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ABSTRACT

Finding equilibria via gradient play in competitive multi-agent games has been
attracting a growing amount of attention in recent years, with emphasis on design-
ing efficient strategies where the agents operate in a decentralized and symmetric
manner with guaranteed convergence. While significant efforts have been made
in understanding zero-sum two-player matrix games, the performance in zero-
sum multi-agent games remains inadequately explored, especially in the presence
of delayed feedbacks, leaving the scalability and resiliency of gradient play open
to questions. In this paper, we make progress by studying asynchronous gradient
plays in zero-sum polymatrix games under delayed feedbacks. We first establish
that the last iterate of entropy-regularized optimistic multiplicative weight updates
(OMWU) method converges linearly to the quantal response equilibrium (QRE),
the solution concept under bounded rationality, in the absence of delays. While the
linear convergence continues to hold even when the feedbacks are randomly de-
layed under mild statistical assumptions, it converges at a noticeably slower rate
due to a smaller tolerable range of learning rates. Moving beyond, we demon-
strate entropy-regularized OMWU—by adopting two-timescale learning rates in
a delay-aware manner—enjoys faster last-iterate convergence under fixed delays,
and continues to converge provably even when the delays are arbitrarily bounded
in an average-iterate manner. Our methods also lead to finite-time guarantees to
approximate the Nash equilibrium (NE) by moderating the amount of regulariza-
tion. To the best of our knowledge, this work is the first that aims to understand
asynchronous gradient play in zero-sum polymatrix games under a wide range of
delay assumptions, highlighting the role of learning rates separation.

1 INTRODUCTION

Finding equilibria of multi-player games via gradient play lies at the heart of game theory, which
permeates a remarkable breadth of modern applications, including but not limited to competitive
reinforcement learning (RL) (Littman, 1994), generative adversarial networks (GANs) (Goodfellow
et al., 2014) and adversarial training (Mertikopoulos et al., 2018). While conventional wisdom leans
towards the paradigm of centralized learning (Bertsekas & Tsitsiklis, 1989), retrieving and sharing
information across multiple agents raise questions in terms of both privacy and efficiency, leading to
a significant amount of interest in designing decentralized learning algorithms that utilize only local
payoff feedbacks, with the updates at different agents executed in a symmetric manner.

In reality, there is no shortage of scenarios where the feedback can be obtained only in a delayed
manner (He et al., 2014), i.e., the agents only receive the payoff information sent from a previous
round instead of the current round, due to communication slowdowns and congestions, for example.
Substantial progress has been made towards reliable and efficient online learning with delayed feed-
backs in various settings, e.g., stochastic multi-armed bandit (Pike-Burke et al., 2018; Vernade et al.,
2017), adversarial multi-armed bandit (Cesa-Bianchi et al., 2016; Li et al., 2019), online convex op-
timization (Quanrud & Khashabi, 2015; McMahan & Streeter, 2014) and multi-player game (Meng
et al., 2022; Héliou et al., 2020; Zhou et al., 2017). Typical approaches to combatting delays include
subsampling the payoff history (Weinberger & Ordentlich, 2002; Joulani et al., 2013), or adopting
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Learning rate Type of delay
Iteration complexity

ϵ-QRE ϵ-NE

single-timescale
none τ−1dmax ∥A∥∞ log ϵ−1 dmax ∥A∥∞ ϵ−1

statistical τ−2d2max ∥A∥2∞ (γ + 1)2 log ϵ−1 d2max ∥A∥2∞ (γ + 1)2ϵ−2

two-timescale
constant τ−1dmax ∥A∥∞ (γ + 1)2 log ϵ−1 dmax ∥A∥∞ (γ + 1)2ϵ−1

bounded τ−2nd3max ∥A∥3∞ (γ + 1)5/2ϵ−1 nd3max ∥A∥3∞ (γ + 1)5/2ϵ−3

Table 1: Iteration complexities of the proposed OMWU method for finding ϵ-QRE/NE of zero-sum
polymatrix games, where logarithmic dependencies are omitted. Here, γ denotes the maximal time
delay when the delay is bounded, n denotes the number of agents in the game, dmax is the maximal
degree of the graph, and ∥A∥∞ = maxi,j ∥Ai,j∥∞ is the ℓ∞ norm of the entire payoff matrix A
(over all games in the network). We only present the result under statistical delay when the delays
are bounded for ease of comparison, while more general bounds are given in Section 3.2.

