi(r)] ≤ π̃(r′)− π̃(r)

r · [xi(r′)− xi(r)] ≥ π̃(r′)− π̃(r)

Now, observe that the above expression strictly agrees with the “payment sandwich” in the proof
of Myerson’s Lemma [Mye81,Har]. Furthermore, we have that π̃(0) = 0 by definition; and x must
be monotone because the TFM is UIC and satisfies Myerson’s Lemma. Due to Lemma C.2, it must
be that π̃(·) obeys the unique payment rule specified by Myerson’s Lemma; that is,

π̃(r) =

[
bi · xi(bi)−

∫ bi

0
xi(t)dt

]
.
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On the other hand, since the TFM is UIC, its payment rule itself must also satisfy the same
expression (Eq.(18)), that is,

pi(bi) = bi · xi(bi)−
∫ bi

0
xi(t)dt.

We therefore have that
π̃(r) = pi(bi).

In other words, ρµi(r) = ρµi(0)− pi(0). Because pi(0) = 0, we conclude µi(r) = µi(0).

Note that the result in Lemma C.4 holds even if users do not inject any fake bids. This provides a
stronger impossibility result.

Now we show that, if in addition the mechanism (x,p, µ) is Bayesian MIC, then the total miner
revenue can only be 0.

Theorem C.5. Let {D(n)}n be a sequence of distributions where D(n) = D1 × · · · × Dn is the
joint distribution of n users’ true values, where user i’s true value is drawn from Di independently.
Let (x,p, µ) be any (possibly randomized) TFM in the MPC model. If (x,p, µ) is Bayesian UIC,
Bayesian MIC against ρ-sized miner coalition and Bayesian SCP against (ρ, 1)-sized miner-user
coalition, then

E
b∼D(n)

[µ(b)] = 0.

Proof. For any n ≥ 2, we have the following claim:

Lemma C.6. If (x,p, µ) is Bayesian MIC against (ρ, 1)-sized miner-user coalition, then E
b∼D(n)

[µ(b)] ≤

E
b′∼D(n−1)

[µ(b′)].

For now assume Lemma C.6 holds and we explain why Theorem C.5 follows from it. The proof
of Lemma C.6 appears right afterwards. By induction on n, we have that

E
b∼D(n)

[µ(b)] ≤ E
b∼D1

[µ(b)].

By Lemma C.4, for any b ∈ Supp(D1), it should be that µ(b) = µ(0). Therefore,

E
b∼D1

[µ(b)] ≤ µ(0) = 0,

where the last equality comes from the requirement that the miner’s revenue cannot exceeds the
payment of the single identity, who will pay at most what it bids. Theorem C.5 thus follows.

Proof of Lemma C.6 Since (x,p, µ) is Bayesian-SCP against (ρ, 1)-sized coalition, it must be
that for any user i,

E
b∼D(n−1)

[ρµ(b, 0)] ≤ E
b∼D(n−1)

[ρµ(b)]. (21)

Otherwise, the miners can collude with user i, ask user i to bid, and inject 0 and increase the
coalition’s miner revenue while it does not need to pay anything for injecting the 0-bid. This
violates the MIC condition.
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By the law of total expectation, we have that

E
b∼D(n)

[µ(b)] =

∫ +∞

0
E

b′∼D(n−1)
[µ(b′, r)]f(r)dr

=

∫ +∞

0
E

b′∼D(n−1)
[µ(b′, 0)]f(r)dr By Lemma C.4

= E
b′∼D(n−1)

[µ(b′, 0)] ≤ E
b′∼D(n−1)

[µ(b′)] By (21)

Lemma C.6 thus follows.

C.2 Proof of Lemma 5.2

Lemma C.7 (Restatement of Lemma 5.2). Let (x,p, µ) be any (possibly random) mechanism that
is Bayesian UIC and Bayesian SCP against (ρ∗, 2)-sized coalition for some ρ∗ ∈ (0, 1]. Suppose
each user’s true value is drawn i.i.d. from a distribution D. Then for any user i and j, for any bid
bj and b′j, it must be that for any # ≥ 1,

E
v,b∼D!

[utili(v, bj ,b)] = E
v,b∼D!

[utili(v, b′j ,b)].

Proof. In this proof, we use the following notations for simplicity. For any fixed # ≥ 1, for any user
i and j, we define the following notations:

xi(·, ·) = E
b−i,j∼D!−1

[xi(·, ·,b)], pi(·, ·) = E
b−i,j∼D!−1

[pi(·, ·,b)], µ(·, ·) = E
b−i,j∼D!−1

[µ(·, ·,b)].

Imagine that user i has true value v and user j has true value y. Then for any feasible ρ ≤ ρ∗,
it must be that

Honest utility = [v · xi(v, y)− pi(v, y)] + [y · xj(v, y)− pj(v, y)] + ρµ(v, y)

≥Overbid utility = [v · xi(v, z) − pi(v, z)] + [y · xj(v, z) − pj(v, z)] + ρµ(v, z).

Otherwise, the miner can collude with user i with true value v and user j with true value y and
ask user j to overbid to some z ≥ y. This will increase the joint utility of the coalition, which
contradicts (ρ∗, 2)-SCP. For the same reason, if user j’s true value is z, then

Honest utility = [v · xi(v, z) − pi(v, z)] + [z · xj(v, z) − pj(v, z)] + ρµ(v, z)

≥Underbid utility = [v · xi(v, y)− pi(v, y)] + [z · xj(v, y) − pj(v, y)] + ρµ(v, y).

