
ar
X

iv
:2

20
6.

14
92

9v
1 

 [q
ua

nt
-p

h]
  2

9 
Ju

n 
20

22

Succinct Classical Verification of Quantum Computation

James Bartusek∗ Yael Tauman Kalai† Alex Lombardi‡ Fermi Ma§

Giulio Malavolta¶ Vinod Vaikuntanathan‖ Thomas Vidick∗∗ Lisa Yang††

July 1, 2022

Abstract

We construct a classically verifiable succinct interactive argument for quantum computation

(BQP) with communication complexity and verifier runtime that are poly-logarithmic in the

runtime of the BQP computation (and polynomial in the security parameter). Our protocol is

secure assuming the post-quantum security of indistinguishability obfuscation (iO) and Learning

with Errors (LWE). This is the first succinct argument for quantum computation in the plain

model ; prior work (Chia-Chung-Yamakawa, TCC ’20) requires both a long common reference

string and non-black-box use of a hash function modeled as a random oracle.

At a technical level, we revisit the framework for constructing classically verifiable quantum

computation (Mahadev, FOCS ’18). We give a self-contained, modular proof of security for

Mahadev’s protocol, which we believe is of independent interest. Our proof readily generalizes to

a setting in which the verifier’s first message (which consists of many public keys) is compressed.

Next, we formalize this notion of compressed public keys; we view the object as a generalization

of constrained/programmable PRFs and instantiate it based on indistinguishability obfuscation.

Finally, we compile the above protocol into a fully succinct argument using a (sufficiently

composable) succinct argument of knowledge for NP. Using our framework, we achieve several

additional results, including

• Succinct arguments for QMA (given multiple copies of the witness),

• Succinct non-interactive arguments for BQP (or QMA) in the quantum random oracle

model, and

• Succinct batch arguments for BQP (or QMA) assuming post-quantum LWE (without iO).
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1 Introduction

Efficient verification of computation is one of the most fundamental and intriguing concepts in

computer science, and lies at the heart of the P vs. NP question. It has been studied in the

classical setting for over three decades, giving rise to beautiful notions such as interactive proofs

[GMR85], multi-prover interactive proofs [BGKW88], probabilistically checkable proofs [BFL90,

ALM+92, AS92], and culminating with the notion of a succinct (interactive and non-interactive)

argument [Kil92, Mic94]. Roughly speaking, a succinct argument for a T -time computation enables

a prover running in poly(T ) time to convince a polylog(T )-time verifier of the correctness of the

computation using only polylog(T ) bits of communication, with soundness against all polynomial-

time cheating provers.

In a breakthrough result in 2018, Mahadev [Mah18] presented an interactive argument system

that enables a classical verifier to check the correctness of an arbitrary quantum computation.

Mahadev’s protocol represents a different kind of interactive argument — unlike the traditional

setting in which the prover simply has more computational resources (i.e., running time) than

the verifier, the prover in Mahadev’s protocol works in a qualitatively more powerful computa-

tional model. More precisely, for any T -time quantum computation, Mahadev’s protocol enables a

quantum prover running in time poly(T ) to convince a classical poly(T )-time verifier with poly(T )

bits of classical communication. Soundness holds against all quantum polynomial-time cheating

provers under the post-quantum hardness of the learning with errors (LWE) problem.

A fundamental question is whether we can get the best of both worlds: can the prover have both

a more powerful computational model and significantly greater computational resources? Namely,

we want an interactive argument system for T -time quantum computation in which the quantum

prover runs in poly(T ) time and convinces a polylog(T )-time classical verifier with polylog(T ) bits

of classical communication.

We answer this question affirmatively, both for poly(T )-time quantum computations, corre-

sponding to the complexity class BQP, and also for the non-deterministic analog QMA.

Theorem 1.1 (Succinct Arguments for BQP). Let λ be a security parameter. Assuming the

existence of a post-quantum secure indistinguishability obfuscation scheme (iO) and the post-

quantum hardness of the learning with errors problem (LWE), there is an interactive argument

system for any T -time quantum computation on input x,1 where

• the prover is quantum and runs in time poly(T, λ),

• the verifier is classical and runs in time poly(log T, λ) + Õ(|x|),2 and

• the protocol uses poly(log T, λ) bits of classical communication.

Theorem 1.2 (Succinct Arguments for QMA). Assuming the existence of a post-quantum

secure indistinguishability obfuscation scheme (iO) and the post-quantum hardness of the

1A T -time quantum computation is a language L decidable by a bounded-error T -time quantum Turing machine

[BV97]. We leave it to future work to address more complex tasks such as sampling problems (as in [CLLW20]).
2As in the classical setting, some dependence on |x| is necessary at least to read the input; as in [Kil92], we achieve

a fairly minimal |x|-dependence.
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learning with errors problem (LWE), there is an interactive argument system for any T -time

quantum computation on input x and a poly(T )-qubit witness, where

• the prover is quantum and runs in time poly(T, λ), using polynomially many copies of

the witness,3

• the verifier is classical and runs in time poly(log T, λ) + Õ(x), and

• the protocol uses poly(log T, λ) bits of classical communication.

A New Proof of Security for the [Mah18] Protocol. One might hope to prove Theorems 1.1

and 1.2 by treating the Mahadev result as a “black box” and showing that any (classical) interac-

tive argument for quantum computations can be compressed into a succinct protocol via a suitable

cryptographic compiler. This is especially appealing given the extremely technical nature of Ma-

hadev’s security proof. Unfortunately, for reasons that will become clear in the technical overview,

this kind of generic compilation seems unlikely to be achievable in our setting. Even worse, there

does not appear to be any easily formalized property of the Mahadev protocol that would enable

such a compilation.

Instead, our solution consists of two steps.

(1) We build a modified variant of the [Mah18] protocol and give an entirely self-contained proof of

security. This modified protocol satisfies a few technical conditions that the original [Mah18]

does not; most prominently, the first verifier message of our modified protocol is already

succinct.

(2) We give a generic compiler that converts the protocol from Step (1) into a succinct argument

system.

Our Step (1) also results in a self-contained proof of security of the original [Mah18] protocol

that is more modular and amenable to further modification and generalization, which we believe

will be useful for future work. Our analysis builds upon [Mah18] itself as well as an alternative

approach described in Vidick’s (unpublished) lecture notes [Vid20]. A concrete consequence of our

new proof is that one of the two “hardcore bit” security requirements of the main building block

primitive (“extended noisy trapdoor claw-free functions”) in [Mah18] is not necessary.

Additional Results. Beyond our main result of succinct arguments for BQP and QMA, we

explore a number of extensions and obtain various new protocols with additional properties.

• Non-Interactive: Although our protocols are not public-coin, we show how to modify them in

order to apply the Fiat-Shamir transformation and round-collapse our protocols. As a result,

we obtain designated-verifier non-interactive arguments for BQP (and the non-deterministic

analog QMA) with security in the quantum random oracle model (QROM).

3We inherit the need for polynomially-many copies of the witness from prior works. This is a feature common to

all previous classical verification protocols, and even to the quantum verification protocol of [FHM18].
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• Zero-Knowledge: We show how to lift both variants of our protocol (interactive and non-

interactive) to achieve zero-knowledge. We show a generic transformation based on classical

two-party computation for reactive functionalities that makes our protocols simulatable. This

transformation does not add any new computational assumption to the starting protocol.

• Batch Arguments from LWE: For the case of batch arguments, i.e., where the parties engage

in the parallel verification of n statements, we show a succinct protocol that only assumes

the post-quantum hardness of LWE (without iO). In this context, succinctness requires that

the verifier’s complexity scales with the size of a single instance, but is independent of n.

Prior Work. As discussed above, Mahadev [Mah18] constructs a non-succinct argument sys-

tem for BQP/QMA under LWE. The only prior work addressing succinct classical arguments for

quantum computation is the recent work of Chia, Chung and Yamakawa [CCY20]. [CCY20] con-

structs a classically verifiable argument system for quantum computation in the following setting:

• The prover and verifier share a poly(T )-bits long, structured reference string (which requires

a trusted setup to instantiate) along with a hash function h (e.g. SHA-3).

• The “online communication” of the protocol is succinct (poly(log T )).

• Security is heuristic: it can be proved when h is modeled as a random oracle, but the protocol

description itself explicitly requires the code of h (i.e. uses h in a non-black-box way).

We specifically note that when viewed in the plain model (i.e., without setup), the verifier must

send the structured reference string to the prover, resulting in a protocol that is not succinct.

We note that [CCY20] was specifically optimizing for a two-message protocol, but their approach

seems incapable of achieving succinctness in the plain model even if further interaction is allowed.

By contrast, our succinct interactive arguments are in the plain model and are secure based on

well-formed cryptographic assumptions, and our succinct 2-message arguments are proved secure

in the QROM (and do not require a long common reference string).

Finally, we remark that our approach to achieving succinct arguments fundamentally (and

likely necessarily) differs from [CCY20] because we manipulate the “inner workings” of the [Mah18]

protocol; by contrast [CCY20] makes “black-box” use of a specific soundness property of the [Mah18]

protocol (referred to as “computational orthogonality” by [ACGH20]) and is otherwise agnostic to

how the protocol is constructed.
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supported by the German Federal Ministry of Education and Research BMBF (grant 16K15K042,
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2 Technical Overview

Our starting point is Mahadev’s protocol for classical verification of quantum computation [Mah18],

the core ingredient of which is a measurement protocol.

2.1 Recap: Mahadev’s Measurement Protocol

We begin by reviewing Mahadev’s N -qubit measurement protocol. In Mahadev’s protocol, a quan-

tum prover holding an N -qubit quantum state ρ interacts with a classical verifier, who wants to

obtain the result of measuring ρ according to measurement bases h ∈ {0, 1}N (hi specifies a basis

choice for the ith qubit, with hi = 1 corresponding to the Hadamard basis and hi = 0 corresponding

to the standard basis).

Trapdoor Claw-Free Functions. At the heart of the protocol is a cryptographic primitive

known as an injective/claw-free trapdoor function (a variant of lossy trapdoor functions [PW08,

PVW08, GVW15]), which consists of two trapdoor function families Inj (for injective) and Cf (for

claw-free), with the following syntactic requirements:4

• Each function in Cf ∪ Inj is indexed by a public-key pk, where functions fpk ∈ Inj are injective

and functions fpk ∈ Cf are two-to-one. Moreover, pk can be sampled along with a secret key

sk that enables computing f−1
pk (i.e., f−1

pk (y) consists of a single pre-image if fpk ∈ Inj, and two

pre-images if fpk ∈ Cf).

• All functions in Inj and Cf have domain {0, 1}ℓ+1 (for some ℓ) and the two pre-images of y

under fpk ∈ Cf are of the form (0, x0) and (1, x1) for some x0, x1 ∈ {0, 1}ℓ.

An injective/claw-free trapdoor function must satisfy the following security properties:5

1. Claw-Free/Injective Indistinguishability. A random function in fpk ← Cf is computa-

tionally indistinguishable from a random function fpk ← Inj.

2. Adaptive Hardcore Bit. Given fpk ← Cf, it is computationally infeasible to output both

(1) a pair (x, y) satisfying fpk(x) = y and (2) a non-zero string d ∈ {0, 1}ℓ+1 such that

d · (1, x0 ⊕ x1) = 0, where (0, x0) and (1, x1) are the two preimages of y.6

4The actual syntactic requirements, described in Section 3.5, are somewhat more complex due to the fact that

the functions in question are probabilistic.
5In fact, Mahadev’s proof relies on two different hardcore bit properties, but we show in this work that only the

adaptive hardcore bit property is needed.
6The full definition places a slightly stronger restriction on d than simply being non-zero. However, this simplified

version will suffice for this overview.
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To build some intuition about the usefulness of such function families, notice that they can be

used to commit to a single classical bit quite easily. The commitment key is a function fpk ∈ Inj,

and commitment to a bit b is y = fpk(b, x) for a random x ∈ {0, 1}n. It is not hard to verify that

this is a statistically binding and computationally hiding commitment of b. On the other hand, if

fpk ∈ Cf, it is a statistically hiding and computationally binding commitment of b.7

Protocol Description. With this intuition in mind, we now describe a (slightly simplified version

of) the Mahadev measurement protocol. Mahadev’s protocol is a many-fold sequential repetition

of the following one-bit challenge protocol.

V → P: The verifier samples N pairs of functions and their trapdoors: for every i ∈ [ℓ], he samples

(pki, ski) ← Inj if hi = 0 and (pki, ski) ← Cf if hi = 1. He sends the N -tuple of public keys

(function descriptions) (pk1, . . . , pkN ) to the prover.

P → V: The prover holds an N -qubit state ρ on register B = B1 ⊗ · · · BN . She initializes registers

X = X1 ⊗ · · · XN so that each Xi is an ℓ-qubit register in uniform superposition. Then she

evaluates each fpki on the ℓ+ 1 qubit register Bi ⊗Xi and measures the output to obtain yi.

Finally, she sends (y1, . . . , yN ) to the verifier, keeping the registers B,X for herself.

V → P: The verifier picks a random challenge bit c ← {0, 1} and sends it to the prover. c = 0

indicates a “test round” and c = 1 indicates a “measurement round”.

P → V: If c = 0 (“test”), the prover measures each Bi ⊗ Xi in the standard basis, obtaining

(bi, xi) ∈ {0, 1} × {0, 1}ℓ, and sends (bi, xi)
N
i=1 to the verifier.

If c = 1 (“measure”), she measures each Bi ⊗ Xi in the Hadamard basis (i.e., she applies

the Hadamard gate H on each qubit and then measures in the standard basis), obtaining

di ∈ {0, 1}ℓ+1, and sends (di)
N
i=1 to the verifier.

V (output): If c = 0 (“test”), V either accepts or rejects the interaction but outputs nothing. In

particular, V checks that fpki(bi, xi) = yi. If any of the checks fail, reject.

If c = 1 (“measure”), proceed as follows. Let R ⊆ [N ] be the set of indices where hi = 1,

corresponding to Hadamard basis measurements, and let S = [N ] \ R be the set of indices

corresponding to standard basis measurements.

For each i ∈ R, V computes the two inverses (0, xi,0) and (1, xi,1) of yi (which are guaranteed

to exist since fpk,i ∈ Cf) using ski. V sets ui := d · (1, xi,0 ⊕ xi,1) as the ith measurement

outcome. For every i ∈ S, V ignores di, and sets vi to be the first bit of f−1
pki

(yi), computed

using the trapdoor ski (this is well-defined since fpk,i ∈ Inj). Finally V outputs the N -bit

string (u, v) ∈ {0, 1}R × {0, 1}S .

Mahadev [Mah18] proves that if a malicious prover P∗ passes the test round with probability 1,

then there exists an N -qubit quantum state ρ
∗ — independent of the verifier’s measurement basis

h — such that the result of measuring ρ
∗ according to h is computationally indistinguishable from

7In particular, fpk ∈ Cf satisfies Unruh’s definition of collapse-binding [Unr16b].
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the verifier’s N -bit output distribution in the measurement round.8 While her definition requires

that such a ρ
∗ exists, Vidick and Zhang [VZ21] showed that Mahadev’s proof steps implicitly define

an extractor that efficiently produces ρ
∗ using black-box access to P∗.

2.2 Defining a (Succinct) Measurement Protocol

Our first (straightforward but helpful) step is to give an explicit definition of a commit-and-

measure protocol that abstracts the completeness and soundness properties of Mahadev’s mea-

surement protocol as established in [Mah18, VZ21]. Roughly speaking, a commit-and-measure

protocol is sound if, for any malicious prover P∗ that passes the test round with probability 1 and

any basis choice h, there exists an efficient extractor that (without knowledge of h) interacts with

prover and outputs an extracted state τ such that the following are indistinguishable:

• the distribution of verifier outputs obtained in the measurement round from interacting with

P∗ using basis choice h, and

• the distribution of measurement outcomes obtained from measuring τ according to h.

This abstraction will be particularly helpful for reasoning about our eventual succinct measurement

protocols, which will necessitate modifying Mahadev’s original protocol.

Can a Measurement Protocol be Succinct? Given the definition of a measurement protocol,

an immediate concern arises with respect to obtaining succinct arguments: the verifier’s input to

the measurement protocol – the basis vector h – is inherently non-succinct. Since the number of

qubits N grows with the runtime of the BQP computation when used to obtain quantum verification

[FHM18], this poses an immediate problem.

Our solution to this problem is to only consider basis vectors h that are succinct ; our formal-

ization is that h must be the truth table of an efficiently computable function f : [logN ] → {0, 1}.
For any such h, we can represent the verifier’s input as a circuit C that computes h, removing the

above obstacle.

However, in order for there to be any hope of this idea working, it must be the case that

measurement protocols for bases with succinct representations are still useful for constructing dele-

gation for BQP. Fortunately, it has been shown [ACGH20] that classically verifiable (non-succinct)

arguments for BQP can be constructed by invoking Mahadev’s measurement protocol (and, by in-

spection of the proof, any measurement protocol satisfying our definition) on a uniformly random

basis string h ← {0, 1}N . Then, by computational indistinguishability, it is also possible to use a

pseudorandom string h that has a succinct representation, i.e., h = (PRFs(1), . . . ,PRFs(N)) for

some (post-quantum) pseudorandom function PRF.

Thus, we focus for the moment on constructing a succinct measurement protocol for h with

succinct representation, and return to the full delegation problem later.

8This can be extended to provers that pass the test round with probability 1 − ε by the gentle measurement

lemma. In particular, an efficient distinguisher can only distinguish the verifier’s output distribution from the result

of measuring some ρ
∗ with advantage poly(ε).
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2.3 Constructing a Verifier-Succinct Measurement Protocol

Inspecting the description of the [Mah18] protocol, there are three distinct reasons that the protocol

is not succinct:

1. The verifier’s first message, which consists of N TCF public keys, is non-succinct.

2. The prover’s two messages, consisting of the commitments yi and openings zi respectively,

are non-succinct.

3. The verifier’s decision predicate, as it is a function of these commitments and openings,

requires poly(N) time to evaluate.

The latter two issues turn out to be not too difficult to resolve (although there is an important

subtlety that we discuss later); for now, we focus on resolving (1), which is our main technical

contribution. Concretely, we want to construct a measurement protocol for succinct bases h where

the verifier’s first message is succinct.

Idea: Compress the Verifier’s message with iO. Given the problem formulation, a natural

idea presents itself: instead of having V send over N i.i.d. public keys pki, perhaps V can send

a succinct program PK that contains the description of N public keys pki that are in some sense

“pseudoindependent!” Using the machinery of obfuscation and the “punctured programs” technique

[SW14], it is straightforward to write down a candidate program for this task: simply obfuscate

the following code.

Input: index i ≤ N

Hardwired Values: Puncturable PRF seed s. Circuit C.

• Compute mode = C(i) and r = PRFs(i).

• Compute (pki, ski) ← Gen(1λ,mode; r).

• Output pki.

Here, C is an efficient circuit with truth table h, and Gen(1λ,mode) indicates sampling either

from Inj or Cf depending on whether hi = C(i) = 0 or hi = C(i) = 1.

Letting PK denote an obfuscation of the above program, V could send PK to P and allow the

prover to compute each pki = PK(i) on its own, and the protocol could essentially proceed as

before, except that the verifier will have to expand its PRF seed s into (sk1, . . . , skN ) in order to

compute its final output.
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Problem: Proving Soundness. While it is not hard to describe this plausible modification to

the [Mah18] protocol that compresses the verifier’s message, it is very unclear how to argue that

the modified protocol is sound. The obfuscation literature has no shortage of proof techniques

developed over the last 10 years, but since we have made a “non-black-box” modification of the

[Mah18] protocol, a deep understanding of the [Mah18] proof of soundness is required in order to

understand to what extent these techniques are compatible with the application at hand.

We believe it should be possible to incorporate punctured programming techniques into Ma-

hadev’s proof of soundness in [Mah18] and conclude the desired soundness property of the new

protocol. However, doing so would result in an extremely complex proof that would require the

reader to verify the entirety of the [Mah18] (already very complicated) original security proof with

our modifications in mind.

2.4 Proof of Soundness

Given the complicated nature of the [Mah18] proof of soundness, we instead give a simpler and

more modular proof of soundness for the [Mah18] measurement protocol. Moreover, we give this

proof for a generic variant of the [Mah18] protocol where the prover is given an arbitrary represen-

tation PK of N TCF public keys and show that precisely two properties of this representation PK

are required in order for the proof to go through:

• An appropriate generalization of the “dual-mode” property of individual TCFs must hold for

PK: for any two circuits C1, C2, it should be that PK1 generated from basis C1 is compu-

tationally indistinguishable from PK2 generated from basis C2. In fact, a stronger variant

of this indistinguishability must hold: it should be the case that PK1 ≈c PK2 even if the

distinguisher is given all secret keys skj such that C1(j) = C2(j).

• For every i, the adaptive hardcore bit property of fpki should hold even given skj for all

j 6= i.

Since these two properties are (essentially) all that is required for our proof to go through, in

order to obtain a verifier-succinct protocol, it suffices to show that the obfuscated program PK

above satisfies these two properties, which follows from standard techniques.

Thus, we proceed by describing our new soundness proof for the [Mah18] measurement protocol,

which transparently generalizes to the verifier-succinct setting.

The “Operational Qubits” Approach. Let P ∗ denote a prover that passes the test round (i.e.,

makes the verifier accept on the 0 challenge) with probability 1. Our goal is to show that the prover

in some sense “has an N -qubit state” such that measuring this state in the h-bases produces the

same (or an indistinguishable) distribution as the verifier’s protocol output, which we will denote

DP ∗,Out. This N -qubit state should be efficiently computable from the prover’s internal state |ψ〉;
specifically, we use |ψ〉 to denote the prover’s state after its first message y has been sent.

In order to show this, taking inspiration from [Vid20],9 we will proceed in two steps:

9[Vid20] gives a soundness proof for a variant of the [Mah18] protocol, but in a qualitatively weaker setting.
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1. Identify N “operational qubits” within |ψ〉. That is, we will identify a set of 2N observables

Z1, . . . , ZN ,X1, . . . ,XN (analogous to the “Pauli observables” σz,1, . . . , σz,N , σx,1, . . . σx,N )

such that measuring |ψ〉 with these observables gives the outcome distribution DP ∗,Out.

Provided that these 2N observables roughly “behave like” Pauli observables with respect

to |ψ〉 (e.g. satisfy the X/Z uncertainty principle), one could then hope to:

2. Extract a related state |ψ′〉 such that measuring |ψ′〉 in the actual standard/Hadamard bases

matches the “pseudo-Pauli” {Zj}, {Xi}, measurements of |ψ〉 (and therefore DP ∗,Out).