adaptive learning rates suggested by delay-aware analysis (Quanrud & Khashabi, 2015; McMahan
& Streeter, 2014; Hsieh et al., 2020; Flaspohler et al., 2021). Most of these efforts, however, have
been limited to either the asymptotic convergence to the equilibrium (Zhou et al., 2017; Héliou
et al., 2020) or the study of individual regret, which characterizes the performance gap between an
agent’s learning trajectory and the best policy in hindsight. It remains highly inadequate when it
comes to guaranteeing finite-time convergence to the equilibrium in a multi-player environment, es-
pecially in the presence of delayed feedbacks, thus leaving the scalability and resiliency of gradient
play open to questions.

In this work, we initiate the study of asynchronous learning algorithms for an important class of
games called zero-sum polymatrix games (also known as network matrix games (Bergman & Fokin,
1998)), which generalizes two-player zero-sum matrix games to the multiple-player setting and
serves as an important stepping stone to more general multi-player general-sum games. Zero-sum
polymatrix games are commonly used to describe situations in which agents’ interactions are cap-
tured by an interaction graph and the entire system of games are closed so that the total payoffs keep
invariant in the system. They find applications in an increasing number of important domains such
as security games (Cai et al., 2016), graph transduction (Bernardi, 2021), and more.

In particular, we focus on finite-time last-iterate convergence to two prevalent solution concepts in
game theory, namely Nash Equilibrium (NE) and Quantal Response Equilibrium (QRE) which con-
siders bounded rationality (McKelvey & Palfrey, 1995). Despite the seemingly simple formulation,
few existing works have achieved this goal even in the synchronous setting, i.e., with instantaneous
feedback. Leonardos et al. (2021) studied a continuous-time learning dynamics that converges to the
QRE at a linear rate. Anagnostides et al. (2022) demonstrated Optimistic Mirror Descent (OMD)
(Rakhlin & Sridharan, 2013) enjoys finite-time last-iterate convergence to the NE, yet the analy-
sis therein requires continuous gradient of the regularizer, which incurs computation overhead for
solving a subproblem every iteration. In contrast, an appealing alternative is the entropy regular-
izer, which leads to closed-form multiplicative updates and is computationally more desirable, but
remains poorly understood. In sum, designing efficient learning algorithms that provably converge
to the game equilibria has been technically challenging, even in the synchronous setting.

1.1 OUR CONTRIBUTIONS

In this paper, we develop provably convergent algorithms—broadly dubbed as asynchronous gradi-
ent play—to find the QRE and NE of zero-sum polymatrix games in a decentralized and symmet-
ric manner with delayed feedbacks. We propose an entropy-regularized Optimistic Multiplicative
Weights Update (OMWU) method (Cen et al., 2021), where each player symmetrically updates their
strategies without access to the payoff matrices and other players’ strategies, and initiate a system-
atic investigation on the impacts of delays on its convergence under two schemes of learning rates
schedule. Our main contributions are summarized as follows.

• Finite-time last-iterate convergence of single-timescale OMWU. We begin by showing that, in
the synchronous setting, the single-timescale OMWU method—when the same learning rate is
adopted for extrapolation and update—achieves last-iterate convergence to the QRE at a linear
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rate, which is independent of the number of agents as well as the size of action spaces (up to log-
arithmic factors). In addition, this implies a last-iterate convergence to an ϵ-approximate NE in
Õ(ϵ−1) iterations by adjusting the regularization parameter, where Õ(·) hides logarithmic depen-
dencies. While the last-iterate linear convergence to QRE continues to hold in the asynchronous
setting, as long as the delay sequence follows certain mild statistical assumptions, it converges at
a slower rate due to a smaller tolerable range of learning rates, with the iteration complexity to
find an ϵ-NE degenerating to Õ(ϵ−2).

• Finite-time convergence of two-timescale OMWU. To accelerate the convergence rate in the pres-
ence of delayed feedback, we propose a two-timescale OMWU method which separates the learn-
ing rates of extrapolation and update in a delay-aware manner for applications with constant and
known delays (e.g. from timestamp information). The learning rate separation is critical in by-
passing the convergence slowdown encountered in the single-timescale case, where we show that
two-timescale OMWU achieves a faster last-iterate linear convergence to QRE in the presence
of constant delays, with an improved Õ(ϵ−1) iteration complexity to ϵ-NE that matches the rate
without delay. We further tackle the more practical yet challenging setting where the feedback
sequence is permutated by bounded delays—possibly in an adversarial manner—and demonstrate
provable convergence to the equilibria in an average-iterate manner.

