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Abstract

The task of speaker diarization aims to deter-

mine which speakers spoke when in a record-

ing. Such functionality could help to accel-

erate work in endangered languages by facili-

tating transcription and semi-automatically ex-

tracting useful meta-data to enrich language

archives. However, there has been little work

on speaker diarization for low-resource or en-

dangered languages. This work explores three

neural approaches to speaker diarization ap-

plied to data sets drawn from endangered lan-

guage archives. We find consistent improve-

ments for recent neural x-vector models over

earlier approaches. We also assess the factors

which impact performance across models and

data sets, with a focus on the challenging char-

acteristics of endangered language recordings.

1 Introduction

The task of speaker diarization aims to determine

which speakers spoke when and for how long in a

recording. Such functionality could facilitate work

in endangered language documentation and revi-

talization by accelerating transcription and semi-

automatically extracting useful meta-data to enrich

language archives, making such materials more

accessible to researchers and speaker communi-

ties. It could also help to alleviate the so-called

“transcription bottleneck.” The DIHARD series of

shared task evaluations (Ryant et al., 2018) has

brought renewed attention to the challenges of

speaker diarization in a variety of interaction sce-

narios. However, there has been little work on

speaker diarization for low-resource or endangered

languages. This work explores three neural ap-

proaches to speaker diarization applied to data sets

drawn from eight geographically and typologically

diverse endangered language archives. We find

consistent improvements for recent neural x-vector

models over earlier approaches. We also assess the

factors which impact performance across models

and data sets, with a focus on the characteristics

of endangered language recordings which prove

challenging.

2 Related Work

Speaker diarization has been the subject of ongoing

shared task evaluations (Ryant et al., 2018, 2019,

2020). Earlier work on diarization focused on tele-

phone conversations (Godfrey et al., 1992), broad-

cast news, and multiparty meetings (Janin et al.,

2003). Recent tasks and data sets have refocused

attention on more varied and challenging interac-

tion settings, such as child-directed speech, restau-

rant conversations, and courtroom speech, in the

DIHARD (Ryant et al., 2018) task series. However,

most diarization task data has been in English or

other high resource languages, such as French or

Chinese.

Some prior work has explored speaker diariza-

tion on endangered language data. Le Franc et al.

(2018) investigated an easy-to-use diarization tool

on child speech recordings, including datasets of

Tsimane, an endangered Bolivian language, and

Tseltal in Mexico. Both child speech data and

recording environments posed challenges. Most

closely related is work in Levow et al. (2021),

which creates data sets and baselines for planned

shared tasks on speech processing for endangered

languages and reports diarization results from a

LIUM (Rouvier et al., 2013) baseline. The current

work investigates a range of stronger baselines and

further analysis.

Endangered language data poses many chal-

lenges for speaker diarization. Diarization is sensi-

tive to the style of interaction, e.g. broadcast news

vs. courtroom vs. dinner-party conversation, and

recordings collected by documentary linguists span

diverse domains from structured elicitations to ser-

mons and ceremonies. Recording conditions for

documentary linguistic data are also potentially

more variable than those in prior studies, many



of which have focused on telephone or wideband

laboratory recording settings. In addition, we con-

sider endangered languages with areal and typolog-

ical diversity. Finally and crucially, documentary

linguistic data is typically much more limited in

quantity, precluding techniques which rely on large

amounts of in-language training data.

3 Data

Our experiments employ data following the lan-

guage and data set selection and pre-processing of

Levow et al. (2021), described briefly below. The

data sets are drawn from eight different languages

deposited in the Endangered Language Archive,

now housed at http://elararchive.org.

Recordings and accompanying time-aligned tran-

scriptions in ELAN (Brugman and Russel, 2004)

format form the basis for both the experimental

data and the requisite gold-standard speaker seg-

mentation for evaluation. For each language, we

provide information about its language family, the

ISO639-3 language codes where available1, loca-

tion of the fieldwork, and the genres represented

in the collection. In addition, the total duration as

well as the mean and standard deviation of turn

lengths for recordings in the experimental data sets

are presented.

