PADDPI: Securing P4-Programmable Data Plane
Networks via DNS Deep Packet Inspection

Ali AlSabeh*, Elie Kfoury*, Jorge Crichigno*, Elias Bou-Harb'

*Integrated Information Technology Dept., University of South Carolina (USC), Columbia, South Carolina, USA
TThe Cyber Center For Security and Analytics, Information Systems and Cyber Security Dept.
University of Texas at San Antonio (UTSA), San Antonio, Texas, USA
Email: *aalsabeh@email.sc.edu, *ekfoury @email.sc.edu, *jcrichigno@cec.sc.edu, Telias.bouharb@utsa.edu

Abstract—One of the main roles of the Domain Name System
(DNS) is to map domain names to IP addresses. Despite the
importance of this function, DNS traffic often passes without
being analyzed, thus making the DNS a center of attacks
that keep evolving and growing. Software-based mitigation ap-
proaches and dedicated state-of-the-art firewalls ¢ a n become
a bottleneck and are subject to saturation attacks, especially
in high-speed networks. The emerging P4-programmable data
plane can implement a variety of network security mitigation
approaches at high-speed rates without disrupting legitimate
traffic.

This paper describes a system that relies on programmable
switches and their stateful processing capabilities to parse and
analyze DNS traffic solely in the data plane, and subsequently
apply security policies on domains according to the network
administrator. In particular, Deep Packet Inspection (DPI) is
leveraged to extract the domain name consisting of any number
of labels and hence, apply filtering r ules (e.g., b locking malicious
domains). Evaluation results show that the proposed approach
can parse more domain labels than any state-of-the-art P4-based
approach. Additionally, a significant performance gain is attained
when comparing it to a traditional software firewall -pfsense-,
in terms of throughput, delay, and packet loss. The resources
occupied by the implemented P4 program are minimal, which
allows for more security functionalities to be added.

Index Terms—P4-programmable switches, stateful processing,
high-speed networks, DNS filtering, DPI.

I. INTRODUCTION

The Domain Name System (DNS) [1] is a hierarchical
distributed database that was initially implemented to map
human-readable domain names (e.g., google.com) to machine-
readable Internet Protocol (IP) addresses (e.g., 8.8.8.8) [2].
Later, the DNS became an essential part of the Internet provid-
ing various services (e.g., host and mail server aliasing, load
distribution, etc.). Since its conception, attacks on the DNS
grew widely and wreaked havoc in numerous domains. Recent
large-scale attacks, such as the Mirai botnet that affected
millions of users and exceeded 600 Gigabits per second (Gbps)
in volume [3], use the DNS as a main attack vector [2].

Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb) 2022
28 April 2022, San Diego, CA, USA

ISBN 1-891562-78-9

https://dx.doi.org/10.14722/madweb.2022.23012

www.ndss-symposium.org

The security gap incurred by the DNS can be attributed to
its ability in handling DNS records transparently, i.e., DNS
should not attempt to interpret nor understand the records it
is serving. While such transparency is essential for a fast and
smooth deployment of new technologies without altering the
infrastructure, it leaves the Internet prone to a wide variety of
attacks [4].

Traditional enterprise networks use a number of components
and approaches to protect against security threats. For exam-
ple, they could use Intrusion Detection/Prevention Systems
(IDS/IPS), Access Control Lists (ACLs) to filter out unwanted
traffic (e.g., based on the IP address), and firewalls to detect
application layer attacks (e.g., detect malicious payload) [5].
As the security measures are distributed among different
components, the process of implementing enterprise network
security policy becomes tedious and challenging. On the other
hand, placing the security in one component, such as deploying
a firewall at the edge to protect against all external threats,
has multiple disadvantages, such as degrading the throughput,
making the component a single point of failure, as well as
leaving the network vulnerable to internal attacks [6].

Current architectures adopting Software-defined Network-
ing (SDN)/OpenFlow offload attack mitigation to the control
plane that operates at significantly lower speeds than the data
plane. Additionally, the OpenFlow protocol is restricted and
can act on a standardized set of header fields [7]. Such burdens
push the cybersecurity community to adopt a solution that can
swiftly deploy threat mitigation without disrupting legitimate
traffic.