We summarize the iteration complexities of the proposed methods for finding ϵ-approximate solu-
tions of QRE and NE in Table 1. To the best of our knowledge, this work presents the first algorithm
design and analysis that focus on equilibrium finding in a multi-player game with delayed feedbacks.
In contrast, most of existing works concerning individual regret in the synchronous/asynchronous
settings typically yield average-iterate convergence guarantees (see e.g., Bailey (2021); Meng et al.
(2022)) and fall short of characterizing the actual learning trajectory to the equilibrium.

1.2 NOTATION AND PAPER ORGANIZATION

Denote by [n] the set {1, · · · , n} and by ∆(S) the probability simplex over the set S. Given
two probability distributions p, p′ ∈ ∆(S), the KL divergence from p′ to p is defined by
KL
(
p ∥ p′

)
:=
∑

k∈S p(k) log
p(k)
p′(k) . For any vector z = [zi]1≤i≤n ∈ Rn, we use exp(z) to represent

[exp(zi)]1≤i≤n. The rest of this paper is organized as follows. Section 2 provides the preliminary
on zero-sum polymatrix games and solution concepts. Performance guarantees of single-timescale
OMWU and two-timescale OMWU are presented in Section 3 and Section 4, respectively. Numer-
ical experiments are provided in Section 5 to corroborate the theoretical findings, and finally, we
conclude in Section 6. The proofs are deferred to the appendix.

2 PRELIMINARIES

In this section, we introduce the formulation of zero-sum polymatrix games as well as the solution
concept of NE and QRE. We start by defining the polymatrix game.
Definition 1 (Polymatrix game). Let G := {(V,E), {Si}i∈V , {Aij}(i,j)∈E} be an n-player poly-
matrix game, where each element in the tuple is defined as follows.

• An undirected graph (V,E), with V = [n] denoting the set of players and E the set of edges;

• For each player i ∈ V , Si represents its action set, which is assumed to be finite;

• For each edge (i, j) ∈ E, Aij ∈ R|Si|×|Sj | and Aji ∈ R|Sj |×|Si| represent the payoff matrices
associated with player i and j, i.e., when player i and player j choose si ∈ Si and sj ∈ Sj , the
received payoffs are given by Aij(si, sj), Aji(sj , si), respectively.

Utility function. Given the strategy profile s = (s1, · · · , sn) ∈ S =
∏

i∈V Si taken by all players,
the utility function ui : S → R of player i is given by

ui(s) =
∑

j:(i,j)∈E
Aij(si, sj).

Suppose that player i adopts a mixed/stochastic strategy or policy, πi ∈ ∆(Si), where the probability
of selecting si ∈ Si is specified by πi(si). With slight abuse of notation, we denote the expected
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utility of player i with a mixed strategy profile π = (π1, · · · , πn) ∈ ∆(S) as

ui(π) = E
si∼πi,∀i∈V

[ui(s)] =
∑

j:(i,j)∈E

π⊤
i Aijπj . (1)

It turns out to be convenient to treat πi and π as vectors in R|Si| and R
∑

i∈V |Si| without ambiguity,
and concatenate all payoff matrices associated with player i into

Ai = (Ai1, · · · , Ain) ∈ R|Si|×
∑

j∈V |Sj |, (2)

where Aij is set to 0 whenever (i, j) /∈ E. In particular, it follows that Aii = 0 for all i ∈ V . With
these notation in place, we can rewrite the expected utility function (1) as

ui(π) = π⊤
i Aiπ, (3)

where Aiπ ∈ R|Si| can be interpreted as the expected utility of the actions in Si for player i. In ad-
dition, we denote the maximum entrywise absolute value of payoff by ∥A∥∞ = maxi,j ∥Aij∥∞ =
maxi ∥Ai∥∞, and the maximum degree of the graph by dmax = maxi∈V degi, where degi is the
degree of player i. Moreover, we denote Smax = maxi |Si| as the maximum size of the action space
over all players.