Cicipu (ISO639-3:awc) The deposit for Cicipu

a language of the Niger-Congo family, was col-

lected in Nigeria and includes “greetings, conver-

sations, hortative discourse, narratives, procedural,

and ritual discourse” (McGill, 2012). The experi-

mental data set comprises 3.3 hours of audio with

an average turn length of 1.9 seconds, with a stan-

dard deviation of 1.3 seconds.

Effutu (ISO639-3:awu) The deposit for Ef-

futu (Agyeman, 2016), a language of the Niger-

Congo family, was collected in Ghana and includes

interviews, prompted narratives, and elicitations,

among others. The experimental data set comprises

2.0 hours of recordings, with mean turn length of

3.4 seconds, and standard deviation of 11.1s.

Mocho’ (ISO639-3:mhc) The deposit for Mo-

cho’ (Pérez González, 2018), a Mayan family lan-

guage, was recorded in Mexico and includes both

biographical and non-biographical narratives (the

latter including historical events, myths, etc.), a

prayer, conversation, elicitation sessions, among

1https://www.iso.org/standard/39534.htm

others. The experimental set comprises 4.3 hours

of recordings, with an average turn length of 2.0s

(1.5s standard deviation).

Northern Prinmi (ISO639-3:pmi) The North-

ern Prinmi deposit aims to document oral art, in-

cluding rituals, traditional songs, folktales and con-

versations (Daudey and Pincuo, 2018), from multi-

ple locations. The data set used for experimentation

includes 3.2 hours of audio, with turns averaging

3.2s, standard deviation of 19.0s.

Sakun (ISO639-3:syk) The Sakun deposit

(Thomas, nd), of the Afro-Asiatic language family,

is a collection of recordings of discourses typically

among 2-5 participants relating to community cul-

tural practices, collected in Nigeria. The experi-

mental data set spans 9.2 hours, with mean turn

length of 2.7s and standard deviation of 2.3s.

Upper Napo Kichwa The Upper Napo Kichwa

deposit (Grzech, 2018) describes a Quechuan fam-

ily language of Ecuador2. It includes grammatical

elicitation and life interviews. The resulting exper-

imental data set includes 10 hours of audio, with

mean turn duration of 2.9s and standard deviation

of 4.6s.

Toratán (ISO639-3:rth) The deposit for

Toratán (Jukes, nd) (Austronesian, collected in

Indonesia) spans conversational data, elicitation

sessions, and various narratives. The experimental

data set covers 14.5 hours of audio recordings, with

mean turn lengths of 2.1s and standard deviation

of 2.2s.

Ulwa (ISO639-3:yla) The deposit for Ulwa (Bar-

low, 2018), a Keram family language of Papua New

Guinea, includes conversational data as well as tra-

ditional and personal stories. The experimental

dataset comprises 3.2 hours of audio, with mean

turn length of 3.6s and standard deviation of 5.1s.

4 Diarization Models

We compare three recent, high performing neu-

ral diarization models: the speaker diarization

recipes (Snyder et al., 2018; Sell et al., 2018) for

Kaldi (Povey et al., 2011), pyannote.audio (Bredin

et al., 2020; Bredin and Laurent, 2021), and

VBx (Landini et al., 2022). All models leverage a

pre-trained neural network model to compute a so-

called “x-vector” embedding representation of the

2It is likely closely related to Tena Quechua (ISO639-
3:quw).



audio. These x-vectors are then employed in subse-

quent clustering stages to produce a global segmen-

tation and assignment of speakers to segments. In

all cases, we used the system’s included or publicly

released x-vector models, without additional task-

specific fine-tuning or adaptation. Furthermore,

all models were run with default hyperparameters

in a fully unsupervised mode, where the true seg-

mentation, voice activity detection, and number of

speakers were unknown and needed to be deter-

mined by the model. Additional model details are

below.