Relating the Verifier’s Output to Measuring |ψ〉. Our current goal is to achieve Step (1)

above. Let |ψ〉 denote P ∗’s post-commitment state and let U denote the unitary such that P ∗’s

opening is a measurement of U |ψ〉 in the Hadamard basis.

Now, let us consider the verifier’s output distribution. The ith bit of the verifier’s output when

hi = 1 is defined to be d · (x0,i ⊕ x1,i) (where d is the opening sent by the prover) of U |ψ〉 in the

Hadamard basis. For each such i, we can define an observable Xi characterizing this measurement,

that roughly takes the form

Xi ≈ U †(HZi
⊗ Id)

(
∑

d

(−1)d·(1,x0,i⊕x1,i) |d〉〈d|Zi
⊗ IdI,{Zj}j 6=i

)
(HZi

⊗ Id)U.

Here we have slightly simplified the expression for Xi for the sake of presentation; the correct

definition of Xi (see Section 6.2) must account for the case where d is rejected by the verifier. To

reiterate, the observable Xi is a syntactic interpretation of the verifier’s output mi as a function of

|ψ〉.
On the other hand, when hi = 0, the verifier’s output mi is not a priori a measurement of |ψ〉;

indeed, the verifier ignores the prover’s second message and just inverts yi. However, under the

assumption that the prover P ∗ passes the test round with probability 1 − negl(λ), making use of

the fact that fpki is injective, this yi-inverse must be equal to what the prover would have sent in

the test round. This defines another observable on |ψ〉 that we call Zi:

Zi =
∑

b,x

(−1)b |b, x〉〈b, x|Zi
⊗ IdI,{Zj}j 6=i

.

Finally, note that the operator Zi syntactically makes sense even when hi = 1. However, Xi

cannot even be defined when fpki is injective, corresponding to hi = 0, since Xi explicitly requires

two inverses of yi. Therefore, from now on, we sample all (pki, ski) ← Cf (forcing all TCFs to be

2-to-1).

This brings us to the punchline of this step: by invoking a computational assumption (the

indistinguishability of Cf and Inj), we can define observables (Xi, Zi) for all i ∈ [N ] such that for

every i and every basis choice h, the distribution resulting from measuring |ψ〉 with Xi (resp. Zi)

matches the ith bit of the verifier’s output distribution.

[Vid20] only proves indistinguishability of N-qubit measurements that are either all in the standard basis or all in

the Hadamard basis, and only proves indistinguishability with respect to linear tests of the distribution (that is,

[Vid20] proves small-bias rather than full indistinguishability). Both of these relaxations are unacceptable in our

setting, and achieving the latter specifically requires a different proof strategy.
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With a little more work, one can actually show that the verifier’s entire output distribution in

the h-basis is computationally indistinguishable from the following distribution DP ∗,2-to-1:

• Sample keys (pki, ski) ← Cf. Run P ∗ to obtain y, |ψ〉.

• For each i such that hi = 0, measure the first bit of the prover’s ith response register in the

standard basis to obtain (and output) a bit bi.

• Measure U |ψ〉 in the Hadamard basis, obtaining strings (d1, . . . , dN ).

• For each i such that hi = 1, compute (and output) di · (1, x0,i ⊕ x1,i).

Aside: Why are these Zj and Xi helpful? As alluded to earlier, this approach is inspired

by operational definitions of “having an N -qubit state,” which consists of a state |ψ〉 and 2N

“pseudo-Pauli” observables Z1, . . . , ZN ,X1, . . . XN that behave “like Pauli observables” on |ψ〉. For

example, it is possible to prove that many of the “Pauli group relations” hold approximately on

these Xi, Zj with respect to |ψ〉, meaning that (for example)

〈ψ|ZiXiZi +Xi |ψ〉 = negl(λ)

and

〈ψ|ZjXiZj −Xi |ψ〉 = negl(λ)

for i 6= j. In fact, these relations turn out to encode the two basic properties of the TCF fpki :

the adaptive hardcore bit property (encoded in the first relation) and that fpki is indistinguishable

from injective10 (encoded in the second relation)! We will not directly prove the relations here,

but they are implicit in our full security proof and are the motivation for this proof strategy.

The Extracted State. Given these protocol observables Z1, . . . , ZN ,X1, . . . ,XN , it remains to

implement Step (2) of our overall proof strategy: extracting a state |ψ′〉 whose standard/Hadamard

measurement outcomes match DP ∗,Out. At a high level, this is achieved by “teleporting” the state

|ψ〉 onto a fresh N -qubit register in a way that transforms the “pseudo-Paulis" {Xi}, {Zj} into

real Pauli observables {σx,i}, {σz,j}.
Fix a choice of {Xi, Zi}, |ψ〉 ← Samp. For ease of notation, write H = Z ⊗ I ⊗ U so that

|ψ〉 ∈ H. We would like an efficient extraction procedure that takes as input |ψ〉 ∈ H and generates

an N -qubit state τ such that, roughly speaking, measuring |ψ〉 with X/Z and measuring τ with

σX/σZ produce indistinguishable outcomes.

Intuition for the Extractor. Before we describe our extractor, we first provide some underlying

intuition. For an arbitrary N -qubit Hilbert space, let σx,i/σz,i denote the Pauli σx/σz observable

acting on the ith qubit. For each r, s ∈ {0, 1}N , define the N -qubit Pauli “parity” observables

σx(r) :=
∏

i:ri=1

σx,i , σz(s) :=
∏

i:ri=1

σz,i.

10Technically, the property encoded is the collapsing of fpki , which is implied by (but not equivalent to) being

indistinguishable from injective.
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Suppose for a moment that |ψ〉 ∈ H is already an N -qubit state (i.e., H is an N -qubit Hilbert

space) and moreover, that each Xi/Zi observable is simply the corresponding Pauli observable

σx,i/σz,i. While these assumptions technically trivialize the task (the state already has the form

we want from the extracted state), it will be instructive to write down an extractor that

“teleports” this state into another N-qubit external register.

We can do this by initializing two N -qubit registers A1⊗A2 to |φ+〉⊗N
where |φ+〉 is the EPR

state (|00〉 + |11〉)/
√
2 (the ith EPR pair lives on the ith qubit of A1 and A2). Now consider the

following steps, which are inspired by the (N -qubit) quantum teleportation protocol

1. Initialize a 2N -qubit ancilla W to
∣∣02N

〉
, and apply H⊗2N to obtain the uniform superposition.

2. Apply a “controlled-Pauli” unitary, which does the following for all r, s ∈ {0, 1}N and all

|φ〉 ∈ H ⊗A1:

|r, s〉W |φ〉H,A1
→ |r, s〉W (σx(r)σz(s)H ⊗ σx(r)σz(s)A1) |φ〉H,A1

3. Apply the unitary that XORs onto W the outcome of performing N Bell-basis measurements11

on A1 ⊗A2 onto W, i.e., for all u, v, r, s ∈ {0, 1}N :

|u, v〉W (σx(r)σz(s)⊗ Id)A1,A2

∣∣φ+
〉⊗N

A1,A2
→ |u⊕ r, v ⊕ s〉W (σx(r)σz(s)⊗ Id)A1,A2

∣∣φ+
〉⊗N

A1,A2
.

Finally, discard W.

One can show that the resulting state is

1

2N

∑

r,s∈{0,1}N

(σx(r)σz(s)⊗ σx(r)σz(s)⊗ Id) |ψ〉H
∣∣φ+

〉
A1,A2

=
∣∣φ+

〉
H,A1

|ψ〉A2
, (1)

where |ψ〉 is now “teleported” into the A2 register.

The Full Extractor. To generalize this idea to the setting where |ψ〉 ∈ H is an arbitrary quantum

state and {Xi, Zi}i are an arbitrary collection of 2N observables, we simply replace each σx(r)

and σz(s) acting on H above with the corresponding parity observables X(r), Z(s), defined

analogously (for r, s ∈ {0, 1}N as

Z(s) =

N∏

i=1

Zsi
i and X(r) =

N∏

i=1

Xri
i .

The rough intuition is that as long as the {Xi} and {Zi} observables “behave like” Pauli observables

with respect to |ψ〉, the resulting procedure will “teleport” |ψ〉 into the N -qubit register A2.

11The Bell basis consists of the 4 states (σa
xσ

b
z ⊗ Id)

∣

∣φ+
〉

for a, b ∈ {0, 1} on 2 qubits.
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Relating Extracted State Measurements to Verifier Outputs. With the extracted state

defined to be the state on A2 after performing the “generalized teleportation” described above, it

remains to prove that the distribution DP ∗,Ext resulting from measuring the extracted state on A2

in the h-bases is indistinguishable from DP ∗,2-to-1.

One can show (by a calculation) that DP ∗,Ext is the following distribution (differences from

DP ∗,2-to-1 in red)

1. Sample keys (pki, ski) ← Cf. Run P ∗ to obtain y, |ψ〉.

2. For each i such that hi = 0, measure the first bit of the prover’s ith response register in the

standard basis to obtain (and output) a bit bi.

3. For each i such that hi = 1, flip a random bit wi and apply the unitary Zwi

i .

4. Measure U |ψ〉 in the Hadamard basis, obtaining strings (d1, . . . , dN ).

5. For each i such that hi = 1, compute (and output) di · (1, x0,i ⊕ x1,i) ⊕ wi.

We prove indistinguishability between the N -bit distributions DP ∗,Ext and DP ∗,2-to-1 by con-

sidering N hybrid distributions, where the difference between Hybrid j − 1 and Hybrid j is:

• an additional application of the unitary Zj in Item 3, and

• an additional XOR of ej (the jth standard basis vector) in Item 5.

To conclude the soundness proof, we show that Hybrid j − 1 and Hybrid j in the following

three steps.

• First, we prove that the marginal distributions of Hybrid (j− 1) and Hybrid j on N \{j} are

indistinguishable due to the collapsing property of fpkj . Intuitively this holds because the

marginal distributions on N \ {j} only differ by the application of Zj , which is undetectable

by collapsing.

• By invoking an elementary lemma about N -bit indistinguishability, the task reduces to prov-

ing a 1-bit indistinguishability of the jth bit of Hybrid (j − 1) and Hybrid j, conditioned on

an efficiently computable property of the marginal distributions on N \ {j}.

• Finally, we show that the indistinguishability of the jth bit holds due to the adaptive hardcore

bit property of fpkj . At a very high level, the above jth bit property involves a measurement

of Xj, and the two hybrids differ in whether a random Zb
j is applied before Xj is measured;

in words, this exactly captures the adaptive hardcore bit security game.

We refer the reader to Section 6.4 for a full proof of indistinguishability.
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2.5 From a Verifier-Succinct Measurement Protocol to Succinct Arguments for

BQP

Using Sections 2.3 and 2.4, we have constructed a verifier-succinct measurement protocol, for

succinctly represented basis strings, with a single bit verifier challenge. What remains is to convert

this into a (fully) succinct argument system for BQP (or QMA). This is accomplished via the

following transformations:

• Converting a measurement protocol into a quantum verification protocol. As described ear-

lier, this is achieved by combining the [FHM18] protocol for BQP verification with a lim-

ited quantum verifier (as modified by [ACGH20]) with our measurement protocol, using a

PRF to generate a pseudorandom basis choice instead of a uniformly random basis choice

for the [FHM18, ACGH20] verifier. This results in a verifier-succinct argument system for

BQP/QMA with constant soundness error.

• Parallel repetition to reduce the soundness error. This follows from the “computational

orthogonal projectors” property of the 1-bit challenge protocol and follows from [ACGH20]

(we give a somewhat more abstract formulation of their idea in Appendix A). This results in

a verifier-succinct argument system for BQP/QMA with negligible soundness error.

• Converting a verifier-succinct argument system into a fully succinct argument system. We

elaborate on this last transformation below, as a few difficulties come up in this step.

Assume that we are given a (for simplicity, 4-message) verifier-succinct argument system for

BQP/QMA. Let m1,m2,m3,m4 denote the four messages in such an argument system. In order to

obtain a fully succinct argument system, we must reduce (1) the prover communication complexity

|m2|+ |m4|, and (2) the runtime of the verifier’s decision predicate.

The first idea that comes to mind is to ask the prover to send short (e.g. Merkle tree) com-

mitments σ2 and σ4 of m2 and m4, respectively, instead of sending m2 and m4 directly. At the

end of the interaction, the prover and verifier could then engage in a succinct interactive argument

(of knowledge) for a (classical) NP statement that “the verifier would have accepted the commit-

ted messages underlying σ2 and σ4”. One could potentially employ Kilian’s succinct interactive

argument of knowledge for NP which was recently shown to be post-quantum secure under the

post-quantum LWE assumption [CMSZ21].

There are a few issues with this naive idea. First of all, the verifier’s decision predicate is private

(it depends on the secret key SK in the measurement protocol and the PRF seed for its basis),

so the NP statement above is not well-formed. One reasonable solution to this issue is to simply

have the verifier send this secret information st after the verifier-succinct protocol emulation has

occurred and before the NP-succinct argument has started. For certain applications (e.g. obtaining

a non-interactive protocol in the QROM) we would like to have a public-coin protocol; this can

be achieved by using fully homomorphic encryption to encrypt this secret information in the first

round rather than sending it in the clear in a later round. For this overview, we focus on the

private-coin variant of the protocol.
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Now, we can indeed write down the appropriate NP relation12

RV ={((h,m1, σ2,m3, σ4, st), (m2,m4)) : σ2 = h(m2) and

σ4 = h(m4) and V (st,m1,m2, c,m4) = accept}

and execute the aforementioned strategy. However, this construction turns out not to work. Specif-

ically, it does not seem possible to convert a cheating prover P ∗ in the above fully succinct protocol

into a cheating prover P ∗∗ for the verifier-succinct protocol; for example, P ∗∗ needs to be able to

produce a message m2 given only m1 from the verifier; meanwhile, the message m1 can only be ex-

tracted from P ∗ by repeatedly rewinding P ∗’s last message algorithm, which requires the verifier’s

secret information st as input! This does not correspond to a valid P ∗∗, who does not have access

to st when computing m2.

Our refined compiler is to execute several arguments of knowledge: one right after the prover

sends σ2, proving knowledge of m2; another one right after she sends σ4, proving knowledge of m4

(both before receiving the secret state st from the verifier); and a third one for the relation RV

described above. The first two arguments of knowledge are for the relation

RH = {(h, σ),m) : h(m) = σ}

This allows for immediate extraction of m2 and m3 and appears to clear the way for a reduction

between the verifier-succinct and fully succinct protocol soundness properties.

However, there is one remaining problem: the argument-of-knowledge property of Kilian’s pro-

tocol proved by [CMSZ21] is insufficiently composable to be used in our compiler. They demon-

strate an extractor for Kilian’s protocol that takes any quantum cheating prover that convinces

the verifier and extracts a witness from them. However, their post-quantum extractor might sig-

nificantly disturb the prover’s state, meaning that once we extract m2 above, we may not be able

to continue the prover execution in our reduction.

Fortunately, a recent work [LMS21] shows that a slight variant of Kilian’s protocol is a suc-

cinct argument of knowledge for NP satisfying a composable extraction property called “state-

preservation.” This security property is exactly what is required for our compiler to extract a valid

cheating prover strategy P ∗∗ for the verifier-succinct argument given a cheating prover P ∗ for the

compiled protocol. A full discussion of this is given in Section 9.

This completes our construction of a succinct argument system for BQP (and QMA). We discuss

additional results (2-message protocols, zero knowledge, batch arguments) in Section 10.

3 Preliminaries

3.1 Quantum Information

Let H be a finite-dimensional Hilbert space. A pure state is a unit vector |ψ〉 ∈ H. Let D(H)

denote the set of all positive semidefinite operators on H with trace 1. A mixed state is an

operator ρ ∈ D(H), and is often called a density matrix. We sometimes divide H into named

registers written in uppercase calligraphic font, e.g., H = A⊗ B ⊗ C.

12Note that the verifier also takes as input the QMA instance, but we suppress it here for clarity.
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For a density matrix ρ ∈ D(H), where H ≃ (C2)⊗ℓ, we sometimes use the shortcut M(h,ρ) to

denote the distribution resulting from measuring each qubit of ρ (where the qubits are specified

by the isomorphism H ≃ (C2)⊗ℓ) in the basis determined by h ∈ {0, 1}ℓ. By convention, hi = 0

corresponds to measuring the i-th register in the standard basis {|0〉 , |1〉} and hi = 1 corresponds

to measuring the i-th register in the Hadamard basis {|+〉 , |−〉}.
An observable is represented by a Hermitian operator O on H. In particular, any observable O

can be written in the form
∑

i λiΠi where {λi} are real numbers and
∑

iΠi = Id. The measurement

corresponding to an observable O is the projective measurement {Πi} with corresponding outcomes

{λi}. A binary observable satisfies the additional requirement that O2 = Id. Notice that for any

binary observable, O is a unitary matrix with eigenvalues in {1,−1}. In this case we sometimes

treat the outcomes as bits through the usual correspondence 1 → 0, −1 → 1.

Given a binary observable O, we define its corresponding projection operators O+ = 1
2(Id+O)

and O− = 1
2(Id−O). O+ and O− correspond to projecting onto the +1 and −1 eigenspaces of O,

respectively, and thus form a binary projective measurement.

The Class QMA. A language L = (Lyes,Lno) is in QMA if and only if there is a uniformly

generated family of polynomial-size quantum circuits V = {Vλ}λ∈N such that for every λ, Vλ takes

as input a string x ∈ {0, 1}λ and a quantum state |φ〉 on p(λ) qubits and returns a single bit and

moreover the following conditions hold.

• For all x ∈ Lyes of length λ, there exists a quantum state |ψ〉 on at most p(λ) qubits such

that the probability that Vλ accepts (x, |φ〉) is at least 2/3. We denote the (possibly infinite)

set of quantum states (which we will also refer to as quantum witnesses) that make Vλ accept

x by R(x).

• For all x ∈ Lno of length λ, and all quantum states |ψ〉 on at most p(λ) qubits, it holds that

Vλ accepts on input (x, |ψ〉) with probability at most 1/3.

3.2 Black-Box Access to Quantum Algorithms

Let A be a polynomial-time quantum algorithm with internal state ρ ∈ D(I) that takes a classical

input r and produces a classical output z. Without loss of generality, the behavior of A can be

described as follows:

1. Apply an efficient classical algorithm to r to generate the description of a unitary U(r).

2. Initialize registers Z ⊗ I to |0〉〈0|Z ⊗ ρI .

3. Apply U(r) to Z ⊗ I, measure Z in the computational basis, and return the outcome z.

A quantum oracle algorithm SA with black-box access to (A,ρ) does not have direct access to

the adversary’s internal registers I, and can only operate on the state ρ ∈ D(I) by applying U(r)

or U(r)† for any r. In more detail, black-box access to (A,ρ) means the following:

• The registers Z ⊗ I are initialized to |0〉〈0|Z ⊗ ρI .
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• Once the Z ⊗ I registers are initialized, the algorithm is permitted to perform arbitrary

operations on the Z register, but can only act on the I registers by applying U(r) or U(r)†

for any r. We explicitly permit the U(r) and U(r)† gates to be controlled on any external

registers (i.e., any registers other than the registers Z ⊗ I to which U(r) is applied).

We note that this definition is consistent with the notions of interactive quantum machines

and oracle access to an interactive quantum machine used in e.g. [Unr12] and other works on

post-quantum zero-knowledge.

The Binary Input Case. Following [Mah18], in the special case where r ∈ {0, 1}, it will be

convenient to re-define the internal state to be ρ := U(0)(|0〉〈0|Z ⊗ ρ
′
I)U(0)† (where ρ

′
I ∈ D(I)

denotes the “original” internal state), so that the behavior of A on r = 0 is to simply measure Z
in the computational basis, and on r = 1 it applies the unitary U := U(1)U(0)† to its state and

then measures the Z register. Notice that in this case, the internal state is technically on Z ⊗ I
instead of just I. Thus, black-box access to a quantum algorithm with binary input is formalized

as follows:

• The registers Z ⊗ I are initialized to ρ := U(0)(|0〉〈0|Z ⊗ ρ
′
I)U(0)†.

• Once the Z ⊗ I registers are initialized, the algorithm is permitted to perform arbitrary

operations on the Z register, but can only act on the I registers by applying (possibly

controlled) U or U † gates.

In this special case, an algorithm with black-box access to A is denoted SU,ρ.

We remark that these definitions are tailored to the two-message challenge-response setting,

whereas the protocols we consider in this paper have more rounds of interaction. However, our

analysis will typically focus on a single back-and-forth round of interaction (e.g., the last two mes-

sages of the [Mah18] protocol), so ρ will be the intermediate state of the interactive algorithm right

before the next challenge is sent.13 Moreover, the unitaries {U(r)}r can be treated as independent

of the (classical) protocol transcript before challenge r is sent, since we can assume this transcript

is saved in ρ.

3.3 Interactive Arguments

In what follows we define the notion of an interactive argument for QMA languages. We denote

such arguments by (P, V ), and denote the output bit of the verifier by Out(P, V ).

Definition 3.1. An interactive argument (P, V ) for a language L = (Lyes,Lno) ∈ QMA with

relation R(x) is a (classical) 2-party interactive protocol between a QPT prover P and a

p.p.t. verifier V , with the following completeness and soundness guarantees:

13In the multi-round setting, “re-defining” the intermediate state to be ρ = U(0)(|0〉〈0|Z ⊗ ρ
′
I)U(0)† can be imple-

mented by replacing any unitary W applied in the previous round with U(0)W ; this follows the conventions used

in [Mah18].
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Completeness. For all λ ∈ N, there exists a polynomial k = k(λ) such that for all x ∈ Lyes,

and all |φ〉 ∈ R(x), it holds that

Pr
[
Out

(
P (|φ〉⊗k(λ) , x), V (x)

)
= 1

]
≥ 1− negl(λ).

Computational Soundness. For all λ ∈ N, all x ∈ Lno, and all non-uniform QPT provers

P ∗, it holds that

Pr [Out(P ∗(x), V (x)) = 1] ≤ negl(λ).

Batch Arguments. We also consider a sub-class of interactive arguments where the prover

simultaneously engages the verifier on n sub-instances (x1, . . . , xn), where each xi is supposed to

be a Yes-instance of a fixed language Li. We require the following notion of (computational)

soundness.