Zero-sum polymatrix games. The game G is a zero-sum polymatrix game if it holds that∑
i∈V ui(s) = 0, ∀ s ∈ S. This immediately implies that for any strategy profile π ∈ ∆(S), it

follows that
∑

i∈V ui(π) = 0.

Nash equilibrium (NE). A mixed strategy profile π⋆ = (π⋆
1 , · · · , π⋆

n) is a Nash equilibrium (NE)
when each player i cannot further increase its own utility function ui by unilateral deviation, i.e.,
ui(π

′
i, π

⋆
−i) ≤ ui(π

⋆
i , π

⋆
−i), for all i ∈ V, π′

i ∈ ∆(Si), where the existence is guaranteed by the
work (Cai et al., 2016). Here we denote the mixed strategies of all players other than i by π−i and
write ui(πi, π−i) = ui(π). To measure how close a strategy π ∈ ∆(S) is to an NE, we introduce

NE-Gap(π) = max
i∈V

[
max

π′
i∈∆(Si)

ui(π
′
i, π−i)− ui(π)

]
,

which measures the largest possible gain in the expected utility when players deviate from its strat-
egy unilaterally. A mixed strategy profile π is called an ϵ-approximate Nash equilibrium (ϵ-NE)
when NE-Gap(π) ≤ ϵ, which ensures that ui(π′

i, π−i) ≤ ui(πi, π−i)+ϵ, for all i ∈ V, π′
i ∈ ∆(Si).

Quantal response equilibrium (QRE). The quantal response equilibrium (QRE), proposed by
McKelvey & Palfrey (1995), generalizes the classical notion of NE under uncertain payoffs or
bounded rationality, while balancing exploration and exploitation. A mixed strategy profile π⋆

τ =
(π⋆

1,τ , · · · , π⋆
n,τ ) is a QRE when each player assigns its probability of action according to the ex-

pected utility of every action in a Boltzmann fashion, i.e., for all i ∈ V ,

π⋆
i,τ (k) =

exp([Aiπ
⋆
τ ]k/τ)∑

k∈Si
exp([Aiπ⋆

τ ]k/τ)
, k ∈ Si, (4)

where τ > 0 is the regularization parameter or temperature. Equivalently, this amounts to max-
imizing an entropy-regularized utility of each player (Mertikopoulos & Sandholm, 2016), i.e.,
ui,τ (π

′
i, π

⋆
−i,τ ) ≤ ui,τ (π

⋆
i,τ , π

⋆
−i,τ ) for all i ∈ V , π′

i ∈ ∆(Si). Here, the entropy-regularized utility
function ui : S → R of player i is given by

ui,τ (π) = ui(π) + τH(πi), (5)

where H(πi) = −π⊤
i log πi denotes the Shannon entropy of πi. In Leonardos et al. (2021), it is

shown that a unique QRE exists in a zero-sum polymatrix game. Similarly, we can measure the
proximity of a strategy π to a QRE by

QRE-Gapτ (π) = max
i∈V

[
max

π′
i∈∆(Si)

ui,τ (π
′
i, π−i)− ui,τ (π)

]
. (6)

A mixed strategy profile π is called an ϵ-QRE when QRE-Gapτ (π) ≤ ϵ. According to the straight-
forward relationship NE-Gap(π) ≤ QRE-Gapτ (π) + τ logSmax, it follows immediately that we
can link an ϵ/2-QRE to ϵ-NE by setting τ = ϵ

2 log Smax
. This facilitates the translation of conver-

gence to the QRE to one regarding the NE by appropriately setting the regularization parameter
τ .
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Algorithm 1 Entropy-regularized OMWU, agent i

1: Initialize π(0)
i = π

(0)
i as uniform distribution. Learning rates η, and η (optional).

2: for t = 0, 1, 2, . . . do
3: Receive payoff vector Aiπ

(κ
(t)
i ).

4: When t ≥ 1, update πi according to

π
(t)
i (k) ∝ π

(t−1)
i (k)1−ητ exp(η[Aiπ

(κ
(t)
i )]k), ∀k ∈ Si.