The advent of the P4 language [8] and programmable
devices allows network operators to describe in the soft-
ware (i.e., the P4 program) the behavior of how packets
are processed. Such flexibility removes the entry barrier to
network design, previously reserved to chip manufacturers,
and spurs innovation in the data plane. The flexibility offered
by the P4 language allows network designers to overcome the
restrictions of OpenFlow and implement their own customized
data plane based on the requirement of the network. Since the
emergence of the P4 language, several network applications
were offloaded to the data plane, thus, significantly enhancing
the performance of the network. Despite the increasing number
of network applications being offloaded to the data plane,
Deep Packet Inspection (DPI) is not widely practiced by P4

researchers as they are reluctant that it might overwhelm the
switch and degrade the throughput in the network [9].

A. Contribution

This paper leverages P4 for Domain name DPI (P4DDPI), in
particular, to parse and filter domains in the data plane without
using the control plane. The proposed scheme is motivated by
the ever-growing demand for moving and processing data (e.g.,
filtering malicious domains, prohibiting Command and Control
(C&C) domain access), which burdens the communication
and computing infrastructure. The contribution of the paper
is summarized as follows:

o A P4-based approach to extract the domain name from
DNS queries with any number of labels via DPI.

o Protecting networks by filtering malicious domains taken
from a well-known public dataset.

e The implemented prototype shows significant improve-
ments in the throughput, delay, and packet loss rate
when compared to Central Processing Unit (CPU)-based
approaches.

o The resources occupied by the P4 program are negligible,
allowing other security and networking features to be
implemented.

II. RELATED WORK

This section highlights two categories in the context of
security implementations with emphasis on those pertaining
to DNS, in addition to DPI in P4. Furthermore, this section
pinpoints the novelty of this paper compared to the literature.

A. DNS and security implementations in P4

Meta4 [10] is a framework that monitors network traffic by
parsing the domain name in DNS replies. Essentially, Meta4
captures all type A DNS replies in the data plane, parses the
domain name and the response IP address (IP address of the
server hosting the domain), and the IP address of the client
requesting the domain. The resulting flow identifier (client IP,
server I[P, domain name) is stored in the data plane, and all
corresponding traffic belonging to this flow is monitored in
the data plane using P4 registers. Meta4 is implemented on
a P4 Tofino switch and analyzed on campus traffic, where it
achieved high accuracy in terms of traffic volume measurement
by the domain name. Meta4 is restricted to parsing only four
labels of the domain name (total of 60 bytes); thus, queries
with long malicious domains are easily bypassed.

WORD [11] is a data plane approach that targets DNS
water torture attack, which overloads a specific domain
(e.g., example.com) with an enormous number of DNS re-
quests, each with a random subdomain (e.g., a.example.com,
b.example.com, etc.). WORD analyzes per-domain DNS re-
quests and replies and is composed of three main parts that (1)
splits the subdomain and the domain of arriving DNS packets;
(2) counts the number of Non-existent Domain (NXDOMAIN)
responses; and (3) maintains an approximate distinct count of
the number of subdomains for each domain. WORD hashes
the top 3 labels only and uses a public dataset of Top Level

Domains (TLDs) to split the domain and the subdomain.
Consequently, WORD may not generalize well for unknown
domains not found in the dataset.

P4DNS [12] is an in-network cache for storing DNS entries.
Evaluations of PADNS show that it outperforms other CPU-
based counterparts, where PADNS has a significantly higher
throughput and lower latency. PADNS stresses the limitations
of DNS implementations in P4, such as the variable header
length parsing and the need for loops to parse DNS names.

Other security schemes in P4 include mitigation against
Distributed Denial of Service (DDoS) attacks [13], DNS
amplification attacks, and policy-based firewalls [9]. However,
none of the approaches perform DPI to extract DNS names.

B. Deep Packet Inspection (DPI) in P4

Jepsen et al. [14] develop a system for locating the oc-
currences of string keywords in the payload using P4. The
PISA-based Parallel Search (PPS) takes a set of search patterns
and converts it to a partitioned Deterministic Finite Automata
(DFA) that can run on each stage, thus, achieving parallelism
across pipelines. Inspired by the use of recirculation for DPI,
PADDPI utilizes this concept for performing domain name
extraction and applying it in security fields.

DeepMatch [15] provides a line-rate DPI primitive in the
data plane using Netronome SMART. DeepMatch showcases
new applications in the data plane that were not realized
before, such as Quality of Service (QoS) policies and network
monitoring that require processing application layer informa-
tion. Additionally, IDS can be integrated to perform advanced
DPI security policies. DeepMatch provides stateless intra-
packet and stateful inter-packet regex matching capabilities,
as well as supports reordering of packets since the content
specified by a regex may appear anywhere in a flow.