Kaldi The Kaldi toolkit (Povey et al., 2011) pro-

vides reference implementations for a range of

state-of-the-art models for speech processing, in

the form of “recipes” to reproduce published ap-

proaches. For the speaker diarization task, we

use the pre-trained x-vector models (Callhome

Diarization Xvector Model 1a) (Snyder et al.,

2018) available from the Kaldi site 3 with the DI-

HARD_2018 (Sell et al., 2018) recipe 4. After

creating x-vector representations of spans of the

audio stream, the recipe uses a probabilistic linear

discriminant analysis (PLDA) backend to score the

similarity between spans after which clustering is

performed to produce the final diarization output.

pyannote.audio The pyannote.audio pack-

age (Bredin et al., 2020; Bredin and Laurent, 2021)

provides a neural speaker diarization pipeline,

which is available through Hugging Face 5. The

pipeline leverages the SpeechBrain (Ravanelli et al.,

2021) implementation of the ECAPA-TDNN (Des-

planques et al., 2020) model, based on its superior

performance within this pipeline. The approach

applies a local neural speaker segmentation over

5 second windows of speech, from which local

speaker embeddings are computed for each speaker

in the window. A global agglomerative hierarchical

clustering is then performed prior to a final aggre-

gation phase which yields the full diarization.

VBx The VBx (VBHMM x-vectors Diarization)

model (Landini et al., 2022) also computes x-vector

representations over input audio spans. It then per-

forms agglomerative hierarchical clustering over

those representations as an initialization phase for

3https://kaldi-asr.org/models/m6
4For simplicity, we employ the model without Variational

Bayes inference, though we expect that better effectiveness
would be achieved with it as in prior work.

5https://huggingface.co/pyannote/speaker-diarization

a Variational Bayes (VB) Hidden Markov Model

over the x-vectors to create final diarization output.

This approach requires a preliminary segmenta-

tion created using voice activity detection (VAD)

to distinguish speech and non-speech regions; we

employ the Kaldi VAD scripts for this purpose.

4.1 Baseline Diarization Model: LIUM

We contrast the three neural diarization models

above with the LIUM (Rouvier et al., 2013) system

baseline presented in Levow et al. (2021), applied

to the same data sets as in the current work. LIUM

employs the previously popular i-vector model to

represent speech spans and an Integer Linear Pro-

gramming (ILP) approach to globally optimize the

assignment of speech spans to particular speakers.

LIUM’s publicly available Java implementation 6

was used in an unsupervised setting, so that none of

the endangered language data was used for tuning

or training, and was all treated as test data.

5 Experiments & Results

All three neural speaker diarization models were

applied to the eight endangered language data sets.

The standard evaluation metric for speaker diariza-

tion is Diarization Error Rate (DER), which com-

bines: 1) speaker error: the portion of scored

time assigned to the wrong speaker, 2) false alarm

speech: portion of scored time incorrectly labeled

as speech, and 3) missed speech: portion of scored

time incorrectly labeled as non-speech. All mea-

sures were computed with the dscore package 7.

5.1 Overall findings

Results are shown in Table 1. We can observe that

all three neural diarization models outperform the

LIUM i-vector baseline system. All pairwise sys-

tem differences are significant by Wilcoxon signed

rank test (p < 0.05), except for Pyannote/VBx.

In addition, the best effectiveness for each of the

languages is given either by Pyannote or VBx.

In addition to the overall differences in system ef-

fectiveness, there is also substantial variation across

the different languages, with DER ranges of 25 or

more across languages within each of the systems.

The Sakun and Toratán data sets appear to be chal-

lenging for all of the systems, while Prinmi and

Effutu conversely present less challenge overall.