5: Update πi according to the single-timescale rule

π
(t+1)
i (k) ∝ π

(t)
i (k)1−ητ exp(η[Aiπ

(κ
(t)
i )]k), ∀k ∈ Si. (9)

or the two-timescale rule

π
(t+1)
i (k) ∝ π

(t)
i (k)1−ητ exp(η[Aiπ

(κ
(t)
i )]k), ∀k ∈ Si. (10)

6: end for

3 PERFORMANCE GUARANTEES OF SINGLE-TIMESCALE OMWU

In this section, we present and study the entropy-regularized OMWU method (Cen et al., 2021)
for finding the QRE of zero-sum polymatrix games. Whilst the method is originally proposed for
finding QRE in a two-player zero-sum game, the update rule naturally generalizes to the multi-player
setting as

π
(t+1)
i (k) ∝ π

(t)
i (k)1−ητ exp(η[Aiπ

(t+1)]k), ∀k ∈ Si, (7)

where η > 0 is the learning rate and π(t+1) serves as a prediction for π(t+1) via an extrapolation
step

π
(t+1)
i (k) ∝ π

(t)
i (k)1−ητ exp(η[Aiπ

(t)]k), ∀k ∈ Si. (8)

In the asynchronous setting, however, each agent i receives a delayed payoff vectorAiπ
(κ

(t)
i ) instead

of Aiπ
(t) in the t-th iteration, where κ(t)i = max{t− γ(t)i , 0}, with γ(t)i ≥ 0 representing the length

of delay. The detailed procedure is outlined in Algorithm 1 using the single-timescale rule (9) for
extrapolation.

3.1 PERFORMANCE GUARANTEES WITHOUT DELAYS

We first present our theorem concerning the last-iterate convergence of single-timescale OMWU for
finding the QRE in the synchronous setting, i.e. γ(t)i = 0 for all i ∈ V and t ≥ 0. For any π, π′ ∈ V ,
let KL

(
π ∥π′) =∑i∈V KL

(
πi ∥π′

i

)
.

Theorem 1 (Last-iterate convergence without delays). Suppose that the learning rate η of single-
timescale OMWU in Algorithm 1 obeys 0 < η ≤ min

{
1
2τ ,

1
4dmax∥A∥∞

}
, then for any T ≥ 0, the

iterates π(T ) and π(Ts) converge at a linear rate according to

KL
(
π⋆
τ ∥π(T )

)
≤ (1− ητ)TKL

(
π⋆
τ ∥π(0)

)
,KL

(
π⋆
τ ∥π(T+1)

)
≤ 2(1− ητ)TKL

(
π⋆
τ ∥π(0)

)
. (11a)

Furthermore, the QRE-gap also converges linearly according to

QRE-Gapτ (π
(T )) ≤

(
η−1 + 2τ−1d2max∥A∥2∞

)
(1− ητ)T−1KL

(
π⋆
τ ∥π(0)

)
. (11b)

Theorem 1 demonstrates that as long as the learning rate η is sufficiently small, the last iterate of
single-timescale OMWU converges to the QRE at a linear rate. Compared with prior works for
finding approximate equilibrium for zero-sum polymatrix games, our approach features a closed-
form multiplicative update and a fast linear last-iterate convergence. Some remarks are in order.

• Linear convergence to the QRE. Theorem 1 implies an iteration complexity of Õ
(

1
ητ log 1

ϵ

)
for finding an ϵ-QRE in a last-iterate manner, which leads to an iteration complexity of
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Õ
((

dmax∥A∥∞
τ + 1

)
log 1

ϵ

)
by optimizing the learning rate in Theorem 1.The result is especially

appealing as it avoids direct dependency on the number of agents n as well as the size of ac-
tion spaces (up to logarithmic factors), suggesting that learning in competitive multi-agent games
can be made quite scalable as long as the interactions among the agents are sparse (so that the
maximum degree of the graph dmax is much smaller than the number of agents n).

• Last-iterate convergence to ϵ-NE. By setting τ appropriately, we end up with an iteration com-
plexity of Õ

(
dmax∥A∥∞

ϵ

)
for achieving last-iterate convergence to an ϵ-NE, which outperforms

the best existing last-iterate rate of Õ
(
n ∥A∥∞/ϵ2

)
from Leonardos et al. (2021) by at least a

factor of n/(dmaxϵ).
Remark 1. Our results trivially extend to the setting of weighted zero-sum polymatrix games
(Leonardos et al., 2021), which amounts to adopting different learning rates {ηi}i∈V at each player.

In this case, the iteration complexity becomes Õ
(
maxi∈V

1
ηiτ

log 1
ϵ

)
. In addition, our convergence

result readily translates to a bound on individual regret as detailed in Appendix C.