Definition 3.2 (Soundness). An interactive argument (P, V ) for a batch language L = L1 ×
. . . × Ln ∈ QMA with relation R(x) is sound if for all λ ∈ N, all polynomials n = n(λ), all

indices i ∈ [n], all statements (x1, . . . , xn), where xi ∈ Lno, and all non-uniform QPT provers

P ∗, it holds that

Pr [Out(P ∗(x1, . . . , xn), V ((x1, . . . , xn))) = 1] ≤ negl(λ).

3.4 Computational Indistinguishability

Two classical distribution ensembles {(X(λ), Y (λ))}λ are said to be post-quantum computationally

indistinguishable if for every non-uniform QPT algorithm A = {(A(λ),ρ(λ))}λ (that outputs a bit

b), we have that ∣∣∣E
[
A(λ)(X(λ),ρ(λ))

]
− E

[
A(λ)(Y (λ),ρ(λ))

]∣∣∣ = negl(λ).

Two quantum state ensembles {ρ(λ)
0 ,ρ

(λ)
1 }λ are said to be computationally indistinguishable

if for every non-uniform QPT algorithm A = {A(λ),ρ(λ)} (that outputs a bit b), we have that

∣∣∣E
[
A(λ)(ρ(λ),ρ

(λ)
0 )

]
− E

[
A(λ)(ρ(λ),ρ

(λ)
1 )

] ∣∣∣ = negl(λ).

Equivalently, {ρ(λ)
0 ,ρ

(λ)
1 }λ are computationally indistinguishable if for every efficiently com-

putable non-uniform binary observable (R,σ), we have that

∣∣∣Tr(R(ρ0 ⊗ σ))− Tr(R(ρ1 ⊗ σ))
∣∣∣ = negl(λ).

We will occasionally use the notation ρ0 ≈c ρ1 to denote computational indistinguishability of

{ρ(λ)
0 ,ρ

(λ)
1 }λ.

More generally, we use (T (λ), ε(λ))-indistinguishability to denote computational indistiguisha-

bility as above where the distinguisher is allowed to run in time T and the advantage is required

to be at most ε.
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3.5 Mahadev Randomized TCFs

In this section, we define the cryptographic primitive used by Mahadev [Mah18] to obtain a (non-

succinct) delegation scheme for QMA with classical verification. The primitive is closely related

to Regev encryption [Reg05] and LWE-based “lossy” trapdoor functions [PW08, PVW08, GVW15],

but makes use of special-purpose structure relevant for quantum functionality. Most of this special-

purpose structure, in particular, the “adaptive hardcore bit”, was introduced in the work of Braker-

ski, Christiano, Mahadev, Vazirani and Vidick [BCM+18], but [Mah18] further requires “dual-mode

key generation” in addition to the [BCM+18] properties. Given the numerous special-purpose

requirements, we refer to the primitive as “Mahadev randomized trapdoor claw-free functions

(rTCFs).”14

Definition 3.3. A Mahadev randomized trapdoor claw-free function family (Mahadev rTCF)

ClawFree is described by a tuple of efficient classical algorithms (Gen,Eval, Invert,Check,Good)

with the following syntax:

• Gen(1λ,mode) is a dual-mode PPT key generation algorithm that takes as input a secu-

rity parameter λ in unary, and a bit mode ∈ {0, 1}, and it outputs a public key pk and

a private key sk. The description of the public key implicitly defines a domain of the

form {0, 1}×Dpk for the randomized function fpk. We view Dpk as an explicit (efficiently

verifiable and samplable) subset of {0, 1}ℓ(λ), so that applying bit operations to elements

of Dpk is well-defined.

In our context, mode = 0 samples keys for an injective function and mode = 1 samples

keys for a two-to-one function. For the sake of readability, we use a descriptive notation

by which mode ∈ {injective, 2-to-1}, where mode = injective corresponds to mode = 0 and

mode = 2-to-1 corresponds to mode = 1.

• Eval(pk, b,x) is a (possibly probabilistic) algorithm that takes as input a public key pk, a

bit b ∈ {0, 1} and an element x ∈ Dpk, and outputs a string y with distribution χ.

• Invert(mode, sk,y) is a deterministic algorithm that takes as input mode ∈ {injective, 2-to-1},
a secret key sk, and an element y in the range. If mode = injective then it outputs a pair

(b,x) ∈ {0, 1} × Dpk or ⊥. If mode = 2-to-1 then it outputs two pairs (0,x0) and (1,x1)

with x0,x1 ∈ Dpk, or ⊥.

• Check(pk, b,x,y) is a deterministic algorithm takes as input a public key pk, a bit b ∈
{0, 1}, an element x ∈ Dpk, and an element y in the range, and it outputs a bit.

• Good(x0,x1,d) is a deterministic poly-time algorithm that takes as input two domain

elements x0,x1 ∈ Dpk and a string d ∈ {0, 1}ℓ+1. It outputs a bit that characterizes

membership in a set that we call

Goodx0,x1
:= {d : Good(x0,x1,d) = 1}.

14Actually, [Mah18] requires an extra (second) hardcore bit property (Property 2 of Definition 4.4 in [Mah18]) that

we drop from our definition, as our proof does not require it.
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Moreover, we stipulate that Good(x0,x1,d) ignores the first bit of d.15

We require that the following properties are satisfied.

1. Correctness:

(a) For all (pk, sk) in the support of Gen(injective, 1λ): For every b ∈ {0, 1}, every

x ∈ Dpk, and every y ∈ Supp(Eval(pk, (b,x))),

Invert(injective, sk,y) = (b,x).16

(b) For all (pk, sk) in the support of Gen(2-to-1, 1λ): For every b ∈ {0, 1}, every x ∈ Dpk,

and every y ∈ Supp(Eval(pk, (b,x))),

Invert(2-to-1, sk,y) = ((0,x0), (1,x1))

such that xb = x and y ∈ Supp(Eval(pk, (β,xβ))) for every β ∈ {0, 1}.
(c) For every (pk, sk) ∈ Supp(Gen(2-to-1, 1λ)) ∪ Supp(Gen(injective, 1λ)), every b ∈ {0, 1}

and every x ∈ D,

Pr[Check(pk, (b,x),y) = 1] = 1

if and only if y ∈ Supp(Eval(pk, (b,x))).

(d) For every (pk, sk) in the support of Gen(2-to-1, 1λ) and every pair of domain elements

x0,x1, the density of Goodx0,x1 is 1− negl(λ).

2. Key Indistinguishability:

{pk : (pk, sk) ← Gen(2-to-1, 1λ)} ≈c {pk : (pk, sk) ← Gen(injective, 1λ)}

3. Adaptive Hardcore Bit: For every BQP adversary A = (A′,A∞) there exists a negli-

gible function µ such that for every λ ∈ N, the following difference of probabilities is

equal to µ(λ):

∣∣∣Pr[A1(pk,y) = (d, (b,x)) : Check(pk, b,x,y) = 1 ∧ d · (1,x0 ⊕ x1) = 0 ∧ d ∈ Goodx0,x1 ]

− Pr[A1(pk,y) = (d, (b,x)) : Check(pk, b,x,y) = 1 ∧ d · (1,x0 ⊕ x1) = 1 ∧ d ∈ Goodx0,x1 ]
∣∣∣

where the probabilities are over the experiment that generates (pk, sk) ← Gen(2-to-1, 1λ),

y ← A0(pk), and where ((0,x0), (1,x1)) = Invert(2-to-1, sk,y).

Lemma 3.4 ([BCM+18, Mah18]). Assuming LWE, there is a collection of Mahadev randomized

TCFs.

15We depart slightly from notation in prior work, which defines d to be an element of {0, 1}ℓ (corresponding to

the last ℓ bits of our d).
16Note that this implies that Supp(Eval(pk, (b1,x1))) ∩ Supp(Eval(pk, (b2,x2))) = ∅ for every (b1,x1) 6= (b2,x2).

This can be enforced in the LWE-based instantiation by using truncated discrete Gaussian errors
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Remark 3.5. For some of our applications (and for simplicity of proofs), we will actually

require an rTCF that is perfectly correct, which means that the correctness properties (a)

and (b) hold with probability 1. That is, they hold for all (pk, sk) ∈ Gen(injective, 1λ) and

(pk, sk) ∈ Gen(2-to-1, 1λ) respectively. We briefly argue that this is possible. In the injective

mode case, this is possible because the sampling procedure for injective keys given in [Mah18,

Section 9.2] can determine whether the key it sampled is indeed injective and if not, output

a fixed hard-coded injective key. In the 2-to-1 mode case, the sampling procedure given in

[BCM+18, Section 4.1] is perfect except for when s = 0n. Thus, we can again hard-code a

fixed 2-to-1 key to output instead whenever s = 0n.

3.6 Collapsing Hash Functions

Collapsing Hash Functions. Let H = {Hλ}λ∈N be a hash function family where each Hλ is a

distribution over functions h : {0, 1}n(λ) → {0, 1}ℓ(λ).
Define the collapsing experiment CollapseExptH,λ,b(D) on quantum distinguisher D as follows.

CollapseExptH,λ,b(D):

1. The challenger samples h ← Hλ and sends h to the distinguisher D.

2. The distinguisher replies with a classical binary string y ∈ {0, 1}ℓ(λ) and an n(λ)-qubit quan-

tum state on the register X . Note that the requirement that y be classical can be enforced

by having the challenger immediately measure these registers upon receiving them.

3. The challenger computes h in superposition on the n(λ)-qubit quantum state, and measures

the bit indicating whether the output of h equals y. If the output does not equal y, the

challenger aborts and outputs ⊥.

4. If b = 0, the challenger does nothing. If b = 1, the challenger measures the n(λ)-qubit state

in the standard basis.

5. The challenger returns the contents of the X register to the distinguisher.

6. The distinguisher outputs a bit b′.

Definition 3.6 ([Unr16b]). H = {Hλ}λ is collapsing if for every security parameter λ ∈ N and

any polynomial-size quantum distinguisher D = {Dλ}λ, there exists a negligible function µ

such that

∣∣Pr
[
CollapseExptH,λ,0(Dλ) = 1

]
− Pr

[
CollapseExptH,λ,1(Dλ) = 1

]∣∣ ≤ µ(λ).

Unruh [Unr16a] constructs collapsing hash functions from lossy functions, which can be based

on LWE [PW08].

Lemma 3.7 ([PW08, Unr16a]). Assuming LWE, a family of collapsing hash functions {Hλ :

{0, 1}∗ → {0, 1}λ}λ exists.
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3.7 Fully Homomorphic Encryption

We define fully homomorphic encryption (FHE), which is used in Section 9. A fully homomorphic

encryption scheme FHE = (FHE.Gen,FHE.Enc,FHE.Dec,FHE.Eval) for (classical) polynomial-time

computation is a tuple of four PPT algorithms.

• Gen(1λ) takes as input the security parameter and outputs a key pair (pk, sk).

• Enc(pk,m) takes as input a message m and outputs a ciphertext ct.

• Eval(f, ct) takes as input a ciphertext ct corresponding to an n-bit plaintext as well as a

function f : {0, 1}n → {0, 1}. It outputs a ciphertext ctf .

• Dec(sk, ct) takes as input the secret key and a ciphertext. It outputs a message.

We require the following properties.

• Evaluation/Decryption Correctness: for any (polynomial-size circuit) function f : {0, 1}n →
{0, 1} and any message m ∈ {0, 1}n, we have that

Dec(sk,Eval(f,Enc(pk,m))) = f(m)

with probability 1− negl(λ) over the parameter sampling.

• Compactness: we require that FHE.Eval(f,Enc(pk,m)) has a fixed size poly(λ) independent

of |f |, |m|.

• Semantic Security: For any pair of messages (m0,m1), we have that (pk,FHE.Enc(pk,m0)) ≈c

(pk,FHE.Enc(pk,m1)).

Theorem 3.8 ([Gen09, BV11, BGV12, BV14]). Under circular-secure variants of the Learn-

ing with Errors assumption, there exists a fully homomorphic encryption scheme for all

polynomial-time computable functions. If the circular LWE variant is post-quantum, then so

is the FHE scheme.

Under the standard LWE assumption, there exists a FHE scheme for all polynomial-size

circuits of depth d(λ), where the scheme has compactness poly(λ, d).

3.8 Indistinguishability Obfuscation

An indistinguishability obfuscator (iO) is an algorithm iO that takes as input a circuit C and

satisfies the following properties.

• Functional Equivalence: for any (polynomial-size) circuit circuit C : {0, 1}n → {0, 1}m
and any input x ∈ {0, 1}n, we have that

iO(C)(x) = C(x).
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• Security: For any pair of functionally equivalent circuits (C0, C1), we have that

iO(C0) ≈c iO(C1).

We mention that, while some recent candidates for iO (such as [JLS21]) can be broken using

quantum algorithms, others, such as [BGMZ18, CVW18, BDGM20, WW21, GP21, DQV+21],

are plausibly post-quantum secure. Furthermore, it will be convenient for us to assume iO with

perfect correctness to simplify our analysis (in particular the argument in Section 10.3). We point

out that this property is already satisfied by most candidates and can also be attained via generic

transformations [BV17].

3.9 Puncturable PRFs

Definition 3.9 (Puncturable PRF [BW13, BGI14, KPTZ13, SW14]). A puncturable PRF family

is a family of functions

F =
{
Fλ,s : {0, 1}ν(λ) → {0, 1}µ(λ)

}
λ∈N,s∈{0,1}ℓ(λ)

with associated (deterministic) polynomial-time algorithms (F .Eval,F .Puncture,F .PuncEval)

satisfying

• For all x ∈ {0, 1}ν(λ) and all s ∈ {0, 1}ℓ(λ), F .Eval(s, x) = Fλ,s(x).

• For all distinct x, x′ ∈ {0, 1}ν(λ) and all s ∈ {0, 1}ℓ(λ),

F .PuncEval(F .Puncture(s, x), x′) = F .Eval(s, x′)

For ease of notation, we write Fs(x) and F .Eval(s, x) interchangeably, and we write s{x} to

denote F .Puncture(s, x).

F is said to be (s, δ)-secure if for every {x(λ) ∈ {0, 1}ν(λ)}λ∈N, the following two distribution

ensembles (indexed by λ) are δ(λ)-indistinguishable to circuits of size s(λ):

(S{x(λ)}, FS(x
(λ))) where S ← {0, 1}ℓ(λ)

and

(S{x(λ)}, U) where S ← {0, 1}ℓ(λ), U ← {0, 1}µ(λ) .

Theorem 3.10 ([GGM84, KPTZ13, BW13, BGI14, SW14]). If {polynomially secure, subex-

ponentially secure} one-way functions exist, then for all functions µ : N → N (with 1µ(ν)

polynomial-time computable from 1ν), and all δ : N → [0, 1] with δ(ν) ≥ 2−poly(ν), there are

polynomials ℓ(λ), ν(λ) and a {polynomially secure, ( 1
δ(ν(λ)) , δ(ν(λ)))-secure} puncturable PRF

family

Fµ =
{
Fλ,s : {0, 1}ν(λ) → {0, 1}µ(ν(λ))}λ∈N,s∈{0,1}ℓ(λ)

}
.
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4 Commit-and-Measure Protocols

4.1 Defining Commit-and-Measure Protocols

In this section, we formalize the notion of a commit-and-measure protocol, which was informally

described in [Mah18]. A commit-and-measure protocol enables a classical verifier to obtain the

results of measuring, in the standard or Hadamard basis, each qubit of an N -qubit quantum state

σ held by the prover. More precisely, the verifier encodes its choice of basis with a classical circuit

C : [N ] = {0, 1}logN → {0, 1}, where C(i) = b specifies the basis for the measurement of the ith

qubit. We adopt the convention that b = 0 corresponds to the standard basis and b = 1 corresponds

to the Hadamard basis. Note that in Mahadev’s original protocol, C is given as an explicit string

(C(0), C(1), . . . , C(N − 1)), but our eventual succinct protocols will require circuits C with size

much smaller than N .

Definition 4.1 (Commit-and-Measure Protocol Syntax). An N-qubit commit-and-measure pro-

tocol between a quantum polynomial-time prover P = (Commit,Open) and a classical proba-

bilistic polynomial-time verifier V = (Gen,Test,Out) has the following syntax.

1. The verifier samples (pk, sk) ← Gen(1λ, C), where C : [N ] = {0, 1}logN → {0, 1} represents

a basis vector h ∈ {0, 1}N , obtaining public parameters pk and secret parameters sk. It

sends the public parameters pk to the prover.

2. The prover computes (y,ρ) ← Commit(pk,σ), obtaining a classical “commitment” string

y and a private quantum state ρ. It sends y to the verifier.

3. The verifier samples a random challenge bit c ← {0, 1} and sends c to the prover; c = 0

corresponds to a “test round” and c = 1 corresponds to a “measurement round”.

4. The prover computes z ← Open(ρ, c), obtaining a classical string z that it sends to the

verifier.

5. If c = 0, the verifier computes {acc, rej} ← Test(pk, (y, z)).

If c = 1, the verifier computes m ← Out(sk, (y, z)) to obtain a classical string m ∈ {0, 1}N
of measurement outcomes.

The protocol is required to satisfy the following completeness (Definition 4.2) and soundness

(Definition 4.5) properties. For the definitions below, we write M(h,σ) to denote the distribution

of outcomes from measuring σ in the basis h.

Definition 4.2 (Completeness). A commit-and-measure protocol is required to satisfy two

completeness properties.

1. (Test Round Completeness) For all C : [N ] → {0, 1} and N-qubit states σ:

Pr


acc ← Test(pk, (y, z)) :

(pk, sk) ← Gen(1λ, C)

(y,ρ) ← Commit(pk,σ)

z ← Open(ρ, 0)


 = 1− negl(λ).
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2. (Measurement Round Completeness) For all C : [N ] → {0, 1} and N-qubit states σ:



m ← Out(sk, (y, z)) :

(pk, sk) ← Gen(1λ, C)

(y,ρ) ← Commit(pk,σ)

z ← Open(ρ, 1)



 ≈c M(h,σ),

where h ∈ {0, 1}N is such that hi = C(i) for all i ∈ [N ] = {0, 1}logN .

Remark 4.3. The [Mah18] protocol satisfies statistical measurement round completeness, but

our verifier-succinct commit-and-measure protocol will not.

Remark 4.4. One of our applications will require a measurement protocol with perfect com-

pleteness, which stipulates that the above completeness guarantees hold over all (pk, sk) ∈
Gen(1λ, C) (and where the measurement round completeness is statistical rather than compu-

tational). This can be achieved by using an rTCF with perfect correctness, which we discuss

in Section 3.5, and, in the succinct case, an indistinguishability obfuscation scheme with

perfect correctness (Section 3.8).

To state our soundness definition (Definition 4.5), we first specify the registers that any non-

uniform cheating prover acts on:

• P contains the public parameters pk,

• Y contains the classical commitment string y,

• Z contains the classical opening string z,

• I contains the prover’s initial state and its internal work registers.

In a protocol execution, P is initialized with |pk〉〈pk|. A non-uniform cheating prover

P ∗ = (ρ0, UCommit∗ , UOpen∗,0, UOpen∗,1)

is parameterized by:

• An arbitrary quantum state ρ0 ∈ D(Y ⊗Z ⊗ I). In a protocol execution with P̃ , Y ⊗Z ⊗ I
is initialized with ρ0.

• An adversarial commitment unitary UCommit∗ on P ⊗ Y ⊗ Z ⊗ I of the form

∑

pk

|pk〉〈pk|P ⊗ (UCommit∗,pk)Y ,Z,I.

That is, UCommit∗ is classically controlled on P. In particular, the adversarial prover’s com-

mitment on verifier message pk is obtained by measuring register Y of

UCommit∗(|pk〉〈pk|P ⊗ (ρ0)Y ,Z,I)

in the computational basis to obtain y.

24



• An adversarial opening unitary UOpen∗,0 on P ⊗ Y ⊗ Z ⊗ I corresponding to the prover’s

behavior in the test round (b = 0) of the form:

∑

pk,y

|pk, y〉〈pk, y|P,Y ⊗ (UOpen∗,0,pk,y)Z,I .

That is, UOpen∗,0 is classically controlled on P and Y. In particular, given a commitment

string y and residual prover state ρ ∈ D(Z ⊗ I), the prover’s response on challenge c = 0 is

obtained by measuring register Z of

UOpen∗,0(|pk, y〉〈pk, y|P,Y ⊗ ρZ,I)

in the computational basis to obtain z.

• An adversarial opening unitary UOpen∗,1 on P ⊗ Y ⊗ Z ⊗ I corresponding to the prover’s

behavior in the measurement round (b = 1) of the form:

∑

pk,y

|pk, y〉〈pk, y|P,Y ⊗ (UOpen∗,1,pk,y)Z,I .

In particular, given a commitment string y and residual prover state ρ ∈ D(Z ⊗ I), the

prover’s response on challenge c = 1 is obtained by measuring register Z of

UOpen∗,1(|pk, y〉〈pk, y|P,Y ⊗ ρZ,I)

in the Hadamard basis to obtain z.

Following [Mah18], we can assume without loss of generality that UOpen∗,0 is the identity (refer

to Section 3.2 for additional details). We will therefore write U to describe the prover’s “attack

unitary” for the measurement round (c = 1).

For defining soundness, we informally require that a prover P ∗ that passes the test round with

probability 1 − negl(λ) (this could alternatively be enforced by applying a measurement in the

security game) implicitly defines17 an N -qubit state τ whose measurement outcome distribution

matches the output distribution of Out(·) (up to computational indistinguishability).

Definition 4.5 (Soundness). There exists an efficient classical algorithm SimGen(1λ) and an

efficient quantum algorithm ExtU,ρ(pk, sk, y) with black-box access to an attacker parameterized

by a state ρ and a unitary U (see Section 3.2 for more details on how we formalize quantum

black-box access), that takes as input classical strings (pk, sk, y), and satisfies the following

properties:

• Consider any non-uniform QPT cheating prover P ∗ = (ρ0, UCommit∗ , U) that passes the

test round with probability 1− negl(λ) for all h ∈ {0, 1}N .

Then, for all h ∈ {0, 1}N with circuit representation C, the following two distributions

are computationally indistinguishable:

Real:
17In fact, we require that τ can be extracted efficiently from P ∗.
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1. Sample parameters (pk, sk) ← Gen(1λ, C).

2. Run the attacker P ∗ on pk to obtain a classical commitment string y (i.e., apply

UCommit∗ and then measure the register containing y). Denote the post-measurement

state as ρ ∈ D(Z ⊗ I), where Z corresponds to the registers that will eventually

be measured to obtain the prover’s final message, and I contains all of the other

internal registers of the prover.18

3. Apply the prover’s attack unitary U . This yields the state ρ
′ := UρZ,IU

†. Measure

the Z register of ρ′ in the Hadamard basis to obtain the prover’s opening string z.

