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Abstract

Liquid democracy is a voting paradigm that allows voters to choose between directly voting
and transitively delegating their votes to other voters. While liquid democracy has been viewed
as a system that can combine the best aspects of direct and representative democracy, it can
also result in situations where few voters amass a large amount of influence. To analyze the
impact of this shortcoming, we consider what has been called an epistemic setting, where voters
decide on a binary issue for which there is a ground truth. Previous work has shown that under
certain assumptions on the delegation model, the concentration of power is so severe that liquid
democracy is less likely to identify the ground truth than direct voting. We examine different,
arguably more realistic, classes of models, and prove they behave well by ensuring that (with high
probability) there is a limit on concentration of power. Our proofs demonstrate that delegations
can be treated as stochastic processes and that they can be compared to well-known processes
from the literature — such as preferential attachment and multi-types branching process — that
are sufficiently bounded for our purposes. Our results suggest that the concerns raised about
liquid democracy can be overcome, thereby bolstering the case for this emerging paradigm.
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1 Introduction

Liquid democracy is a voting paradigm that is conceptually situated between direct democracy,
in which voters have direct influence over decisions, and representative democracy, where voters
choose delegates who represent them for a period of time. Under liquid democracy, voters have a
choice: they can either vote directly on an issue similar to direct democracy or delegate their vote
to another voter, entrusting them to vote on their behalf. The defining feature of liquid democracy
is that these delegations are transitive: if voter 1 delegates to voter 2 and voter 2 delegates to voter
3, then voter 3 votes (or delegates) on behalf of all three voters.

In recent years, liquid democracy has gained prominence around the world. The most impressive
example is that of the German Pirate Party, which adopted the LiquidFeedback platform in 2010 [22].
Other political parties, such as the Net Party in Argentina and Flux in Australia, have run on the
wily promise that once elected, their representatives would be essentially controlled by voters through
a liquid democracy platform. Companies are also exploring the use of liquid democracy for corporate
governance; Google, for example, has run a proof-of-concept experiment [17]. Practitioners, however,
recognize that there is a potential flaw in liquid democracy, namely, the possibility of concentration
of power, in the sense that certain voters amass an enormous number of delegations, giving them
pivotal influence over the final decision. This scenario seems inherently undemocratic — and it is not
a mere thought experiment. Indeed, in the LiquidFeedback platform of the German Pirate Party, a
linguistics professor at the University of Bamberg received so many delegations that, as noted by
Der Spiegel,1 his “vote was like a decree.”

Kahng et al. [21] examine liquid democracy’s concentration-of-power phenomenon from a
theoretical viewpoint and establish a troubling impossibility result in what has been called an
epistemic setting, that is, one where there is a ground truth.2 Informally, they demonstrate that,
even under the strong assumption that voters only delegate to more “competent” voters, any “local
mechanism” satisfying minimal conditions will, in certain instances, fall victim to a concentration of
power, leading to relatively low accuracy. More specifically, Kahng et al. model the problem as a
decision problem where voters decide on an issue with two outcomes, {0, 1}, where 1 is correct (the
ground truth) and 0 is incorrect. Each of the voters i ∈ {1, . . . , n} is characterized by a competence
pi ∈ [0, 1]. The binary vote Vi of each voter i is drawn independently from a Bernoulli distribution,
that is, each voter votes correctly with probability pi. Under direct democracy, the outcome of the
election is determined by a majority vote: the correct outcome is selected if and only if more than
half vote for the correct outcome. Under liquid democracy, there exists a set of weights, weighti for
each i ∈ [n], which represent the number of votes that voter i gathered transitively after delegation.
If voter i delegates, then weighti = 0. The outcome of the election is then determined by a weighted
majority; it is correct if and only if

∑n
i=1 weightiVi ≥ n/2. Kahng et al. also introduce the concept

of a delegation mechanism, which determines whether voters delegate and, if so, to whom they
delegate. They are especially interested in local mechanisms, where the delegation decision of a
voter only depends on their local neighborhood according to an underlying social network. They
assume that voters only delegate to those with strictly higher competence, which excludes the
possibility of cyclic delegations. To evaluate liquid democracy, Kahng et al. [21] test the intuition
that society makes more informed decisions under liquid democracy than under direct democracy

1http://www.spiegel.de/international/germany/liquid-democracy-web-platform-makes-professor-most-powerful-
pirate-a-818683.html

2The use of the term “epistemic” in this context is well-established in the social choice literature [23, 28].
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(especially given the foregoing assumption about upward delegation). To that end, they define the
gain of a delegation mechanism to be the difference between the probability the correct outcome is
selected under liquid democracy and the probability the correct outcome is selected under direct
democracy. A delegation mechanism satisfies positive gain if its gain is strictly positive in some
cases, and it satisfies do no harm if its loss (negative gain) is at most ε for all sufficiently large
instances. The main result of Kahng et al. [21] is that local mechanisms can never satisfy these two
requirements. Caragiannis and Micha [7] further strengthen this negative result by showing that
there are instances where local mechanisms perform much worse than either direct democracy or
dictatorship (the most extreme concentration of power).

These theoretical critiques undermine the case for liquid democracy: the benefits of delegation
appear to be reversed by concentration of power. However, the negative conclusion relies heavily on
modeling assumptions and has not been borne out by experiments [2]. In this paper, we provide a
rebuttal by introducing an arguably more realistic model in which liquid democracy is able to avoid
extreme concentration of power, thereby satisfying both do no harm and positive gain (for suitably
defined extensions).

1.1 Our Contributions and Techniques

Our point of departure from the existing literature is the way we model delegation in liquid
democracy. To emphasize these differences, instead of calling these delegation functions mechanisms,
we instead call them delegation models, as they intend to capture independent voter behavior rather
than prescribing to each voter to whom they must delegate. Our delegation models are defined by
M = (q, ϕ), where q : [0, 1]→ [0, 1] is a function that maps a voter’s competence to the probability
they delegate and ϕ : [0, 1]2 → R≥0 maps a pair of competencies to a weight. In this model, each
voter i votes directly with probability 1 − q(pi) and, conditioned on delegating with probability
q(pi), delegates to voter j 6= i with probability proportional to ϕ(pi, pj). Crucially, a voter does
not need to “know” the competence of another voter to decide whether to delegate; rather, the
delegation probabilities are merely influenced by competence in an abstract way captured by ϕ.
Also, note that delegation cycles are possible, and we take a worst-case approach to deal with them:
If the delegations form a cycle, then all voters in the cycle are assumed to be incorrect (vote 0).3

The most significant difference between our model of delegation and that of Kahng et al. [21]
is that in our model, each voter has a chance of delegating to any other voter, whereas in their
model, an underlying social network restricts delegation options. Our model captures a connected
world where, in particular, voters may have heard of experts on various issues even if they do not
know them personally. Although our model eschews an explicit social network, it can be seen as
embedded into the delegation process, where the probability that i delegates to j takes into account
the probability that i is familiar with j in the first place.

Another difference between our model and that of Kahng et al. [21] is that we model the compe-
tencies p1, . . . , pn as being sampled independently from a distribution D. While this assumption is
made mainly for ease of exposition, it allows us to avoid edge cases and obtain robust results.

Our goal is to identify delegation models that satisfy (probabilistic versions of) positive gain and
do no harm. Our first technical contribution, in Section 3, is the formulation of general conditions on
the model and competence distribution that are sufficient for these properties to hold (Lemma 1). In
particular, to achieve the more difficult do no harm property, we present conditions that guarantee

3In LiquidFeedback, delegation cycles are, in fact, ignored.
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the maximum weight max-weight(Gn) accumulated by any voter is sub-linear with high probability
and that the expected increase in competence post-delegation is at least a positive constant times the
population size. These conditions intuitively prevent extreme concentration of power and ensure that
the representatives post-delegation are sufficiently better than the entire population to compensate
for any concentration of power that does happen.

It then suffices to identify models and distribution classes that verify these conditions. A
delegation model M and a competence distribution D induce a distribution over delegation instances
that generates random graphs in ways that relate to well-known graph processes, which we leverage
to analyze our models. Specifically, we introduce three models, all shown to satisfy do no harm and
positive gain under any continuous distribution over competence levels. The first two models, upward
delegation and confidence-based delegation, can be seen as interesting but somewhat restricted case
studies, whereas the general continuous delegation model is, as the name suggests, quite general and
arguably realistic. Despite the simplicity of the first two models, the three models, taken together,
reveal the robustness of our approach.

Upward Delegation: In Section 4, we consider a model in which the probability of delegating
p is exogenous and constant across competencies, and delegation only occur towards voters with
strictly higher competence. That is, the probability that any voter i delegates is q(pi) = p and the
weight that any voter i puts on another voter j is ϕ(pi, pj) = I{pj−pi>0}. This model captures that
there might be some reluctance to delegate regardless of the voter’s competence but assumes that
voters act in the interest of society only delegating to voters that are more competent then them.

To generate a random graph induced by such a model, one can add a single voter at a time
in order of decreasing competence and allow the voter to either not delegate and create their
own disconnected component, or delegate to the creator of any other component with probability
proportional to p times the size of the component. This works because delegating to any voter in
the previous components is possible (since they have strictly higher competence) and would result
in the votes being concentrated in the originator of that component by transitivity. Such a process
is exactly the one that generates a preferential attachment graph with a positive probability of
not attaching to the existing components [30]. We can then show that, with high probability, no
component grows too large, so long as p < 1. Further, there needs to be a constant improvement by
continuity of the competence distribution, which ensures that a positive fraction of voters below a
certain competence delegate to a positive fraction of voters with strictly higher competencies.

Confidence-Based Delegation: In Section 5, we consider a model in which voters delegate
with probability decreasing in their competencies and choose someone at random when they delegate.
That is, the probability q(pi) that any voter i delegates is decreasing in pi and the weight that any
voter i gives to any voter j is ϕ(pi, pj) = 1. In other words, in this model, competence does not
affect the probability of receiving delegations, only the probability of delegating.

To generate a random graph induced by such a model, one can begin from a random vertex and
study the delegation tree that starts at that vertex. A delegation tree is defined as a branching
process, where a node i’s “children” are the nodes that delegated to node i. In contrast to classical
branching processes, the probability for a child to be born increases as the number of people who
already received delegations decreases. Nevertheless, we prove that, with high probability, as long
as a delegation tree is no larger than O(log n), our heterogeneous branching process is dominated
by a sub-critical graph branching process [1]. We can then conclude that no component has size
larger than O(log n) with high probability. Next, we show that the expected competence among
the voters that do not delegate is strictly higher than the average one. Finally, given that no voter
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has weight larger than O(log n), we prove that a small number of voters end up in cycles with high
probability. We can thus show that the conditions of Lemma 1 are satisfied.

General Continuous Delegation: Finally, we consider a general model in Section 6 where the
likelihood of delegating is fixed and the weight assigned to each voter when delegating is increasing
in their competence. That is, each voter i delegates with probability q(pi) = p and the weight that
voter i places on voter j is ϕ(pi, pj), where ϕ is continuous and increases in its second coordinate.
Thus, in this model, the delegation distribution is slightly skewed towards more competent voters.