3.2 PERFORMANCE GUARANTEES UNDER RANDOM DELAYS

We continue to examine single-timescale OMWU in the more challenging asynchronous setting. In
particularly, we show that the last iterate of single-timescale OMWU continues to converge linearly
to the QRE at a slower rate, as long as the delays satisfy some mild statistical assumptions given
below.
Assumption 1 (Random delays). Assume that for all i ∈ V , t ≥ 0, the delay γ(t)i is independently
generated and satisfies

E
γ
(t)
i ≥ℓ

[
γ
(t)
i

]
:= E

[
γ
(t)
i

∣∣ γ(t)i ≥ ℓ
]
≤ E(ℓ), ∀ℓ = 0, 1, . . . . (12)

Additionally, there exists some constant ζ > 1, such that L ≜
∑∞

ℓ=0 ζ
ℓE(ℓ) <∞.

We remark that Assumption 1 is a rather mild condition that applies to typical delay distributions,
such as the Poisson distribution (Zhang et al., 2020), as well as distributions with bounded support
(Recht et al., 2011; Liu et al., 2014; Assran et al., 2020). Roughly speaking, Assumption 1 implies
that the probability of the delay decays exponentially with its length, where ζ−1 approximately
indicates the decay rate. We have the following theorem.
Theorem 2 (Last-iterate convergence with random delays). Under Assumption 1, suppose that the
regulari-zation parameter τ < min{1, dmax ∥A∥∞} and the learning rate η of single-timescale
OMWU in Algorithm 1 obeys

0 < η ≤ min

{
τ

24d2max ∥A∥2∞ (L+ 1)
,
ζ − 1

τζ

}
, (13)

then for any T ≥ 1, the iterates π(T ) and π(T ) converges to π⋆
τ at the rate

max

{
E
[
KL
(
π⋆
τ ∥π(T )

)]
,
1

2
E
[
KL
(
π⋆
τ ∥π(T )

)]}
≤ (1− ητ)

T KL
(
π⋆
τ ∥π(0)

)
. (14a)

Furthermore, the QRE-gap also converges linearly according to

E
[
QRE-Gapτ (π

(T ))
]
≤ 4η−1(1− ητ)TKL

(
π⋆
τ ∥π(0)

)
. (14b)

Theorem 2 suggests that the iteration complexity to ϵ-QRE is no more than
Õ
(
max

{
d2max ∥A∥2∞ (L+ 1), ζ

ζ−1

}
1
τ2 log

1
ϵ

)
after optimizing the learning rate, whose range is

more limited compared with the requirement in Theorem 1without delays. In particular, the range
of the learning rate is proportional to the regularization parameter τ , an issue we shall try to address
by resorting to two-timescale learning rates in OMWU. To facilitate further understanding, we
showcase the iteration complexity for finding ϵ-QRE/NE under two typical scenarios: bounded
delay and Poisson delay.

6



Published as a conference paper at ICLR 2023

• Bounded random delay. When the delays are bounded above by some maximum delay γ, As-
sumption 1 is met with ζ = 1 + γ−1 and L = eγ(γ + 1). Plugging into Theorem 2 yields an

iteration complexity of Õ
(

d2
max∥A∥2

∞(γ+1)2

τ2 log 1
ϵ

)
for finding an ϵ-QRE, or Õ

(
d2
max∥A∥2

∞(γ+1)2

ϵ2

)
for finding an ϵ-NE, which increases quadratically as the maximum delay increases. Note that
these rates are worse than those without delays (cf. Theorem 1).

• Poisson delay. When the delays follow the Poisson distribution with parameter 1/T , it suffices to
set ζ = 1 + T

−1
and L = eT (1 + T ) Assumption 1. This leads to an iteration complexity of

Õ
(

d2
max∥A∥2

∞T
2

τ2 log 1
ϵ

)
for finding an ϵ-QRE, or Õ

(
d2
max∥A∥2

∞T
2

ϵ2

)
for finding an ϵ-NE, which is

similar to the bounded random delay case.