Combining these two inequalities together, we get the following payment difference sandwich. For
any z ≥ y, we have

v[xi(v, z) − xi(v, y)] + z[xj(v, z) − xj(v, y)] + ρ[µ(v, z) − µ(v, y)]

≥pi(v, z) − pi(v, y) + pj(v, z) − pj(v, y)

≥v[xi(v, z) − xi(v, y)] + y[xj(v, z) − xj(v, y)] + ρ[µ(v, z) − µ(v, y)]

Divide the inequality with z − y and take limit y → z, we get

v ·
∂

∂z
xi(v, z) + z ·

∂

∂z
xj(v, z) + ρ

∂

∂z
µ(v, z) =

∂

∂z
pi(v, z) +

∂

∂z
pj(v, z). (22)
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Note that Equation (22) should hold for at least two different values of ρ ≤ ρ∗. Hence, it must be
that ∂

∂zµ(v, z) = 0. Equation (22) thus becomes

v[xi(v, z) − xi(v, y)] + z[xj(v, z) − xj(v, y)]

≥pi(v, z) − pi(v, y) + pj(v, z) − pj(v, y)

≥v[xi(v, z) − xi(v, y)] + y[xj(v, z) − xj(v, y)]. (23)

This is equivalent to say: when user j changes its bid, the joint utility of user i and user j should
not increase. That means, for any v, if a user j with true value y changes its bid from y to z, it
must be that

i-gain(v, y → z) := E
b−i,j∼D!−1

utili(v, z,b−i,j)− E
b−i,j∼D!−1

utili(v, y,b−i,j)

≤ E
b−i,j∼D!−1

utilj(v, y,b−i,j)− E
b−i,j∼D!−1

utilj(v, z,b−i,j) := j-loss(v, y → z)

Since the mechanism is UIC, by the same proof as of [GH05], we get:

E
v∼D

[i-gain(v, y → z)] ≤ E
v∼D

[j-loss(v, y → z)]

≤ E
v∼D

[(z − y)(xj(v, z) − xj(v, y))].

Now consider the situation where user j changes its bid from bj to b′j . Without loss of generality,
we assume that b′j ≥ bj. If we divide the interval between [bj , b′j ] into L equally sized segments

b(0)j , . . . , b(L)j , then the total gain for user i can be bounded by

E
v∼D

[i-gain(v, bj → b′j)] =
L−1∑

l=0

E
v∼D

[i-gain(v, b(l)j → b(l+1)
j )]

≤
L−1∑

l=0

(b(l+1)
j − b(l)j ) E

v∼D

[
xj(v, b

(l+1)
j )− xj(v, b

(l)
j )

]

=
b′j − bj

L
E

v∼D

[
xj(v, b

′
j)− xj(v, bj)

]
.

This holds for any L. Taking limit for L→∞, we have that

E
v∼D

[i-gain(v, bj → b′j)] ≤ 0.

Since E
v∼D

[i-gain(v, bj → b′j)] = − E
v∼D

[i-gain(v, b′j → bj)], we have that E
v∼D

[i-gain(v, bj → b′j)] = 0,

for arbitrary bj and b′j. The lemma thus follows.

C.3 Full Proof of Lemma 5.3

In this section, we provide a full proof of Lemma 5.3 assuming the symmetry assumption in Sec-
tion 2.1.

By Lemma 5.2, for any i, j, bj , # ≥ 1, we have

E
vi,b−i,j∼D!

[utili(vi, bj ,b−i,j)] = E
vi,b−i,j∼D!

[utili(vi, 0j ,b−i,j)].
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Therefore, it suffices to prove that for any i, j, #, E
vi,b−i,j∼D!

[utili(vi, 0j ,b−i,j)] ≤ E
vi,b−i,j∼D!

[utili(vi,b−i,j)].

Suppose for the sake of contradiction, the above statement is not true, that is, there exist some
i, j, #, such that E

vi,b−i,j∼D!
[utili(vi, 0j ,b−i,j)] > E

vi,b−i,j∼D!
[utili(vi,b−i,j)]. Then there must exists a

vi, such that E
b−i,j∼D!−1

[utili(vi, 0j ,b−i,j)] > E
b−i,j∼D!−1

[utili(vi,b−i,j)].

Consider an arbitrary fake identity m registered by the miner. There are two possible cases.

Good identity m: E
b−i,j∼D!−1

[utili(vi, 0m,b−i,j)] > E
b−i,j∼D!−1

[utili(vi,b−i,j)].

Bad identity m: E
b−i,j∼D!−1

[utili(vi, 0m,b−i,j)] ≤ E
b−i,j∼D!−1

[utili(vi,b−i,j)] < E
b−i,j∼D!−1

[utili(vi, 0j ,b−i,j)].

Now, suppose the miner samples a fake identitym. Over the choice ofm, either Pr(Good identity m) ≥
1
2 or Pr(Bad identity m) ≥ 1

2 . If Pr(Good identity m) ≥ 1
2 , then suppose that the world consists

of # users not including j, and the miner forms a coalition with user i whose true value is vi. The
miner can sample a random identity m, and if it is a good identity, the miner can inject a fake bid
0m, and the coalition can strictly gain. This violates SCP when c = 1.