To the best of the authors’ knowledge, the proposed ap-
proach herein is the first to exploit DPI in the programmable
data plane for enhancing the security of the network at the
level of the DNS. This opens new opportunities for security
implementations in the data plane beyond the traditional
header fields (i.e., TCP/IP).

III. BACKGROUND
A. The Domain Name System (DNS)

The DNS is a hierarchical decentralized system that maps
the physical location (i.e., IP address) of a service and its
logical address (i.e., its domain name) so that a service can
be reached through its name. Domain names are organized as
a suffix tree structure called domain namespace. Each node
(hierarchy) in the tree has an associated label, and the dot
character is used to separate hierarchies. Each label is a length
octet followed by an octet string. The farthest right label
is named the Top Level Domain (TLD), such as ”.com” in
"www.example.com”. All domain names end at the root, which
has a null string label, thus, the length of the last label is zero
[1, 16].

DNS records stored in DNS servers hold crucial information
about a domain and a record can be of different types

P4 switch

@ - Parse the domain name

- Apply match-action on the hash of the
domain (hash of every label)

- On match, save <hash(domain), IP> tuple
in aregister

- Apply security policies on subsequent

network traffic (based on IP address)
< 7
E/

Network
hosts
Denied traffic

DNS P4 switch
resolver Traffic @
filtering

Internal traffic

Allowed traffic

ﬁ DNS reply
Fig. 1: Proposed system.

(Resource Record (RR)). For instance, RR type A stores a
hostname and its corresponding IPv4 address, while RR type
AA stores the IPv6 address. Other common types include
Canonical Name (CNAME) record for aliasing hostnames,
Mail eXchanger (MX) record for mailing services, Name
Server (NS) for specifying a DNS zone.

B. P4 language

Programming Protocol-independent Packet Processors (P4)
is a domain-specific programming language for network de-
vices that defines how packets are processed in the data
plane devices (e.g., switches, routers, Network Interface Cards
(NICs), etc.). The programmable forwarding data plane is an
evolution of the SDN paradigm, that was earlier restricted to
the OpenFlow protocol [17]. Since its conception, P4 has been
leveraged in multiple research areas, most notably in In-band
Network Telemetry (INT), load balancing, network perfor-
mance, congestion control, security, etc. In network security,
robust solutions, such as Poseidon [18], have been proposed
to mitigate DDoS attacks using programmable devices. In
congestion control, Kfoury et al. [19] proposed a P4-based
method to automate end-hosts’ TCP pacing. P4 switches are
designed to process Terabits per second (Tbps) of data. Thus,
several limitations accompany them, such as the flexibility of
the P4 language, the memory in the switch, the processing
complexity, etc. For instance, DPI is not widely practiced in
P4 and very few papers discuss it.

IV. PROPOSED SYSTEM
A. Overview

The proposed architecture advocates for implementing se-
curity policies requiring DPI in the data plane. In particular,
policies that act on packets occurring frequently in the network
(e.g., DNS queries). Typically, security policies requiring deep
analysis on non-traditional fields (e.g., DNS, HTTP/HTTPs,
FTP, SMPT, etc.) are implemented in next-generation firewalls.
However, this complexity comes at the expense of through-
put degradation and resource consumption. The proposed
approach focuses on inspecting DNS type A query due to
its ubiquitous use in the Internet as the first step to access
websites, domains, etc.

The high-level architecture of the proposed approach shown
in Fig. 1 can be summarized in the following steps. (1) The
DNS resolver replies with a DNS response to a previously sent
DNS query. (2) The P4 switch intercepts the DNS response
and parses all the labels in the domain name using packet
recirculation. Furthermore, the P4 switch stores the IP address
of the domain name (the IP address of the client can also be
stored and used depending on the policy) in a register. (3)
Subsequent packets having the destination IP address of the
domain are matched in the data plane (using P4 registers).
(4) The security policy (e.g., blocking a malicious domain) is
enforced at line-rate without involving the controller. For the
proposed architecture to be highly effective, the placement of
the programmable switch should be carefully chosen to inter-
cept all DNS queries from the hosts to the DNS resolver/cache.