4. Compute m ← Out(sk, (y, z)) and output m.

Sim:

1. Sample parameters (pk, sk) ← SimGen(1λ).

2. Run the attacker P ∗ on pk to obtain a classical commitment string y (i.e., apply

UCommit∗ and then measure the register containing y). Denote the post-measurement

state as ρ ∈ D(Z ⊗ I).
3. Run ExtU,ρ(pk, sk, y) → τ to obtain an N-qubit state τ .

4. Measure each qubit of τ according to the bases specified by h ∈ {0, 1}N (i.e., qubit

i is measured in the Hadamard basis if hi = 1 and the standard basis if hi = 0) and

output the result.

5 A Measurement Protocol Template

In this section, we describe a generic construction of a N -qubit commit-and-measure protocol

(Section 4) using two building blocks: (1) a family of Mahadev rTCFs (Definition 3.3), and (2) a

“batch key generation” scheme (fully defined in Section 7) whose syntax we describe below. We

consider two different instantiations of this template:

• Using a “trivial” batch key generation scheme in which the N rTCF keys are sampled i.i.d.,

we recover Mahadev’s original protocol [Mah18].

• Using a succinct key generation scheme (constructed in Sections 7 and 7.2, we obtain a

measurement protocol in which the verifier’s messages are succinct. We refer to this as a

verifier-succinct measurement protocol.

Batch Key Generation. For our construction, we make use of what we call a “batch key genera-

tion scheme” for the Mahadev rTCF. Let TCF.Gen(1λ,mode) denote the “standard” key generation

algorithm for a Mahadev rTCF. Informally, a batch key generation scheme for TCF.Gen(1λ,mode)

is a mechanism that produces a joint representation of N TCF pairs (pki, ski), from which any

18We will also assume, without loss of generality, that the prover always copies pk and y into its internal state

registers I.
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individual pki, ski can be computed, such that the pairs (pki, ski) are sufficiently “independent” of

each other.

A full definition of a batch key generation scheme is given in Definition 7.2, but we formally

state here the relevant syntax and security properties. Syntactically, a batch key generation scheme

includes three algorithms (Gen,ExtPk,ExtSk), where:

• Gen(1λ, C) takes as input a security parameter λ and a circuit C : [N ] → {0, 1} representing

(through its truth table) an N -bit string. It outputs a master public key PK and master

secret key SK.

• ExtPk(PK, i) is a deterministic algorithm that takes as input PK and an index i ∈ N , and

outputs a public key pki.

• ExtSk(SK, i) is a deterministic algorithm that takes as input SK and an index i ∈ N , and

outputs a secret key ski.

When instantiated for a Mahadev rTCF family, we require the following properties to hold for

such a procedure:

• Correctness: for (PK,SK) ← Gen(1λ, N,C) and (pki, ski) = (ExtPk(PK, i),ExtSk(SK, i)), we

have that (pki, ski) is in the range of TCF.Gen(1λ, C(i)) (i.e. they are a valid key pair in mode

C(i)).

• Key Indistinguishability: if C1 and C2 represent functions that agree on a set T of in-

puts, then PK output by Gen(1λ, C1) is computationally indistinguishable from PK output

by Gen(1λ, C2), even in the presence of all {ski, i ∈ T}.

• Collapsing at a single index: For any index j, the function fpkj is collapsing even given

all secret keys ski for i 6= j.

• Adaptive hardcore bit at a single index: For any index j, the function fpkj satisfies the

rTCF adaptive hardcore bit property even given all secret keys ski for i 6= j.

Our protocol is a variant of the Mahadev protocol [Mah18] in which the verifier’s first message

(pk1, . . . , pkN ) is replaced by the output PK of a batch key generation procedure.

5.1 Measurement Protocol Description

Let ClawFree = (TCF.Gen,Eval, Invert,Check,Good) denote a family of [Mah18] randomized TCFs

(Definition 3.3). For simplicity of the analysis, we assume that on a fixed security parameter 1λ,

Gen outputs keys defining functions from {0, 1}×D to R, where D is a fixed-size subset of {0, 1}ℓ(λ)
independent of pk.19 We denote the size of D by L(λ). Let (Gen,ExtPk,ExtSk) denote a batch key

generation algorithm for TCF.Gen satisfying the requirements described above.

19The LWE-based instantiation from [BCM+18] satisfies this property. However, with more complicated expres-

sions, our proof should go through without this simplifying assumption.
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For simplicity, we assume the honest prover P has an N -qubit pure state of the form

|ψ〉W =
∑

w1,...,wN

αw1,...,wN
|w1 . . . wN 〉

on its internal N -qubit register W; the protocol completeness immediately extends to mixed states

by linearity. The verifier has a basis string h ∈ {0, 1}N , represented by a circuit C : [N ] →
{0, 1}, and wants to obtain a measurement of |ψ〉 in this basis (where hi = 0 denotes a standard

basis measurement and hi = 1 denotes a Hadamard basis measurement). The protocol MP (for

measurement protocol), with prover algorithm P = (MP.Commit,MP.Open) and verifier algorithm

V = (MP.Gen,MP.Test,MP.Out), is executed as follows.

• MP.Gen: On input 1λ, N and C, the verifier samples a representation of N TCF key pairs by

computing (PK,SK) ← Gen(1λ, N,C), where C is circuit computing C(i) = hi. The verifier

sends PK to the prover.

• MP.Commit: Given PK and its input state |ψ〉W , the prover computes public keys pki ←
ExtPk(PK, i) for 1 ≤ i ≤ N . From now on, P operates directly on (pki) and ignores PK.

The prover coherently (with respect to |ψ〉) computes a “range superposition”

1√
LN

∑

x1,...,xN∈D
y1,...,yN∈R
w∈{0,1}N

(
αw

∏

i

√
ppki(wi, xi, yi) |w〉W |x1〉X1

. . . |xN 〉XN
|y1〉Y1

. . . |yN 〉YN

)

where each Xi is an ℓ(λ)-qubit register (where D ⊂ {0, 1}ℓ), and each Yi

has basis {|y〉}y∈R. Here, ppk(b, x, y) denotes the probability density of y in the distribution

fpk(b, x), where ppk(b, x, y) := 0 for x ∈ {0, 1}ℓ \ D. Following [BCM+18, Section 4.3] the

honest prover algorithm can efficiently prepare this state up to exponentially small trace

distance.

After preparing this state, the prover measures Y1, . . . ,YN in the standard (R-)basis and

sends the outcome (y1, . . . , yN ) to the verifier.

• The verifier sends a uniformly random challenge bit c. After receiving the prover response,

the verifier computes each public key pki ← ExtPk(PK, i) and secret key ski ← ExtSk(SK, i)

in order to evaluate either MP.Test or MP.Out.

• MP.Open: On challenge bit c, the prover operates as follows.

– If c = 0, the prover measures W ⊗ X1 ⊗ . . . ⊗ XN in the standard basis and sends the

outcome (b1, . . . , bN , x1, . . . , xN ) to the verifier.

– If c = 1, the prover instead measures W⊗X1⊗. . .⊗XN in the Hadamard basis, returning

strings d1, . . . dN .

• MP.Test: Given (b1, . . . , bN , x1, . . . , xN ), the verifier computes (for every i) Check(pki, bi, xi, yi)

and rejects if any of these checks do not pass.
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• MP.Out: Given d1, . . . dN , the verifier outputs N bits as follows. For each i ∈ [N ]:

– If hi = 0, the verifier ignores di, computes (bi, xi) = Invert(injective, ski, yi), and outputs

bi.

– If hi = 1, the verifier computes the two inverses {(0, x0,i), (1, x1,i)} ← Invert(2-to-1, ski, yi).

For each i, the verifier checks whether di ∈ Goodx0,i,x1,i (corresponding to a valid equa-

tion in the ith slot), and if so, the verifier outputs di · (1, x0,i ⊕x1,i). If di 6∈ Goodx0,i,x1,i ,

the verifier samples a uniformly random bit and outputs it.

Completeness of this protocol follows immediately from [Mah18] and the correctness property

of Gen. Specifically, the correctness property of Gen implies that each (pki, ski) in our protocol

is in the range of TCF.Gen(1λ, C(i)), in which case (as shown in [Mah18]) the verifier’s output

distribution is statistically close to h = (C(0), . . . , C(N))-measurement outcome on |ψ〉.

6 Soundness of Mahadev’s Protocol

In this section, we prove that the measurement protocol from Section 5 a computationally sound

(Definition 4.5) commit-and-measure protocol. As a consequence, we obtain a new, self-contained

proof of soundness of the [Mah18] protocol. Later (Section 7.1), we will instead instantiate our

protocol with a succinct key generation algorithm to obtain a verifier-succinct measurement pro-

tocol.

Our soundness proof is based in part on both [Mah18] itself as well as a proof strategy suggested

in [Vid20].

Notation. Throughout this section, we will fix the verifier’s choice of basis h ∈ {0, 1}N . We

write R := {i ∈ [N ] : hi = 1} and S := {i ∈ [N ] : hi = 0}, where R ⊂ [N ] denotes the set of indices

that the verifier wants to measure in the Hadamard basis, and S ⊂ [N ] denotes the set of indices

the verifier wants to measure in the standard basis.

Finally, we will decompose the state space of the prover as Z ⊗ I, where:

• Z = Z1 ⊗ · · · ⊗ ZN . 1 ≤ i ≤ N , Zi is an (ℓ(λ) + 1)-qubit register that contains the classical

opening string zi. We will sometimes write Z as shorthand for Z1 ⊗ . . .⊗ZN .

• Each Zi can be written as Zi = Bi ⊗ Xi, where Bi is a one-bit register and Xi is an ℓ(λ)-bit

register.

• I denotes any additional registers the prover uses.

6.1 The Verifier’s Output Distribution

Our goal is to characterize the N -bit distribution DP ∗,Out corresponding to the verifier’s output

in the measurement protocol when interacting with a malicious prover P ∗ using h ∈ {0, 1}N as

its choice of bases. In particular, we want to prove that if P ∗ succeeds in passing the test round

with probability 1 − negl(λ), then DP ∗,Out is computationally indistinguishable from DP ∗,Ext, a
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distribution obtained from (1) running an efficient extractor ExtP
∗

to obtain an N -qubit quantum

state τ , and (2) measuring τ in the verifier’s specified bases.

The distribution DP ∗,Out produces a sample according to the following steps:

1. Sample keys (PK,SK) ← MP.Gen(1λ, N,C) (where C specifies the choice of bases R,S).

2. Run the malicious prover on PK to obtain a classical commitment string y. Let |ψ〉 ∈ Z ⊗ I
denote the prover’s residual state.

3. For each i ∈ S, compute (bi, xi) ← Invert(injective, ski, yi). Let v ∈ {0, 1}S be the vector

whose ith entry is bi.

4. Next, apply the prover’s attack unitary U on Z ⊗ I, and then measure Z in the Hadamard

basis to obtain a response z = (d1, . . . , dN ).

5. For each i ∈ R, compute (0, x0,i), (1, x1,i) ← Invert(2-to-1, ski, yi). If di ∈ Goodx0,i,x1,i , set

ui = di · (1, x0,i ⊕ x1,i). Otherwise, set ui to be a uniformly random bit. This results in a

string u ∈ {0, 1}R

6. Output (u, v) ∈ {0, 1}R × {0, 1}S .

Our first step is to show that DP ∗,Out is computationally indistinguishable from a distribution

DP ∗,2-to-1 that does not require running the Invert algorithm for any key pair (pki, ski) in injective

mode. Instead, this second distribution can be produced by directly measuring the register Bi

(i.e., the first bit of Zi) of the prover’s state |ψ〉). Since {ski}i∈S will no longer be required at this

point, we are also able to switch all key pairs (pki, ski) to be in two-to-one mode by invoking key

indistinguishability.

Formally, DP ∗,2-to-1 produces outcomes as follows (differences from DP ∗,Out highlighted in red):

1. Sample keys (PK,SK) ← MP.Gen(1λ, N,1) (where 1 denotes the constant 1 function, corre-

sponding to two-to-one mode)

2. Run the malicious prover on PK to obtain a classical commitment string y. Let |ψ〉 ∈ Z ⊗ I
denote the prover’s residual state.

3. For each i ∈ S, measure Bi to obtain a bit vi; the result of this step is a string v ∈ {0, 1}S .

4. Next, apply the prover’s attack unitary U on Z ⊗ I, and then measure Z in the Hadamard

basis to obtain a response z = (d1, . . . , dN ).

5. For each i ∈ R, compute (0, x0,i), (1, x1,i) ← Invert(2-to-1, ski, yi). If di ∈ Goodx0,i,x1,i , set

ui = di · (1, x0,i ⊕ x1,i). Otherwise, set ui to be a uniformly random bit. This results in a

string u ∈ {0, 1}R

6. Output (u, v) ∈ {0, 1}R × {0, 1}S .

Lemma 6.1. DP ∗,2-to-1 is computationally indistinguishable from DP ∗,Out.
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We prove Lemma 6.1 by first switching the keys sampled in DP ∗,2-to-1 to match the verifier’s

basis choice h. That is, we define the distribution DP ∗,h to be the same distribution as DP ∗,2-to-1,

except that the keys (pki, ski) are sampled in mode hi, i.e., Step 1 is replaced with:

1. Sample keys (PK,SK) ← MP.Gen(1λ, N,C) (where C(i) = hi for all i).

This is well-defined because the ith bit of the output is still obtained by measuring Bi, which can

be done regardless of how (pki, ski) is sampled.

Claim 6.2. For every basis choice h, DP ∗,h is computationally indistinguishable from DP ∗,2-to-1.

Proof. This follows by invoking the following key indistinguishability property of Gen:

{
(PK,SK) ← Gen(1λ, 1) : (PK, {ski}i6∈S)

}
≈c

{
(PK,SK) ← Gen(1λ, C) : (PK, {ski}i6∈S)

}
.

Since the distributions are sampled without use of ski for all i ∈ S, Claim 6.2 follows from this

indistinguishability.

To conclude that DP ∗,2-to-1 ≈c DP ∗,Out, we note:

Claim 6.3. If DP ∗,Out is instantiated with basis choice h, then DP ∗,Out is statistically indis-

tinguishable from DP ∗,h.

Proof. Claim 6.3 follows from the injectivity of fpki for each i ∈ S; by the correctness of Gen,

we have that each pki (for i ∈ S) is in the support of TCF.Gen(1λ, injective). Therefore, since |ψ〉
is guaranteed to pass the test round with probability 1 − negl(λ), we have that with probability

1− negl(λ), measuring Bi gives the same result as computing the first bit of Invert(skj , yj) (which

is the verifier’s output).

6.2 The Protocol Observables

Defining the Protocol Observables. In DP ∗,2-to-1, the entire N -bit output (u, v) is the result

of performing measurements on |ψ〉, the prover’s residual state after it sends its commitment y.

We now define a collection of binary observables {Xi, Zi}i∈[N ], parameterized by (PK,SK, y) and

the malicious prover’s attack unitary U , such that the following process is equivalent to sampling

from DP ∗,2-to-1:

1. Sample keys (PK,SK) ← MP.Gen(1λ, N,1).

2. Run the malicious prover on PK to obtain a classical commitment string y. Let |ψ〉 denote

the prover’s residual state.

3. For each i ∈ S, measure |ψ〉 with the observable Zi to obtain a bit vi.

4. Next, for each i ∈ R, measure the observable Xi to obtain a bit ui.

5. Output (u, v) ∈ {0, 1}R × {0, 1}S .
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The definition of the Zi observable is straightforward: since each vi is obtained by measuring

Bi in the standard basis, Zi is simply the Pauli-Z observable Zi := (σZ)Bi
.

Defining the Xi observable requires more care. In DP ∗,2-to-1, the string u ∈ {0, 1}R is obtained

by applying the following steps (after v ∈ {0, 1}S is measured)

1. Apply the prover’s attack unitary U on Z ⊗ I.

2. For each i ∈ R:

(a) Apply H⊗ℓ+1 to the register Zi containing the prover’s response in the ith slot.

(b) Measure Zi to obtain di. If di ∈ Good(x0,i, x1,i), set ui = di · (1, x0,i ⊕ x1,i). If di 6∈
Good(x0,i, x1,i), set ui to be a uniformly random bit.

In order to output a uniformly random bit, we will prepare fresh one-qubit ancilla registers

U1, . . . ,UN , so that in the event that the prover returns an invalid di in slot i, the verifier can

generate a random bit by measuring Ui (initialized to |0〉) in the Hadamard basis. Note that the

U = U1, . . . ,UN register is not part of the malicious prover’s state.

We therefore redefine |ψ〉 := |ψ〉Z,I |0〉U to denote the global state on Z ⊗ I ⊗ U including the

ancilla U registers initialized to |0〉U .

Finally, the Xi observable is defined as

Xi = (U ⊗ IdU )
†(H⊗ℓ+1

Zi
⊗ Id⊗HUi

)X ′
i(H

⊗ℓ+1
Zi

⊗ Id⊗HUi
)(U ⊗ IdU ).

where

X ′
i =

∑

d∈Good(x0,i,x1,i)

(−1)d·(1,x0,i⊕x1,i) |d〉〈d|Zi
⊗ IdI,{Zj}j 6=i,U

+
∑

d6∈Good(x0,i,x1,i),u∈{0,1}

(−1)u |d, u〉〈d, u|Zi,Ui
⊗ IdI,{Zj}j 6=i,{Uj}j 6=i

.

Note that the Xi observables are defined so that each pair of Xi,Xj commute. Moreover, one

can verify that measuring Xi for each i ∈ R exactly corresponds to measuring u ∈ {0, 1}R as

described above.

The description of Xi depends on (yi, ski) because of the appearance of xi,0, xi,1 in X ′
i. Moreover,

note that each Xi is efficiently computable given ski.

For convenience, we define a procedure {Xi, Zi}i, |ψ〉Z,I,U ← Samp that works as follows:

• Sample keys (PK,SK) ← MP.Gen(1λ, N,1).

• Run the malicious prover on PK to obtain a classical commitment string y. Let |ψ′〉 denote

the prover’s residual state on Z ⊗ I.

• Output the observables {Xi, Zi} parameterized by (PK,SK, y) and malicious prover’s unitary

U , along with the state |ψ〉 := |ψ′〉 ⊗ |0〉U .

For the remainder of this section, we will write DP ∗,2-to-1 as a two-step sampling process:
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1. Run {Xi, Zi}i, |ψ〉Z,I,U ← Samp.

2. Starting with |ψ〉, measure each Zi for i ∈ S to obtain v ∈ {0, 1}S . Then measure each Xi

for i ∈ R to obtain u ∈ {0, 1}R. Output (u, v) ∈ {0, 1}R × {0, 1}S .

6.3 The Extracted State

Recall that our definition of measurement protocol soundness (Definition 4.5) requires us to give

an extractor that:

1. Generates keys (PK,SK) according to an algorithm SimGen(1λ) (independently of the verifier’s

basis choice h).

2. Runs the malicious prover P ∗ on PK to obtain y; as usual, |ψ〉 ∈ Z ⊗ I ⊗ U denotes the

residual prover state with U initialized to |0〉U .20

3. Generates an extracted state τ ← ExtU,|ψ〉(PK,SK, y) (the superscript denotes black-box

access to a unitary U and state |ψ〉, see Section 3.2).

We define SimGen(1λ) to be MP.Gen(1λ, N,1), which exactly corresponds to how keys are

sampled in DP ∗,2-to-1.

To establish soundness, it remains to (1) describe how to generate the extracted state τ given

(PK,SK, y), U , and (2) prove that the distribution that arises from measuring τ with the Pauli-X

and Pauli-Z observables in the verifier’s chosen bases h is computationally indistinguishable from

DP ∗,2-to-1.

We handle (1) in Section 6.3.1. We then describe the distribution DP ∗,Ext that arises from

measuring our extracted state in Section 6.3.2 and prove that indistinguishability from DP ∗,2-to-1

in Section 6.4.

6.3.1 A Teleportation-Inspired Extraction Procedure

Fix a choice of {Xi, Zi}, |ψ〉 ← Samp. For ease of notation, write H = Z ⊗ I ⊗ U so that |ψ〉 ∈ H.

We would like an efficient extraction procedure that takes as input |ψ〉 ∈ H and generates an N -

qubit state τ such that, roughly speaking, measuring |ψ〉 with X/Z and measuring τ with σX/σZ
produce indistinguishable outcomes.

Intuition for the Extractor. Before we describe our extractor, we first provide some underlying

intuition. For an arbitrary N -qubit Hilbert space, let σx,i/σz,i denote the Pauli σx/σz observable

acting on the ith qubit. For each r, s ∈ {0, 1}N , define the N -qubit Pauli “parity” observables

σx(r) :=
∏

i:ri=1

σx,i , σz(s) :=
∏

i:si=1

σz,i.

Suppose for a moment that |ψ〉 ∈ H is already an N -qubit state (i.e., H is an N -qubit Hilbert

space) and moreover, that each Xi/Zi observable is simply the corresponding Pauli observable

20To match the syntax of our definition in Definition 4.5, the register U should be viewed as an internal register

initialized by the extractor.
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σx,i/σz,i. While these assumptions technically trivialize the task (the state already has the form

we want from the extracted state), it will be instructive to write down an extractor that

“teleports” this state into another N-qubit external register.

We can do this by initializing two N -qubit registers A1⊗A2 to |φ+〉⊗N
where |φ+〉 is the EPR

state (|00〉 + |11〉)/
√
2 (the ith EPR pair lives on the ith qubit of A1 and A2). Now consider the

following steps, which are inspired by the (N -qubit) quantum teleportation protocol

1. Initialize a 2N -qubit ancilla W to
∣∣02N

〉
, and apply H⊗2N to obtain the uniform superposition.

2. Apply a “controlled-Pauli” unitary, which does the following for all r, s ∈ {0, 1}N and all

|φ〉 ∈ H ⊗A1:

|r, s〉W |φ〉H,A1
→ |r, s〉W (σx(r)σz(s)H ⊗ σx(r)σz(s)A1) |φ〉H,A1

3. Apply the unitary that XORs onto W the outcome of performing N Bell-basis measurements21

on A1 ⊗A2 onto W, i.e., for all u, v, r, s ∈ {0, 1}N :

|u, v〉W (σx(r)σz(s)⊗ Id)A1,A2

∣∣φ+
〉⊗N

A1,A2
→ |u⊕ r, v ⊕ s〉W (σx(r)σz(s)⊗ Id)A1,A2

∣∣φ+
〉⊗N

A1,A2
.

Finally, discard W.