Henceforth, we focus on the case when Pr(Bad identity m) ≥ 1
2 . In this case, there are two

possibilities, either with probability at least 1/4 over the choice of the identity m, for all v′i,

E
b−i,j∼D!−1

[utili(v′i, 0m,b−i,j)] ≤ E
b−i,j∼D!−1

[utili(v′i, 0j ,b−i,j)], (24)

or with probability at least 1/4 over the choice ofm, there exists some v′i such that E
b−i,j∼D!−1

[utili(v′i, 0m,b−i,j)] >

E
b−i,j∼D!−1

[utili(v′i, 0j ,b−i,j)]. If it is the latter case, then, consider a scenario where the miner col-

ludes with user i whose true value is v′i, and user j whose true value is 0, and the rest of the world is
a random variable b−i,j. Now, the miner can sample a random fake identity m, and see if dropping
0j and injecting 0m can help its friend i. If so, it performs this strategic behavior. This strategy
can strictly help the coalition which violates SCP for c = 2.

It suffices to rule out the former case, that is, with probability at least 1/4 over the choice of the
identity m, for all v′i, Equation (24) is satisfied. Recall also, for vi specifically, we have strict inequal-
ity, that is, E

b−i,j∼D!−1
[utili(vi, 0m,b−i,j)] < E

b−i,j∼D!−1
[utili(vi, 0j ,b−i,j)]. Thus, E

b−j∼D!
[utili(0m,b−j)] <

E
b−j∼D!

[utili(0j ,b−j)].

For every bad identity m that additionally satisfies Equation (24), there must exist some i′ /= i
and i /= j, and some bi′ > 0, such that

E
b−j,i′∼D!−1

[utili
′

(0m, bi′ ,b−j,i′)] > E
b−j,i′∼D!−1

[utili
′

(0j , bi′ ,b−j,i′)] (25)

We can prove the above claim by contradiction. Suppose for the sake of contradiction that for
all i′ /= i and i /= j, and for all bi′ , E

bj,i′∼D!−1
[utili

′

(0m, bi′ ,b−j,i′)] ≤ E
bj,i′∼D!−1

[utili
′

(0j , bi′ ,b−j,i′)].

Therefore, it must be that for any i′ /= i and i /= j, E
b−j∼D!

[utili
′

(0m,b−j)] ≤ E
b−j∼D!

[utili
′

(0j ,b−j)].

Therefore, we have that

E
b−j∼D!

[USW(0m,b−j)] < E
b−j∼D!

[USW(0j ,b−j)] (26)
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where USW(b) denotes the social welfare for all users (i.e., sum of all user utilities) when the bid vec-
tor is b. However, by our symmetry assumption in Section 2.1, it must be that E

b−j∼D!
[USW(0m,b−j)] =

E
b−j∼D!

[USW(0j ,b−j)], which contradicts Equation (26).

Let i′ be a user such that Equation (25) happens with probability at least 1/4(# + 1) over the
choice of m — clearly, such a user must exist since we are assuming that with probability at least
1/4 over the choice of m, where m is a bad identity satisfying Equation (24). Now, imagine that
the world consists of #+1 users including both i and j, and the miner forms a coalition with users
i′ and j. The miner samples a random fake identity m, and if the identity helps i′ in the sense that
Equation (25) holds, then the coalition replaces j’s bid 0j with 0m. This strategy strictly increases
the coalition’s joint utility, and this violates SCP when c = 2.

D Multi-Party Computation Protocol Realizing FMPC

So far in the paper, we have assumed that the transaction fee mechanism is implemented by a
trusted ideal functionality FMPC. In this section, we show how to instantiate FMPC in the real
world with cryptography. The protocol described in this section uses generic MPC. However, as
mentioned in Remark 1.4, the MPC-assisted mechanisms described in this paper actually need not
employ generic MPC to be instantiated in practice — we describe efficient instantiations for our
specific protocols in Appendix E.

Terminology and model. Imagine that there are m miners and a set of user identities. Since
each user can assume multiple identities, henceforth, we often use the term identities to refer to
the set of purported user identities. We assume that the miners can communicate with each other
through a pairwise private channel. Further, every user identity can communicate with every miner
through a pairwise private channel. Morever, there is a broadcast channel among the miners and
the user identities. We assume that all channels are authenticated, i.e., every message is marked
with the true sender. Further, we assume a synchronous model of communication, i.e., the protocol
proceeds in rounds and messages sent by honest parties will be received by honest recipients at the
beginning of the next round.

We assume that at the beginning of the protocol, the miners have reached consensus on the set
of user identities that will participate in the auction. For example, the consensus can be achieved in
the following manner: every user identity announces itself to all miners. Then, each of them miners
broadcasts to all miners a candidate set consisting of the identities it has heard. Any identity that
appears in the majority of the miners’ candidate sets will be permitted into the auction. As long
as the majority of the miners are honest, then any honest user identity will be included in the final
permitted list.

The parties now execute an interactive protocol at the end of which all parties, including the
miners and user identities, learn the outcome of the auction, including which identities’ bids are
confirmed and how much each confirmed bid pays. In our actual protocol, the user identities need
not communicate with each other. Each user identity communicates only with the miners — either
it sends a direct message to a miner over the pairwise private channel, or it broadcasts a message
which can be seen by all miners.

During the protocol, if a subset of parties (miners or user identities) form a coalition, we assume
that the coalition has the advantage of performing a so-called “rushing attack”. Specifically, in any
round r, parties in the coalition can observe honest parties’ messages sent to coalition members or
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posted on the broadcast channel, before deciding what messages coalition members want to send
in the same round r.