While parsing a variable length header is supported in P4,
its operations are limited; thus, to parse domain name labels
with variable size, a state is created for each supported length.
Since the resources in the parser are limited, the implemented
P4 program parses up to 19 characters (i.e., 19 bytes x 8 =
152 bits) in each label, where labels with longer lengths can
be forwarded to the controller for further processing. Ideally,
the matching process should occur on each label as it is in
the domain; however, the maximum length of a domain can
go up to 253 bytes [20] and several labels can exist, which
can exhaust the switch. In order to efficiently match against
domain names, the hash of the label is used for matching
instead of the label.

In one pipeline pass, the P4 program parses up to four
labels; however, many domains, especially malicious ones, are
long and have more than four labels [21]. To accommodate
such domains, packet recirculation is leveraged in P4. The
pseudocode of the P4 program is summarized in Algorithm 1.
First, the parser parses DNS packets (i.e., UDP packets having
source or destination ports 53) and the first four labels of the
domain name. In the Switch Ingress control, the CRCj3, hash
of every parsed label is computed. If more labels exist in the
DNS packets, then a recirculation flag is set so that the packet
gets recirculated at the end of the egress pipeline. Additionally,
the concatenation of the hashes is calculated, hashed, and sent
in a customized header with the recirculated packet.

The purpose of recirculation is to parse the remaining
labels in the domain. To do that, the currently parsed domain
label headers (i.e., per-pipeline pass) are set to invalid (i.e.,
removed from the packet). The DNS packet keeps recirculating
in the pipeline until all domain labels are parsed. The last
recirculated packet contains a concatenation hash (representing
the labels in previous recirculations), as well as the hashes
of the labels corresponding to the last recirculated packet.
Eventually, when recirculation is no longer needed, the P4
program parses the IP address of the domain (DNS response
type A) and stores it in a register for various security policies
to be applied.

Such an approach is conceived to support matching on all
the labels of the domain without exhausting the resources of
the switch.

Algorithm 1 Pseudocode of PADLC

Parser ():
Parse_traditional_headers(e
labell + pkt.extract(p.doma
label2 + pkt.extract(p.doma
label3 + pkt.extract(p.doma

| labeld «+ pkt.extract(p.domai

SwitchIngress():
table domain_name_table
key : cnct_h;labell_h; ..;la
actions : send; drop; modi.
labell_h = hash(labell)
label2_h = hash(label2)
label3_h = hash(label3)
labeld_h = hash(label4)
if not_recirculated_packet then
L cnct_h =0
if len(label_5) > 0 then
recirculate_flag =1
enct_h = hash(enct_h, labell_h, ..., label4_h)
set_invalid(labell, label2, label3, labeld)

else
if domain_name_table.hit() then
| register.add(domain_IP)

V. IMPLEMENTATION AND EVALUATION

To evaluate the proposed approach, two types of experi-
ments were conducted. First, PADDPI is compared with pf-
sense, a well-known open-source firewall that is used in thou-
sands of enterprises as well as in research [22]. Pfsense soft-
ware distribution is compatible with most hardware supported
by FreeBSD. It is a full-fledged firewall that encompasses
various functionalities, such as routing and forwarding, IDS,
IPS, load balancing, GeolP blocking, etc. Second, PADDPI is
compared with Meta4 [10] to evaluate the number of domains
that can be parsed from a list of open-source blacklisted
domains [21].

Tests configuration and used metrics. Fig. 2 shows the
topology used to conduct experiments. Each of pfsense, host
HI, and host H2 runs solely on a physical server equipped
with 48 Xeon 6130 cores operating at 2.1 GHz, and 189 GB of
Random Access Memory (RAM). To emulate DNS inspection
in pfsense, DNSBlocking from the pfBlocker package is
loaded, in addition to routing between the two hosts in the
topology. Hosts H1 and H2 are used to generate DNS and
background traffic. Edgecore WedgelO0BF-32X [23] is the
programmable switch used in the experiment to load the P4
program (e.g., PADDPI and Meta4). All the links connecting
the devices have a 40 Gbps rate. When evaluating PADDPI,
P4 rules are inserted so that the traffic does not pass through
pfsense. On the other hand, to evaluate pfsense, the switch
will act as a simple L3 program and all the traffic will pass
through pfsense.

0 Gbps:
H1 40 Gbps
40 Gbps

P4

40 Gbps switch

H2

Pfsense

Fig. 2: Experimental evaluation topology.