To generate a random graph induced by such a model, we again consider a branching process,
but now voters j and k place different weights on i per ϕ. Therefore, voters have a type that governs
their delegation behavior; this allows us to define a multi-type branching process with types that are
continuous in [0, 1]. The major part of the analysis is a proof that, with high probability, as long as
the delegation tree is no larger than O(log n), our heterogeneous branching process is dominated by a
sub-critical Poisson multi-type branching process. To do so, we group the competencies into buckets
that partition the segment [0, 1] into small enough pieces. We define a new ϕ′ that outputs, for any
pair of competencies pi, pj , the maximum weight a voter from i’s bucket could place on a voter
from j’s bucket. We can show that such a discrete multi-type branching process is sub-critical and
conclude that no component has size larger than O(log n) with high probability. In a similar fashion
to Confidence-Based Delegation, we also show that there is an expected increase in competence
post-delegation.

1.2 Related work

Our work is most closely related to that of Kahng et al. [21], which was discussed in detail above.
It is worth noting, though, that they complement their main negative result with a positive one:
when the mechanism can restrict the maximum number of delegations (transitively) received by any
voter to o(

√
log n), do no harm and positive gain are satisfied. Imposing such a restriction would

require a central planner that monitors and controls delegations. Gölz et al. [14] build on this idea:
they study liquid democracy systems where voters may nominate multiple delegates and a central
planner chooses a single delegate for each delegator in order to minimize the maximum weight of
any voter.

Similarly, Brill and Talmon [6] propose allowing voters to specify ordinal preferences over
delegation options and possibly restricting or modifying delegations in a centralized way. Caragiannis
and Micha [7], and then Becker et al. [2] also consider central planners; they show that, for given
competencies, the problem of choosing among delegation options to maximize the probability of a
correct decision is hard to approximate. In any case, implementing these proposals would require a
fundamental rethinking of the practice of liquid democracy. By contrast, our positive results show
that decentralized delegation models are inherently self-regulatory, which supports the effectiveness
of the current practice of liquid democracy.

More generally, there has been a significant amount of theoretical research on liquid democracy
in recent years. To give a few examples: Green-Armytage [15] studies whether it is rational for
voters to delegate their vote from a utilitarian viewpoint; Christoff and Grossi [8] examine a similar
question but in the context of voting on logically interdependent propositions; Bloembergen et al.
[3] and Zhang and Grossi [31] study liquid democracy from a game-theoretic viewpoint.

Further afield, liquid democracy is related to another paradigm called proxy voting, which
dates back to the work of Miller [26]. Proxy voting allows voters to nominate representatives
that have been previously declared. Cohensius et al. [10] study utilitarian voters that vote for
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the representative with the closest platform to theirs; they prove that the outcome of an election
with proxy votes yields platforms closer to the median platform of the population than classical
representative democracy. Their result provides a different viewpoint on the value of delegation.

2 Model

There is a set of n voters, denoted [n] = {1, . . . , n}. We assume voters are making a decision on
a binary issue and there is a correct alternative and an incorrect alternative. Each voter i has a
competence level pi ∈ [0, 1] which is the probability that i votes correctly. We denote the vector of
competencies by ~pn = (p1, . . . , pn). When n is clear from the context, we sometimes drop it from
the notation.

Delegation graphs: A delegation graph Gn = ([n], E) on n voters is a directed graph with
voters as vertices and a directed edge (i, j) ∈ E denoting that i delegates their vote to j. Again, if
n is clear from context, we occasionally drop it from the notation. The outdegree of a vertex in
the delegation graph is at most 1 since each voter can delegate to at most one person. Voters that
do not delegate have no outgoing edges. In a delegation graph Gn, the delegations received by a
voter i, delsi(Gn), is defined as the total number of people that (transitively) delegated to i in Gn,
(i.e., the total number of ancestors of i in Gn). The weight of a voter i, weighti(Gn), is delsi(Gn) if
i delegates, and 0 otherwise. We define max-weight(Gn) = maxi∈[n] weighti(Gn) to be the largest
weight of any voter and define total-weight(Gn) =

∑n
i=1 weighti(Gn). Since each vote is counted at

most once, we have that total-weight(Gn) ≤ n. However, note that if delegation edges form a cycle,
then the weight of the voters on the cycle and voters delegating into the cycle are all set to 0 and
hence will not be counted. In particular, this means that total-weight(Gn) may be strictly less than
n.4

Delegation instances: We call the tuple (~pn, Gn) a delegation instance, or simply an instance,
on n voters. Let Vi = 1 if voter i would vote correctly if i did vote, and Vi = 0 otherwise. Fixed
competencies ~pn induce a probability measure P~pn over the n possible binary votes Vi, where
Vi ∼ Bern(pi). Given votes V1, . . . , Vn, we let XD

n be the number of correct votes under direct
democracy, that is, XD

n =
∑n

i=1 Vi. We let XF
Gn

be the number of correct votes under liquid

democracy with delegation graph Gn, that is, XF
Gn

=
∑n

i=1 weighti(Gn) · Vi. The probability that

direct democracy and liquid democracy are correct are P~pn [XD
n > n/2] and P~pn [XF

Gn
> n/2],

respectively.

Gain of a delegation instance We define the gain of an instance as

gain(~pn, Gn) = P~pn [XF
Gn > n/2]− P~pn [XD

n > n/2].

In words, it is the difference between the probability that liquid democracy is correct and the
probability that majority is correct.

4This is a worst-case approach where cycles can only hurt the performance of liquid democracy, since this assumption
is equivalent to assuming that all voters on the cycles vote incorrectly.
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Randomization over delegation instances: In general, we assume that both competencies
and delegations are chosen randomly. Each voter’s competence pi is sampled i.i.d. from a fixed
distribution D with support contained in [0, 1]. Delegations will be chosen according to a model M .
A model M = (q, ϕ) is composed of two parts. The first q : [0, 1]→ [0, 1] is a function that maps
competencies to the probability that the voter delegates. The second ϕ : [0, 1]2 → R≥0 maps pairs
of competencies to a weight. A voter i with competence pi will choose how to delegate as follows:

– With probability 1− q(pi) they do not delegate.

– With probability q(pi), i delegates; i places weight ϕ(pi, pj) on each voter j 6= i and randomly
sample another voter j to delegate to proportional to these weights. In the degenerate case
where ϕ(pi, pj) = 0 for all j 6= i, we assume that i does not delegate.

A competence distribution D, a model M , and a number n of voters induce a probability measure
PD,M,n over all instances (~pn, Gn) of size n.

We can now redefine the do no harm (DNH) and positive gain (PG) properties from Kahng
et al. [21] in a probabilistic way.

Definition 1 (Probabilistic do no harm). A model M satisfies probabilistic do no harm with respect
to a class D of distributions if, for all distributions D ∈ D and all ε, δ > 0, there exists n0 ∈ N such
that for all n ≥ n0,

PD,M,n[gain(~pn, Gn) ≥ −ε] > 1− δ.

Definition 2 (Probabilistic positive gain). A model M satisfies probabilistic positive gain with
respect to a class D of distributions if there exists a distribution D ∈ D such that for all ε, δ > 0,
there exists n0 ∈ N such that for all n ≥ n0,

PD,M,n[gain(~pn, Gn) ≥ 1− ε] > 1− δ.

3 Core Lemma

In this section, we prove the following key lemma, which provides sufficient conditions for a model
M to satisfy probabilistic do no harm and probabilistic positive gain with respect to a class D of
distributions. This lemma will form the basis of all of our later results.

Lemma 1. If M is a model, D a class of distributions, and for all distributions D ∈ D, there is an
α ∈ (0, 1) and C : N→ N with C(n) ∈ o(n) such that

PD,M,n [max-weight(Gn) ≤ C(n)] = 1− o(1) (1)

PD,M,n

[
n∑
i=1

weighti(Gn) · pi −
n∑
i=1

pi ≥ 2αn

]
= 1− o(1), (2)

then M satisfies probabilistic do no harm. If in addition, there exists a distribution D ∈ D and an
α ∈ (0, 1) such that

PD,M,n

[
n∑
i=1

pi + αn ≤ n/2 ≤
n∑
i=1

weighti(Gn) · pi − αn

]
= 1− o(1), (3)

then M satisfies probabilistic positive gain.
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p This condition guarantees that representatives post-delegation are sufficiently more competent
than the entire population to compensate for any concentration of power that does occur. Finally,
condition (3) ensures that there exists a distribution for which, with high probability, the average
competence pre-delegation is at most 1/2 minus a constant, while the average competence post-
delegation is at least 1/2 plus a constant. This condition suffices to guarantee that the probability
that liquid democracy is correct goes to 1 while direct democracy goes to 0.

Throughout many of the proofs, we will make use of the following well-known concentration
inequality [18]:

Lemma 2 (Hoeffding’s Inequality). Let Z1, · · · , Zn be independent, bounded random variables with
Zi ∈ [a, b] for all i, where −∞ < a ≤ b <∞. Then, for all t ≥ 0 :

P

[
1

n

n∑
i=1

Zi − E[Zi] ≥ t

]
≤ exp

(
− 2nt2

(b− a)2

)
, and P

[
1

n

n∑
i=1

Zi − E[Zi] ≤ −t

]
≤ exp

(
− 2nt2

(b− a)2

)
Proof of Lemma 1. We establish the two properties separately.

Probabilistic do no harm: We first show that a model M that satisfies conditions (1) and (2)
satisfies probabilistic do no harm. Fix an arbitrary competence distribution D ∈ D and let α and
C be such that (1) and (2) are satisfied. Without loss of generality, suppose that C(n) ≤ n for
all n, as replacing any larger values of C(n) with n will not affect (1) (since max-weight(Gn) ≤ n
for all graphs Gn on n vertices). Fix ε, δ > 0. We must identify some n0 such that for all n ≥ n0,
PD,M,n[gain(~pn, Gn) ≥ −ε] > 1− δ.

We will begin by showing there exists n1 ∈ N such that for all instances (~pn, Gn) on n ≥ n1

voters, if both

max-weight(Gn) ≤ C(n) and (4)
n∑
i=1

weighti(Gn) · pi −
n∑
i=1

pi ≥ 2αn, (5)

then
gain(~pn, Gn) ≥ −ε. (6)

Since (4) and (5) each hold with probability 1 − o(1) by (1) and (2), for sufficiently large n, say
n ≥ n2, they will each occur with probability at least 1 − δ/2. Hence, by a union bound, for all
n ≥ n2, they both occur with probability at least 1 − δ. By taking n0 = max(n1, n2), this implies
that probabilistic do no harm is satisfied.

We now prove that, for sufficiently large n, (4) and (5) imply (6). First, we will show that

gain(~pn, Gn) ≥ −P~pn [XD
n > XF

Gn ]. (7)

Indeed, we have that

P~pn [XD
n > n/2] = P~pn [XD

n > n/2, XF
Gn > n/2] + P~pn [XD

n > n/2, XF
Gn ≤ n/2]

≤ P~pn [XF
Gn > n/2] + P~pn [XD

n > XF
Gn ]

where the first transition holds by the law of total probability, and the second because the corre-
sponding events are contained in each other. That is,{

XD
n > n/2, XF

Gn > n/2
}
⊆
{
XF
Gn > n/2

}
and

{
XD
n > n/2, XF

Gn ≤ n/2
}
⊆
{
XD
n > XF

Gn

}
.
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Re-arranging the terms above yields (7).
Hence, for our purpose, it suffices to show that (4) and (5) imply P~pn

[
XD
n > XF

Gn

]
≤ ε. Intuitively,

we will use (5) to show the expected value of XD
n is well below the expected value of XF

Gn
. Then we

will show both XD
n and XF

Gn
concentrate well around their means, where for the latter we will need

(4). Together, these observations imply that XF
Gn

> XD
n with high probability.