D.1 Building Blocks

We first introduce some building blocks used in the protocol.

D.1.1 Commitment Scheme

A commitment scheme, parametrized by a security parameter λ, and a message space {0, 1}$(λ)
where #(·) is a polynomial in λ, has two phases:

• Commitment phase: the committer who has a message X ∈ {0, 1}$(λ) samples some random

coins r
$←{0, 1}λ, and computes the commitment X̂ ← comm(X, r). It sends the commitment

X̂ to the receiver.

• Open phase: The committer sends the pair (X, r) to the receiver. The receiver outputs
“accept” if comm(X, r) = X̂; otherwise, it outputs “reject”.

In our protocol, we require that the commitment scheme must satisfy the following two properties.

• Perfect binding: for any X /= X ′, and for any r, r′, it must be that

comm(X, r) /= comm(X ′, r′).

• Computationally hiding: for any X and X ′, it must be that

{comm(X, r), r
$←{0, 1}λ} ≡c {comm(X ′, r), r

$←{0, 1}λ},

where ≡c denotes computational indistinguishability.

D.1.2 Shamir Secret Sharing

In our final protocol, each user identity will split its bid into m shares, one for each miner, using a
t-out-of-m Shamir secret sharing scheme. Henceforth let F denote some finite field. A t-out-of-m
Shamir secret sharing consists of two algorithms, share and reconstruct.

• share takes as an input a secret s ∈ F, and outputs m shares (s1, . . . , sm) ∈ Fm of the secret.

• reconstruct takes as input a set I ⊆ [m], and the corresponding shares {si}i∈I , and outputs
the corresponding secret if and only if |I| ≥ t. Otherwise, the algorithm returns ⊥.

A t-out-of-m secret sharing satisfies the following two properties:

• Correctness: For any secret s and any set I ⊆ [m] such that |I| ≥ t, it must be that

Pr[(s1, . . . , sm)← share(s) : reconstruct(I, {si}i∈I) = s] = 1.

• Security: For any two secret s and s′, and for all set I ⊆ [m] such that |I| ≤ t− 1, it must
be that

{{si}i∈I : (s1, . . . , sm)← share(s)} ≡ {{si}i∈I : (s1, . . . , sm)← share(s′)}.

where ≡ denotes identically distributed. In addition, Shamir secret sharing also satisfies the
following properties. For any set I such that |I| < t,

{{si}i∈I : (s1, . . . , sm)← share(s)} ≡ {{ui}i∈I : ui uniformly randomly chosen from F}.
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D.1.3 Honest-Majority Multi-CRS NIZK

In our protocol, user identities will need to rely on zero-knowledge proofs to prove that they have
correctly shared their bids. We will use a non-interactive zero-knowledge proof (NIZK). Since
we assume the majority of the miners are honest, NIZK can be instantiated without a common
reference string (CRS), using an honest-majority multi-CRS NIZK scheme [GO14]. Specifically,
every miner j ∈ [m] acts as a CRS contributor, and posts a CRS denoted crsj to the broadcast
channel. For any miner j′ who did not post a CRS, we treat its crsj′ as 0. Given the collection
of all CRSes {crsj}j∈[m], a prover can prove an NP statement given a valid witness. As long as a
majority of the miners (i.e., CRS contributors) are honest, the NIZK scheme satisfies completeness,
zero-knowledge, and simulation sound extractability, as defined below.

For an NP language L, let RL(stmt, w) denote the NP relation corresponding to the language
L, i.e., stmt ∈ L if and only if there exists a w such that RL(stmt, w) = 1. An honest-majority
multi-CRS NIZK with m CRS contributors for an NP language L, parameterized with a security
parameter λ, consists of the following algorithms, where part of the definition is taken verbatim
from Guo, Pass, and Shi [GPS19].

• crs← K(1λ): each CRS contributor j ∈ [m] runs K(1λ) to generate a CRS crsj .

• τ ← P({crsj}j∈[m], stmt, w): given a statement stmt and a witness w such that RL(stmt, w) =
1, and the set of all CRSes denoted {crsj}j∈[m], compute a proof denoted π.

• {0, 1} ← V({crsj}j∈[m], stmt,π): given a statement stmt, the set of all CRSes {crsj}j∈[m], and
a proof π, the verifier algorithm V outputs either 0 or 1 denoting either reject or accept.

• (c̃rs, τ) ← K̃(1λ): a simulated CRS generation algorithm that generates a simulated c̃rs and
a trapdoor τ .

• π ← P̃(stmt, {c̃rsj}j∈[m], {τj}j∈H) where H ⊆ [m] and |H| ≥ )m2 * + 1: a simulated prover
algorithm produces a proof for the statement stmt without any witness, and the simulated
prover has to have access to at least )m2 *+ 1 number of trapdoors.

Henceforth, we use AO(·)(x) to mean that A is given oracle access to the oracle O(·). Next,
we give the security properties we want from the NIZK.

Completeness. Completeness says that an honest prover can always produce a proof that verifies,
if it knows a valid witness to the statement. Formally, completeness requires that for every λ, for
any set of CRSes {crsj}j∈[m] where every crsj is in the support of K(1λ), for every statement
stmt and witness w such that RL(stmt, w) = 1, with probability 1, the following holds: let π ←
P({crsj}j∈[m], stmt, w), it must be that V({crsj}j∈[m], stmt,π) = 1.