To generate background traffic, 500 iPerf [24] tests run
between hosts HI and H2 to utilize the bandwidth. The TCP
send and receive buffers of the end-hosts were set to a large
value (i.e., 200 MB) so that they are not the bottleneck in
the performed experiments. Furthermore, small delays were
introduced between the iPerf tests to prevent TCP global
synchronization. dns-flood tool [25] and Token Bucket Filter
(tbf) [26] were used to generate DNS traffic with various rates.
The generated DNS packets contain malicious domain names
derived from a public dataset [21], and rules were inserted in
the switch/firewall to ensure that the whole domain name is
being parsed.

The conducted experiments include performance measures
in (1) throughput (the actual rate of packets successfully
transferred from the sender to the receiver); (2) delay (the time
interval a DNS query spends in the switch and in pfsense); (3)
packet loss (the percentage of packets that failed to reach the
destination); and (4) CPU usage of pfsense (measured under
sending DNS traffic with various rates).

A. Throughput

The conducted throughput experiments aim to study the
effect of deep packet inspecting DNS queries (under normal
and heavy DNS rates) on the throughput of the network.
Google allows anyone including, Internet Service Providers
(ISPs) and large organizations, to use its public DNS servers
free of charge under specific rate limits. In particular, each
client IP address should not exceed 1500 queries per second
(qps) [27], where the DNS query length is normally between
50 to 550 bytes [28]. Based on these metrics, the authors
considered that DNS rates up to 6 Megabits per second
(Mbps), derived from 550*8*1500, could be safely considered
normal.

Fig. 3a shows the throughput of the generated background
traffic using iPerf while sending DNS queries with various
traffic rates. For the first 120 seconds, only the background
traffic was generated without any DNS queries. At t = 120
s, host H1 started sending DNS queries with a 1 Mbps rate.
The rate of the DNS queries incrementally increases every 60
s to reach 200 Mbps at the end of the test. Under pfsense,
the throughput of the iPerf tests drops from approximately 18
Gbps (no DNS traffic) to 12 Gbps under 200 Mbps DNS rate.
Note that the throughput starts to degrade under normal DNS
rates (<= 6 Mbps), meaning that enabling DNS inspection
in pfsense can easily affect the performance of the network

— pfsense

- P4DDPI
1=0.0000

— pfsense

- P4DDPI N=006

(pfsense oo P4DDPI @ Change in DNS rate| Ho1roums K= 0000ams 0=0.08 0=0.0000
40000
1.0 4 1.04 -
35000 :
30000 4 0.81 0.8 :
3 !
g 25000 N 0.6 1 w 0.6 :
2 20000 T,) 35 :
5 4 5 10 B 0.4
S 15000 .3 2 50 100 200 04
S :
" 100004 0.2 1 0.2+
5000 0.04 0.04 ¢
T T T T T T ——
0 , ; , , , , ; , ;
0 100 200 300 400 500 600 700 800 900 0 10 20 30 40 50 60 0.00.10.20.30.40.50.60.70.80.91.01.1
time [s] Delay [ms] Loss rate [%]
(a) (b) (¢)

Fig. 3: Throughput, delay, and packet loss comparison between pfsense and PADDPI.

under normal traffic. As for the throughput under PADDPI,
no performance penalty was observed under any DNS traffic
rate and the throughput remained constant at approximately
37 Gbps; thus, utilizing the whole bandwidth.

B. Delay

To measure the delay in the P4 switch, DNS response
messages are sent from host H1 to host H2. For every DNS
message, the P4 switch adds the timestamps on ingress (port
facing host H1) and egress (port facing host h2) and sends
them to the controller via message digests. To measure the
delay in pfsense, DNS request messages are sent from host
H1 to pfsense, which in turn sends a DNS reply with the same
transaction ID. The P4 switch logs the timestamp at the ingress
ports facing host H1 and pfsense, along with DNS transaction
ID, and sends them to the control plane to measure the delay.

To guarantee that the delay measured only corresponds to
the processing time in pfsense and not to the Round-Trip Time
(RTT) between pfsense and an external DNS server, the sent
DNS requests contain domain names that should be blocked
by pfsense. Thus, once pfsense parses the domain name of a
query, it will send a DNS reply with the IP address of the
DNS sinkhole address without forwarding to an external DNS
resolver.

Fig. 3b shows the Cumulative Distribution Function (CDF)
of the delay observed during the experiments in both scenarios.
The CDF was formed with the dataset that constitutes the delay
measurements for all DNS packets in PADDPI and pfsense
when background traffic was generated.