Fix an instance (~pn, Gn) on n voters satisfying (4) and (5). We will show that for n large enough,

P~pn

[
XD
n <

n∑
i=1

pi + αn

]
> 1− ε/2 (8)

and

P~pn

[
XF
Gn >

n∑
i=1

weighti(Gn) · pi − αn

]
> 1− ε/2. (9)

Note that since (5) holds for this instance,
∑n

i=1 pi + αn ≤
∑n

i=1 weighti(Gn) · pi − αn. Therefore,
when both events whose probability is considered in (8) and (9) hold, XD

n ≤ XF
n . Hence,

P~pn [XD
n ≤ XF

Gn ] ≥ P~pn

[
XD
n <

n∑
i=1

pi + αn,XF
Gn >

n∑
i=1

weighti(Gn) · pi − αn

]
> 1− ε

where the last inequality holds by a union bound. This implies that P~pn [XD
n ≤ XF

Gn
] < ε, as needed.

It remains to be shown that (8) and (9) hold for sufficiently large n. For (8), this follows directly
from Hoeffding’s inequality (Lemma 2). To prove (9), first note that, as shown in Kahng et al. [21],

Var~pn
[
XF
Gn

]
=

n∑
i=1

weighti(Gn)2pi(1− pi) ≤
1

4

n∑
i=1

weighti(Gn)2 ≤ 1

4

dn/C(n)e∑
i=1

C(n)2 < nC(n) ∈ o(n2),

where the first inequality holds because p(1 − p) is upper bounded by 1/4, the second because∑n
i=1 weighti(Gn) ≤ n with each weighti(Gn) ≤ C(n) so the value is maximized by setting as many

terms to C(n) as possible, and the final inequality holds because C(n) ≤ n.
Hence, by Chebyshev’s inequality,

P~pn
[
XF
Gn ≤ E~pn

[
XF
Gn

]
− αn

]
≤

Var~pn [XF
Gn

]

(αn)2
.

This bound is o(1) because the numerator is o(n2) and the denominators is Ω(n2). This implies
that for sufficiently large n, it will be strictly less than ε/2, so (9) holds.

Probabilistic positive gain: Fix a distribution D ∈ D and an α ∈ (0, 1) such that (3) holds.
We want to show that M satisfies probabilistic positive gain. Since D ∈ D, it also satisfies (1)
for some C. We show below that there exists an n3 such that all instances (~pn, Gn) with n ≥ n3

voters satisfying (4) for which
∑n

i=1 pi + αn ≤ n/2 ≤
∑n

i=1 weighti(Gn) · pi − αn, we have that
gain(~pn, Gn) ≥ 1− ε. As with the DNH part of the proof, since the events of (1) and (3) each hold
with probability 1− o(1), for sufficiently large n, say n ≥ n4, they each occur with probability at
least 1− δ/2. Hence, by a union bound, for all n ≥ n4, they both occur with probability 1 − δ. For
n0 = max(n3, n4), probabilistic positive gain is satisfied.
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It remains to show that that if (1) and (3) hold for a specific instance (~pn, Gn), then gain(~pn, Gn) ≥
1 − ε for sufficiently large n. Since D ∈ D, (8) and (9) are both satisfied for sufficiently large n.
When

n∑
i=1

pi + αn ≤ n/2 ≤
n∑
i=1

pi − weighti(Gn) · αn

is satisfied as well, we get that P~pn
[
XD
n > n/2

]
< ε/2 and P~pn

[
XL
Gn

> n/2
]
> 1 − ε/2, so

gain(~pn, Gn) > 1− ε is immediate.

In the following sections, we investigate natural delegation models and identify conditions such
that the models satisfy probabilistic do no harm and probabilistic positive gain. In all instances, we
will invoke Lemma 1 after showing that its sufficient conditions are satisfied.

4 Strictly Upward Delegation Model

We now turn to the analysis of a simple model that assumes that voters either do not delegate with
fixed exogenous probability or delegate to voters that have a competence greater than their own.

Formally, for a fixed p ∈ [0, 1] we let MU
p = (q, ϕ) be the model consisting of q(pi) = p for all

pi ∈ [0, 1], and ϕ(pi, pj) = I{pj>pi} for all i, j ∈ [n]. That is, voter i delegates with fixed probability
p and puts equal weight on all the more competent voters. In other words, if voter i delegates, then
i does so to a more competent voter chosen uniformly at random. Note that a voter with maximal
competence will place 0 weight on all other voters, and hence is guaranteed not to delegate. We
refer to MU

p as the Upward Delegation Model parameterized by p.

Theorem 1 (Upward Delegation Model). For all p ∈ (0, 1), MU
p satisfies probabilistic do no harm

and probabilistic positive gain with respect to the class DC of all continuous distributions.

Proof. To prove the theorem, we will prove that the Upward Delegation Model with respect to DC

satisfies (1) and (2), which implies that the model satisfies probabilistic do no harm by Lemma 1.
Later, we demonstrate a continuous distribution that satisfies (3), implying the model satisfies
probabilistic positive gain.

Upward Delegation satisfies (1): We show there exists C(n) ∈ o(n) such that the maximum
weight max-weight(Gn) ≤ C(n) with high probability—that is, such that (1) holds. Fix some
sampled competencies ~pn. Recall that each entry pi in ~pn is sampled i.i.d. from D, a continuous
distribution. Hence, almost surely, no two competencies are equal. From now on, we condition on
this probability 1 event. Now consider sampling the delegation graph Gn. By the design of the
model MU

p , we can consider a random process for generating Gn that is isomorphic to sampling
according to PD,M,n as follows: first, order the competencies p(1) > p(2) > · · · > p(n) (note that such
strict order is possible by our assumption that all competencies are different) and rename the voters
such that voter i has competence p(i); then construct Gn iteratively by adding the voters one at a
time in decreasing order of competencies, voter 1 at time 1, voter 2 at time 2, and so on.

We start with the voter with the highest competence, voter 1. By the choice of ϕ, voter 1 places
weight 0 on every other voter and hence by definition does not delegate. These voters form the
first component in the graph Gn, which we call C(1). Then, we add voter 2 who either delegates to
voter 1 joining component C(1) with probability p, or starts a new component C(2) with probability
1− p. Next, we add voter 3. If 2 ∈ C(1) (that is, if 2 delegated to 1), 3 either delegates to 1 (either

9



directly or through 2 by transitivity) with probability p or she starts a new component C(2). If
2 ∈ C(2), then 3 either delegates to 1 with probability p/2 and is added to C(1), or delegates to 2
with probability p/2 and is added to C(2), or starts a new component C(3). In general, at time t,
if there are k existing components C(1), . . . , C(k), voter t either joins each component C(j) with

probability p|C(j)|
t−1 or starts a new component with probability 1 − p. To construct Gn, we run this

process for n steps.
This is precisely the model introduced by Simon [30]. It has been studied under the name

infinite Polya urn process [9] and is considered a generalization of the preferential attachment model
(with a positive probability of not attaching to the existing graph).

Let U
(k)
t be the size of the kth component, C(k), at time t. In general, our approach will be

to show that each component C(k) remains below some o(n) function by time n with high enough
probability so that we can union bound over all possible k ≤ n (there can never be more than n
components in the graph). That is, we will show

PD,MU
p ,n

[max(U (1)
n , . . . , U (n)

n ) > C(n)] ≤
n∑
i=1

PD,MU
p ,n

[U (k)
n > C(n)] = o(1)

for some C(n) ∈ o(n) to be chosen later. Hence, it will be useful to consider this process more
formally from the perspective of the kth component, C(k). The kth component C(k) is “born” at

some time t ≥ k when the kth person chooses to not delegate, at which point U
(k)
t = 1 (prior to this,

U
(k)
t = 0). More specifically, the first component is guaranteed to be born at time t = 1 and for all

other k > 1, it will be born at time t ≥ k with probability
(
t−1
k−1

)
(1− p)kpt−k, although these exact

probabilities will be unimportant for our analysis. Once born, we have the following recurrence on

U
(k)
t describing the probability C(k) will be chosen at time t:

U
(k)
t =

U
(k)
t−1 + 1 with probability

p·U(k)
t−1

t−1

U
(k)
t−1 with probability 1− p·U(k)

t−1

t−1 .

Let W
(k)
t be the process for the size of component that is born at time k. That is, W

(k)
k = 1, and for

k > t, W
(k)
t follows the exact same recurrence as U

(k)
t . Note that since the kth component C(k) can

only be born at time k or later, we have that W
(k)
n stochastically dominates U

(k)
n for all k. Hence, it

suffices to show that
n∑
i=1

PD,MU
p ,n

[W (k)
n > C(n)] = o(1). (10)

Choose γ to be a constant such that 3/4 < γ < 1 (say γ = 7/8); note that p + (1 − p)γ <
p+ (1− p) = 1. Choose another constant δ such that p+ (1− p)γ < δ < 1. This additionally implies
3/4 < γ < δ. Finally, choose C(n) = nδ. We show that the probability that any component is of
size greater than nδ by time n (when the delegation process completes) approaches 0. That is, we

show that PD,MU
p ,n

[max(U
(1)
n , . . . , U

(n)
n ) > nδ] = o(1) by showing that (10) holds for C(n) = nδ.

We split our analysis into two parts: the first consider the first nγ components, while the second
considers the last n− nγ components.

We first show that
∑nγ

k=1 P[W k
n > nδ] = o(1). Recall that W

(k)
k = 1 and we have the following

10



recurrence for all t > k:

W
(k)
t =

W
(k)
t−1 + 1 with probability

p·W (k)
t−1

t−1

W
(k)
t−1 with probability 1− p·W (k)

t−1

t−1 .

Our first goal is to show that the expectation of W
(k)
n is upper bounded by

E[W (k)
n ] ≤ Γ(n+ p)Γ(k)

Γ(p+ k)Γ(n)
(11)

for all k ≤ n, where Γ represents the Gamma function. By the tower property of expectation, for all
t ≥ k + 1,

E[W
(k)
t ] = E[E[W

(k)
t | W (k)

t−1]]

= E[W
(k)
t−1(1 +

p

t− 1
)]

= E[W
(k)
t−1](1 +

p

t− 1
).

Thus,

E[W
(k)
t ] = E[W

(k)
t−1](1 +

p

t− 1
) = E[W

(k)
t−2](1 +

p

t− 1
)(1 +

p

t− 2
) = E[W

(k)
k ]

t−1∏
i=k

(1 +
p

i
)

=
t−1∏
i=k

(1 +
p

i
) =

t−1∏
i=k

(i+ p)/i =
(k − 1)!

(t− 1)!

∏t−1
i=0(i+ p)∏k−1
i=0 (i+ p)

=
(k − 1)!

(t− 1)!

Γ(p+t)
Γ(p)

Γ(p+k)
Γ(p)

=
Γ(t+ p)Γ(k)

Γ(p+ k)Γ(t)
,

where the first four equalities follow from the recursive formula for E[U
(k)
t ], the fifth because

E[W
(k)
k ] = 1, the sixth and seventh by rearranging terms, the eighth uses the fact that Γ(x+1) = xΓ(x)

for all x ∈ R, and the last uses the fact that Γ(n) = (n− 1)! for all n ∈ N. This proves (11).
We can now use Markov’s inequality to show that for all k,

PD,MU
p ,n

[
W (k)
n > nδ

]
≤ E[W

(k)
n ]

nδ
≤ 1

nδ
· Γ(n+ p)

Γ(n)
· Γ(k)

Γ(k + p)
.