Zero-knowledge. An honest-majority multi-CRS NIZK system satisfies zero knowledge iff the
following properties hold. First, we require that simulated reference strings are indistinguishable
from real ones, i.e., for every non-uniform p.p.t. A, there exists a negligible function negl(·), such
that

∣∣∣Pr
[
crs← K(1λ) : A(1λ, crs) = 1

]
− Pr

[
(c̃rs, τ)← K̃(1λ) : A(1λ, c̃rs) = 1

]∣∣∣ ≤ negl(λ).

Moreover, we require that as long as the majority of the CRSes are honestly generated, then
any efficient adversary cannot distinguish an interaction with a real prover using real witnesses to
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prove statements and an interaction with a simulated prover who proves statements without using
witnesses — even if A obtains the trapdoors of the simulated CRSes.

More formally, letAK̃ denote and adversaryA who is allowed to call the simulated key generation
algorithm K̃(1λ) multiple times. We say that A is minority-constrained, if among the set of CRSes
{crsj}j∈[m] output by A, the majority of them are CRSes returned to Afrom K. We want that for
any non-uniform p.p.t.minority-constrained adversary A, there exists a negligible function negl(·)
such that
∣∣∣Pr

[
({crsj}j∈[m], stmt, w)← AK̃(1λ),π ← P({crsj}j∈[m], stmt, w) : A(π) = 1 and RL(stmt, w) = 1

]

−Pr
[
({crsj}j∈[m], stmt, w)← AK̃(1λ),π ← P̃({crsj}j∈[m],

−→τ , stmt) : A(π) = 1 and RL(stmt, w) = 1
] ∣∣∣

≤negl(λ)

where −→τ is the following vector: for every CRS in the set {crsj}j∈[m] that is output by the simulated

key generation algorithm K̃, the vector −→τ includes its corresponding trapdoor. Note that there are
at least )m2 *+ 1 entries in −→τ since A is minority-constrained.

Simulation sound extractability. Intuitively, simulation sound extractability requires that
even though an A may adaptively interact with a simulated prover and obtain simulated proofs of
false statements, if A ever produces a fresh proof for some purposed statement stmt, then except
with negligible probability, some p.p.t. extractor must be able to extract a valid witness from the
proof, using an extraction key that is produced during a simulated setup procedure.

More formally, an honest-majority multi-CRS NIZK system satisfies simulation sound ex-
tractability iff there exist p.p.t. algorithms K̃0 and E such that the following is satisfied:

• K̃0(1λ) outputs a triple denoted (c̃rs, τ, ek) where the first two terms have an output distribution
identical to that of K̃(1λ); and

• for any non-uniform p.p.t.minority-constrained adversary A, there exists a negligible function
negl(·), such that the following holds:

Pr

[ (
{crsj}j∈[m], stmt,π

)
← AO(1λ,·) :

w← E({crsj}j∈[m],
−→
ek, stmt,π)

(stmt,π) not output from O(1λ, ·), and
RL(stmt, w) = 0 but V({crsj}j∈[m], stmt,π) = 1

]

≤negl(λ),

where O(1λ, ·) is the following oracle:

1. Upon receiving crs generation query gen from A, it runs (crs, τ, ek)← K̃0(1λ); it then records
τ and returns crs and ek to A.

2. Then, at some point, A outputs {crsj}j∈[m] — this set of CRSes must be consistent with the
CRSes in A’s final output. A is required to be minority-constrained, meaning that at least
)m2 *+ 1 number of entries in {crsj}j∈[m] must be output from K̃0.

At this moment, define the following notation:

– −→τ is the following vector: for every CRS in the set {crsj}j∈[m] that is output by K̃0,
the vector −→τ includes its corresponding trapdoor. Note that −→τ must contain at least
)m2 *+ 1 such trapdoors since A is minority-constrained.

54



– Similarly, the notation
−→
ek denotes the following vector: for every CRS in the set {crsj}j∈[m]

that is output by K̃0, the vector
−→
ek includes its corresponding extraction key ek included

in the triple.

3. At this moment, A is allowed to send (prove, stmt) to the oracle multiple times; and for each
such invocation, the oracle would call π̃ ← P̃({crsj}j∈[m],

−→τ , stmt) and return the resulting π̃
to A.

Groth and Ostrovsky [GO14] showed how to construct a multi-CRS NIZK from standard crypto-
graphic assumptions, resulting in the following theorem.

Theorem D.1 (Multi-CRS NIZK [GO14]). Assume the existence of enhanced trapdoor permuta-
tions. Then, there exists a multi-CRS NIZK system that satisfies completeness, zero-knowledge,
and simulation sound extractability.

D.2 Protocol Description

Below we give the final multi-party computation protocol ΠMPC. Roughly speaking, the user
identities first secret share their bids among the miners and prove in zero-knowledge the correctness
of the sharings. Then, the miners run an MPC protocol using the shares they have received as
inputs. The MPC protocol will securely compute the rules of the auction, and determine which bids
are confirmed and how much each confirmed bid pays. We will use the honest-majority multi-CRS
NIZK defined in Appendix D.1.3. Moreover, we will describe our protocol ΠMPC assuming that
players have access to an ideal functionality FTFM which computes the rules of the auction — the
formal description of FTFM will be provided at the end of ΠMPC. The ideal functionality FTFM can
be realized using standard techniques — in particular, we can use an MPC protocol that secures
against minority corruptions providing fairness and guaranteed output [GMW87,RBO89]. Finally,
our ΠMPC protocol also makes use of a perfectly binding and computationally hiding commitment
scheme denoted comm.