4 PERFORMANCE GUARANTEES OF TWO-TIMESCALE OMWU

While Theorem 2 demonstrates provable convergence of single-timescale OMWU with random
delays, it remains unclear whether the update rule can be better motivated in more general asyn-
chronous settings, and whether the convergence can be further ensured under adversarial delays.
Indeed, theoretical insights from previous literature (Mokhtari et al., 2020; Cen et al., 2021) suggest
the critical role of π(t) as a predictive surrogate for π(t) in enabling fast convergence, which no
longer holds when π(t) is replaced by a delayed feedback from π(κ

(t)
i ). To this end, we propose to

replace the extrapolation update (9) with one equipped with a different learning rate:

π
(t+1)
i (k) ∝ π

(t)
i (k)1−ητ exp(η[Aiπ

(κ
(t)
i )]k), ∀k ∈ Si, (15)

which adopts a larger learning rate η̄ > η to counteract the delay. Intuitively, a choice of η ≈ (γ
(t)
i +

1)η would allow π(κ
(t)
i ) to approximate π(t) by taking the intermediate updates {π(l) : κ

(t)
i ≤ l < t}

into consideration. We refer to this update rule as the two-timescale entropy-regularized OMWU,
whose detailed procedure is again outlined in Algorithm 1 using (10) for extrapolation.

4.1 PERFORMANCE GUARANTEES UNDER CONSTANT AND KNOWN DELAYS

To highlight the potential benefit of learning rate separation, we start by studying the convergence of
two-timescale OMWU in the asynchronous setting with constant and known delays, which has been
studied in (Weinberger & Ordentlich, 2002; Flaspohler et al., 2021; Meng et al., 2022). We have the
following theorem, which reveals a a faster linear convergence to the QRE by using a delay-aware
two-timescale learning rate design.

Theorem 3 (Last-iterate convergence with fixed delays). Suppose that the delays γ(t)i = γ are fixed
and known. Suppose that the learning rate η of two-timescale OMWU in Algorithm 1 satisfies

η ≤ min

{
1

2τ(γ + 1)
,

1

5dmax ∥A∥∞ (γ + 1)2

}
and η is determined by 1 − ητ = (1 − ητ)(γ+1), then the last iterate π(t) and π(t) converge to the
QRE at a linear rate: for T ≥ γ,

max
{
KL
(
π⋆
τ ∥π(T+1)

)
,
1

2
KL
(
π⋆
τ ∥π(T−γ+1)

)}
≤(1− ητ)T+1KL

(
π⋆
τ ∥π(0)

)
+ (1− ητ)T+1−γ .

In addition, the QRE-gap converges linearly according to

QRE-Gapτ (π
(T−γ+1)) ≤2max

{d2max ∥A∥2∞
τ

,
1

η

}(
(1− ητ)T+1KL

(
π⋆
τ ∥π(0)

)
+ (1− ητ)T+1−γ

)
.

By optimizing the learning rate η, Theorem 3 implies that two-timescale OMWU takes at most
Õ
(

dmax∥A∥∞(γ+1)2

τ log 1
ϵ

)
iterations to find an ϵ-QRE in a last-iterate manner, which translates to an

iteration complexity of Õ
(

dmax∥A∥∞(γ+1)2

ϵ

)
for finding an ϵ-NE. This significantly improves over

the iteration complexity of Õ
(
d2max ∥A∥2∞ (γ + 1)2/ϵ2

)
for single-timescale OMWU, verifying the

positive role of adopting two-timescale learning rate in enabling faster convergence.
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4.2 PERFORMANCE GUARANTEES WITH PERMUTED BOUNDED DELAYS

The above result requires the exact information of the delay, which may not always be available.
Motivated by the need to address arbitrary or even adversarial delays, we consider a more realistic
scenario, where the payoff sequence arrives in a permuted order (Agarwal & Duchi, 2011) con-
strained by a maximum bounded delay (McMahan & Streeter, 2014; Wan et al., 2022).

Assumption 2 (Bounded delay). For any i ∈ V and t > 0, it holds that γ(t)i ≤ γ.
Assumption 3 (Permuted feedback). For any t > 0, the payoff vector at the t-th iteration is received
by agent i only once. The payoff at the 0-th iteration can be used multiple times.