Hence,

nγ∑
k=1

PD,MU
p ,n

[W (k)
n > nδ] ≤

nγ∑
k=1

1

nδ
· Γ(n+ p)

Γ(n)
· Γ(k)

Γ(k + p)
=

1

nδ
· Γ(n+ p)

Γ(n)
·
nγ∑
k=1

Γ(k)

Γ(k + p)
.

What remains to be shown is that

1

nδ
· Γ(n+ p)

Γ(n)
·
nγ∑
k=1

Γ(k)

Γ(k + p)
= o(1).

11



To do this, first note that Γ(p+t)
Γ(t) = Θ(tp). Indeed, the fact that

(t+ p− 1)p ≤ Γ(p+ t)

Γ(t)
≤ (t+ p)p

follows from Gautschi’s inequality [13], and both the upper and lower bounds are Θ(tp). Because
nγ is an increasing function of n, we have that

1

nδ
· Γ(n+ p)

Γ(n)
·
nγ∑
k=1

Γ(k)

Γ(k + p)
=

1

nδ
·Θ(np) ·Θ

(
nγ∑
k=1

1

kp

)
. (12)

Further,
nγ∑
k=1

1

kp
= Θ

(∫ nγ

1

1

xp
dx

)
= Θ(nγ·(1−p)).

Hence, the left-hand side of (12) is Θ(n−δ+p+γ·(1−p)). By our choice of δ, δ > p+ γ · (1− p), so this
implies that it is is o(1), as desired.

Now consider the final n− nγ components. We will prove that PD,MU
p ,n

[W
(nγ+1)
n > nδ] = o(1/n).

Since W
(k)
n stochastically dominates W

(k′)
n for all k′ ≥ k, this implies that PD,MU

p ,n
[W

(k)
n > nδ] =

o(1/n) for all k ≥ nγ+. Hence,

n∑
k=nγ+1

PD,MU
p ,n

[
W (k)
n > nδ

]
= o(1).

To do this, we compare the W
(nγ+1)
t process to another process, Vt. We define V0 = 1, and for

t > 0, take Vt to satisfy the following recurrence:

Vt =

{
Vt−1 + 1 with probability Vt−1

t+nγ

Vt−1 with probability 1− Vt−1

t+nγ .

This is identical to the W recurrence with t shifted down by nγ + 1 except without the p factor.

Hence, Vn−nγ+1 clearly stochastically dominates W
(nγ+1)
n . For convenience in calculation, we will

instead focus on bounding Vn which itself stochastically dominates Vn−nγ+1.
Next, note that the Vt process is isomorphic to the following classic Polya’s urn process. We

begin with two urns, one with a single ball and the other with nγ balls. At each time, a new ball
is added to one of the two bins with probability proportional to the bin size. The process Vt is
isomorphic to the size of the one-ball urn after t steps. Classic results tell us that for fixed starting
bin sizes a and b, as the number of steps grows large, the possible proportion of balls in the a-bin
follows a Beta(a, b) distribution [25, 11, 29, 20, 24].

The mean and variance of such a Beta distribution would be sufficient to prove our necessary
concentration bounds; however, for us, we need results after exactly n − nγ steps, not simply in
the limit. Hence, we will be additionally concerned with the speed of convergence to this Beta
distribution.

Let Xn = Vn
n and Zn ∼ Beta(1, nγ). From Janson [19], we know that the rate of convergence is

such that, for any p ≥ 1
`p(Xn, Zn) = Θ(1/n) (13)
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where `p is the minimal Lp metric, defined as

`p(X,Y ) = inf
{
E[|X ′ − Y ′|p]1/p | X ′ d= X,Y ′

d
= Y

}
,

which can be thought of as the minimal Lp norm over all possible couplings between X and Y . For
our purposes, the only fact about the `p metric we will need is that `p(X, 0) = E[|X|p]1/p where 0 is
the identically 0 random variable. Since `p is in fact a metric, the triangle inequality tells us that
`p(0, Xn) ≤ `p(0, Zn) + `p(Zn, Xn), so, combining with (13), we have that

E[|Xn|p]1/p ≤ E[|Zn|p]1/p + Θ(1/n) (14)

for all p ≥ 1.
Note that since Zn ∼ Beta(1, nγ),

E[Zn] =
1

1 + nγ
= Θ(n−γ)

and

Var[Zn] =
nγ

(2 + nγ)(1 + nγ)2
= Θ(n−2γ).

Given these results, we are ready to prove that Vn is smaller than nδ with probability 1− o(1/n).
Precisely, we want to show that PD,MU

p ,n
[Xn ≥ nδ−1] = o(1). By Chebyshev’s inequality,

PD,MU
p ,n

[Xn ≥ nδ−1] ≤ Var[Xn]

(nδ−1 − E[Xn])2
.

Inequality (14) with p = 1 along with the fact that Xn and Zn are always nonnegative implies
that E[Xn] ≤ E[Zn] + Θ(1/n) = O(n−γ). Hence, nδ−1 −E[Xn] = Ω(nδ−1) since δ − 1 > −1/2 > −γ.
We can therefore write: (

nδ−1 − E[Xn]
)2

= Ω(n−2(δ−1)). (15)

Inequality (14) with p = 2 implies that
√

E[X2
n] ≤

√
E[Z2

n] + Θ(1/n). Hence,

E[X2
n] ≤ (Θ(1/n) +

√
E[Z2

n])2

≤ (Θ(1/n) +
√
E[Zn]2 + Var[Zn])2

≤ (Θ(1/n) +
√

Θ(n−2γ))2

= (Θ(1/n) + Θ(n−γ))2

= Θ(n−γ)2

= Θ(n−2γ).

Next, note that Var[Xn] ≤ E[X2
n], so

Var[Xn] = O(n−2γ) (16)

as well. Combining (15) and (16), we have that

PD,MU
p ,n

[Xn ≥ nδ−1] ≤ Var[Xn]

(nδ−1 − E[Xn])2
= O

(
n−2γ+2(1−δ)

)
.
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Since −2γ + 2(1− δ) < 1, given our assumption that 3/4 < γ < δ, it follows that PD,MU
p ,n

[Xn ≥
nδ−1] = o(1/n), which allows us to conclude that

n∑
k=nγ+1

PD,MU
p ,n

[W (k)
n > nδ] = o(1).

Since we showed earlier that
∑nγ

k=1 PD,MU
p ,n

[W
(k)
n > nδ] = o(1), we have that

n∑
k=1

PD,MU
p ,n

[W (k)
n > nδ] = o(1),

as needed. It follows that MU
p satisfies (1).

Upward Delegation satisfies (2): We will show there exists α ∈ (0, 1) such that
∑n

i=1 weighti(Gn)·
pi−

∑n
i=1 pi ≥ 2αn with high probability, so (2) is satisfied. Note that in the present scheme, cycles

are impossible, so do need to worry about ignored voters.
Since D is a continuous distribution, there exists a < b such that πa := D[{p : p < a}] > 0 and

πb := D[{p : p > b}] > 0. Let Na,n(~pn) be the number of voters in ~pn with competence pi < a and
Nb,n(~pn) be the number of voters with competence pi > b. When we sample competencies, since
each is chosen independently, Na,n ∼ Bin(n, πa) and Nb,n ∼ Bin(n, πb). By Hoeffding’s inequality
(Lemma 2) and the union bound, with probability 1 − o(1), there will be at least πa/2 · n voters
with competence pi < a and πb/2 · n voters with competence pi > b. Indeed,

Dn[Na,n >
nπa

2
, Nb,n >

nπb
2

] = 1−Dn[{Na,n ≤
nπa

2
} ∪ {Nb,n ≤

nπb
2
}]

≥ 1− (Dn[Na,n ≤
nπa

2
] +Dn[Nb,n ≤

nπb
2

])

≥ 1− exp(−nπ
2
a

2
)− exp(−

nπ2
b

2
),

(17)

where the first line comes from De Morgan’s law, the second from the union bound, and the last
from Heoffding’s inequality (Lemma 2).

Conditioned on this occurring, each voter with competence pi < a has probability at least pπb/2
of delegating to a voter with competence at least b. As they each decide to do this independently, the
number Nab,n of n voters deciding to do this stochastically dominates a random variable following
the Bin(πa/2 · n, p · πb/2) distribution. We can again apply Hoeffding’s inequality to conclude that
with probability 1− o(1), at least πa · πb · p/8 · n voters do so. Indeed,

D[Nab,n >
npπaπb

8
| Na,n >

nπa
2
, Nb,n >

nπb
2

] ≥ D[Bin(
nπa

2
,
pπb
2

) >
npπaπb

8
]

≥ 1− exp(−
np2πaπ

2
b

4
),

(18)

where the first inequality holds because Nab,n stochastically dominates the corresponding binomial
random variable and the second holds by Hoeffding’s inequality. Finally, using (17) and (18), we
have

D[Nab,n >
npπaπb

8
] ≥ D[Nab,n >

npπaπb
8

| Na,n >
nπa

2
, Nb,n >

nπb
2

]

· D[Na,n >
nπa

2
, Nb,n >

nπb
2

]

≥ 1− o(1).
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Under these upward delegation models, delegations can only increase the total competence of all
voters. Hence,

n∑
i=1

delsi(Gn) · pi −
n∑
i=1

pi ≥ (b− a)Nab.n.

Each of these πa · πb · p/8 · n voters results in a competence increase of at least b− a. Hence, under
these high probability events, the total competence increase is at least (b−a) ·πa ·πb ·p/8 ·n. Indeed,
since D[Nab,n >

npπaπb
8 ] = 1− o(1), this implies D[

∑n
i=1 delsi(Gn) · pi−

∑n
i=1 pi >

npπaπb
8 ] = 1− o(1).

By choosing α = pπaπb
8 (b − a), we see that there is an α · n increase in competence with high

probability, as needed.
We have proved that for any continuous distribution D, and for well-behaved realizations of

~pn which occur with high probability, the graph generated from the random delegation process
yields an increase in the expected sum of the votes of at least α · n. We can then conclude that MU

p

satisfies Equation (2) with respect to the class of continuous distributions.

Upward Delegation satisfies (3): We now show that there exists a distribution D such that∑n
i=1 pi + αn ≤ n/2 ≤

∑n
i=1 weighti(Gn) · pi − αn with probability 1 − o(1) for some α > 0. This

implies that the model satisfies probabilistic positive gain by Lemma 1, and will conclude the proof.
We take D to be Dη, the uniform distribution U [0, 1− 2η] for some small 0 < η < p/512. Let

α = η/2. Clearly, µDη , the mean of Dη, is 1/2 − η. Since each pi
i.i.d.∼ Dη, the pis are bounded

independent random variables with mean 1/2− η, so Hoeffding’s inequality directly implies that∑n
i=1 pi ≤ n/2− nη/2 = n/2− nα with high probability.
Now consider EF , the event consisting of instances (~pn, Gn) such that

∑n
i=1 weighti(Gn) · pi ≥

n/2 + nα. We denote by ED the event that
∑n

i=1 pi ≥ n/2− 3nη/2. The same reasoning as before
implies that PrDη ,MU

p ,n
(ED) = 1− o(1).