During the protocol, miners will keep track of a set C containing the set of user identities who
have misbehaved. The bids of those in C will be treated as 0. All miners have the same view of C
since C is determined using only messages sent on the broadcast channel.

Protocol ΠMPC instantiating FMPC

Parameters: Let λ be the security parameter. Let m be the number of miners running the
protocol. Let t = +m2 , be the reconstruction threshold of secret sharing. Let ID be the agreed-
upon set of user identities that are participating in the protocol. Let C be an initially empty
set.

Building blocks:

• Shamir secret sharing.

• A perfectly binding, computationally hiding commitment scheme comm.

• An honest-majority multi-CRS non-interactive zero-knowledge proof (NIZK) system de-
noted as NIZK := (K,P,V).

Input: Each user identity i ∈ ID has a bid bi ∈ F. Each miner has no input.
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Sharing phase

1. Each miner j runs NIZK.K(1λ) and obtains crsj. Each miner j broadcasts crsj to all user
identities and miners. If a miner j fails to broadcast crsj , set crsj = 0. Let CRS :=
{crsj}j∈[m].

2. Each user identity i splits bi into m secret shares using a t-out-of-m secret sharing scheme.
Let Xi,j denote the j-th share of bi. Let X̂i,j = comm(Xi,j , ri,j) where the ri,js are fresh

randomness. Broadcast the commitments of shares {X̂i,j}j∈[m] to the miners.

If a user identity i fails to broadcast all the commitments, each miner adds i to C.

3. Each user identity i ∈ ID calls πi ← NIZK.P(CRS, stmti, wi) with the statement stmti =
(i, {X̂i,j}j∈[m]) and the witness wi = (bi, {Xi,j , ri,j}j∈[m]) to prove that

• For each j ∈ [m], (Xi,j , ri,j) is the correct opening of X̂i,j;

• {Xi,j}j∈[m] forms a valid t-out-of-m secret sharing of bi.

Each user identity i broadcasts πi.

4. For each user identity i, if it fails to broadcast πi, or NIZK.V(CRS, stmti,πi) outputs 0,
i.e., the verifier algorithm rejects the proof, each miner adds i to C.

5. Each user identity i ∈ ID sends (Xi,j , ri,j) to miner j for all j ∈ [m].

6. Each miner j does the following: for all i ∈ ID \ C, if it receives a message (Xi,j , ri,j)

that is a correct opening with respect to X̂i,j , record (Xi,j , ri,j) and broadcast (ok, i, j).
Otherwise, broadcast (complain, i, j) to complain about user identity i.

7. Each user identity i ∈ ID does the following: for all j such that there is a complaint
(complain, i, j) from miner j at Step 6, user identity i broadcasts the corresponding open-
ing (i, j,Xi,j , ri,j). Every miner records every correct opening (i, j,Xi,j , ri,j) it hears.

8. If there exists a complaint (complain, i, j) from miner j in Step 6 such that user identity
i has not broadcast the correct opening (i, j,Xi,j , ri,j), each miner adds i to C.

Computation Phase Miners invoke FTFM parameterized with ID, C, the commitments of
shares {X̂i,j}i∈ID\C,j∈[m], and the transaction fee mechanism. Each miner outputs the output
of FTFM.

Ideal Functionality FTFM

Parameters: The sets ID and C, as well as commitments of shares {X̂i,j}i∈ID\C,j∈[m] and the
transaction fee mechanism.

Input: Each miner j has input {(Xi,j , ri,j)}i∈ID\C , where (Xi,j , ri,j) is a correct opening of

X̂i,j .
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Functionality:

1. Each miner sends its input {(Xi,j , ri,j)}i∈ID\C to FTFM.

2. For each j ∈ [m], the functionality FTFM checks if (Xi,j , ri,j) is an correct opening of X̂i,j

for all i ∈ ID \ C.

3. For each i ∈ ID \ C, the functionality reconstructs bi only using those correct openings.
If the reconstruction fails, treat bi as 0. For each i ∈ C, set bi = 0.

4. Let b = {bi}i∈ID denote all the bids. The functionality then computes the output of the
transaction fee mechanism on input b and sends the output to every miner.

Theorem D.2. If the commitment scheme comm is perfectly binding and computationally hiding,
and the honest-majority multi-CRS NIZK satisfies completeness, zero-knowledge and simulation
sound extractability, then ΠMPC securely realizes FMPC (See Figure 1) in the FTFM-hybrid model
as long as the number of colluding miners is less than m

2 .

D.3 Proof of Theorem D.2

Below we use ≡ to denote identically distributed and ≡c to denote computationally indistinguisha-
bility. Let ExpRealA denote the joint distribution of the honest parties and the adversary A’s view
in the real-world experiment, where the adversary A who controls a subset of the miners and
users interact with honest parties running the real-world protocol ΠMPC. Let ExpIdealS denote the
joint distribution of the honest parties and the ideal-world adversary S’s view in the ideal-world
experiment, where S controls the same subset of miners and users, and all parties interact with
FMPC to compute the outputs. We want to show that ExpRealA and ExpIdealS are computationally
indistinguishable assuming A is p.p.t.. In the proof, we use Hminer and Kminer to denote the set
of honest miners and corrupted miners, respectively. Formally, the simulator S interacting with
FMPC behaves as follows.