6https://github.com/StevenLOL/LIUM
7https://github.com/nryant/dscore



LIUM Kaldi Pyannote VBx

Cicipu 44.5 43.78 32.45 33.31

Effutu 34.7 31.46 34.88 26.55

Mocho’ 60.2 51.85 27.37 33.36

Northern

Prinmi 37.8 29.10 23.3 22.97

Sakun 62.6 57.37 48.8 52.45

Upper Napo

Kichwa 43.7 35.26 26.15 30.34

Toratán 55.6 44.46 40.13 44.16

Ulwa 57.9 37.94 41.04 29.23

Table 1: Diarization Error Rates for Kaldi (DER), Pyan-

note, and VBx compared to a baseline LIUM system

for eight endangered language data sets. Lower scores

are better; best results for each language are in bold.

Mocho’ and Ulwa yield quite variable performance

across systems.

5.2 Analysis

Since we observe substantial variation in DER

across languages and across files within languages,

we investigate factors which might contribute to

this disparity. One dimension of variation across

datasets and recordings is the number of speak-

ers per recording, ranging between 1 and 18, with

a mean of 2.55. Speaker error is also a signifi-

cant element of DER. So, we assess correlation

between number of speakers and per-recording

DER. For all systems, there was a highly significant

(p < 0.0001) positive correlation between the true

number of speakers and DER (Spearman: Kaldi:

0.28; VBx, Pyannote: 0.42)8. Thus, having more

speakers in a recording was associated with more

errors. If we look further at how the difference be-

tween the predicted and true speaker counts relates

to DER, we find a significant correlation between

predicting too few speakers and increased DER for

Pyannote (0.22, p < 0.0001), but conversely a sig-

nificant correlation with over-predicting speakers

and DER for Kaldi. No such correlation was found

for VBx. It seems reasonable that distinguishing

among larger numbers of speakers would be intrin-

sically more difficult, and that models also differ in

terms of over- or under-segmenting speech. Further,

this difficulty can be exacerbated in endangered

language recordings where a single microphone is

often used and the distance from the speaker to the

8All correlations are Spearman correlation in the
scipy.stats package

microphone may vary substantially. If available,

supervision in the form of the number of known

speakers could help to mitigate this problem.

Missed and false alarm speech also contribute

to DER, and, while the data sets were constructed

to exclude particularly poor or noisy recordings,

background and environmental noise are likely to

be more prevalent and variable in endangered lan-

guage recordings than in more typical diarization

data. This is another dimension along which mod-

els may differ. To investigate the effects of voice

activity detection, we compute, for each experimen-

tal file, the total speech duration in the diarization

output for each system and for the reference seg-

mentation. Then we compute the correlation be-

tween the disparity in the system and the reference

durations with the DER score for each file. We find

a highly significant correlation between missing

speech and DER for Pyannote (0.31, p < 0.0001),

while, for VBx and Kaldi, false alarm speech is

associated with higher DER. These associations

highlight the challenges of accurate speech detec-

tion in varied and variable fieldwork recordings,

and point to the importance of developing better

and more adaptable techniques.

6 Ethical considerations

Speech remains intrinsically personally identifying

information and can also expose personal informa-

tion in the spoken content. Data pre-processing

removes individual speaker names from the experi-

mental data. However, the potential still exists to

link data with other, potentially identifying infor-

mation elsewhere on the web. As a result, these

systems do raise the risk to privacy or harm from

use in deep fakes. Furthermore, while these tools

are being developed to support language documen-

tation and revitalization, the same speaker-linking

that these models create could itself increase the po-

tential privacy risks. It is important that researchers

communicate these possibilities and work with lan-

guage archives and communities to craft appropri-

ate access and use.

7 Conclusion & Future Work

We have evaluated three recent neural models on a

diverse suite of endangered language archive data,

with no special tuning, demonstrating improve-

ments over a baseline i-vector model and potential

increases in utility for researchers, archivists and

community members. Further analysis highlights



the challenges of the variation in this data, and the

differences in how the models address them. Fu-

ture work will explore adaptation to the endangered

language data, and overall improvements to speech

detection in these sorts of varied environments.
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