Let a = 1/4−η/2 and b = 1/2−η, so we have that πa := Dη[pi < a] = 1/4 and πb := Dη[pi > b] =
1/2. We proved in the preceding derivation that

∑n
i=1 weighti(Gn) ·pi−

∑n
i=1 pi >

npπ1πb
8 = np

64 (1−η)
with high probability. Hence, if both this and ED occur, which is the case with high probability,
by the union bound, it follows that

∑n
i=1 weighti(Gn) · pi > n/2 + n( p

128(1− η)− 3η/2) with high
probability.

Since η < p
512 < 1/2, we have that

p

128
(1− η)− 3η/2 >

p

256
− 3η/2 > 2η − 3η/2 = η/2 = α,

and we can conclude that EF occurs with high probability. Hence, MU
p satisfies Equation (3).

5 Confidence-Based Delegation Model

We now explore a model according to which voters delegate with probability that is strictly decreasing
in their competence and when they do decide to delegate, they do so by picking a voter uniformly
at random. This models the case where voters do not need to know anything about their peers’
competencies, but do have some sense of their own competence, and delegate accordingly.

Formally, for any q, let MC
q = (q, ϕ1) where ϕ1(pi, pj) = 1 for all i, j ∈ [n]. Voter i puts equal

weight on all the voters and hence samples one uniformly at random when they delegate. We refer
to MC

q as the Confidence-Based Delegation Model.
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Theorem 2 (Confidence-Based Delegation Model). All models MC
q with monotonically decreasing

q satisfy probabilistic do no harm and probabilistic positive gain with respect to the class DC of all
continuous distributions.

Proof. We show that the Confidence-Based Model satisfies all of (1), (2), and (3).

Confidence-Based Delegation satisfies (1): Fix some distribution D ∈ DC . We show there exists
C(n) ∈ O(log n) such that (1) holds.

Note that when sampling an instance (~pn, Gn), the probability an arbitrary voter i chooses to
delegate is precisely p := ED[q]. To see this, consider how a voter i chooses whether to delegate:
they first sample a competence pi ∼ D and then sample whether or not to delegate from Bern(q(pi)).
Treating this as a single process, it is clear that the overall probability of choosing to delegate is
exactly ED[q] by integrating out the competence.

Further, since D is continuous and q is monotonically decreasing, p ∈ (0, 1). When a voter
does decide to delegate, they do so by picking another voter uniformly at random. Hence, we can
consider the marginal distribution of delegation graphs directly (ignoring the competencies). We will
show that when sampling a delegation graph, for any specific voter i, with probability 1− o(1/n),
delsi(Gn) ≤ C(n), which implies weighti(Gn) ≤ C(n). A union bound over all n voters implies
max-weight(Gn) ≤ C(n) with probability 1− o(1).

To that end, we will describe a branching process similar to the well-known graph branching
process [1], which has the property that the distribution of its size exactly matches the distribution
of delsi(Gn) for an arbitrary voter i. We will compare this process to a known graph branching
process that has size at most O(log n) with high probability. We will show our process is sufficiently
dominated such that it too has size at most O(log n) with high probability. The branching process
works as follows. Fix our voter i. We sample which other voters end up in i’s “delegation tree” (i.e.,
its ancestors in Gn) dynamically over a sequence of time steps. As is standard for these processes,
all voters V will be one of three types, live, dead, or neutral. Dead voters are those whose “children”
(i.e., voters who delegate to them) we have already sampled. Live voters are voters who have decided
to delegate, but whose children have not yet been sampled. Neutral voters are still in the “pool”
and have yet to commit to a delegation. At time zero, i is a live voter, there are no dead voters,
and all other voters V \ {i} are neutral. At each time step, we take some live voter j, sample which
of the neutral voters choose to delegate to j, add these voters as live vertices, and update j as dead.
The procedure ends when there are no more live vertices, at which point the number of delegations
received by i is simply the total number of dead vertices.

Let us now describe this more formally. Following the notation of Alon and Spencer [1], let Zt
denote the number of voters we sample to delegate at time t. Let Yt be the number of live vertices
at time t; we have that Y0 = 1. At time t, we remove one live vertex and add Zt more, so we have
the recursion Yt = Yt−1 − 1 + Zt. We let Nt be the number of neutral vertices at time t. We have
that N0 = n− 1, and Nt = Nt−1 − Zt. Note that after t time steps, there are t dead vertices and Yt
live ones, so this is equivalent to Nt = n− 1− t− Yt. To sample Zt, we fix some live voter j and ask
how many of the neutral voters chose to delegate to j, conditioned on them not delegating to any of
the dead voters. Note that when sampling at this step, there are t− 1 dead voters and conditioned
on the neutral voters not delegating to the dead ones, the probability they delegate to any of the
other n− t individuals (not including themselves) is exactly p

n−t , equally split between them for a
total delegation probability of p. Hence Zt ∼ Bin(Nt−1,

p
n−t) ∼ Bin(n− t− Yt−1,

p
n−t). We denote

by XDn,p the random variable that counts the size of this branching process, i.e., the number of time
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steps until there are no more live vertices. Note that the number of delegations received by any
voter has the same distribution as XDn,p.

Choose some constant p′ such that p < p′ < 1. We will be comparing the XDn,p to a graph

branching process XGn,p′ . The graph branching process is nearly identical, except the probability
each of the neutral vertex joins our component is independent of the number of dead vertices and
is simply p′

n . In other words, Zt ∼ Bin(Nt−1,
p′

n ). A key result about this branching process is the
probability of seeing a component of a certain size ` decreases exponentially with `. In other words,
there is some constant c such that

PD,MC
q ,n

[XGn,p′ ≤ c log(n)] = 1− o(1/n).

Take C(n) = c log(n). Note that as long as t is such that p
n−t ≤

p′

n , the sampling in the delegation
branching process is dominated by the sampling in this graph branching process. Hence, as long
as p

n−C(n) ≤
p′

n , P[XDn,p ≤ c log(n)] ≥ P[XGn,p′ ≤ c log(n)]. Since C(n) ∈ O(log n), this is true for

sufficiently large n, so for such n, P[XDn,p ≤ c log(n)] = 1 − o(1/n). By a union bound over all n
voters, this implies the desired result.

Confidence Based Delegation satisfies (2): Let q̄ be such that q̄(x) = 1− q(x), so q̄ represents
the probability someone with competence x does not delegate and let q+(x) = q̄(x)x. Let µD the
mean of the competence distribution D. We first show that

ED[q+]

ED[q̄]
> µD.

Indeed, since both x and q̄(x) are strictly increasing functions of x, the Fortuin–Kasteleyn–Ginibre
(FKG) inequality [12] tells us that ED[q+] > ED[q̄] · ED[x] = ED[q̄] · µD. This implies that the
expected competence conditioned on not delegating is strictly higher than the overall expected
competence.

Let µ∗ = ED[q+]
ED[q̄] be this expected competence. We will show that for any constant γ > 0,

with high probability, both
∑n

i=1 pi ≤ (µ+ γ)n and
∑n

i=1 weighti(G)pi ≥ (µ∗ − γ)n. If we choose
γ = (µ∗ − µ)/3 and α = γ/2, it follows that, with high probability,

n∑
i=1

weighti(G)pi −
n∑
i=1

pi ≥ 2αn,

implying that (2) is satisfied.
Since the pis are bounded independent variables, it follows directly from Heoffding’s inequality

that
∑n

i=1 pi ≤ n(µ+ γ) with high probability, so we now focus on showing
∑n

i=1 weighti(G) · pi ≥
(µ∗ − γ)n with high probability. To do this, we will first show that, with high probability, the
delegation graph G satisfies delsi(G) ≤ C(n) for all i and total-weight(G) ≥ n− C(n) log2 n.

We showed in the earlier part of this proof that delsi(G) ≤ C(n) with high probability. We
will now prove that PD,MC

q ,n
[total-weight(G) ≥ n−C(n) log2 n | delsi(G) ≤ C(n)] = 1− o(1). To do

this, we will first bound the number of voters that, with high probability, end up in cycles. Fix a
voter i and sample i’s delegation tree. Voter i will only end up in a cycle if i chooses to delegate
to someone in this delegation tree. Since we are conditioning on delsi(G) ≤ C(n), the maximum
size of this tree is C(n). Hence, the total ϕ weight that voter i places on someone in the tree is at
most C(n), while the total weight they place on all voters is n− 1. Hence, the probability that i
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delegates to someone in their tree can be at most p ·C(n)/(n− 1). Since this is true for each voter i,

the expected number of voters in cycles is at most np C(n)
(n−1) ∈ O(log n). By Markov’s inequality, the

probability that more than log2 n voters are in cycles is at most np C(n)

(n−1) log2 n
= O(1/ log n) = o(1).

Next, since we have conditioned on delsi(G) ≤ C(n), no single voter, and in particular no single
voter in a cycle, can receive more than C(n) delegations. So conditioned on the high probability
event that there are at most log2 n voters in cycles, there are at most C(n) log2 n voters that delegate
to those in cycles. This implies that total-weight(G) ≥ n−C(n) log2 n+ log2 n with high probability.

We now show that, conditioned on the graph satisfying these properties, the instance (~p,G)
satisfies

∑n
i=1 weighti(G) · pi ≥ n(µ∗ − γ) with high probability. Note that the competencies satisfy

that those that don’t delegate are drawn i.i.d. from the distribution of competencies conditioned on
not delegating, which has mean µ∗. Fix an arbitrary graph G satisfying the properties. Suppose
M is the set of voters that do not delegate. Note that for each i ∈ M , weighti(G) ≤ C(n), by
assumption. Further

∑
i∈M weighti(G) ≥ n−C(n) log2(n). Hence, when we sample the non-delegator

pis, E[
∑

i∈M weighti(G) · pi] ≥ (n− C(n) log2(n)) · µ∗. Moreover,

Var[
∑
i∈M

weighti(G) · pi] ≤
∑
i∈M

weighti(G)2 ≤ C(n) · n.

This follows from the fact that Var[pi] ≤ 1 and that we have fixed the graph G and hence weighti(G)
for each i, so these terms can all be viewed as constants. In addition, we know that, for each voter i,
weighti(G) ≤ C(n), and

∑n
i=1 weighti(G) ≤ n. Hence, we can directly apply Chebyshev’s inequality:

PD,MC
q ,n

[∑
i∈M

weighti(G)pi < n(µ∗ − γ)

]
<

Var[
∑

i∈M weighti(G)pi]

(E[
∑

i∈M weighti(G)pi]− n(µ∗ − γ))2

≤ nC(n)

(γn− C(n) log2(n)µ∗)2

∈ o(1),

where the final step holds because the numerator is o(n2) and the denominator is Ω(n2). Hence,∑
i∈M weighti(G)pi ≥ n(µ∗ − γ) with high probability, as needed.
To summarize, we have proved that, conditioned on delsi(G) ≤ C(n) for all i and total-weight(G) ≥

n−C(n) log2 n,
∑n

i=1 weighti(G) · pi ≥ n(µ∗ − γ/3) occurs with high probability. Given that, condi-
tioned on delsi(G) ≤ C(n), total-weight(G) ≥ n− C(n) log2 n occurs with high probability and that
delsi(G) ≤ C(n) occurs with high probability, we can conclude by the chain rule that the intersection
of these events hold with high probability. Given that the probability of any of this event is greater
than the probability of the intersection, we can conclude that

∑n
i=1 weighti(G) · pi ≥ n(µ∗ − γ/3)

occurs with probability 1 − o(1), as desired.