Simulator S interacting with FMPC

Sharing Phase

1. Let C be an empty set.

2. Emulate honest miner h ∈ Hminer as follows: run the simulated CRS generation algorithm
K̃0 of NIZK and get a triple (crsh, τh, ekh). Send {crsh} to A.

At the end of this step, define the following notation: Let −→τ be the vector of {τh}h∈Hminer,

and
−→
ek be the vector of {ekh}h∈Hminer.

3. For each corrupted miner k ∈ Kminer, wait for its crsk. If a corrupted miner k fails to send
crsk, set crsk = 0. Let CRS = {crsj}j∈[m] be the set of all CRSes generated by miners.

4. Emulate honest user identity i as follows: For every corrupted miner k ∈ Kminer, let the
share Xi,k be a uniformly random element in the finite field F. For every honest miner
h ∈ Hminer, let the share Xi,h = 0.

5. Emulate honest user identity i as follows: commit to the shares X̂i,j = comm(Xi,j , ri,j)
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using fresh randomness ri,j for each miner j ∈ [m]. Send the commitments {X̂i,j}j∈[m]

to A.

6. For each corrupted user identity # ∈ ID, wait for its commitments {X̂$,j}j∈[m]. If a
corrupted user identity # fails to send all the commitments, add # to set C.

7. Emulate honest user identity i as follows: call πi ← NIZK.P̃(CRS,−→τ , stmti), where
stmti := (i, {X̂i,j}j∈[m]). Send πi to A.

8. For each corrupted user identity #, wait for π$. If a corrupted identity # fails to send a
proof π$, or that NIZK.V(CRS, stmt$,π$) = 0 for stmt$ := (#, {X̂$,j}j∈[m]), add # to C.

9. For each corrupted user identity # ∈ ID\C, the simulator S calls the extraction algorithm

E of NIZK and gets w$ ← E(CRS,
−→
ek, stmt$,π$). If there exists an # such that w$ is not a

valid witness of stmt$, the simulator S aborts.

10. Emulate each honest identity i ∈ ID to send the shares for each corrupted miners
{(Xi,k, ri,k)}k∈Kminer to A.

11. Receive the shares {(X$,h, r$,h)}h∈Hminer for honest miners from each corrupted identities
# ∈ ID.

12. Emulate honest miner h as follows: for each corrupted user identity # ∈ ID, it checks
whether (X$,h, r$,h) it received is a correct opening of X̂$,h. If yes, send (ok, h, #) to A.
Otherwise, send (complain, h, #) to A. Meanwhile, send (ok, h, i) for each honest user
identity i ∈ ID to A.

13. Emulate honest user identity i as follows: If it received (complain, k, i) from a corrupted
miner k, send (i, k,Xi,k, ri,k) to A.

14. For each corrupted user identity # ∈ ID, if there exists a complaint (complain, h, #) from
an honest miner h, wait for #’s opening (#, h,X$,h, r$,h).

15. For each corrupted user identity # ∈ ID: if there exists a miner j that broadcast a
complaint (complain, #, j) but # did not broadcast the correct opening (#, j,X$,j , r$,j),
then add # to C.

Computation Phase Note that by this point, if the simulator did not abort, for each
corrupted user identity # ∈ ID \ C, the simulator S has extracted a valid witness w$ = (b$,
{X$,j , r$,j}j∈[m]). The simulator sets b$ = 0 for # ∈ C. It then sends b$ for all corrupted user
identities # ∈ ID to the ideal functionality FMPC.

After the simulator S receives the output from FMPC, it sends the output of the mechanism
to A on behalf of FTFM.

We construct the following sequence of hybrid experiments.

Hyb0. This experiment is identical to a real execution of ΠMPC, except that now the adversary A
interacts with a fictitious simulator S ′ which internally emulates the execution of all honest players.
Moreover, the simulator S ′ also emulates FTFM. We use Hyb0 to denote the joint distribution of
honest players’ outputs and the adversary’s view in this experiment.

By definition, ExpRealA ≡ Hyb0.
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Hyb1. This experiment is almost identical to the experiment in Hyb0, except the following modifi-
cations:

• Instead of calling NIZK.K to generate the CRS, the simulator S ′ calls the simulated CRS
generation algorithm K̃0, such that for each honest miner h ∈ Hminer, the simulator gets
(c̃rsh, τh, ekh). The simulator uses c̃rsh as miner h’s NIZK CRS, and keeps the trapdoor τh
and extraction key ekh to itself.

• Whenever the simulator S ′ needs to compute a proof on behalf of an honest user identity i, it
calls the simulated prover algorithm P̃ supplying the trapdoor −→τ := {τh}h∈Hminer to compute
a simulated proof without using the witness.

We use Hyb1 to denote the joint distribution of honest players’ outputs and the adversary’s view
in this experiment.

Claim D.3. Assuming that NIZK satisfies zero-knowledge, then Hyb0 ≡c Hyb1.

Proof. The proof can be done via a sequence of hybrid experiments. First, one by one for each
honest miner, we replace the real generation algorithm K with the simulated generation algorithm
K̃. Next, one by one for each NIZK proof of an honest user identity, we replace the proof with a
simulated proof computed using P̃ without using the witness. Since the number of corrupted miners
is less than half, the adversary is minority-constrained (as defined in Appendix D.1.3), the adjacent
hybrids in each step are indistinguishable by a straightforward reduction to the zero-knowledge
property of NIZK.