One can show that the resulting state is

1

2N

∑

r,s∈{0,1}N

(σx(r)σz(s)⊗ σx(r)σz(s)⊗ Id) |ψ〉H
∣∣φ+

〉
A1,A2

=
∣∣φ+

〉
H,A1

|ψ〉A2
, (2)

where |ψ〉 is now “teleported” into the A2 register.

To generalize this idea to the setting where |ψ〉 ∈ H is an arbitrary quantum state and {Xi, Zi}i
are an arbitrary collection of 2N observables, we simply replace each σx(r) and σz(s) acting on

H above with the corresponding parity observables for {Xi, Zi}. That is for each r, s ∈ {0, 1}N ,

define

Z(s) =

N∏

i=1

Zsi
i and X(r) =

N∏

i=1

Xri
i .

The rough intuition is that as long as the {Xi} and {Zi} observables “behave like” Pauli observables

with respect to |ψ〉, the resulting procedure will “teleport” |ψ〉 into the N -qubit register A2.

The Full Extractor. In more detail, we have the state |ψ〉H = |ψ〉Z,I,U , and we initialize two

N -qubit registers A1 ⊗ A2 to |φ〉⊗N . We run the following steps (the changes from the above

procedure are highlighted in red):

1. Initialize a 2N -qubit ancilla W to
∣∣02N

〉
, and apply H⊗2N .

2. Apply a unitary that does the following for all r, s ∈ {0, 1}N :

|r, s〉W |φ〉H,A1
→ |r, s〉W (X(r)Z(s)H ⊗ σx(r)σz(s)A1) |φ〉H,A1

21The Bell basis consists of the 4 states (σa
xσ

b
z ⊗ Id)

∣

∣φ+
〉

for a, b ∈ {0, 1} on 2 qubits.
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3. Apply the unitary that XORs onto W the outcome of performing N Bell-basis measurements

on A1 ⊗A2 onto W, i.e., for all u, v, r, s ∈ {0, 1}N :

|u, v〉W (σx(r)σz(s)⊗ Id)
∣∣φ+

〉⊗N

A1,A2
→ |u⊕ r, v ⊕ s〉W (σx(r)σz(s)⊗ Id)

∣∣φ+
〉⊗N

A1,A2
.

Finally, discard W.

All of these steps can be efficiently implemented given black-box access to {Xi, Zi}i. The

resulting state is

1

2N

∑

r,s∈{0,1}N

X(r)Z(s) |ψ〉H ⊗ σx(r)σz(s)
∣∣φ+

〉⊗N

A1,A2
,

and we define the extracted state τ := Ext{Xi},{Zi}(|ψ〉) to be the residual state on A2 after tracing

out H and A1.
22

6.3.2 Measuring the Extracted State

We now consider the N -bit distribution of measurement outcomes that arise from measuring the

extracted state τ using the Pauli observables σx, σz. In particular, we consider performing the

measurements according to the verifier’s basis choice, so that we measure σz,i for each i ∈ S and

σx,i for each i ∈ R.

Formally, we define the distribution DP ∗,Ext on {0, 1}N obtained by the following process:

• Run {Xi, Zi}, |ψ〉 ← Samp.

• Let τ = Ext{Xi},{Zi}(|ψ〉) be the N -qubit extracted state.

• Measure the Pauli-Z observable σz,i for all i ∈ S, obtaining v ∈ {0, 1}S .

• Measure the Pauli-X observable σx,i for all i ∈ R, obtaining u ∈ {0, 1}R.

• Output (u, v) ∈ {0, 1}R × {0, 1}S .

It will be convenient to define the following projection operators. For each u ∈ {0, 1}R and

v ∈ {0, 1}S let

Πσx
u = E

u′∈{0,1}R
(−1)u·u

′

σx(u
′) and Πσz

v = E
v′∈{0,1}S

(−1)v·v
′

σz(v
′) (3)

In words, Πσx
u is the projection that corresponds to measuring σx,i for each i ∈ R and obtaining

the string of outcomes u ∈ {0, 1}R, and Πσz
v is the projection that corresponds to measuring σz,i

for each i ∈ S and obtaining the string of outcomes v ∈ {0, 1}S .

Then the probability DP ∗,Ext outputs any (u, v) ∈ {0, 1}R × {0, 1}S can be written as

DP ∗,Ext(u, v) = E
{Xi,Zi},|ψ〉←Samp

[Tr
(
Πσx

u Πσz
v τ

)
: τ = Ext{Xi},{Zi}(|ψ〉)].

22The same extracted state is defined in Vidick’s lecture notes [Vid20], although the notes do not give an explicit

procedure for generating it.
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We define a set of analogous projection operators for the {Xi} and {Zi} observables. For each

u ∈ {0, 1}R and v ∈ {0, 1}S , let

ΠX
u = E

u′∈{0,1}R
(−1)u·u

′

X(u′) and ΠZ
v = E

v′∈{0,1}S
(−1)v·v

′

Z(v′) (4)

In words, ΠX
u is the projection that corresponds to measuring Xi for each i ∈ R and obtaining the

string of outcomes u ∈ {0, 1}R, and ΠZ
v is the projection that corresponds to measuring Zi for each

i ∈ S and obtaining the string of outcomes v ∈ {0, 1}S .

With these definitions in mind, we state a claim that allows us to characterize the result of

measuring the extracted state τ with the Pauli observables.

Claim 6.4. Fix any choice of {Xi, Zi}i∈[N ] and state |ψ〉, and let τ = Ext{Xi},{Zi}(|ψ〉). For all

(u, v) ∈ {0, 1}R × {0, 1}S it holds that

Tr
(
Πσx

u Πσz
v τ

)
= E

u′∈{0,1}R
〈ψ|ΠZ

v Z(u′)ΠX
u′⊕uZ(u′)ΠZ

v |ψ〉 . (5)

The proof of Claim 6.4 is a straightforward (but slightly tedious) computation and is deferred

to Appendix B.

Importantly, Claim 6.4 gives a clear understanding of how DP ∗,2-to-1 and DP ∗,Ext relate to each

other, since it allows us to view the distribution DP ∗,Ext (which arises from Pauli measurements

on the extracted state τ ) as the result of performing certain protocol observable measurements

{Xi, Zi} on |ψ〉.
Recall that the distribution DP ∗,2-to-1 is the following distribution:

1. Run {Xi, Zi}i, |ψ〉Z,I,U ← Samp.

2. Starting with |ψ〉, measure each Zi for i ∈ S to obtain v ∈ {0, 1}S . Then measure each Xi

for i ∈ R to obtain u ∈ {0, 1}R. Output (u, v) ∈ {0, 1}R × {0, 1}S .

By Claim 6.4, we can write DP ∗,Ext as follows (differences from DP ∗,2-to-1 are in red):

1. Run {Xi, Zi}, |ψ〉 ← Samp.

2. Starting with |ψ〉 measure each Zi for i ∈ S to obtain v ∈ {0, 1}S . Then sample a uniformly

random string u′ ← {0, 1}R and apply the unitary Z(u′). Finally, measure each Xi for i ∈ R

and XOR the output with u′ to obtain u ∈ {0, 1}R. Output (u, v) ∈ {0, 1}R × {0, 1}S .

With this key difference in mind, it remains to prove indistinguishability of these two distribu-

tions.

6.4 Indistinguishability of Measurement Outcomes

In this subsection, we complete the proof that DP ∗,2-to-1 and DP ∗,Ext are computationally indistin-

guishable. We first write out their probability mass functions:

• DP ∗,2-to-1 outputs (u, v) ∈ {0, 1}R × {0, 1}S with probability

DP ∗,2-to-1(u, v) = E
{Xi,Zi},|ψ〉←Samp

[
〈ψ|ΠZ

v Π
X
u ΠZ

v |ψ〉
]
.
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• DP ∗,Ext outputs (u, v) ∈ {0, 1}R × {0, 1}S with probability

DP ∗,Ext(u, v) = E
{Xi,Zi},|ψ〉←Samp

u′∈{0,1}R

[
〈ψ|ΠZ

v Z(u′)ΠX
u′⊕uZ(u′)ΠZ

v |ψ〉
]
.

At this point, the reader may find it helpful to convince themselves that probability mass

functions above exactly correspond to the descriptions of these distributions given at the end

of Section 6.3. The equivalence between these two representations will be a key component of the

upcoming proofs.

For convenience, we will reorder the indices so that the indices in R are labeled 1, 2, . . . , |R|.
Let u≤j ∈ {0, 1}R be the vector equal to u on the first j indices, and is 0 on the remaining

indices. For each j ∈ {0, 1, . . . , |R|}, define hybrid Hybj to be the distribution that outputs (u, v) ∈
{0, 1}R × {0, 1}S with probability

Hybj(u, v) = E
{Xi,Zi},|ψ〉←Samp

u′∈{0,1}R

[
〈ψ|ΠZ

v Z(u′≤j)Π
X
u⊕u′

≤j
Z(u′≤j)Π

Z
v |ψ〉

]
.

Additionally, for each j ∈ {1, . . . , |R|}, and b ∈ {0, 1} define hybrid Hybj,b to be the distribution

that outputs (u, v) ∈ {0, 1}R × {0, 1}S with probability

Hybj,b(u, v) = E
{Xi,Zi},|ψ〉←Samp

u′∈{0,1}R

[
〈ψ|ΠZ

v Z(u′≤j−1)Z
b
jΠ

X
u⊕u′

≤j−1⊕b·ej
Zb
jZ(u′≤j−1)Π

Z
v |ψ〉

]
,

where ej ∈ {0, 1}R denotes the jth standard basis vector.

Claim 6.5. For all j ∈ {1, . . . , |R|}, the distributions Hybj,0 and Hybj,1 are computationally

indistinguishable.

Observe that for j ∈ {1, 2, . . . , |R|}, Hybj,0 = Hybj−1, and that Hybj,0 is the uniform mixture of

Hybj,0 and Hybj,1. Since Hyb0 = DP ∗,2-to-1 and Hyb|R| = DP ∗,Ext, Claim 6.5 implies that DP ∗,2-to-1

and DP ∗,Ext are computationally indistinguishable.

We now prove Claim 6.5, which will complete the proof of measurement protocol soundness.

Our proof involves the following steps:

• First, we prove Claim 6.6, which states that the marginal distributions of Hybj,0 and Hybj,1
on N \ {j} are indistinguishable due to the collapsing property of fpkj .

• We then state Claim 6.7, which (together with Claim 6.6) shows that if Hybj,0 and Hybj,1 are

efficiently distinguishable, then they can be distinguished as follows:

1. Given a sample x (from either Hybj,0 or Hybj,1) run an efficient algorithm A on x\{j} (x

without the jth bit).

2. If A outputs 0, guess a random bit b. If A outputs 1, guess b = xj.

Roughly speaking, this reduces the task to arguing about the indistinguishability of the single

bit xj (conditioned on A outputting 1).
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• Finally, we show that the 1-bit conditional distributions must be indistinguishable by ap-

pealing to the adaptive hardcore bit property of fpkj .

Claim 6.6. Let R′ = R \ {j} and let (Hybj,0)[N ]\{j} and (Hybj,1)[N ]\{j} be the marginal distri-

butions of Hybj,0 and Hybj,1 on [N ]\{j} = R′ ∪ S. Then (Hybj,0)[N ]\{j} and (Hybj,1)[N ]\{j} are

computationally indistinguishable.

Proof. Any quantum algorithm for distinguishing (Hybj,0)[N ]\{j} and (Hybj,1)[N ]\{j} can be rep-

resented as an N − 1 qubit binary POVM (A, Id − A), where the distinguisher outputs 1 on x

with probability 〈x|A |x〉. We show that this contradicts the collapsing property of fpkj (given

PK, {ski}i6=j).

Consider the following adversary for the fpkj collapsing security game:

• Given PK, {ski}i6=j , the adversary runs the prover P ∗ on PK to obtain (y, |ψ〉). Recall that

|ψ〉 is guaranteed to contain a valid pre-image in register Zj . The adversary submits y to the

collapsing game challenger.

• The challenger flips a random bit and either applies Zj or does nothing.23

• Then the adversary performs the following steps:

1. Measure Zi for every i ∈ S obtaining outcomes v ∈ {0, 1}S .

2. Sample a random string u′ ← {0, 1}R and apply the unitary Z(u′≤j−1).

3. Measure Xi for every i ∈ R′, and XOR the outcomes with u′≤j−1 to obtain an output

string u ∈ {0, 1}R′
.

4. Finally, measure |u, v〉 with the POVM {A, Id − A}, and output 1 if and only if the

measurement outcome is A.

All of the adversary’s steps can be efficiently performed given (PK, {ski}i6=j). Moreover, the above

adversary’s advantage in the collapsing game is polynomially related to the advantage the POVM

(A, Id−A) attains in distinguishing (Hybj,0)[N ]\{j} and (Hybj,1)[N ]\{j}.

Given that the marginal distributions of Hybj,0 and Hybj,1 on [N ]\{j} are computationally

indistinguishable (Claim 6.6), we next invoke a general property of N -bit distributions implying

that a distinguisher between Hybj,0 and Hybj,1 must be distinguishing some (efficiently computable)

property of the jth bit of Hybj,0 and Hybj,1 conditioned on an efficiently computable property of

the [N ]\{j}-marginal distributions.

Claim 6.7. Let k = k(λ) be a positive integer-valued function of a security parameter λ.

Let {D0,λ}λ≥1 and {D1,λ}λ≥1 be families of distributions on {0, 1}k+1 such that the marginal

23This version of the collapsing game is equivalent to the standard formulation in which the challenger either

does/does not perform a measurement. This follows from the fact that measuring a qubit in the computational basis

(and discarding the outcome) is equivalent to applying Zb for a random b ← {0, 1}. Thus, the challenger’s measure-

ment (in the b = 1 experiment) is equivalent to applying Z with probability 1/2; for simplicity, our formulation has

the challenger (in the b = 1 experiment) apply Z with probability 1, which increases the adversary’s distinguishing

advantage by a factor of 2.
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distributions D′
0,λ and D′

1,λ of D0,λ and D1,λ respectively on the first k bits are computationally

indistinguishable. Suppose that D0,λ and D1,λ are computationally distinguishable. Then there

is an efficiently computable binary-outcome POVM {M, Id−M} acting on k qubits such that

∣∣∣ E
x∼D0,λ

(−1)xk+1 〈x≤k|M |x≤k〉 − E
x∼D1,λ

(−1)xk+1 〈x≤k|M |x≤k〉
∣∣∣ > 1

poly(λ)
.

We defer the proof to Appendix C.

Finally, we show that the jth bit distinguisher of Hybj,0 and Hybj,1 discussed by Claim 6.7

cannot exist by the adaptive hardcore bit property of fpkj (given PK, {ski}i6=j}).

Claim 6.8. For any efficiently computable binary outcome POVM {M, Id−M},
∣∣∣ E
(u,v)∼Hybj,0

(−1)uj
〈
u\{j}, v

∣∣M
∣∣u\{j}, v

〉
− E

(u,v)∼Hybj,1

(−1)uj
〈
u\{j}, v

∣∣M
∣∣u\{j}, v

〉 ∣∣∣ = negl(λ). (6)

Proof. For the reader’s convenience, we write out the probability mass functions of Hybj,0 and

Hybj,1 explicitly, with the differences highlighted in red

Hybj,0(u, v) = E
{Xi,Zi},|ψ〉←Samp

u′∈{0,1}R

[
〈ψ|ΠZ

v Z(u′≤j−1)Π
X
u⊕u′

≤j−1
Z(u′≤j−1)Π

Z
v |ψ〉

]

Hybj,1(u, v) = E
{Xi,Zi},|ψ〉←Samp

u′∈{0,1}R

[
〈ψ|ΠZ

v Z(u′≤j−1)ZjΠ
X
u⊕u′

≤j−1⊕ej
ZjZ(u′≤j−1)Π

Z
v |ψ〉

]
.

We define one more distribution (with the difference relative to Hybj,0 highlighted in red)

Hybj,1(u, v) = E
{Xi,Zi},|ψ〉←Samp

u′∈{0,1}R

[
〈ψ|ΠZ

v Z(u′≤j−1)ZjΠ
X
u⊕u′

≤j−1
ZjZ(u′≤j−1)Π

Z
v |ψ〉

]
.

We now rewrite the left-hand-side of Eq. (6), where in the second expectation we sample from

Hybj,1 instead of Hybj,1. Note that these distributions are identical except that uj is flipped, so we

have
∣∣∣ E
(u,v)∼Hybj,0

(−1)uj
〈
u\{j}, v

∣∣M
∣∣u\{j}, v

〉
− E

(u,v)∼Hybj,1

(−1)uj
〈
u\{j}, v

∣∣M
∣∣u\{j}, v

〉 ∣∣∣

=
∣∣∣ E
(u,v)∼Hybj,0

(−1)uj
〈
u\{j}, v

∣∣M
∣∣u\{j}, v

〉
+ E

(u,v)∼Hybj,1

(−1)uj
〈
u\{j}, v

∣∣M
∣∣u\{j}, v

〉 ∣∣∣.

Dividing the right-hand-side by 2 gives an expression equal to the (absolute value of) the expecta-

tion of the output in the following process:

• Prepare {Xi, Zi}, |ψ〉 ← Samp.

• Sample b ← {0, 1} and prepare Zb
j |ψ〉 (the b = 0 case corresponds to Hybj,0 and the b = 1

case corresponds to Hybj,1).

• Then measure Zi for all i ∈ S to obtain v ∈ {0, 1}S . Sample a random u′ ← {0, 1}R and

apply Z(u′≤j−1), and finally measure Xi for all i ∈ R and XOR the result with u′≤j−1 to

obtain u ∈ {0, 1}R.
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• Prepare the state
∣∣u\{j}, v

〉
and measure it with the POVM {M, Id − M}. If the output is

Id−M , stop at this point and output 0.

• Otherwise, if the output is M , output (−1)uj .

Notice that the second step is equivalent to measuring |ψ〉 with Zj , since (writing Zj = Z+
j − Z−

j ,

where Z+
j is the projection onto the 1 eigenstate of Zj and Z−

j = Id − Z+
j is the projection onto

the −1 eigenstate of Zj):

1

2
(Zj |ψ〉〈ψ|Zj + |ψ〉〈ψ|) = Z+

j |ψ〉〈ψ|Z+
j + Z−

j |ψ〉〈ψ|Z−
j .

It follows that
∣∣∣ E
(u,v)∼Hybj,0

(−1)uj
〈
u\{j}, v

∣∣M
∣∣u\{j}, v

〉
+ E

(u,v)∼Hybj,1

(−1)uj
〈
u\{j}, v

∣∣M
∣∣u\{j}, v

〉 ∣∣∣/2

is polynomially-related to the advantage of the following adversary for the adaptive hardcore bit

game:

• Given PK, {ski}i6=j , the adversary runs the prover P ∗ on PK to obtain (y, |ψ〉). Recall that

|ψ〉 is guaranteed to contain a valid pre-image in register Zj with probability 1− negl(λ).

• The adversary measures the register Zj of |ψ〉 in the standard basis, obtaining a string (bj , xj).

By the assumption that |ψ〉 contains valid pre-images and the fact that pkj is in the range of

TCF.Gen(1λ, 2-to-1), this is equivalent to measuring the observable Zj (which just measures

bj).

• Next, the adversary measures Zi for all i ∈ S, obtaining a string of outcomes v ∈ {0, 1}S .

• Then the adversary samples random u′ ← {0, 1}R and applies the unitary Z(u′≤j−1) to its

state.

• The adversary measures Xi for all i ∈ R′ and XORs the outcome with u′≤j−1, obtaining a

string u ∈ {0, 1}R′
.

• The adversary prepares the state |u, v〉 and measures it with {M, Id−M}. Depending on the

outcome, it does the following:

– If the measurement outcome is Id − M , it samples a uniformly random string dj ←
{0, 1}ℓ+1 and sends (bj , xj , dj) to the challenger (in this case obtaining negl(λ) advan-

tage).

– If the measurement outcome is M , it applies U to its state, followed by H⊗ℓ+1 to Zj. It

then measures Zj to obtain a string dj ∈ {0, 1}ℓ+1 and sends (bj , xj , dj) to the challenger.

Note that the challenger’s output bit (i.e., whether the adversary wins or loses) exactly

corresponds to the bit uj .

By assumption, this adversary outputs a valid pre-image (bj , xj) with probability 1−negl(λ). Since

all of the adversary’s steps are efficient given (PK, {ski}i6=j), the claim follows from the adaptive

hardcore bit property of fpkj .
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This completes the proof of Claim 6.5, which in turn implies the soundness of the measurement

protocol.

7 Succinct Key Generation from iO

In this section, we construct a cryptographic primitive that provides a succinct representation

of N key pairs. We call this primitive a “succinct batch key generation algorithm,” and provide

definitions and a construction based on iO in Section 7.1. In Section 7.2, we compose our succinct

key generation primitive with Mahadev randomized TCFs [Mah18] and prove that the composition

satisfies the hypotheses stated in Section 5, while also having succinct keys (PK,SK).

7.1 Batch Key Generation: Definition and Construction

A batch key generation algorithm is an algorithm that outputs a description of many (pk, sk)-pairs;

a succinct batch key generation algorithm produces a short such description. Formally, we will

define this primitive relative to any dual-mode key generation algorithm.

Definition 7.1. An algorithm Gen is said to be a dual-mode key generation algorithm if it

takes as input a security parameter 1λ and a bit mode ∈ {0, 1}, and it outputs a pair of keys

(pk, sk). Moreover, we require key indistinguishability: public keys sampled using Gen(1λ, 0)

are computationally indistinguishable from public keys sampled using Gen(1λ, 1).

Definition 7.2. Let (pk, sk) ← Gen(1λ,mode) denote a dual-mode key generation algorithm.

A (succinct) batch key generation algorithm BatchGen for Gen is a tuple of p.p.t. algorithms

(Setup,ExtPk,ExtSk,Program) with the following syntax.

• Setup(1λ, N, f) takes as input a security parameter λ in unary; the number of indices N

in binary; and the description of a circuit f : [N ] → {0, 1}. It outputs a master public

key PK and a master secret key SK.

• ExtPk(PK, i) is a deterministic algorithm that takes as input a master public key PK and

an index i ∈ [N ]. It outputs a public key pki.

• ExtSk(SK, i) is a deterministic algorithm takes as input a master secret key SK and an

index i ∈ [N ]. It outputs a secret key ski.

• Program(1λ, N, f, i, pk) takes as input (1λ, N, f) just as Setup does, along with two addi-

tional inputs: an index i ∈ [N ] and a public key pk. It outputs a master public key PK

and (an implicitly restricted) master secret key SK.