The delay incurred in packets when they are processed
in pfsense ranges from 0.207 milliseconds (ms) to 455 ms
with a mean (u) of 17.61 ms and a standard deviation (o)
of 14.07ms. Approximately, 57% of the packets experienced
a delay above 15ms, 40% have delays above 20ms, and 1%
have delays above 50ms. Such a delay is attributed to the CPU-
based hardware component on which pfsense is running. The
delay experienced in PADDPI remains almost constant at a
few hundred of nanoseconds.

C. Packet loss

Relying on the reports generated by iPerf to measure the loss
in pfsense or the P4 switch does not produce precise results,
since the loss could occur from the server or the client sides
(hosts H1 and H2). To accurately measure the loss incurred by
the middlebox, the P4 switch is utilized to count the number
of incoming and outgoing packets at the ingress and egress
ports.

Fig. 3c shows the CDF of packet loss observed in the
background traffic (i.e., iPerf) while generating DNS traffic
with the same rates applied in the throughput experiments
(Section V.A). The loss rate reported in pfsense approximately
ranges between 0.84 and 1.1. On the other hand, no packet loss
was observed in PADDPI under varying DNS rates. As for the
dropped DNS packets, the authors noticed that pfsense drops
a significant number of DNS queries especially when the rate
is high.

D. CPU usage

Fig. 4 shows the CPU utilization of pfsense while incre-
mentally changing the DNS traffic rates. The CPU utilization
increases exponentially to reach 100% at 50 Mbps DNS rate.
This explains the drop in throughput and packets, as well
as the increasing delay in pfsense. On the other hand, in
PADDPI the DNS packets are handled in the Application-
Specific Integrated Circuit (ASIC), which can process Tbps;
thus, no performance penalty is incurred.

E. Supported domains and resources used

Meta4 [10] is the closest state-of-the-art approach to
PADDPI. However, the P4 program only supports 4 labels in
the domain name, which is not sufficient for acting as a secu-
rity middlebox. Shalla blacklist dataset [21] was analyzed, and
P4DDPI was compared against Meta4 based on the number of
domains that are supported. The dataset is public and contains
a collection of URL lists grouped into several categories.
PADDPI misses 4% of the analyzed blacklist domains, while
Meta4 misses 17%. The domains missed in PADDPI belong
to those that have labels exceeding 19 characters; however,

100 A

80 -

60 -

40

pfsense CPU usage [%]

201

0 10 20 30 40 50
DNS sending rates [Mbps]

Fig. 4: CPU usage of pfsense under different DN

they are infrequent and can be resolved by sendin
the control plane.

Since PADDPI uses recirculation to parse all
in a domain, the processing time of a packet in t
is proportional to the size of the domain name.,
the maximum length of a domain name is 253, however,
in practice domain names are much shorter. For instance,
the evaluated Shalla blacklist dataset [21] shows that the
maximum number of recirculations for a domain is 3 (labels’
length is less than 19). This attests to the low overhead created
by P4DDPI in recirculating DNS packets.

DNS inspection is one security functionality network ad-
ministrators might need to implement alongside several others.
Fig. 5 shows the resources occupied by P4DDPI, in particular,
hashbits, exact match, Static RAM (SRAM), and actions. In
the majority of the stages, PADDPI occupies less than 50% of
the displayed resources. This allows for other functionalities
to be implemented alongside DNS inspection.

VI. LIMITATIONS AND LESSONS LEARNED

P4DDPI promotes offloading security functionalities into
the data plane, especially those that can impact the perfor-
mance when implemented on a general-purpose CPU. The
advantage of PADDPI is that it can act as the first line of
defense to filter domains listed by the network administrator.
The effect of PADDPI can be mostly realized in high-speed
networks where security and performance are both required.
Despite the advantages of programmable switches, the authors
stress that they are not intended to fully replace firewalls.

When implementing PADDPI, the hardware resource did
not permit parsing the whole length of the label in a domain
that can go up to 63 characters [1]. Additionally, the number
of domains that can be stored and matched at line-rate is
limited to the memory in the switch. In particular, PADDPI
is able to fit around 200,000 entries of domain names in the
match-action tables. For a larger number of blocked domains,
external memory access is needed. For instance, the authors
in [29] showed that implementing Remote Direct Memory
Access (RDMA) over Converged Ethernet (RoCE) protocol
in a switch using a P4 program, while allocating 10 GB of
buffer size, will achieve a rate of around 20 million packets
per second without any packet loss.