Confidence-Based Delegation satisfies (3): We finally show there exists a distribution D such
that

∑n
i=1 pi + αn ≤ n/2 ≤

∑n
i=1 weighti(Gn) · pi − αn with probability 1− o(1). This implies that

the model MC
q satisfies probabilistic positive gain by Lemma 1.

Using the notation of the analogous proof in Section 4, let Dη = U [0, 1 − 2η] for η ∈ [0, 1/2).

As a function of η,
EDη [q+]

EDη [q̄] , the expected competence conditioned on not delegating, is continuous.

Moreover, if η = 0,
ED0

[q+]

ED0
[q̄] > µD0 = 1/2. Hence, for small enough η > 0,

EDη [q+]

EDη [q̄] > 1/2 > µDη .
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We choose Dη to be our distribution for this choice of η. As in the previous section, let

µ∗Dη =
EDη [q+]

E[q̄] . Note that µDη = 1/2 − η. Let γ = min(
1/2−µDη

2 ,
µ∗Dη−1/2

2 ) and α = γ. By

the earlier argument for (2), we have that with high probability
∑n

i=1 pi ≤ n(µ + γ) ≤ n/2 −
αn, and

∑n
i=1 weighti(G)pi ≥ n(µ∗ − γ) ≥ n/2 + αn.

By the union bound, we have that both occur simultaneously with high probability, so (3)
holds.

6 Continuous General Delegation Model

Finally, we study a model in which voters delegate with fixed probability, and they do so by picking
a voter according to a continuous increasing delegation function. This is a general model in which
delegations can either go to more or less competent neighbors but where more competent voters are
more likely to be chosen over less competent ones.

Formally, let MS
p,ϕ = (qp, ϕ) where qp is a constant function equal to p, that is, qp(x) = p for all

x ∈ [0, 1], and ϕ(x, y) is non-zero, continuous, and increasing in y. We then have the following.

Theorem 3 (Continuous General Delegation Model). All models MS
p,ϕ with p ∈ (0, 1) and ϕ that is

non-zero, continuous, and increasing in its second coordinate satisfy probabilistic do no harm and
probabilistic positive gain with respect to the class DC of all continuous distributions.

The proof of this theorem is relegated to Appendix A. It is similar in structure to the proof of
Theorem 2, but requires much more intricate analysis to account for different “types” of voters
resulting in distinct delegating behavior depending on competence.

7 Discussion

This paper is, to the best of our knowledge, the first to study (decentralized) liquid democracy
models in which concentration of power is unlikely to occur. While we focused on a setup without
an underlying social network (i.e., there is no restriction on whom a voter may delegate to), we can
extend all of our results to a model where a directed social network is first sampled, and then a
(q, ϕ)-model is followed. The social network must be sampled such that each voter’s neighbors are
chosen uniformly at random, although the number of such neighbors could follow any small-tailed
distribution. Intuitively, delegation proportional to weighting i’s neighbors (rather than the entire
population) can be shown to be “equivalent” to a possibly different weighting over the entire
population. (This extension does not carry over well to undirected networks, since if voters have a
small number of neighbors, we would expect many 2-cycles to form after delegation, which, under
the worst-case cycle approach, may not be canceled out by the overall increase in competence.)

Our paper further relies on a set of assumptions and modeling choices that are worth discussing.

• First, the assumption that there exists a ground-truth alternative seems ill-suited for some
voting scenarios. We think of this assumption as viable in the legislative process, where one
option can be objectively superior to another with respect to a concrete metric, even if that
metric is not always apparent beforehand. For example, an economic policy can be evaluated
with respect to the metric of maximizing gross domestic product in five years. However, some
decisions are inherently subjective.
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• Second, like previous papers [21, 7, 2], we assume that voters vote independently. Admittedly,
this is not a realistic assumption; relaxing it, as it was relaxed for the classic Condorcet Jury
Theorem [16, 27], is a natural direction for future work.

• Third, again, like much of the previous work on liquid democracy, our models do not take
strategic considerations into account. It would be interesting to bridge our models and those
that do capture game-theoretic issues in liquid democracy [3, 31].

More generally, our work aims to provide a better understanding of a prominent shortcoming of
liquid democracy, namely the concentration of power. But there are others. For example, any voter
can see the complete delegation graph under current liquid democracy systems — a feature that
helps voters make informed delegation decisions (because one’s vote can be transitively delegated).
This may lead to voter coercion, however, and the tradeoff between transparency and security is
poorly understood. Nevertheless, there are many reasons to be excited about the potential of liquid
democracy [4]. We believe that our results provide another such reason and hope that our techniques
will be useful in continuing to build the theoretical understanding of this compelling paradigm.
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[22] Christoph Carl Kling, Jérôme Kunegis, Heinrich Hartmann, Markus Strohmaier, and Steffen
Staab. 2015. Voting behaviour and power in online democracy: A study of LiquidFeedback in
Germany’s Pirate Party. In Proceedings of the 9th International AAAI Conference on Web and
Social Media (ICWSM).

[23] Christian List and Robert E. Goodin. 2001. Epistemic Democracy: Generalizing the Condorcet
Jury Theorem. Journal of Political Philosophy 9, 3 (2001), 277–306.

[24] Hossam Mahmoud. 2009. Pólya Urn Models. CRC Press.
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A Proof of Theorem 3

Fix MS
p,ϕ and and D ∈ DC . Note that since ϕ is continuous and always positive on the compact set

[0, 1]2, ϕ is in fact uniformly continuous and there are bounds L,U ∈ R+ such that ϕ is bounded
in the interval [L,U ]. Additionally, we can assume without loss of generality that for all x ∈ [0, 1],
ED[ϕ(x, ·)] = 1. Indeed, ED[ϕ(x, ·)] is a positive, continuous function of x, so replacing ϕ by
ϕ′(x, y) = ϕ(x, y)/ED[ϕ(x, ·)] induces the same model and satisfies the desired property.

The Continuous General Delegation Model satisfies (1): Our goal is to show there is some
C(n) ∈ O(log n) such that, with high probability, no voter receives more than C(n) delegations.
To do this, just as in the proof of Theorem 2, we consider a branching process of the delegations
received beginning with some voter i. We will show that under minimal conditions on the sampled
competencies (which all occur with high probability), this branching process will be dominated by a
well-known subcritical multi-type Poisson branching process [5], which has size O(log n) with high
probability.

For a fixed competence vector ~pn, the branching process for the number of delegations received
by a voter i works as follows. We keep track of three sets of voters: those that are live at time t
(Lt), those dead at time t (Dt), and those neutral at time t (Nt). Unlike in the proof of Theorem 2,
where it was sufficient to keep track of the number of voters in each category, here we must keep
track of the voter identities as well, as they do not all delegate with the same probability. At time
zero, the only live voter is voter i and the rest are neutral, so L0 = {i}, D0 = ∅, and N0 = [n] \ {i}.
As long as there are still live voters, we sample the next set of delegating voters Zt in time t by
choosing some live voter j ∈ Rt−1 and sampling its children. Once j’s children are sampled, j
becomes dead, and j’s children become live. All voters that did not delegate and were not delegated
to remain neutral. The children are sampled independently; the probability they are included is the
probability they delegate to j conditioned on them not delegating to the dead voters in Dt−1. For
each voter k ∈ Nt−1, k will be included with probability

p · ϕ(pk, pj)∑
k′∈[n]\(Dt−1∪{k}) ϕ(pk, pk′)

.

This is precisely the probability k delegates to j conditioned on them not delegating to any voter in
Dt−1. We continue this process until there are no more live voters, at which point the number of
delegations is simply the number of dead voters, or equivalently, the total number of time steps. We
denote by XD~pn,i the size of the branching process parameterized by competencies ~pn and a voter
i ∈ [n].

Our goal will be to compare XD~pn,i to the outcome of a well-known multi-type Poisson branching

process. In this branching process, there are a fixed finite number k of types of voters.5 The process
itself is parameterized by a k × k matrix M , where Mττ ′ is the expected number of children of type
τ ′ a voter of type τ will have. The process is additionally parameterized by the type τ ∈ [k] of the
starting voter. The random variable Yt keeps track of the number of live voters of each type; it is a
vector of length k, where the τth entry is the number of live voters of type τ . Hence, Y0 = eτ , the
(basis) vector with a 1 in entry τ and an entry 0 for all other types. We sample children by taking
an arbitrary live voter of type τ ′ (the τ ′ component in Yt−1 must be positive, indicating that there is
such a voter), and sampling its children Zt, which is also a vector of length k, each entry indicating

5In the literature, these are often called particles, but to be consistent with our other branching processes, we call
them voters here.
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the number of children of that type. The vector Zt is sampled such that the τ ′′ entry is from the
Pois(Mτ ′τ ′′) distribution. That is, children of different types are sampled independently from a
Poisson distribution, with the given expected value. We have the recursion Yt = Yt−1 + Zt − eτ ′ .

Note that this means that there is no “pool” of voters to choose from; in fact, it is possible
for this process to grow unboundedly large (see [1, Section 11.6] for the classical description of the
single-type Poisson branching process). Nonetheless, this process will still converge often enough to
remain useful. We denote by XPM,τ the random variable that gives the size of this branching process,
parameterized by expected-children matrix M and starting voter type τ ∈ [k]. Such a branching
process is considered sub-critical if the largest eigenvalue of M is strictly less than 1 [5]. In such a
case, if we begin with voter of any type τ ∈ [k], the probability of the branching process surviving `
steps decreases exponentially in `. Hence, there is some c such that for all τ ∈ [k],

P[XPM,τ ≤ c log(n)] = 1− o(1/n).

To compare these branching processes, we make a sequence of adjustments to the original
branching process that at each step creates a dominating branching process slightly closer in flavor
to the multi-type Poisson. In the end, we will be left with a sub-critical multi-type Poisson process
that we can bound.

Fix some ε > 0, which is a parameter in all of our steps. Later, we will choose ε to be sufficiently

small (specifically, such that p (1+ε)3

1−2ε < 1) to ensure that the Poisson branching process is sub-critical.
To convert from our delegation branching process to the Poisson branching process, we take a voter’s
type to be their competence (which completely characterizes their delegation behavior). However,
to compare to the Poisson process, there must be a finite number of types. Hence, we partition the
interval [0, 1] into B buckets, each of size 1/B, such that voters in the same bucket delegate and are
delegated to “similarly”. We choose B large enough such that all points in [0, 1]2 within a distance of√

2/B of each other differ in ϕ by at most L · ε. (Recall that the range of ϕ is in the interval [L,U ].)
This is possible since ϕ is uniformly continuous. Further, this implies any points (x, y), (x′, y′) within
a square with side length 1/B have the property that ϕ(x, y) ≤ ϕ(x′, y′) + L · ε ≤ (1 + ε) · ϕ(x′, y′).
Note that B depends only on ϕ and ε, and hence is a constant with respect to the number of voters
n.