We require that the following three properties are satisfied. Informally, we require that (0)

Setup(1λ, N, f) always outputs a representation of valid key pairs, (1) Program(1λ, N, f, i, pk)

successfully programs pk into the ith “slot” of PK, (2) if (pk, sk) ← Gen(1λ,mode = f(i)) this

programming is undetectable (even given all secret keys), and (3) mode indistinguishability

continues to hold for batched keys, even in the presence of “irrelevant secret keys.”
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1. Setup Correctness. For any λ,N ∈ N, any circuit f : [N ] → {0, 1}, any index i ∈ [N ],

we have that for (PK,SK) ← Setup(1λ, N, f) and (pki, ski) = (ExtPk(PK, i),ExtSk(SK, i)),

(pki, ski) is in the range of Gen(1λ,mode = f(i)).

2. Programming Correctness. For any λ,N ∈ N, any circuit f : [N ] → {0, 1}, any index

i ∈ [N ], and any bit mode, we have the following guarantee: for (pk, sk) ← Gen(1λ,mode)

and (PK,SK) ← Program(1λ, N, f, i, pk),

ExtPk(PK, i) = pk.

with probability 1.

3. Programming Indistinguishability. For any N = N(λ), any circuit f : [N ] → {0, 1}
and any index i ∈ [N ], the following distributions are (poly(λ,N), negl(λ,N))-indistinguishable:

{
(PK,SK) ← Setup(1λ, N, f), skj ← ExtSk(SK, j) : (PK, sk1, . . . , skN )

}
λ∈N

≈c

{
(pk, sk) ← Gen(1λ,mode = f(i)), (PK,SK) ← Program(1λ, N, f, pk, i),

ski = sk and ∀j 6= i, skj ← ExtSk(SK, j) : (PK, sk1, . . . , skN )
}
λ∈N

While we let the circuit be arbitrary in this definition, we note that it will be instantiated

with an efficient circuit of size poly(logN,λ) in our eventual constructions.

4. Key Indistinguishability: For any N = N(λ), for any subset S ⊂ [N ], and for any

two circuits f0, f1 : [N ] → {0, 1} such that f0(i) = f1(i) for all i ∈ S, for (PKb,SKb) ←
Setup(1λ, N, fb), the distributions of keys

{
PKb,

(
ski ← ExtSk(SKb, i)

)
i∈S

}
λ∈N

are computationally (poly(λ,N), negl(λ,N))-indistinguishable.

We now construct succinct key generation from iO and puncturable PRFs using standard punc-

turing techniques.

Theorem 7.3. For any N(λ), assuming a (poly(λ,N), negl(λ,N))-secure iO scheme and a

(poly(λ,N), negl(λ,N))-secure puncturable PRF, there exists a succinct batch key generation

algorithm

(Setup,ExtPk,ExtSk,Program)

where Setup supports batch sizes up to N(λ) and runs in time poly(λ, logN).

In particular, when N(λ) = 2λ we rely on the sub-exponential hardness of iO and punc-

turable PRFs, while for any N(λ) = poly(λ) we rely on polynomial hardness.

Proof. Given a dual-mode key generation algorithm Gen, an iO scheme iO, and a puncturable PRF

family PRF, we define our batch key generation procedure SuccGen = (Setup,ExtPk,ExtSk,Program)

as follows.
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• Setup(1λ, N, f) samples a PRF seed s and outputs (as the public key) an obfuscated program

P̃ = iO(Ps,f ), where P is defined in Fig. 1, and (as the secret key) the PRF seed s and the

function f .

• ExtPk(PK, i) computes and outputs pki = P̃ (i) (for P̃ = PK).

• ExtSk(SK, i) computes r = PRFs(i) and mode = f(i). It then computes (pki, ski) ← Gen(1λ,mode; r)

and outputs ski.

• Program(1λ, N, f, pk, i∗) samples a PRF seed s and outputs (as the public key) an obfuscated

program iO(Ppk,i∗,s,f), where Ppk,i∗,s,f is defined in Fig. 2, and (as the secret key) the PRF

seed s and the function f .

Input: index i ≤ N

Hardwired Values: Puncturable PRF seed s. Circuit f .

• Compute mode = f(i) and r = PRFs(i).

• Compute (pki, ski) ← Gen(1λ,mode; r).

• Output pki.

Figure 1: The program P .

Input: index i ≤ N

Hardwired Values: Puncturable PRF seed s. Public key pk. Index i∗. Circuit f .

• If i = i∗, output pk and terminate.

• Compute mode = f(i) and r = PRFs(i).

• Compute (pki, ski) ← Gen(1λ,mode; r).

• Output pki.

Figure 2: The program Ppk,i∗,s,f .

Succinctness, setup correctness and programming correctness are immediate from the defini-

tions. We now prove programming indistinguishability.
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Claim 7.4. For any circuit f and any index i ∈ [N ], the following distributions are (poly(λ,N),

negl(λ,N))- computationally indistinguishable:

{
(PK,SK) ← Setup(1λ, N, f), skj ← ExtSk(SK, j) : (PK, sk1, . . . , skN )

}

≈c

{
(pk, sk) ← Gen(1λ,mode = f(i)), (PK,SK) ← Program(1λ, N, f, pk, i),

skj ← ExtSk(SK, j)(j 6= i), ski = sk : (PK, sk1, . . . , skN )
}

Proof. We know that (iO(Ps,f ), s) ≈c (iO(Ppk,i∗,s,f), s) for (pk, sk) ← Gen(1λ,mode = f(i∗);PRFs(i
∗))

by iO security because these two circuits Ps,f , Ppk,i∗,s,f are functionally equivalent.

Moreover, (iO(Ppk,i∗,s,f), {ski}1≤i≤N ) for pseudorandom (pk, ski∗) is computationally indistin-

guishable from (iO(Ppk,i∗,s,f), {ski}1≤i≤N ) for truly random (pk, ski∗) by puncturing s at i∗ (invoking

iO security to do so) and then invoking PRF security.

Finally, we prove key indistinguishability.

Claim 7.5. For any N = N(λ), for any subset S ⊂ [N(λ)], and for any two circuits f0, f1 :

[N ] → {0, 1} such that f0(i) = f1(i) for all i ∈ S, for (PKb,SKb) ← Setup(1λ, N, fb), the

distributions of keys {
PKb,

(
ski ← ExtSk(SKb, i)

)
i∈S

}
λ∈N

are computationally (poly(λ,N), negl(λ,N))- indistinguishable.

Proof. Consider the following hybrid circuits f ′
j for 0 ≤ j ≤ N :

f ′
j(i) = f0(i) if i ≥ j and f ′

j(i) = f1(i) if i > j.

Note that f ′
0 = f0 and f ′

N = f1. Now, we consider the N + 1 distributions

Hybj =
{
PK,

(
ski ← ExtSk(SK, i)

)
i∈S

}
λ∈N

for (PK,SK) ← Setup(1λ, N, f ′
j). The claim holds as long as Hybj−1 ≈c Hybj for all j ≥ 1. To see

that this indistinguishability holds, it suffices to consider two further hybrid distributions:

Hybj,1 =
{
PK,

(
ski ← ExtSk(SK, i)

)
i6=j∈S

, skj (included if j ∈ S)
}
λ∈N

for (pkj, skj) ← Gen(1λ,mode = f0(j)) and (PK,SK) ← Program(1λ, N, f ′
j−1, j, pkj), and

Hybj,2 =
{
PK,

(
ski ← ExtSk(SK, i)

)
i6=j∈S

, skj (included if j ∈ S)
}
λ∈N

for (pkj, skj) ← Gen(1λ,mode = f1(j)) and (PK,SK) ← Program(1λ, N, f ′
j , j, pkj).

We have that Hybj−1 ≈c Hybj,1 by programming indistinguishability (Claim 7.4). We have that

Hybj,1 ≈c Hybj,2 by considering two cases: if f0(j) = f1(j) then (pkj , skj) are sampled from identical

distributions in the hybrid and f ′
j−1 = f ′

j, so indistinguishability follows from a single invocation

of iO security. If f0(j) 6= f1(j), then skj is not included in the hybrid distributions; moreover, pkj
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in Hybj,1 is computationally indistinguishable from pkj in Hybj,2 by the key indistinguishability

of Gen. Finally, note that for a fixed pkj , the programs Ppkj ,j,s,f
′
j−1

and Ppkj ,j,s,f
′
j

are functionally

equivalent (as index j is being programmed to pkj in both cases), so the claimed indistinguishability

now follows from iO security.

Finally, we have Hybj,2 ≈c Hybj by programming indistinguishability. This completes the proof

of the claim.

This completes the proof that (Setup,ExtPk,ExtSk,Program) is a succinct batch key generation

algorithm for Gen.

7.2 Combining Succinct Key Generation with Mahadev rTCFs

In our protocols, we compose a batch key generation algorithm (Definition 7.2) with a family of

Mahadev randomized TCFs (Definition 3.3). The composition is simple: use a batch key generation

procedure BatchGen = (Setup,ExtPk,ExtSk,Program) to batch the procedure TCF.Gen(1λ,mode)

for many Mahadev rTCFs fpk1 , . . . , fpkN . The composition has the following syntax:

• Setup(1λ, N,C) takes as input the security parameter λ, the batch size N (in binary), and a

circuit C computing a function mapping [N ] → {0, 1}. It outputs a public key PK and secret

key SK.

• ExtPk(PK, i) then outputs a public key pki that can be used to evaluate a randomized TCF

fpki .

• ExtSk(SK, i) outputs a secret key ski that can be used to invert a TCF evaluation yi.

• Program, as defined above, can be used to program a fresh (pki, ski) ← Gen(1λ,mode = C(i))

into a succinct program generated using circuit C. Program is an auxiliary algorithm used

only for analysis.

We now establish that all of the necessary properties listed in Section 5 are satisfied by this

composition.

Correctness of the composition (i.e., that key pairs (pki, ski) are in the range of TCF.Gen(1λ,mode =

f(i))) follows immediately from the correctness of Setup. Key indistinguishability of the composi-

tion is also inherited directly from the key indistinguishability of BatchGen.

We next prove that collapsing of fpkj holds in the presence of PK and all {ski}i6=j .

Lemma 7.6. [Collapsing] For any circuit C, any index j, and (PK,SK) ← Setup(1λ, N,C),

the TCF fpkj is collapsing, even to an adversary given PK along with all secret keys {ski}i6=j

besides skj.

Formally, a computationally bounded adversary cannot win the following distinguishing

game with non-negligible advantage:

1. The adversary chooses an index j ∈ [N ] and a circuit C : [N ] → {0, 1}.

2. The challenger samples (PK,SK) ← Setup(1λ, N,C).
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3. The challenger sends (PK, {ski}i6=j) to the adversary.

4. The adversary prepares a quantum state |ψ〉 on registers B,X along with a string y and

sends both to the challenger.

5. The challenger computes, in superposition, whether Check(pkj , b, x, y) = 1.

• If Check fails, the challenger samples a random bit c and stops.

• If Check passes, the challenger samples a random bit c; if c = 1, the challenger

measures B.

6. The adversary, given access to the modified (B,X ), outputs a bit c′ and wins if c′ = c.

Proof. We consider the following hybrid experiments.

• Hyb0: this is the actual security game.

• Hyb1: In step (2), challenger samples (pk, sk) ← Gen(1λ, C(j)) and samples (PK,SK) ←
Program(1λ, N,C, pk, j).

Hyb0 and Hyb1 are computationally indistinguishable by the programming indistinguishabil-

ity of SuccGen.

• Hyb2: In step (2), the challenger instead samples (pk, sk) ← Gen(1λ, injective).

Hyb1 and Hyb2 are computationally indistinguishable by the key indistinguishability of the

injective/claw-free trapdoor functions.

Finally, in Hyb3, even a computationally unbounded adversary cannot guess the challenge bit

c, as with all but negligible probability, pkj = ExtPk(PK, j) defines an injective function (by

Definition 3.3), so after verifying that Check(pkj , b, x, y) = 1, the register B is already a standard

basis state. This completes the proof of Lemma 7.6.

Finally, we prove that the adaptive hardcore bit property of fpkj holds given PK and all {ski}i6=j

Lemma 7.7. [Adaptive Hardcore Bit] For any j and any circuit C such that C(j) = 1 =

2-to-1, for (PK,SK) ← Setup(1λ, N,C), the adaptive hardcore bit property (see Definition 3.3)

holds for the function fpkj (with associated secret key skj), even if the adversary is given

(PK, {ski}i6=j).

Proof. We consider the following hybrid experiments.

• Hyb0: this is the adaptive hardcore bit security game for (pkj, skj) as sampled above.

• Hyb1: this is the adaptive hardcore bit security game for (pk, sk) ← Gen(1λ, 2-to-1), (PK,SK) ←
Program(1λ, N,C, pk, j). The adversary is additionally given PK and ski = ExtSk(SK, i) for

all i 6= j.

Hyb0 and Hyb1 are computationally indistinguishable by the programming indistinguishability

property. Moreover, the adversary’s advantage in Hyb1 is negligible by the adaptive hardcore bit

property of the freshly generated key pair (pk, sk) ← Gen(1λ, 2-to-1), as a reduction given pk can

simulate Hyb1 by sampling all other parameters given to the Hyb1 adversary itself.

This completes the proof of Lemma 7.7.
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8 A Verifier-Succinct Protocol

In this section, we present a delegation protocol for QMA with succinct verifier messages. First, in

Section 8.1, we describe results due to [ACGH20] about the parallel repetition of certain commit-

challenge-response protocols with a quantum prover. Our treatment is somewhat more abstract

than [ACGH20], so for completeness we provide proofs of all claims (based on proofs appearing

in [ACGH20]). Next, in Section 8.2, we describe the syntax of a non-interactive, information-

theoretic QMA verification protocol (with quantum verifier) that we will use, due to [FHM18].

In Section 8.3, we describe a verifier-succinct protocol for QMA delegation, where the verifier

messages (but not the prover messages) are succinct.

8.1 Quantum commit-challenge-response protocols

Consider any commit-challenge-response protocol between a quantum prover P and a classical

verifier V , with the following three phases.

• Commit: P (1λ) and V (1λ; r) engage in a (potentially interactive) commitment protocol,

where r are the random coins used by V .

• Challenge: V samples a random bit b ← {0, 1} and sends it to P .

• Response: P computes a (classical) response z and sends it to V .

After receiving the response, V decides to accept or reject the execution.

Consider any non-uniform QPT prover P ∗, and let
∣∣∣ψP ∗

λ,r

〉
A,C

be the (purified) state of the prover

after interacting with V (1λ; r) in the commit phase, where C holds the (classical) prover messages

output during this phase, and A holds the remaining state.

The remaining strategy of the prover can be described by family of unitaries
{
UP ∗

λ,0 , U
P ∗

λ,1

}
λ∈N+

,

where UP ∗

λ,0 is applied to
∣∣∣ψP ∗

λ,r

〉
on challenge 0 (followed by a measurement of z), and UP ∗

λ,1 is applied

to
∣∣∣ψP ∗

λ,r

〉
on challenge 1 (followed by a measurement of z).

Let Vλ,r,0 denote the accept/reject predicate applied by the verifier to the prover messages when

b = 0, written as a projection to be applied to the registers holding the prover messages, and define

Vλ,r,1 analogously. Then define the following projectors on A⊗ C :

ΠP ∗

λ,r,0 := UP ∗

λ,0
†
Vλ,r,0U

P ∗

λ,0 , ΠP ∗

λ,r,1 := UP ∗

λ,1
†
Vλ,r,1U

P ∗

λ,1 .

Definition 8.1. A commit-challenge-response protocol has computationally orthogonal projectors

if for any QPT prover P ∗,

E
r

[〈
ψP ∗

λ,r

∣∣∣ΠP ∗

λ,r,0Π
P ∗

λ,r,1Π
P ∗

λ,r,0

∣∣∣ψP ∗

λ,r

〉]
= negl(λ).

Proofs of the following are given in Appendix A.

Lemma 8.2 ([ACGH20]). Consider a commit-challenge-response protocol with the following

properties.
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1. Vλ,r,0 does not depend on r (that is, it is publicly computable given the transcript).

2. For any P ∗, if Er

[〈
ψP ∗

λ,r

∣∣∣ΠP ∗

λ,r,0

∣∣∣ψP ∗

λ,r

〉]
= 1−negl(λ), then Er

[〈
ψP ∗

λ,r

∣∣∣ΠP ∗

λ,r,1

∣∣∣ψP ∗

λ,r

〉]
= negl(λ).

Then, the protocol has computationally orthogonal projectors.

Theorem 8.3 ([ACGH20]). Consider the λ-fold parallel repetition of any commit-challenge-

response protocol with computationally orthogonal projectors. The probability that the verifier

accepts all λ parallel repetitions of the protocol is negl(λ).

8.2 Non-Interactive Post Hoc Verification of QMA

We recall a useful information-theoretic QMA verification protocol of Fitzsimons, Hajdušek, and

Morimae [FHM18]. In fact, we will use an “instance-independent” version due to [ACGH20].

Lemma 8.4 ([FHM18, ACGH20]). For all languages L = (Lyes,Lno) ∈ QMA there exists

a polynomial k(λ), a function ℓ(λ) that is polynomial in the time T (λ) required to verify

instances of size λ, a QPT algorithm PFHM, and a PPT algorithm VFHM such that the following

holds.

• PFHM(x, |ψ〉) → |π〉: on input an instance x ∈ {0, 1}λ and a quantum state |ψ〉, PFHM

outputs an ℓ(λ)-qubit state |π〉.

• Completeness. For all x ∈ Lyes and |φ〉 ∈ RL(x) it holds that

Pr
[
VFHM(x,M(h, |π〉)) = acc : |π〉 ← PFHM

(
x, |φ〉⊗k(λ)

)]
≥ 1− negl(λ)

where h ← {0, 1}ℓ(λ).

• Soundness. For all x ∈ Lno and all ℓ-qubit states |π∗〉 it holds that

Pr[VFHM(x,M(h, |π∗〉)) = acc] ≤ negl(λ)

where h ← {0, 1}ℓ(λ).

Moreover, when L ∈ BQP, the honest prover algorithm PFHM is also a BQP algorithm.

While the result was originally stated in [FHM18, ACGH20] to have an inverse polynomial

soundness gap, we have driven the soundness gap to negligible by standard QMA amplification.

Finally, we remark that although the algorithm VFHM is completely classical, the entire verification

procedure is quantum since it involves measuring the quantum state sent by the prover.

8.3 Semi-Succinct Delegation for QMA

We describe a protocol for verifying any QMA language L.
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Ingredients:

• Let (PFHM, VFHM) be the non-interactive protocol described in Lemma 8.4 for language L
with associated polynomials k(λ), ℓ(λ).

• Let PRF : {0, 1}λ × {0, 1}log ℓ(λ) → {0, 1} be a pseudo-random function.

• Let PMeas = (Commit,Open) and VMeas = (Gen,Test,Out) be the prover and verifier algorithms

for an ℓ(λ)-qubit (verifier succinct) commit-and-measure protocol, defined in Section 4 and

constructed in Section 5.1.

The Protocol:

• The verifier is initialized with an instance x ∈ {0, 1}λ and the prover is initialized with x and

k(λ) copies of a witness |φ〉 ∈ RL(x).

• The verifier samples s ← {0, 1}λ, defines C so that C(i) = PRFs(i), and computes (pk, sk) ←
Gen(1λ, C). It sends pk to the prover.

• The prover first computes |ψ〉 ← PFHM

(
x, |φ〉⊗k(λ)

)
, and then computes (y, |st〉) ← Commit(pk, |ψ〉).

It sends y to the verifier.

• The verifier samples a random challenge c ← {0, 1} and sends c to the prover.

• The prover computes z ← Open(|st〉 , c) and sends z to the verifier.

• If c = 0, the verifier checks whether Test(pk, (y, z)) = acc and rejects if the test fails. If c = 1,

the verifier computes m ← Out(sk, (y, z)) and checks whether VFHM(x,m) = acc. The verifier

accepts if and only the verification is successful.

Theorem 8.5. Let (PSS, VSS) be the λ-fold parallel repetition of the above protocol. Then,

(PSS, VSS) satisfies completeness and soundness as defined in Definition 3.1. Moreover, for an

instance x with QMA verification time T , the total size of verifier messages is poly(λ, log T ).

Proof. First, the verifier message size guarantee follows from the fact that the verifier initializes

the commit-and-measure protocol with a circuit C that succinctly encodes ℓ(λ) bits using a PRF

with input size log(ℓ(λ)), where ℓ(λ) is polynomially related to the QMA verification time T .

Next, we argue completeness. For any x ∈ L, we show that a single repetition of the protocol

accepts with 1−negl(λ) probability, and so completeness of the λ-fold parallel repetition then follows

by a union bound. In the case of a test round, this follows from the test round completeness of the

commit-and-measure protocol (Definition 4.2). In the case of a measurement round, we first see that

measurement round completeness of the commit-and-measure protocol (Definition 4.2) implies that

the probability that the verifier outputs 1 is negl(λ)-close to the probability that the FHM protocol

(PFHM, VFHM) accepts when run with an honest prover, but where h = (PRFs(1), . . . ,PRFs(ℓ)) for

s ← {0, 1}λ. Then, the security of the PRF implies that this probability is negl(λ)-close to the

probability that the FHM protocol accepts when h ← {0, 1}ℓ. Finally, this is negl(λ)-close to 1 by

the completeness of the FHM protocol (Lemma 8.4).
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Finally, we argue soundness. Consider any x /∈ L. By Theorem 8.3, it suffices to show that

the single repetition of the protocol satisfies the conditions of Lemma 8.2. We define Vλ,r,0 to be

the verifier’s accept projection on a test round, and Vλ,r,1 to be the verifier’s accept projection

on a measurement round. Condition 1 of Lemma 8.2 follows immediately from the structure of

the commit-and-measure protocol. Now, consider any prover P ∗ such that the first expectation in

condition 2 is 1− negl(λ), meaning that P ∗ passes the test round with 1− negl(λ) probability. By

the soundness of the commit-and-measure protocol, there exists a state ρ such that the probability

that the verifier accepts on a measurement round is negl(λ)-close to the probability that VFHM

accepts given x, h, and M(h, ρ), where h = (PRFs(1), . . . ,PRFs(ℓ)) for s ← {0, 1}λ. By security

of the PRF, this probability is negl(λ)-close to the probability that VFHM accepts given x, h, and

M(h, ρ), where h ← {0, 1}. Since x /∈ L, soundness of the FHM protocol implies that this is negl(λ).