Hashbit Exact Match

i N B BB 1 | |
02 1 1 i 02 BEBR B I 1 |
o - - - '8 - w N ' - W o I [

Stage O Stage 1 Stage2 Stage3 Stage4 StageS Stage s Stage7 Stage 8 StageO Stage 1 Stage2 Stage3 Staged StageS Stage® Stage7 Stage

®P4DDPI - Free ®PADDPI - Free

SRAM

1 {] ; { 100%

08 I 1 P 1 8o0%

06 § i 60%

04 1 a0%

02 | E ; i | 20%
[= s L 4 -

0 o%
Stage O Stage 1 Stage 2 Stage 3 Stage 4 Stage S Stage 6 Stage 7 Stage 8

Action

w3)3
Stage O Stage 1 Stage 2 Stage 3 Stage 4 Stage S Stage 6 Stage 7 Stage 8

W P4DDPI - Free

Fig. 5: Resources occupied by PADDPI.

RP4DDPI Free

If PADDPI is implemented on a network switch that does
bump-in-the-wire processing, it will process DNS response
packets but cannot filter them out. Instead, PADDPI can filter
the subsequent packets having a malicious destination IP
address (observed from a previous DNS query response). The
reason for this limitation is that PADDPI removes the parsed
DNS labels after every recirculation (in order to parse more
labels). Thus, the DNS response packet that arrives at the
switch must be forwarded normally for the DNS protocol
to work properly in the network. A workaround for that is
to use external memory to buffer DNS packets [14, 30] and
forward/drop them after the recirculation ends.

Encrypted DNS, such as DNS over TLS (DoT) and DNS
over HTTPS (DoH), has been prevailing to preserve pri-
vacy, bypass censorship, prevent spoofing DNS responses, etc.
PADDPI is ineffective against parsing encrypted DNS queries,
however, this is not a limitation restricted to programmable
switches as it applies to general-purpose DPI techniques as
well [31].

VII. CONCLUSION AND FUTURE WORK

This paper presents PADDPI, a novel approach that performs
DPI on DNS to enforce security policies and block malicious
domains in the data plane. The scheme leverages packet
recirculation to parse any number of labels in a domain;
thus, offloading heavy DNS inspection done by the firewall.
Evaluations show that PADDPI does not have any performance
penalty, whereas DNS inspection on a general-purpose server
running pfsense can exponentially overload the CPU usage
and degrade the throughput. Future work includes exploiting
the DPI to mitigate DNS attacks, such as DNS water torture
that can overwhelm a specific domain [11]. Additionally,
DPI and packet metadata can be utilized to infer malicious
traffic exploiting encrypted DNS traffic (e.g., DoT and DoH).
Optimization techniques of the P4 program can be further
explored to parse more characters in a label, store more domain
names in the switch, etc.

ACKNOWLEDGEMENT

This work was supported by the U.S. National Science
Foundation, award 2118311.

[1]
[2]

[4]

[5]

[6]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]
[21]

[22]
[23]

REFERENCES

P. Mockapetris et al., “Domain names-concepts and facilities,” 1987.
S. Torabi, A. Boukhtouta, C. Assi, and M. Debbabi, “Detecting internet
abuse by analyzing passive dns trafficc A survey of implemented
systems,” IEEE Communications Surveys & Tutorials, vol. 20, no. 4,
pp. 3389-3415, 2018.

M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
et al., “Understanding the mirai botnet,” in 26th USENIX security
symposium (USENIX Security 17), pp. 1093-1110, 2017.

P. Jeitner and H. Shulman, “Injection attacks reloaded: Tunnelling
malicious payloads over dns,” in 30th USENIX Security Symposium
(USENIX Security 21), pp. 3165-3182, 2021.

W. Stallings, L. Brown, M. D. Bauer, and A. K. Bhattacharjee, Computer
security: principles and practice. Pearson Education Upper Saddle
River, NJ, USA, 2012.

M. Casado, T. Garfinkel, A. Akella, M. J. Freedman, D. Boneh,
N. McKeown, and S. Shenker, “Sane: A protection architecture for
enterprise networks.,” in USENIX Security Symposium, vol. 49, p. 50,
2006.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM computer communication review,
vol. 38, no. 2, pp. 69-74, 2008.

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87-95, 2014.

A. AlSabeh, J. Khoury, E. Kfoury, J. Crichigno, and E. Bou-Harb, “A
survey on security applications of p4 programmable switches and a
stride-based vulnerability assessment,” Computer Networks, p. 108800,
2022.