We say a voter i is of type τ if τ−1
B < pi ≤ τ

B for 1 ≤ τ ≤ B (with a non-strict inequality for
τ = 1, so 0 is of type 1). Let Sτ = ( τ−1

B , τB ] be the set of competencies of type τ (except that, in the
case that τ = 1, we take S1 to be the closed interval [0, 1

B ]). Let πτ = D[Sτ ] be the probability that

a voter has type τ . Since the types form a partition of [0, 1], we have that
∑B

τ=1 πτ = 1.
For any two types τ, τ ′, we define

ϕ′(τ, τ ′) = sup
(x,y)∈Sτ×Sτ ′

ϕ(x, y).6

We abuse notation by extending ϕ′ to operate directly on competencies in [0, 1] by first converting
competencies to types and then applying ϕ′. Then, ϕ′ has the property that for any pi, pj ∈ [0, 1],

ϕ(pi, pj) ≤ ϕ′(pi, pj) ≤ (1 + ε)ϕ(pi, pj).

We have that for all τ , if x ∈ Sτ , then

B∑
τ ′=1

ϕ′(τ, τ ′)πτ ′ = ED[ϕ′(x, ·)] ≤ (1 + ε) · ED[ϕ(x, ·)] = (1 + ε).

6Note that, because ϕ is increasing in its second coordinate, one can actually write ϕ̃(τ, τ ′) = supx∈Sτ
ϕ(x, τ

′

B
).
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Hence, we define

ϕ̃(τ, τ ′) = ϕ′(τ, τ ′) · (1 + ε)∑B
τ ′′=1 ϕ

′(τ, τ ′′)πτ ′′
.

We again abuse notation to allow ϕ̃ to operate directly on competencies. We have that ϕ̃(x, y) ≥
ϕ′(x, y) ≥ ϕ(x, y) for all competencies x, y ∈ [0, 1] and further, for all τ ,

∑B
τ ′=1 ϕ̃(τ, τ ′)πτ ′ = 1 + ε.

The Poisson branching process we will eventually compare to is one with B types parameterized
by the expected-children matrix M , where

Mττ ′ = p
(1 + ε)2

1− 2ε
ϕ̃(τ, τ ′).

First, we show that M has largest eigenvalue strictly less than 1 (for our choice of ε), so that the
branching process will be subcritical. Indeed, M has only positive entries, so we need only exhibit
an eigenvector with all nonnegative entries such that the associated eigenvalue is strictly less than 1.
The Perron-Frobenius theorem tells us this eigenvalue must be maximal.

The eigenvector we consider is ~π = (π1, . . . , πB) (which has nonnegative entries, as each πτ is a

probability). We show it has eigenvalue p (1+ε)3

1−2ε , strictly less than 1 due to our choice of ε. Indeed,
we have that

(M~π)τ =

B∑
τ ′=1

πτ ϕ̃(τ, τ ′)πτ ′ = πτp
(1 + ε)3

1− 2ε

by the definition of ϕ̃. Hence, ~π is our desired eigenvector.
Since XPM,τ is sub-critical for all τ , we have that there is some c such that for all τ ∈ [B],

P[XPM,τ ≤ c log(n)] = 1− o(1/n). We take C(n) = c log(n).

Now we consider our branching process, XD~p,i. To make the comparison, we will need some
minimal concentration properties. We first show that the sampled competencies ~p satisfy these
properties with high probability, and then show that, conditioned on these properties, the branching
process XD~p,i is easily comparable to a Poisson process. The properties are the following:

1. For each voter i ∈ [n],
∑

j 6=i ϕ(pi, pj) ≥ (1− ε) · n.

2. For each type τ ∈ [B], the number of voters of type τ , |{i | pi ∈ Sτ}| ≤ (1 + ε)πτn.

For the first property, fix the competence pi of a single voter i. Then when sampling the pjs,∑
j 6=i ϕ(pi, pj) is the sum n− 1 independent variables, all in the interval [L,U ], with mean 1. Hence,

by Hoeffding’s inequality, for all competencies c, Dn[
∑

j 6=i ϕ(pi, pj) ≥ (1− ε)n | pi = c] = 1− o(1/n),
where the o(1/n) term is independent of c. By the law of total probability, this implies that even
when pi is sampled as well, the 1− o(1/n) bound continues to hold. By a union bound over all n
voters, this holds for everybody with probability 1 − o(1).

For the second property, note that the number of voters of type τ follows a Bin(n, πτ ) distribution.
A simple application of Hoeffding’s inequality implies that for this τ , |{i | pi ∈ Sτ}| ≤ (1 + ε)πτn
(note that this holds even in the extreme cases where πτ = 0 or πτ = 1). As the number B of types
is fixed and independent of n, a union bound over all B types implies this holds for all τ with
probability 1− o(1).

Now fix some voter competencies ~p such that both properties hold. We will first upper bound the
probability a voter of type τ delegates to a voter of type τ ′. Hence, we can compare our branching
process to one with these larger probabilities, and this will only dominate our original process.
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To that end, since |Dt−1| = t− 1 ≤ t (recall that Dt−1 consists of the dead voters at time t− 1),
using the first property, we have that for all i ∈ [n],∑

j∈[n]\(Dt−1∪{i})

ϕ(pi, pj) ≥ (1− ε)n− U · t.

Hence, as long as t ≤ εn/U ,
∑

j∈[n]\(Dt−1∪{i}) ϕ(pi, pj) ≥ (1− 2ε)n.
Including the fact that ϕ(pi, pj) ≤ ϕ̃(pi, pj) for all pi and pj , we have that for all time steps

t ≤ εn/U,

p · ϕ(pi, pj)∑
k′∈[n]\(Dt−1∪{k}) ϕ(pi, pk′)

≤ p

n
· ϕ̃(pi, pj)

(1− 2ε)
.

Note that for sufficiently large n, C(n) ≤ εn/U , so from now on we restrict ourselves to such n.
Further, note that by the second property, there will never be more than (1 + ε)πτn neutral

voters of type τ . Hence, if we take a voter of type τ ′ at time step t ≤ C(n), the number of children

it will have of type τ will be stochastically dominated by a Bin((1 + ε)πτn,
p
n ·

ϕ̃(pi,pj)
(1−2ε) ), and this

is independent for each τ . As n grows large, this distribution approaches a Pois(p (1+ε)
1−2ε ϕ̃(τ, τ ′)).

In particular, this means that for sufficiently large n, it will be stochastically dominated by a

Pois(p (1+ε)2

1−2ε ϕ̃(τ, τ ′)) distribution (note the extra (1 + ε) factor). Hence, if voter i is of type τ , up to

time t ≤ C(n), XD~p,i is dominated by XPM,τ , so

PD,MS
p,ϕ.n

[XD~p,i ≥ C(n)] ≥ PD,MS
p,ϕ.n

[XPM,τ ≥ C(n)] = 1− o(1/n).

A union bound over all n voters tells us this is true for all voters simultaneously with probability
1− o(1), as needed.

The Continuous General Delegation Model satisfies (2): To show (2) holds, we first show the
following.

Let µD be the mean of the competence distribution D. For a fixed x, let ϕ+
x (y) be the function

ϕ(x, y) · y. We show that there is some c > 0 such that for all x ∈ [0, 1],

ED[ϕ+
x ] ≥ µD + c. (19)

Indeed, if we view ED[ϕ+
x ] as a function of x for x ∈ [0, 1], first note that it is a continuous

function on a compact set, and hence it attains its minimum. Further, for all x ∈ [0, 1], since ϕ(x, y)
and y are both increasing functions of y, by the FKG inequality [12],

ED[ϕ+] > ED[ϕ(x, ·)] · µD = µD,

since, by assumption, ED[ϕ(x, ·)] = 1. Hence, this attained minimum must be strictly larger than µ,
implying (19).

Since ϕ(x, y) is normalized so that Ey∼D[ϕ(x, y)] = 1, Ey∼D[ϕ(x, y)·y] is the expected competence
of the voter to whom someone of competence x delegates to (prior to other competencies being
drawn). Hence, (19) tells us that “on average”, all voters (regardless of competence) tend to delegate
to those with competence strictly above the mean. Ideally, we would choose α ≈ c/2 and hope that
some concentration result tells us that the weighted competencies post-delegation will be strictly
above µ+ c/2 (the mean of all competencies will be close to µ by standard concentration results).
However, proving this concentration result is surprisingly subtle, as there are many dependencies
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between different voter delegations. Indeed, if one voter with high competence and many delegations
chooses to delegate “downwards” (that is, to someone with very low competence), this can cancel
out all of the “expected” progress we had made thus far. Hence, the rest of this proof involves
proving concentration does in fact hold. We prove this by breaking up the process of sampling
instances into much more manageable pieces, where, in each, as long as nothing goes “too” wrong,
concentration will hold.

In particular, we will prove that for all γ > 0, with high probability,

n∑
i=1

weighti(G) · pi −
n∑
i=1

pi ≥ (c(1− p)− γ)n. (20)

Fix such a γ. As in the previous part, fix ε > 0 which will paramaterize our steps. We will later
choose ε sufficiently small to get our desired result (precisely ε such that 6ε+ ε2 < γ). By choosing

γ < c(1− p), this value is positive, so we can choose α = c(1−p)−γ
2 which proves Equation (2)

To that end, we define a sequence of six sampling steps that together are equivalent to the
standard sampling process with respect to D and MS

p,ϕ. In each step, we will show that with high
probability, nothing “goes wrong”, and conditioned on nothing going wrong in all these steps, we
will get the α improvement that we desire. The six steps are as follows:

1. Sample a setM ⊆ [n] of voters that choose not to delegate. Each voter is included independently
with probability p.

2. Sample competencies pi for i ∈ [n] \M . Each pi is sampled i.i.d. from D.

3. Sample competencies pj for j ∈M . Each pj is sampled i.i.d. from D.

4. Sample a set R ⊆ [n] \M of delegators that delegate to those in M . Each voter i ∈ [n] \M is

included independently with probability
∑
j∈M ϕ(pi,pj)∑

j∈[n]\{i}ϕ(pi,pj)
, that is, the total ϕ weight they put

on voters in M divided by the total ϕ weight they put on all voters.

5. Sample delegations of voters in [n] \ (M ∪ R). At this point, we are conditioning on such
voters delegating, and when they do delegate, they do so to voters in [n] \M . Hence, for each

i ∈ [n] \ (M ∪R), they delegate to j ∈ [n] \ (M ∪ {i}) with probability
ϕ(pi,pj)∑

j′∈[n]\(M∪{i}) ϕ(pi,pj′ )
.

6. Sample delegations of voters in R. At this point, we are conditioning on such voters delegating
to those in M . Hence, for each i ∈ R, they choose to delegate to j ∈ M with probability

ϕ(pi,pj)∑
j′∈M ϕ(pi,pj′ )

.

We now analyze each step, describing what could “go wrong”. Let E1, . . . , E6 be the events that
nothing goes wrong in each of the corresponding steps. We define these events formally below. Our
goal is to show that PD,MS

p,ϕ,n
[E1 ∩ · · · ∩ E6] = 1− o(1).

• Let E1 be the event that (p−ε) ·n ≤ |M | ≤ (p+ε) ·n. Note that M is the sum of n independent
Bernouilli random variables with success probability p. It follows directly from a union bound over
both variants of Hoeffding’s inequality that

PD,MS
p,ϕ,n

[(p− ε) · n ≤ |M | ≤ (p+ ε) · n] = 1− o(1).
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• Let E2 be the event that
∑

i∈[n]\M pi ≤ n(µ+ ε)(1− p+ ε). Note that
∑

i∈[n]\M pi is the sum
of n− |M | i.i.d. random variables with mean µ. Conditioning on event E1, |M | is lower bounded by
n(p− ε), implying that n− |M | ≤ n(1− p+ ε) as well. It follows from Lemma 2 that

PD,MS
p,ϕ,n

 ∑
i∈[n]\M

pi ≤ n(µ+ ε)(1− p+ ε)

∣∣∣∣∣∣ E1

 = 1− o(1)

which, combined with PD,MS
p,ϕ,n

[E1] = 1− o(1), proves that E1 ∩ E2 occurs with probability 1 − o(1).