Thus, the second expectation in condition 2 of Lemma 8.2 is negl(λ), which establishes that this

condition is satisfied, and completes the proof.

9 The Fully Succinct Protocol

In this section, we compile the verifier-succinct delegation scheme from Section 8 into a full-fledged

delegation scheme for QMA. Formally, we assume the existence of a delegation scheme for QMA

satisfying the following properties:

1. All verifier messages can be computed in time poly(λ, logN). (This is the definition of verifier

succinctness.)

2. Moreover, the verifier messages can be computed obliviously to the QMA instance and the

prover messages (this holds for the Section 8 protocol).

We present two compilers enabling this:

1. The first (and simpler) compiler only additionally assumes the existence of a collapsing hash

function, which is implied by LWE (Lemma 3.7). It converts a 2r-round verifier-succinct

protocol into a 4(r + 1) round fully succinct protocol. In particular, the protocol from

Section 8 is compiled into a 12-round succinct argument for QMA.

2. The second compiler additionally assumes collapsing hash function and a (classical, post-

quantum) fully homomorphic encryption (FHE) scheme. It converts a 2r round verifier-

succinct protocol to a 4r round fully succinct protocol. Moreover, if the verifier-succinct

protocol is public-coin (except for the first message), then so is the fully succinct protocol.

This results in an 8 round succinct argument system for QMA that is public-coin except for

the first message.

For simplicity, we write down the compiled protocols in the case r = 2, corresponding to the

protocols from Section 8.

Our main tool for these compilers are post-quantum succinct arguments of knowledge for NP

[CMSZ21, LMS21]. Specifically, the security guarantees proved in [CMSZ21] are insufficient for
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the compilers, because the post-quantum extraction algorithm from [CMSZ21] is not sufficiently

composable since their extractor might significantly disturb the prover’s state. Instead, we make

use of a composable variant of the [CMSZ21] extractor due to [LMS21] called “state-preserving

succinct arguments of knowledge,”24 which we now define.

9.1 State-Preserving Succinct Arguments of Knowledge

Definition 9.1. A publicly verifiable argument system Π for an NP language L (with witness

relation R) is an ǫ-state-preserving succinct argument-of-knowledge if it satisfies the following

properties.

• Succinctness: when invoked on a security parameter λ and instance size n and a relation

decidable in time T , the communication complexity of the protocol is poly(λ, log T ). The

verifier computational complexity is poly(λ, log T ) + Õ(n).

• ǫ-State-Preserving Extraction. There exists an extractor E(·)(x, ǫ) with the following

properties

– Efficiency: E(·)(x, ǫ) runs in time poly(n, λ, 1/ǫ) as a quantum oracle algorithm

(with the ability to apply controlled U-gates given an oracle U(·)), outputting a

classical transcript τ̃ and a classical string w.

– State-preserving: Let |ψ〉 ∈ A ⊗ I be any poly(λ)-qubit pure state and let ρ =

TrA(|ψ〉) ∈ D(I).25 Consider the following two games:

∗ Game 0 (Real) Generate a transcript τ by running P ∗(ρI , x) with the honest

verifier V . Output τ along with the residual state on A⊗ I.

∗ Game 1 (Simulated) Generate a transcript-witness pair (τ̃ , w) ← EP ∗(ρI ,x).

Output τ̃ and the residual state on A⊗ I.

Then, we have that the output distributions of Game 0 and Game 1 are computa-

tionally ε-indistinguishable to any quantum distinguisher.

– Extraction correctness: for any P ∗ as above, the probability that τ̃ is an accepting

transcript but w is not in Rx is at most ǫ+ negl(λ).

Theorem 9.2 ([LMS21]). Assuming the post-quantum poly(λ, 1/ǫ) hardness of learning with

errors, there exists a (4-message, public coin) ǫ-state preserving succinct argument of knowl-

edge for NP.

24We only require a weak variant of what was constructed in [LMS21], where state preservation is allowed an

inverse polynomial ǫ error.
25In general, the prover’s input state on I may be entangled with some external register A, and we ask that

computational indistinguishability holds even given A. Our definition is stated this way for maximal generality,

though we remark that the applications in this section do not require indistinguishability in the presence of an

entangled external register.
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9.2 The QMA Protocol, Version 1

Let SemiSuccinct denote a verifier-succinct QMA delegation scheme additionally satisfying verifier

obliviousness. For simplicity, we assume that SemiSuccinct is a four-round protocol. We formalize

the execution of SemiSuccinct on a QMA instance x as follows:

• The verifier computes and sends pk ← SemiSuccinct.V1(1
λ, 1|x|; r) (obliviously to the instance

x) with randomness r ← {0, 1}λ.

• The prover, on initial state |ψ〉, computes (y,ρ) ← SemiSuccinct.P (1λ, pk, |ψ〉), which results

in a message y and residual state ρ.

• The verifier computes and sends β = SemiSuccinct.V2(r), obliviously to the instance x and

the prover message y.

• The prover computes and sends z ← SemiSuccinct.P (ρ, β).

• The verifier computes and outputs a (potentially expensive) predicate V (x, y, z, r).

Finally, let AoK denote the state-preserving succinct argument of knowledge of Theorem 9.2,

and let H denote a collapsing hash function family mapping {0, 1}∗ to {0, 1}λ. Our succinct QMA

delegation protocol QMArg is defined as follows.

1. The verifier computes and sends pk = SemiSuccinct.V1(1
λ, 1|x|; r) with randomness r ←

{0, 1}λ, along with a hash function h ← Hλ.

2. The prover computes (y,ρ) ← SemiSuccinct.P (1λ, pk, |ψ〉) and sends ŷ = h(y).

3. The prover and verifier execute AoK on the statement “∃w such that ŷ = h(w).”

4. The verifier computes and sends β = SemiSuccinct.V2(r). Note that SemiSuccinct.V2 is obliv-

ious to the prover message and so can be computed without it.

5. The prover computes z ← SemiSuccinct.P (ρ, β) and sends ẑ = h(z).

6. The prover and verifier execute AoK on the statement “∃w such that ẑ = h(w).”

7. The verifier sends r.

8. The prover and verifier execute AoK on the statement ∃w1, w2 such that ŷ = h(w1), ẑ = h(w2),

and V (x,w1, w2, r) = 1.

Completeness of the protocol follows directly from the completeness of SemiSuccinct and AoK.

Moreover, succinctness follows directly from the compression of H, the verifier succinctness of

SemiSuccinct, and the succinctness of AoK.

Since AoK has a round complexity of 4 and the first message can be re-used (indeed, h can be

used as the first message for AoK), the round complexity of QMArg is 12.
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9.2.1 Proof of Soundness

Theorem 9.3. Assume that SemiSuccinct is (post-quantum) computationally sound, H is col-

lapsing,26 and that AoK is an ǫ-state-preserving argument of knowledge. Then, QMArg is

(post-quantum) computationally sound.

Proof. Let x 6∈ L and suppose that a QPT P ∗(ρ, x) breaks the soundness of QMArg with probability

ǫ∗. We use P ∗, together with the soundness guarantees of AoK and the collision resistance property

of H, to break the soundness of SemiSuccinct. In particular, consider the following attack on the

soundness of SemiSuccinct:

• Set an accuracy parameter ǫ = ǫ∗

10 . Whenever we call the AoK extractor E, we will use

accuracy parameter ǫ.

• Given a verifier message pk, we feed (h, pk) to P ∗(ρ, x) and obtain a hash value ŷ. Then, we

run the AoK extractor E on P ∗’s execution of step (3) (the first execution of AoK), outputting

a triple (τ̃1, ρ̃1, y). We send y to the verifier.

• Given the verifier challenge β, we run P ∗(ρ̃1, pk, h, τ̃1) to obtain a message ẑ. Then, we run

the AoK extractor E on P ∗’s execution of step (6), obtaining a triple (τ̃2, ρ̃2, z). We send z

to the verifier.

Finally, to analyze the behavior of this attack, we consider the following additional step (this

is only a mental experiment).

• Given the secret verifier randomness r, run the AoK extractor E on P ∗’s execution of step

(8) to obtain a triple (τ̃3, ρ̃3, y
′, z′).

Claim 9.4. With probability at least ǫ over the attack experiment, we have that SemiSuccinct.V (x,

y, z, r) = 1.

Note that this claim contradicts the soundness of SemiSuccinct.

Proof. The equation SemiSuccinct.V (x,y, z, r) = 1 follows from the following properties of an

execution of the mental experiment:

• h(y) = ŷ

• h(z) = ẑ

• h(y′) = ŷ

• h(z′) = ẑ

• SemiSuccinct.V (x, y′, z′, r) = 1.

26Collision-resistance of H suffices.
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The above suffices because it implies that (y, z) = (y′, z′) except with negligible probabil-

ity by the collapsing (or just collision-resistance) of H, and so the last equation implies that

SemiSuccinct.V (x, y, z, r) = 1 (except with negligible probability).

Finally, we note that all five of the above conditions simultaneously hold with probability at

least ǫ by the state-preservation and correctness of E. More specifically,

• The transcript (x, pk, h, ŷ, τ̃1, β, ẑ, τ̃2, r, τ̃3) is accepting (according to the QMArg verifier) with

probability at least ǫ∗−3ǫ. This follows by a hybrid argument invoking the state preservation

of E∗ on the three executions of AoK (first w.r.t. τ̃1, then τ̃2, then τ̃3).

• Then, the correctness property of E implies that all five conditions hold simultaneously with

probability at least ǫ∗ − 6ǫ− negl(λ).

This completes the proof of soundness of QMArg.

9.3 The QMA Protocol, Version 2

We now describe a public-coin variant of the Section 9.2 transformation that additionally uses a

Fully Homomorphic Encryption (FHE) scheme FHE = (FHE.Gen,FHE.Enc,FHE.Dec,FHE.Eval).

Let SemiSuccinct and AoK denote the argument systems from Section 9.2. Then, our second

succinct argument system QMArg2 is defined as follows.

1. The verifier computes and sends pk = SemiSuccinct.V1(1
λ, 1|x|; r) with randomness r ←

{0, 1}λ, along with a hash function h ← Hλ.

2. The verifier also samples (FHE.pk,FHE.sk) ← FHE.Gen(1λ) and computes FHE ciphertext

ctV = FHE.Enc(FHE.pk, r). The verifier sends FHE.pk, ctV to the prover.

3. The prover computes (y,ρ) ← SemiSuccinct.P (1λ, pk, |ψ〉) and sends ŷ = h(y).

4. The prover and verifier execute AoK on the statement “∃w such that ŷ = h(w).”

5. The verifier computes and sends β = SemiSuccinct.V2(r). Note that SemiSuccinct.V2 is obliv-

ious to the prover message and so can be computed without it.

6. The prover computes z ← SemiSuccinct.P (ρ, β) and sends ẑ = h(z). The prover also com-

putes ctP = FHE.Eval(V (x, y, z, ·), ctV ) and sends ctP to the verifier.

7. The prover and verifier execute AoK on the statement ∃w1, w2 such that ŷ = h(w1), ẑ = h(w2),

and ctP = FHE.Eval(V (x, y, z, ·), ctV ).

8. The verifier checks that FHE.Dec(ctP ) = 1.

As before, completeness and succinctness follow immediately from the definitions. Additionally,

we note that the round complexity has been reduced to 8 because AoK is only invoked twice.

Finally, we note that as long as SemiSuccinct and AoK are public-coin (except for the first message

of SemiSuccinct), then QMArg2 is also public-coin (except for the first verifier message).
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9.3.1 Proof of Soundness

Theorem 9.5. Assume that SemiSuccinct is (post-quantum) computationally sound, H is col-

lapsing, FHE is semantically secure, and that AoK is an ǫ-state-preserving argument of knowl-

edge. Then, QMArg2 is (post-quantum) computationally sound.

Proof. Let x 6∈ L and suppose that a QPT P ∗(ρ, x) breaks the soundness of QMArg2 with proba-

bility ǫ∗. We use P ∗, together with the soundness guarantees of AoK, the semantic security of FHE,

and the collision resistance property of H, to break the soundness of SemiSuccinct. In particular,

consider the following attack on the soundness of SemiSuccinct:

• Set an accuracy parameter ǫ = ǫ∗

10 . Whenever we call the AoK extractor E, we will use

accuracy parameter ǫ.

• Given a verifier message pk, we sample h,FHE.pk ourselves and feed (h, pk,FHE.pk, ctV =

FHE.Enc(FHE.pk, 0)) to P ∗(ρ, x) and obtain a hash value ŷ. Then, we run the AoK extractor

E on P ∗’s execution of step (3) (the first execution of AoK), outputting a triple (τ̃1, ρ̃1, y).

We send y to the verifier.

• Given the verifier challenge β, we run P ∗(ρ̃1, pk, h, τ̃1) to obtain a message ẑ, ctP . Then, we

run the AoK extractor E on P ∗’s execution of step (6), obtaining a triple (τ̃2, ρ̃2, y
′, z). We

send z to the verifier.

We claim that this attack breaks the soundness of SemiSuccinct – meaning that V (x, y, z, r) = 1

– with probability at least ǫ∗ − 4ǫ− negl(λ). To prove this, by FHE semantic security, it suffices to

show the same thing when ctV is instead sampled as FHE.Enc(FHE.pk, r).

From here, the proof proceeds similarly to the proof of Theorem 9.3. In particular, the equation

SemiSuccinct.V (x, y, z, r) = 1 follows from the following properties of the hybrid attack execution:

• h(y) = ŷ

• h(y′) = ŷ

• h(z) = ẑ

• FHE.Eval(V (x, y′, z, ·), ctV ) = ctP

• FHE.Dec(FHE.sk, ctP ) = 1.

This suffices due to the collapsing of H and the correctness of FHE.Eval. By the same argument

as in the proof of Theorem 9.3, these properties simultaneously hold with probabiltiy at least

ǫ∗ − 4ǫ− negl(λ) by the state-preserving extraction properties of AoK.

This completes the proof of soundness of QMArg2.
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10 Additional Results

In this section, we describe a number of additional new results that follow from our template

for building succinct arguments for QMA. First, we show how to compile the protocol from Sec-

tion 9.3 into a two-message succinct argument for QMA in the quantum random oracle model.

We sometimes refer to such argument systems as designated-verifier SNARGs (dvSNARGs) in the

QROM. Next, we show how to obtain batch arguments for QMA (where the communication size

only depends on a single instance size) from only the quantum hardness of learning with errors

(i.e. without indistinguishability obfuscation). Finally, we describe how to add zero-knowledge to

our succinct argument in the plain model and to our dvSNARG in the QROM.

10.1 Succinct Non-interactive Arguments in the QROM

Consider any constant-round protocol (P, V ) for language L that is public-coin except for the first

message. That is, the verifier is defined by two circuits (V0, V1). Given instance x, the verifier first

samples random coins r and computes a first message s0 = V0(x, r). Then, the subsequent verifier

message are uniformly random strings s1, . . . , sc of at least λ bits. Finally, the verifier computes a

circuit V1(x, r, s0, t0, s1, t1, . . . , sc, tc) that determines whether it accepts or rejects, where t0, . . . , tc
are the prover messages. Let H : ((I × S) ∪ S)× ([c]× T ) → S be a random oracle, where I is the

space of instances, S is the space of verifier messages, and T is the space of prover messages. Let

(PFS, VFS) be the following protocol.

• Given x, VFS samples r and outputs s0 = V0(x, r).

• PFS runs P on (x, s0) to obtain t0. Then it computes s1 = H((x, s0), (0, t0)) and continues to

run P on s1 to obtain t1. Then for i ∈ [c], it computes si = H(si−1, (i, ti−1)) and continues

to run P on si to obtain ti. Finally, it sends (t0, . . . , tc).

• VFS checks that s1 = H((x, s0), (0, t0)) and that for each i ∈ [2, . . . , c], si = H(si−1, (i −
1, ti−1)). If so, it outputs V (x, r, s0, t0, . . . , sc, tc).

Theorem 10.1 (Multi-input measure-and-reprogram [DFM20]). Let c be an integer, and W,X, Y

be finite sets. There exists a polynomial-time quantum algorithm S such that the following

holds. Let A be an arbitrary quantum oracle algorithm that makes q queries to a uniformly

random H : (W ∪Y )×X → Y and outputs a tuple (x0, . . . , xc). Then for any x̂ ∈ Xc+1 without

duplicate entries, any predicate V , and any w ∈ W ,

Pr
y1,...,yc

[
(x0, . . . , xc) = x̂ ∧ V (w, x0, y1, x1, . . . , yc, xc) = 1 : (x0, . . . , xc) ← SA(y1, . . . , yc)

]

≥ c!

(q + c+ 1)2c
Pr
H


 (x0, . . . , xc) = x̂ ∧ V




w, x0,

y1 := H(w, x0), x1,

y2 := H(y1, x1), x2, . . . ,

yc := H(yc−1, xc−1), xc


 = 1 : (x0, . . . , xc) ← AH


− ǫx̂,
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where
∑

x̂ ǫx̂ = c!/|Y |, and SA is an algorithm that has black-box access to the algorithms

of A and for each i ∈ [c], receives yi and only after outputting xi−1.
27

Theorem 10.2. If (P, V ) is a sound protocol for L, then (PFS, VFS) is a sound protocol for L
in the quantum random oracle model.

The following corollary then follows immediately from the protocol given in Section 9.3.

Corollary 10.3. Assuming post-quantum indistinguishability obfuscation, the post-quantum

hardness of the learning with errors problem, and post-quantum fully homomorphic encryp-

tion, there exists a designated verifier succinct non-interactive argument system (dvSNARG)

for QMA in the quantum random oracle model.

Proof. (of Theorem 10.2) Let H : ((I × S) ∪ S) × ([c] × T ) → S be the random oracle used in

(PFS, VFS). Consider an adversary A in the protocol (PFS, VFS) that makes q = poly(λ) queries to

H and consider any x /∈ L. For any r, let V1,r be the predicate V1 with r hard-coded, and let Ar be

the adversary A initialized with (x, V0(x, r)). Define ǫ(r) to be the success probability of Ar (that

is, the probability it makes VFS output 1). Then for any fixed r,

ǫ(r) = Pr
H


V1,r




x, t0,

s1 := H((x, V0(x, r), (0, t0)), t1, . . . ,

sc := H(sc−1, (c − 1, tc−1)), tc


 = 1 : (t0, . . . , tn) ← AH

r


 .

Note that the overall success probability A is ǫ := Er[ǫ(r)]. Now, by setting W = (I × S),X =

([c] × T ), Y = S, and w = (x, V0(x, r)), Theorem 10.1 implies that for any fixed r, the success

probability δ(r) of the simulator SAr(s1, . . . , sc) is

δ(r) ≥ 1

poly(λ)
ǫ(r)− negl(λ),

which follows by (i) summing over all t0, . . . , t1 and noting that (0, t0), . . . , (c, tc) contain no dupli-

cates, and (ii) the fact that q = poly(λ) and c is a constant. Finally, observe that by the soundness

of (P, V ), Er[δ(r)] = negl(λ). Indeed, by definition SA is a valid cheating prover in the protocol

(P, V ) since it only receives random si after outputting ti−1. This establishes that

1

poly(λ)
E
r
[ǫ(r)]− negl(λ) ≤ negl(λ),

which implies that ǫ = negl(λ).

27This theorem as stated is actually a special case of [DFM20, Theorem 7], where w is fixed. In other words, it

corresponds to [DFM20, Theorem 7] where the class of adversaries considered all produce a fixed w as the first part

of their output.
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10.2 Batch Arguments for QMA

Now, we show how to obtain batch arguments for QMA from the post-quantum hardness of learning

with errors. We first describe a verifier-succinct protocol for verifying n QMA instances, where the

verifier message size only grows with the time T needed for QMA verification of a single instance.

Note that here we do not use the succinct key generation protocol from Section 7.1, and thus do

not rely on indistinguishability obfuscation.

Ingredients:

• Let (PFHM, VFHM) be the non-interactive protocol described in Lemma 8.4 for language L
with associated polynomials k(λ), ℓ(λ).

• Let PMeas = (Commit,Open) and VMeas = (Gen,Test,Out) be the prover and verifier algo-

rithms for an ℓ(λ)-qubit commit-and-open measurement protocol, defined in Section 4 and

constructed in [Mah18].

The Protocol:

• The verifier is initialized with n instances (x1, . . . , xn) ∈ {0, 1}λ and the prover is initialized

with (x1, . . . , xn) and k(λ) copies of each witness |φj〉 ∈ RL(xj).

• The verifier samples h ← {0, 1}ℓ(λ) and defines C such that C(i) = hi. The verifier computes

(pk, sk) ← Gen(1λ, C) and sends pk to the prover.

• For each j ∈ [n], the prover first computes |ψj〉 ← PFHM

(
xj , |φj〉⊗k(λ)

)
, and then computes

(yj , |stj〉) ← Commit(pk, |ψj〉). It sends (y1, . . . , yn) to the verifier.

• The verifier samples a random challenge c ← {0, 1} and sends c to the prover.

• For each j ∈ [n], the prover computes zj ← Open(|stj〉 , c) and sends (z1, . . . , zn) to the verifier.

• If c = 0, the verifier checks whether Test(pk, (yj , zj)) = acc and rejects if the test fails

on any index. If c = 1, the verifier computes mj ← Out(sk, (yj, zj)) and checks whether

VFHM(xj ,mj) = acc. The verifier accepts if and only if all of the verifications are successful.

Theorem 10.4. Let (PBatch, VBatch) be the λ-fold parallel repetition of the above protocol. Then,

(PBatch, VBatch) satisfies completeness as in Definition 3.1 and soundness as in Definition 3.2.

Moreover, for instances (x1, . . . , xn) where T is the maximum QMA verification time for any

individual xi, the total size of verifier messages is poly(λ, T ).

Proof. First, the verifier message guarantee follows immediately from the description of the pro-

tocol. Completeness follows via the same argument used to prove completeness in Theorem 8.5

(without the additional step involving the PRF). Soundness also follows along the same lines, ex-

cept that, if xi /∈ L, we define V
(i)
λ,r,0 to be the verifier’s accept projection on instance i on a test

round, and V
(i)
λ,r,1 to be the verifier’s accept projection on instance i on a measurement round.
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Finally, we observe that Theorem 9.3 holds when the verifier-succinct protocol is replaced with

the batch protocol above, with no change in analysis. This results in the following corollary.

Corollary 10.5. Assuming the post-quantum hardness of the learning with errors problem,

there exists a batch argument for QMA, where the total communication is polynomial in the

QMA verification time for a single QMA instance.

10.3 Zero Knowledge

In this section, we provide sketches for how to obtain the following results.

• A (non-adaptive) zero-knowledge succinct argument for QMA (in the plain model).