J. Kim, H. Kim, and J. Rexford, “Analyzing traffic by domain name in
the data plane,” 2021.

A. Kaplan and S. L. Feibish, “Dns water torture detection in the data
plane,” in Proceedings of the SIGCOMM’21 Poster and Demo Sessions,
pp. 24-26, 2021.

J. Woodruff, M. Ramanujam, and N. Zilberman, “P4dns: in-network
dns,” in 2019 ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (ANCS), pp. 1-6, IEEE, 2019.

K. Friday, E. Kfoury, E. Bou-Harb, and J. Crichigno, “Towards a unified
in-network ddos detection and mitigation strategy,” in 2020 6th IEEE
Conference on Network Softwarization (NetSoft), pp. 218-226, IEEE,
2020.

T. Jepsen, D. Alvarez, N. Foster, C. Kim, J. Lee, M. Moshref, and
R. Soulé, “Fast string searching on pisa,” in Proceedings of the 2019
ACM Symposium on SDN Research, pp. 21-28, 2019.

J. Hypolite, J. Sonchack, S. Hershkop, N. Dautenhahn, A. DeHon,
and J. M. Smith, “Deepmatch: practical deep packet inspection in
the data plane using network processors,” in Proceedings of the 16th
International Conference on emerging Networking EXperiments and
Technologies, pp. 336-350, 2020.

Y. Zhauniarovich, I. Khalil, T. Yu, and M. Dacier, “A survey on ma-
licious domains detection through dns data analysis,” ACM Computing
Surveys (CSUR), vol. 51, no. 4, pp. 1-36, 2018.

E. F. Kfoury, J. Crichigno, and E. Bou-Harb, “An exhaustive survey
on p4 programmable data plane switches: Taxonomy, applications,
challenges, and future trends,” IEEE Access, 2021.

M. Zhang, G. Li, S. Wang, C. Liu, A. Chen, H. Hu, G. Gu, Q. Li,
M. Xu, and J. Wu, “Poseidon: Mitigating volumetric ddos attacks with
programmable switches,” in the 27th Network and Distributed System
Security Symposium (NDSS 2020), 2020.

E. F. Kfoury, J. Crichigno, E. Bou-Harb, D. Khoury, and G. Srivastava,
“Enabling tcp pacing using programmable data plane switches,” in
2019 42nd International Conference on Telecommunications and Signal
Processing (TSP), pp. 273-277, IEEE, 2019.

Raymond, “What is the real maximum length of a DNS name?.”
[Online]. Available: https://tinyurl.com/y8evymtx.
Shalla Secure Services, “Shalla’s Blacklists.”
https://tinyurl.com/ymf87tdj.

“pfsense.” [Online]. Available: https://www.pfsense.org/.

E. Networks, “Wedge 100BF-65X - 100 GbE Data Center Switch Bare-
Metal Hardware.” [Online]. Available: https:/tinyurl.com/4z8wz53r.

[Online]. Available:

[24]
[25]
[26]
[27]
(28]

[29]

(30]

[31]

A. Tirumala, “Iperf: The tcp/udp bandwidth measurement tool,”
http://dast. nlanr. net/Projects/Iperf/, 1999.

N. Winn, “dns-flood,” 2015. [Online]. Available:
https://tinyurl.com/mwmp542z.

“Token bucket filter,” 2021. [Online]. Available:
https://tinyurl.com/5n94hcef.

“Google Public DNS for ISPs.” [Online]. Available:

https://tinyurl.com/y85kksay.

R. Kiaei, “Securing Network Infrastructure for DNS Servers.” [Online].
Available: https://tinyurl.com/ywzmnmvv.

R. Beltman, S. Knossen, J. Hill, and P. Grosso, “Using p4 and rdma to
collect telemetry data,” in 2020 IEEE/ACM Innovating the Network for
Data-Intensive Science (INDIS), pp. 1-9, IEEE, 2020.

D. Kim, Y. Zhu, C. Kim, J. Lee, and S. Seshan, “Generic external
memory for switch data planes,” in Proceedings of the 17th ACM
Workshop on Hot Topics in Networks, pp. 1-7, 2018.

L. Jin, S. Hao, H. Wang, and C. Cotton, “Understanding the impact
of encrypted dns on internet censorship,” in Proceedings of the Web
Conference 2021, pp. 484-495, 2021.