• Let E3 be the event consisting of all instances (~p,G) such that∑
j∈M ϕ(pi, pj) · pj∑
j∈M ϕ(pi, pj)

≥ (1− ε)
(1 + ε)

(µ+ c)

for all i ∈ [n] \M .
We show E3 occurs with high probability conditional on E1 and E1 (conditioning on E2 is

unnecessary. but makes the final statement easier). Fix a set of voters M and pi for i ∈ [n] \M
satisfying E1 and E2. For each i ∈ [n] \M , we will show that with probability 1 − o(1/n), when we
sample the pjs for j ∈M , they satisfy∑

j∈M
ϕ(pi, pj) ≤ |M |(1 + ε) (21)

and ∑
j∈M

ϕ(pi, pj) · pj ≥ |M |(1− ε)(µ+ c). (22)

(21) follows from the fact that
∑

j∈M ϕ(pi, pj) is the sum of |M | bounded independent random
variables

with mean Ey∼D[ϕ(pi, y)] = 1. By Hoeffding’s inequlaity, since |M | is linear in n,
∑

j∈M ϕ(pi, pj)
is at most |M |(1 + ε) with probability 1− o(1/n).

(22) follows from the fact that
∑

j∈M ϕ(pi, pj) · pj is also the sum of |M | bounded independent

random variables with mean ED[ϕ+
pi ]. Again, since we have conditioned on E1, |M | is lower bounded

by (p−ε)n, which by Hoeffding’s inequality implies that
∑

j∈M ϕ(pi, pj)pj is at least |M |(1−ε)ED[ϕpi ]
with probability 1− o(1/n).

Finally, we can conclude via a union bound that
∑
j∈M ϕ(pi,pj)·pj∑
j∈M ϕ(pi,pj)

≥ (1−ε)
(1+ε)(µ+ c) with probability

1− o(1/n) for any i ∈ [n] \M . Hence, by another union bound over the at most n voters i ∈ [n] \M ,∑
j∈M ϕ(pi,pj)·pj∑
j∈M ϕ(pi,pj)

≥ (1−ε)
(1+ε)(µ+ c) for all i ∈ [n] \M with high probability.

By the law of total probability, E3 conditioned on E1 and E2 occurs with probability 1 − o(1),
which proves that E1 ∩ E2 ∩ E3 occurs with probability 1 − o(1) by the chain rule.
• Let E4 be the entire sample space. Nothing can “go wrong” during this sampling step. So

trivially, E1 ∩ E2 ∩ E3 ∩ E4 occurs with probability 1 − o(1).
• Let E5 be the event that delsi(G) ≤ C(n) for all i ∈ [n] \ M and total-weight(G) ≥ n −

C(n)2 log(n) in the subgraph G sampled (i.e., with delegations only from voters not in R or M).
We will show E5 occurs with high probability even when we sample a full delegation graph (that
is, samples delegations for all voters), which implies it continues to hold even when we sample
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only some delegations (recall that at this step we have only sampled delegations from voters in
[n] \ (M ∪R)).

The proof of this is very similar to the one in Theorem 2, with one extra step to allow for
different ϕ weights.

It was proved in the previous part of this proof that, for all voters i, we have that delsi(G) ≤ C(n)
with probability 1− o(1) (not conditioned on anything) when we sample entire delegation graphs,
so we can safely condition on this fact. We now prove that PD,MS

p,ϕ,n
[total-weight(Gn) ≥ n −

O(log3 n) | delsi(G) ≤ C(n)] = 1− o(1).
We begin by bounding the number of voters that end up in cycles. Fix some voter i, and let us

begin by sampling their delegation tree.
Since we are conditioning on the tree having size at most C(n), the most weight that voter i can

place on all of the voters in i’s delegation tree is U ·C(n). The minimum weight that i can place on
all voters is L(n− 1). Hence, the probability that i delegates to someone in i’s tree conditional the

delegation tree having size at most C(n) is at most p · U ·C(n)
L·(n−1) . Since i was arbitrary, this implies

that the expected number of voters in cycles can be at most n · p · U ·C(n)
L·(n−1) ∈ O(log n).

Applying Markov’s inequality just as in the analogous proof in the previous section, the probability
that more than log2 n voters are in cycles is at most np UC(n)

L(n−1) log2 n
= O(1/ log n) = o(1). Further,

the total number of people that could delegate to voters in cycles is at most C(n) times the number of
voters in cycles. Hence, with probability 1− o(1), there are at most C(n) · log2 n voters delegating to
those in cycles. This implies the desired bound. Hence, we have proved that PD,MS

p,ϕ,n
[E5] = 1− o(1).

Since we have already shown that PD,MS
p,ϕ,n

[E1 ∩ E2 ∩ E3 ∩ E4] = 1 − o(1), a union bound implies

that E1 ∩ E2 ∩ E3 ∩ E4 ∩ E5 occurs with probability 1 − o(1) as well.
• We now consider the sixth step. To define E6, we need some new notation. Fix competencies ~p

and a partial delegation graph G such that (~p,G) is in the first five events. We define Qi for i ∈ R
to be the random variable representing the competence of the voter to whom i delegates. Since we
know i delegates to a voter in M , note that

Qi(G) = pj with probability
ϕ(pi, pj)∑

j′∈M ϕ(pi, pj′)
for all j ∈M.

Let E6 be the event consisting of all instance (~p,G) such that that
∑

i∈R delsi(G) · Qi(G) ≥
(1−ε)2

1+ε (µ+c)(1−p−2ε)·n. We show that PD,MS
p,ϕ,n

[E6 | E1∩· · ·∩E5] = 1−o(1). This, combined with the

the fact PD,MS
p,ϕ,n

[E1∩· · ·∩E5] = 1−o(1) (shown earlier), implies that PD,MS
p,ϕ,n

[E1∩· · ·∩E6] = 1−o(1).
It follows from the definition of Qi that

E[Qi] =
∑
j∈M

ϕ(pi, pj)∑
j′∈M ϕ(pi, pj′)

· pj =

∑
j∈M ϕ(pi, pj) · pj∑
j∈M ϕ(pi, pj)

.

By conditioning on E3, we have that E[Qi] ≥ (1−ε)
(1+ε)(µ+c) for each i ∈ R. Hence, E[

∑
i∈R delsi(G)·

Qi] ≥ (n− |M | − C(n)2 log(n)) · 1+ε
1−ε · (µ+ c), since we are conditioning on E3 and E5. Further, for

sufficiently large n, C(n)2 log(n) ≤ εn; since we are conditioning on E1, |M | ≤ (p+ ε)n, so we have
that for sufficiently large n,

E[
∑
i∈R

delsi(G) ·Qi] ≥ (1− p− 2ε) · 1 + ε

1− ε
· (µ+ c) · n ∈ Ω(n).
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Next, consider Var[
∑

i∈R delsi(G) ·Qi]. Since each Qi takes on values in [0, 1], Var[Qi] ≤ 1. Further,
each summand is independent, as each Qi is independent and we have fixed G, so we can can view
delsi(G) as a constant. Hence, Var[

∑
i∈R delsi(G) · Qi] ≤

∑
i∈R delsi(G)2 ∈ o(n2) since, for all i,

delsi(G) ≤ C(n) ∈ O(log n) and
∑

i delsi(G) ≤ n. Hence,

PD,MS
p,ϕ,n

[
∑
i∈R

delsi(G) ·Qi <
(1− ε)2

1 + ε
(µ+ c)(1− p− 2ε) · n]

≤ PD,MS
p,ϕ,n

[
∑
i∈R

delsi(G) ·Qi < (1− ε)E[
∑
i∈R

delsi(G) ·Qi]]

≤
Var[

∑
i∈R delsi(G) ·Qi]

ε2 · E[
∑

i∈R delsi(G) ·Qi]2
∈ o(1)

where the second inequality is due to Chebyshev’s inequality, which is o(1) because the numerator
is o(n2) and the denominator is Ω(n2). This implies the desired result.

Finally, we show that for all instance (~p,G) ∈ E1 ∩ · · · ∩ E6, (2) holds, and hence so does
(20). We have that

∑n
i=1wi(G) · pi =

∑
i∈R delsi(G) ·Qi(G) +

∑
j∈M pj , because in G each voter

i ∈ R delegates all of their delsi(G) votes to the voter in M with competence Qi(G). Hence,∑n
i=1wi(G) · pi −

∑n
i=1 pi =

∑
i∈R delsi(G) · Qi(G) −

∑
i∈[n]\(M∪R) pi. Since (~p,G) ∈ E2, we have

that
∑

i∈[n]\M pi ≤ n(µ + ε)(1 − p + ε). Since (~p,G) ∈ E6, we have that
∑

i∈R delsi(G) · Qi(G) ≥
(1−ε)2

1+ε (µ+ c)(1− p− 2ε) · n. Hence, this difference is at least

((µ+ c)(1− p− 2ε)− (µ+ ε)(1− p+ ε))n ≥ (c(1− p)− 3εµ− 2εc− (1− p)ε− ε2)n

≥ (c(1− p)− 6ε− ε2)n

where the second inequality holds because, c, (1− p), µ ≤ 1. By choosing ε such that 6ε+ ε2 ≤ γ
(ε = min(γ/7, 1) will do), (20) follows.

The Continuous General Delegation Model Satisfies (3): We now show that there exists a
distribution D and α > 0 such that

∑n
i=1 pi + αn ≤ n/2 ≤

∑n
i=1 weighti(Gn) · pi − αn with

probability 1 − o(1). This implies that the model MS
p,ϕ, n satisfies probabilistic positive gain by

Lemma 1.
As in earlier arguments, let Dη = U [0, 1− 2η] for η ∈ [0, 1/2). Note that

f(η) = inf
x∈[0,1]

{
EDη [ϕ+

x ]
}
· (1− p)− 3η/2

is a continuous function of η.
Moreover, f(0) > 0. Hence, for sufficiently small η > 0, f(η) > 0.
Consider Dη for some η > 0 such that f(η) > 0. Let α = min(η/2, f(η)/2). Since µDη = 1/2− η,

by Hoeffding’s inequality,
∑n

i=1 pi ≤ (1/2− η/2)n ≤ n/2− αn with high probability.
Next, note that we can choose c = infx∈[0,1]

{
EDη [ϕ+

x ]
}

in order to satisfy (19). Hence, by
choosing γ = f(η)/2, it follows from (20) that

n∑
i=1

weighti(G) · pi −
n∑
i=1

pi ≥ (c(1− p)− f(η)/2)n = (3η/2 + f(η)/2)n ≥ (3η/2 + α)n
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with high probability. Further, by Hoeffding’s iequality,
∑n

i=1 pi ≥ (1/2 − 3η/2)n with high
probability, so by the union bound applied to these inequalities,

n∑
i=1

weighti(G) · pi ≥ n/2 + αn

with high probability, as needed.
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