• A (non-adaptive) zero-knowledge dvSNARG for QMA in the quantum random oracle model.

In both of our sketches, we will make use of secure two-party computation for reactive func-

tionalities, which are interactive functionalities where multiple public circuits may be computed

sequentially over private inputs, and where the description of these public circuits may be deter-

mined after some of the private inputs are submitted to the functionality and may even depend on

the outputs of previously computed circuits.

The plain model. Here, we can start with the protocol in Section 9.2. This protocol as such

does not provide any hiding property for the prover’s witness. However, we can use secure two-

party computation for the following reactive functionality to hide all information about the prover’s

witness from the verifier, while preserving soundness.

• Take as input random coins rP , rV from each party, compute the verifier’s first message of

the protocol using randomness r := rP ⊕ rV , and output this message to the prover.

• For each subsequent round, take as input the prover’s message, and then compute and output

the next verifier’s message (using random coins r) to the prover.

• After the final prover’s message, compute and output the verifier’s verdict (based on all prover

messages and r) to the verifier.

Note that, since the verifier is classical, this functionality can be implemented by a protocol

for (post-quantum) secure two-party computation of classical (reactive) functionalities, such as

[HSS11].28 To argue soundness (for any fixed no instance), we can run the two-party computation

simulator for a malicious prover in order to extract inputs from the prover and reduce to soundness

of the underlying protocol. To argue zero-knowledge (for any fixed yes instance), we can run

the two-party computation simulator for a malicious verifier, programming the final output to 1.

Note that the verifier only receives this single bit of information from the functionality, which is

internally running an honest verifier. Thus, this simulation and output is indistinguishable from

the real interaction with an honest prover.

28Note that [HSS11] is based on Watrous rewinding, and thus requires polynomially many rounds of interaction.

We do not attempt to optimize the round-complexity of our zero-knowledge protocol, but note that non-black-box

techniques such as those of [BS20] (with additional assumptions), or a relaxation to ǫ-zero-knowledge [CCLY21] could

result in a constant-round protocol.
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The QROM. In order to add zero-knowledge to our two-message succinct argument in the

QROM, we have to be careful in order to avoid using the random oracle in a non-black-box manner.

We achieve this in two steps: We first construct a constant-round honest-verifier zero-knowledge

argument where, (i) the verifier is public-coin except for the first message, and (ii) the protocol

remains zero-knowledge even against a verifier that computes its first message maliciously. Second,

we compress this protocol into a two-message protocol in the QROM using the same arguments

in Section 10.1. Since the protocol has constant rounds and is public-coin after the first verifier

message, soundness holds via the same argument. Zero-knowledge holds because we have zero-

knowledge against a malicious first message, and honest-verifier zero-knowledge with respect to all

subsequent messages, which will be sampled uniformly at random by the random oracle.

We now turn our attention to the construction of the constant-round honest-verifier zero-

knowledge argument. We are going to assume the existence of a post-quantum secure two-message

two-party computation protocol for reactive (classical) functionalities. One can instantiate this

with the two-message secure computation protocol of [IPS08] based on (post-quantum) two-message

oblivious transfer in the common random string (CRS) model, which we can instantiate from the

post-quantum hardness of learning with errors [PVW08]. Note that when we later compress this

protocol in the QROM, the CRS can be sampled by querying the random oracle on a fixed input.

We will use such a protocol to implement the following reactive functionality.

• Take as input random coins r from the verifier.

• The verifier’s first message is sampled by the verifier given to the functionality as a public

input.

• Take as input the prover’s first message.

• The verifier’s second message is sampled by the verifier and given to the functionality as a

public input.

• . . .

• Take as input the prover’s final message.

• Check that the verifier’s first message is computed honestly from random coins r, and if so,

compute the verifier’s verdict using r, the prover messages, and the verifier’s messages, and

deliver this output to the verifier.

Note that all the verifier messages are still sampled publicly and as in the protocol from Section 9.3,

so the prover can still compute its responses given these messages.

Now, we argue that the resulting protocol satisfies the required properties. To argue soundness,

we can run the two-party computation simulator for a malicious prover in order to extract inputs

from the prover and reduce to soundness of the original protocol. To argue honest-verifier zero-

knowledge with a malicious first message, we can run the two-party computation simulator for a

malicious verifier, programming the final output to 1. However, since we are allowing the verifier

to choose its first message maliciously, we have to argue that for any choice of randomness used to

generate the verifier’s first message, the subsequent interaction between honest prover (on input a
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valid witness for a true statement) and an honest verifier results in the verifier outputting 1 with

overwhelming probability. Recalling the structure of the verifier’s first message in the Section 9.3

protocol, we see that this requires perfectly correct FHE and a perfectly correct measurement pro-

tocol. Achieving FHE with perfect correctness is standard by truncating the error distribution, and

we can obtain a perfectly correct measurement protocol as discussed in Section 3.5 and Section 4.1.
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A Proofs from Section 8

Lemma A.1. Consider a commit-challenge-response protocol with the following properties.

1. Vλ,r,0 does not depend on r (that is, it is publicly computable given the transcript).

2. For any P ∗, if Er

[〈
ψP ∗

λ,r

∣∣∣ΠP ∗

λ,r,0

∣∣∣ψP ∗

λ,r

〉]
= 1−negl(λ), then Er

[〈
ψP ∗

λ,r

∣∣∣ΠP ∗

λ,r,1

∣∣∣ψP ∗

λ,r

〉]
= negl(λ).

Then, the protocol has computationally orthogonal projectors.

Proof. Suppose there exists a prover P ∗ and a polynomial p(λ) such that for infinitely many λ,

E
r

[〈
ψP ∗

λ,r

∣∣∣ΠP ∗

λ,r,0Π
P ∗

λ,r,1Π
P ∗

λ,r,0

∣∣∣ψP ∗

λ,r

〉]
≥ 1/p(λ).

Define an alternate prover P̂ ∗ as follows.

1. P̂ ∗ takes as input p(λ)4 copies of P ∗’s auxiliary advice, and pk sampled by the verifier.

2. Repeat the following at most p(λ)4 times:

(a) Prepare the state
∣∣∣ψP ∗

λ,r

〉
using a copy of P ∗’s auxiliary advice.

(b) Apply the projective measurement
{
ΠP ∗

λ,r,0, I−ΠP ∗

λ,r,0

}
, which is efficient due to property

1 of the commit-challenge-response protocol.

(c) If the first outcome is observed, output the resulting state. Otherwise, repeat.

3. If P̂ ∗ has not terminated, output a dummy state |φ〉 such that 〈φ|ΠP ∗

λ,r,0 |φ〉 = 1.
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Let
∣∣∣ψP̂ ∗

λ,r

〉
be the state that results from the above procedure. Finally, let P̂ ∗ act identically to

P ∗ after this point.

Next, let Rterm,λ :=
{
r :

〈
ψP ∗

λ,r

∣∣∣ΠP ∗

λ,r,0

∣∣∣ψP ∗

λ,r

〉
> 1/p(λ)2

}
, and note that for any r ∈ Rterm,λ,

Pr



∣∣∣ψP̂ ∗

λ,r

〉
6=

ΠP ∗

λ,r,0

∣∣∣ψP ∗

λ,r

〉

‖ΠP ∗

λ,r,0

∣∣∣ψP ∗

λ,r

〉
‖


 ≤

(
1− 1/p(λ)2

)p(λ)4 ≤ e−p(λ)2 = negl(λ).

Now, on the one hand,

1

|R|
∑

r∈Rterm,λ

〈
ψP ∗

λ,r

∣∣∣ΠP ∗

λ,r,0Π
P ∗

λ,r,1Π
P ∗

λ,r,0

∣∣∣ψP ∗

λ,r

〉

≤ 1

|R|
∑

r∈Rterm,λ

〈
ψP̂ ∗

λ,r

∣∣∣ΠP̂ ∗

λ,r,1

∣∣∣ψP̂ ∗

λ,r

〉
+ negl(λ)

≤E
r

[〈
ψP̂ ∗

λ,r

∣∣∣ΠP̂ ∗

λ,r,1

∣∣∣ψP̂ ∗

λ,r

〉]
+ negl(λ)

≤negl(λ),

where the third inequality follows from property 2 of the commit-challenge-response protocol,

since by definition Er

[〈
ψP̂ ∗

λ,r

∣∣∣ΠP̂ ∗

λ,r,0

∣∣∣ψP̂ ∗

λ,r

〉]
= 1. On the other hand,

1

|R|
∑

r∈Rterm,λ

〈
ψP ∗

λ,r

∣∣∣ΠP ∗

λ,r,0Π
P ∗

λ,r,1Π
P ∗

λ,r,0

∣∣∣ψP ∗

λ,r

〉

=E
r

[〈
ψP ∗

λ,r

∣∣∣ΠP ∗

λ,r,0Π
P ∗

λ,r,1Π
P ∗

λ,r,0

∣∣∣ψP ∗

λ,r

〉]
− 1

|R|
∑

r /∈Rterm,λ

〈
ψP ∗

λ,r

∣∣∣ΠP ∗

λ,r,0Π
P ∗

λ,r,1Π
P ∗

λ,r,0

∣∣∣ψP ∗

λ,r

〉

≥1/p(λ) − 1/p(λ)2,

which is a contradiction, completing the proof.

Theorem A.2 ([ACGH20]). Consider the λ-fold parallel repetition of any commit-challenge-

response protocol with computationally orthogonal projectors. The probability that the verifier

accepts all λ parallel repetitions of the protocol is negl(λ).

Proof. Let R be the randomness space of the single repetition protocol, and r = (r1, . . . , rλ) ∈ R⊗λ

be verifier randomness for the λ-fold parallel repetition. Now, any non-uniform prover P ∗ can be

described by states
{∣∣∣ψP ∗

λ,r

〉}
λ,r

and families of unitaries
{
UP ∗

λ,c

}
λ,c

, where c ∈ {0, 1}λ ranges over

all of the verifier challenges.

For each c ∈ {0, 1}λ, define

ΠP ∗

λ,r,c := UP ∗

λ,c
†
(Vλ,r1,c1 ⊗ · · · ⊗ Vλ,rλ,cλ)U

P ∗

λ,c .

Claim A.3. For any c1 6= c2 ∈ {0, 1}λ,

E
r

[〈
ψP ∗

λ,r

∣∣∣ΠP ∗

λ,r,c2Π
P ∗

λ,r,c1 +ΠP ∗

λ,r,c1Π
P ∗

λ,r,c2

∣∣∣ψP ∗

λ,r

〉]
= negl(λ).
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Proof. Suppose there exists i ∈ [λ] such that (c1)i = 1 and (c2)i = 0 (the other case is symmetric).

Since for any quantum state |ψ〉 and two projectors Π1,Π2,

〈ψ|Π2Π1 +Π1Π2 |ψ〉 ≤ 2| 〈ψ|Π2Π1 |ψ〉 | ≤ 2 〈ψ|Π2Π1Π2 |ψ〉1/2 ,

it then suffices (by Jensen’s inequality) to show that

E
r

[〈
ψP ∗

λ,r

∣∣∣ΠP ∗

λ,r,c2Π
P ∗

λ,r,c1Π
P ∗

λ,r,c2

∣∣∣ψP ∗

λ,r

〉]
= negl(λ).

To see this, let

V
(i)
λ,ri,b

:= I⊗ · · · ⊗ I⊗ Vλ,ri,b ⊗ I⊗ · · · ⊗ I,

for i ∈ [λ], b ∈ {0, 1}, and observe that

E
r

[〈
ψP ∗

λ,r

∣∣∣ΠP ∗

λ,r,c2Π
P ∗

λ,r,c1Π
P ∗

λ,r,c2

∣∣∣ψP ∗

λ,r

〉]

≤E
r

[〈
ψP ∗

λ,r

∣∣∣UP ∗

λ,c2

†
V

(i)
λ,ri,0

UP ∗

λ,c2U
P ∗

λ,c1

†
V

(i)
λ,ri,1

UP ∗

λ,c1U
P ∗

λ,c2

†
V

(i)
λ,ri,0

UP ∗

λ,c2

∣∣∣ψP ∗

λ,r

〉]

=E
ri

[〈
ψ̂P ∗

λ,ri

∣∣∣UP ∗

λ,c2

†
V

(i)
λ,ri,0

UP ∗

λ,c2U
P ∗

λ,c1

†
V

(i)
λ,ri,1

UP ∗

λ,c1U
P ∗

λ,c2

†
V

(i)
λ,ri,0

UP ∗

λ,c2

∣∣∣ψ̂P ∗

λ,ri

〉]

=negl(λ),

where for each ri ∈ R,
∣∣∣ψ̂P ∗

λ,ri

〉
is the purification of the mixed state (written in ensemble form)

{
1

|R|λ−1
,
∣∣∣ψP ∗

λ,(r1,...,rλ)

〉}

(r1,...,ri−1,ri+1,...,rλ)∈R⊗λ−1

,

and the final equality follows from the computational orthogonal projectors property of the commit-

challenge-response protocol. Indeed, one can define an efficient prover P ∗
i for the i’th iteration of

the commit-challenge-response protocol by defining U
P ∗
i

λ,0 := UP ∗

λ,c2
and U

P ∗
i

λ,1 := UP ∗

λ,c1
and noting that∣∣∣ψ̂P ∗

λ,ri

〉
is efficient to prepare while interacting with the i’th iteration of V, by running P ∗ and λ−1

coherently executed copies of V.

Now observe that the probability the verifier accepts the parallel repeated protocol is
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1

2λ
E
r



〈
ψP ∗

λ,r

∣∣∣
∑

c∈{0,1}λ

ΠP ∗

λ,c,r

∣∣∣ψP ∗

λ,r

〉



≤ 1

2λ
E
r






〈
ψP ∗

λ,r

∣∣∣


 ∑

c∈{0,1}λ

ΠP ∗

λ,c,r




2 ∣∣∣ψP ∗

λ,r

〉



1/2


≤ 1

2λ
E
r





 ∑

c∈{0,1}λ

〈
ψP ∗

λ,r

∣∣∣ΠP ∗

λ,c,r

∣∣∣ψP ∗

λ,r

〉



1/2



+
1

2λ


 ∑

{c1,c2}∈({0,1}λ)2

E
r

[〈
ψP ∗

λ,r

∣∣∣ΠP ∗

λ,c2,rΠ
P ∗

λ,c1,r +ΠP ∗

λ,c1,rΠ
P ∗

λ,c2,r

∣∣∣ψP ∗

λ,r

〉]



1/2

≤ 1

2λ/2
+

1

2λ




∑

{c1,c2}∈({0,1}λ)2

negl(λ)




1/2

= negl(λ),

where the first inequality holds because
∣∣∣ψP ∗

λ,r

〉〈
ψP ∗

λ,r

∣∣∣ � I, the second inequality uses Jensen’s

inequality and the fact that projectors are idempotent, and the third inequality follows from

Claim A.3.

B Proof of Claim 6.4

We now prove Claim 6.4, which is restated below for convenience.

Claim B.1. For all (u, v) ∈ {0, 1}R × {0, 1}S it holds that

Tr
(
Πσx

u Πσz
v τ

)
= E

u′∈{0,1}R
〈ψ|ΠZ

v Z(u′)ΠX
u′⊕uZ(u′)ΠZ

v |ψ〉 . (7)

Proof. Using the definition of τ , we get

Tr(Πσx
u Πσz

v τ ) = 2−2N
∑

r′,s′,r′′,s′′∈{0,1}N

(
〈ψ|Z(s′)X(r′ ⊕ r′′)Z(s′′) |ψ〉H

〈
φ+

∣∣⊗N (
σz(s

′)σx(r
′ ⊕ r′′)σz(s

′′)
)
A1

⊗ (Πσx
u Πσz

v )A2

∣∣φ+
〉⊗N

)

= 2−2N
∑

r′,s′,r′′,s′′∈{0,1}N

(−1)(r
′⊕r′′)·s′′

(
〈ψ|Z(s′)X(r′ ⊕ r′′)Z(s′′) |ψ〉H

〈
φ+

∣∣⊗N (
σz(s

′ ⊕ s′′)σx(r
′ ⊕ r′′)

)
A1

⊗ (Πσx
u Πσz

v )A2

∣∣φ+
〉⊗N

)
. (8)

However, most of the terms in Eq. (8) are zero: observe that when (r′ ⊕ r′′)j 6= 0 for any j ∈ S, or

(s′ ⊕ s′′)j 6= 0 for any j ∈ R, we have
〈
φ+

∣∣⊗N (
σz(s

′ ⊕ s′′)σx(r
′ ⊕ r′′)

)
A1

⊗ (σx(u)σz(v))A2

∣∣φ+
〉⊗N

= 0.
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We can therefore rewrite Eq. (8) using the following change of variables:

• Since s′ ⊕ s′′ must be 0 on R, the restriction of s′ and s′′ to R must be the same vector

u′ ∈ {0, 1}R. Let the restriction of s′ and s′′ to indices in S be v′, v′′ ∈ {0, 1}S respectively.

• Since r′ ⊕ r′′ must be 0 on S, let u′′ ∈ {0, 1}R denote the restriction of r′ ⊕ r′′ to indices in

R. Note that for each u′′, there are 2N choices of (r′, r′′) satisfying u′′ = r′ ⊕ r′′.

By a straightforward calculation, we have for all u′′ ∈ {0, 1}R and all s′, s′′ ∈ {0, 1}N that
∑

r′,r′′∈{0,1}N

(r′⊕r′′)=u′′

〈
φ+

∣∣⊗N (
σz(s

′ ⊕ s′′)σx(r
′ ⊕ r′′)

)
A1

⊗ (Πσx
u Πσz

v )A2

∣∣φ+
〉⊗N

= (−1)u
′′·u+(s′⊕s′′)v .

Plugging this into Eq. (8), and using the fact that (−1)(s
′⊕s′′)v = (−1)(v

′⊕v′′)v, we obtain

Tr(Πσx
u Πσz

v τ ) = 2−2N
∑

u′,u′′∈{0,1}R

v′,v′′∈{0,1}S

(−1)(u⊕u′)·u′′+(v′⊕v′′)v
(
〈ψ|Z(v′)Z(u′)X(u′′)Z(u′)Z(v′′) |ψ〉H

)

= E
u′∈{0,1}R

〈ψ|ΠZ
v Z(u′)ΠX

u⊕u′Z(u′)ΠZ
v |ψ〉

where the second equality follows from plugging in the definitions of ΠZ
v and ΠX

u⊕u′ .

C Proof of Claim 6.7

We now prove Claim 6.7, which we restate below for convenience.

Claim C.1. Let k = k(λ) be a positive integer-valued function of a security parameter λ.

Let {D0,λ}λ≥1 and {D1,λ}λ≥1 be families of distributions on {0, 1}k+1 such that the marginal

distributions D′
0,λ and D′

1,λ of D0,λ and D1,λ respectively on the first k bits are computationally

indistinguishable. Suppose that D0,λ and D1,λ are computationally distinguishable. Then there

is an efficiently computable binary-outcome POVM {M, Id−M} acting on k qubits such that

∣∣∣ E
x∼D0,λ

(−1)xk+1 〈x≤k|M |x≤k〉 − E
x∼D1,λ

(−1)xk+1 〈x≤k|M |x≤k〉
∣∣∣ > 1

poly(λ)
.

Proof. By assumption there exists an efficient distinguisher between D0 and D1 (for simplicity we

omit the index λ from the notation). Let A be a circuit for the distinguisher: A has (k + 1) input

qubits as well as m ancilla qubits, and a designated output qubit. Let Π1 be the projection on the

output qubit being equal to 1. Suppose without loss of generality that

E
x∼D0

〈x, 0m|A†Π1A |x, 0m〉 > E
x∼D1

〈x, 0m|A†Π1A |x, 0m〉+ 1

q
, (9)

for some polynomial q = q(λ). Letting |b〉k+1 denote the (k + 1)-st qubit, we can write

E
x∼D1

〈x, 0m|A†Π1A |x, 0m〉 = E
x∼D1

xk+1 〈x≤k, 0
m| 〈1|k+1A

†Π1A |1〉k+1 |x≤k, 0
m〉

+ E
x∼D1

(1− xk+1) 〈x≤k, 0
m| 〈0|k+1A

†Π1A |0〉k+1 |x≤k, 0
m〉 .
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Let Mb := 〈b, 0m|A†Π1A |b, 0m〉 (where b corresponds to the (k + 1)-st qubit); note that Mb is a

positive semi-define. We can rewrite the right-hand-side as

E
x∼D1

xk+1 〈x≤k| (M1 −M0) |x≤k〉+ E
x∼D1

〈x≤k|M0 |x≤k〉 . (10)

Using a similar expansion while taking the expectation under D0 yields

E
x∼D0

xk+1 〈x≤k| (M1 −M0) |x≤k〉+ E
x∼D0

〈x≤k|M0 |x≤k〉 . (11)

Plugging Eqs. (10) and (11) into Eq. (9) gives

E
x∼D0

xk+1 〈x≤k| (M1 −M0) |x≤k〉 − E
x∼D1

xk+1 〈x≤k| (M1 −M0) |x≤k〉

> E
x∼D1

〈x≤k|M0 |x≤k〉 − E
x∼D0

〈x≤k|M0 |x≤k〉+
1

q
.

For b ∈ {0, 1}, note that {Mb, Id−Mb} is an efficiently computable POVM since it can be performed

by initializing the (k + 1)-st qubit to |b〉, the ancilla qubits to |0m〉, applying A, and measuring

whether the output qubit is 1. Since D′
0 and D′

1 are computationally indistinguishable, we have

E
x∼D0

xk+1 〈x≤k, 0
m| (M1 −M0) |x≤k, 0

m〉 − E
x∼D1

xk+1 〈x≤k, 0
m| (M1 −M0) |x≤k, 0

m〉

>
1

q
− negl(λ).

We observe that there must exist b ∈ {0, 1} such that when M = Mb, we have

∣∣∣ E
x∼D0

xk+1 〈x≤k, 0
m|M |x≤k, 0

m〉 − E
x∼D1

xk+1 〈x≤k, 0
m|M |x≤k, 0

m〉
∣∣∣

>
1

poly(λ)
.

Finally, by plugging in the identity (−1)b = 1− 2b for b ∈ {0, 1} and appealing once again to the

indistinguishability of D′
0 and D′

1, we conclude that

∣∣∣ E
x∼D0

(−1)xk+1 〈x≤k, 0
m|M |x≤k, 0

m〉 − E
x∼D1

(−1)xk+1 〈x≤k, 0
m|M |x≤k, 0

m〉
∣∣∣

>
1

poly(λ)
.
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