Hyb2. This experiment is almost identical to the experiment in Hyb1, except that whenever A
supplies a correct NIZK proof π$ on behalf of a corrupted user identity # for statement stmt$, the

simulator S ′ calls the NIZK’s extraction algorithm E(CRS,
−→
ek, stmt$,π$) to extract the witness w$.

If w$ is not a valid witness yet NIZK.V(CRS, stmt$,π$) = 1, the simulator S ′ aborts. We use Hyb2 to
denote the joint distribution of honest players’ outputs and the adversary’s view in this experiment.

Claim D.4. Assuming that NIZK satisfies simulation sound extractability, then Hyb1 ≡c Hyb2.

Proof. Given that the simulator S ′ does not abort, the two experiments are identical. Since the
adversary controls less than half corrupted miners, by the simulation sound extractability property
of NIZK, the probability of S ′ aborting in Hyb2 is negligible. Specifically, for applying the simulation
sound extractability, all NIZK statements in the protocol are tagged with the user identity (identity
of the prover), thus no statement can be reused. Therefore, Hyb1 ≡c Hyb2.

Hyb3. This experiment is almost identical to the experiment of Hyb2, except for the following
difference:

• In the sharing phase, for each honest user identity i, instead of committing to the m shares
{Xi,j}j∈[m] of the t-out-of-m secret sharing scheme, the simulator S ′ commits to Xi,k for
corrupted miner k ∈ Kminer, and commits to 0 for honest miner h ∈ Hminer.

• S ′ uses the simulated prover algorithm P̃ of NIZK to vouch for honest user identities.

• Upon receiving the openings, it sends (ok, h, i) for all honest user identities i ∈ ID and all
honest miners h ∈ Hminer, without actually checking the openings of the commitments.
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We use Hyb3 to denote the joint distribution of honest players’ outputs and the adversary’s view
in this experiment.

Claim D.5. Assuming that the commitment scheme comm is computationally hiding, then Hyb2 ≡c

Hyb3.

Proof. The proof can be done via a sequence of hybrid experiments, where one by one for each honest
user identity i, we replace the commitments {X̂i,h}h∈Hminer of the sharesXi,h with commitments of 0.
The adjacent hybrids in each step are indistinguishable by a direct reduction to the computational
hiding property of comm.

Recall that ExpIdealS denotes the honest players’ outputs computed by FMPC and the view sim-
ulated by S which interacts with FMPC.

Claim D.6. If the commitment scheme comm is perfect binding and that the t-out-of-m secret
sharing scheme is secure, then Hyb3 ≡ ExpIdealS .

Proof. The only differences in Hyb3 and ExpIdealS are:

1. In ExpIdealS , the simulator is generating honest-to-corrupt shares at random; whereas in Hyb3,
the honest-to-corrupt shares are generated honestly. By the security of Shamir secret sharing,
the two approaches result in the same distribution since the adversary controls fewer than
m/2 miners.

2. In Hyb3, if the experiment did not abort, then the simulator sends the shares actually opened
by corrupt user identities to FTFM. By contrast, in ExpIdealS , the simulator uses the shares
output by the NIZK’s extractor E instead. Since the commitment is perfectly binding, the
two approaches result in the same outcome as long as the simulator did not abort.

Therefore, the two hybrids are identically distributed.

By the hybrid lemma, we have that ExpRealA ≡c Exp
Ideal
S . Therefore, the protocol ΠMPC securely

realizes FMPC in the FTFM-hybrid model as long as the adversary controls only a minority number
of miners.

D.4 MPC Protocol in the Presence of Majority-Miner Coalitions

So far, we have focused on instantiating the MPC protocol when the coalition controls only minority
of the miners. As we explained in Remark 1.5, our game-theoretic analyses also naturally extend
to the case when the coalition may control majority of the miners.

In this case, we can modify our MPC protocol as follows to achieve security with abort under
corrupt majority. First, instead of threshold secret sharing, the user identities may use additive
secret sharing to share their bids among the miners. As before, each user identity will broadcast
commitments of all shares of its bid, and then it gives the corresponding opening to every miner.
There is no more need to prove that the committed values are internally consistent secret shares.
If a miner did not receive the correct opening from a user identity, it can broadcast a complaint
in which case the corresponding user identity must reveal the correct opening or it will get kicked
out. During the reconstruction phase, if any miner fails to open, then the protocol just aborts and
no output is produced, i.e., no block will be mined. Finally, FTFM should also be instantiated with
a corrupt majority MPC protocol.
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E Efficient Instantiations of our MPC-Assisted Mechanisms

The MPC-assisted mechanisms proposed in our paper, including posted price with random selection
and the diluted posted price mechanism, achieve incentive compatibility in the ex post setting. This
means that instantiating these mechanisms in practice actually does not require the use of generic
MPC. We can use the following efficient protocols:

• Instead of having the user identities verifiably secret share their bids with the miners, they
can simply post the bids in the clear over a broadcast channel. In practice, we can use any
consensus mechanism to realize the broadcast channel, such that the miners agree on the set of
all bids posted. In particular, we can use the underlying blockchain itself to reach this consensus
— importantly, if we do this, we stress that the initial set of bids agreed upon need not be
permanently stored by the blockchain, i.e., here we are using the blockchain for (transient)
consensus but not for storage.

• Once the miners agree on the initial set of bids, they can then run any coin toss protocol to
decide a randomness seed, which can be used to generate the random coins and perform the
random selection needed by the mechanisms.
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