The following theorem unveils the convergence of two-timescale OMWU to the QRE in an average
sense under permutated bounded delays.
Theorem 4 (Average-iterate convergence under permutated delays). Under Assumption 2 and
3, suppose that the learning rate η of two-timescale OMWU in Algorithm 1 satisfies η ≤
min

{
1

2τ(γ+1) ,
1

28dmax∥A∥∞(γ+1)5/2

}
, and η is determined by 1 − ητ = (1 − ητ)(γ+1), then for

T > 2γ, it holds that

1

T − 2γ
max

{ T−1∑
t=2γ

KL
(
π⋆
τ ∥π(t+1)

)
,
1

3

T−1∑
t=2γ

KL
(
π⋆
τ ∥π(t−γ+1)

)}
≤ 1

ητ(T − 2γ)

(
KL
(
π⋆
i,τ ∥π(0)

i

)
+ n

)
+

24nγ logSmax

T − 2γ
. (16)

Furthermore, the average QRE-gap can be bounded by

1

T − 2γ

T−1∑
t=2γ

QRE-Gapτ (π
(t+1))

≤ 1

T − 2γ
max

{3d2max ∥A∥2∞
2τ

, τ
}( 1

ητ
(KL

(
π⋆
i,τ ∥π(0)

i

)
+ n) + 36nγ logSmax

)
.

Theorem 4 guarantees that the best iterate among {π(t)}2γ<t≤T is an ϵ-QRE as long as

T is on the order of Õ
(

nd3
max∥A∥3

∞(γ+1)5/2

τ2ϵ

)
, which translates to an iteration complexity of

Õ
(

nd3
max∥A∥3

∞(γ+1)5/2

ϵ3

)
for finding an ϵ-NE. While the rate seems slower than the previous the-

orems, Theorem 4 holds under arguably the weakest delay assumptions, where it can be even ad-
versarially bounded. We remark that the result in (16) also guarantees the convergence of the last
iterate π(t) to the QRE asymptotically, although without a finite-time rate. This is in sharp con-
trast to typical average-iterate analysis that only applies to 1

T

∑T
t=1 π

(t) without implications on the
convergence of the last iterate π(t).
Remark 2. The analysis in this section can be generalized to more commonly-used delay models
where the reward information is not assumed to be observed once per round (Quanrud & Khashabi,
2015; Joulani et al., 2013), i.e., in every round an agent may observe multiple reward feedbacks from
previous iterations or receive no information. This can be achieved by storing reward feedbacks in
a buffer memory and picking one for policy update every round in a First-In-First-Out manner.

5 NUMERICAL EXPERIMENTS

In this section, we verify our theoretical findings by investigating the performance of both single-
timescale and two-timescale OMWU on randomly generated zero-sum entropy-regularized polyma-
trix games with n = 10, |Si| = 10, i ∈ V and τ = 0.1. For each (i, j) ∈ E, we set Aij = −A⊤

ji

with entries ofAij independently sampled from the uniform distribution over [−1, 1]. All the results
are averaged over five independent runs.

In Fig. 1 (a), we compare the performance of single-timescale OMWU in both synchronous and
asynchronous settings, with delay uniformly sampled from {0, 1, . . . , 10}. We adopt the opti-
mal learning rate η from {0.1, 0.05, 0.02, 0.01, . . . } that yields the highest accuracy. The method

8
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Figure 1: KL
(
π⋆
τ ∥π(t)

)
of single-timescale and two-timescale OMWU with respect to different

values of learning rate and delay. (a): performance of single-timescale OMWU in the synchronous
setting and asynchronous setting. (b) & (c): performance of the two methods after 5000 iterations
under various choices of η and η, with η̄ fixed to η̄ = τ−1(1 − (1 − ητ)γ+1) in (b) and η fixed to
0.001 in (c).

achieves linear convergence in both cases, yet the convergence rate is slowed down by delayed feed-
backs in the asynchronous setting. Fig. 1 (b) and (c) compare the effect of different choices of
learning rates η, η on the performance of the proposed methods, where the feedback is permutated
with bounded delay γ = 25 (cf. Assumptions 2 and 3). In general, two-timescale OMWU outper-
forms single-timescale OMWU given appropriate choices of learning rate η. On the other hand, (c)
demonstrates that the choice of η̄ = τ−1(1 − (1 − ητ)γ+1) suggested by the theory (marked with
star) indeed leads to near-optimal performance of two-timescale OMWU.

Figure 2 shows KL
(
π⋆
τ ∥π(t)

)
with respect to the number of iterations of single-timescale and two-

timescale OMWU under different asynchronous scenarios, with optimal choices of η and τ = 0.1.
In particular, two-timescale OMWU adopts the extrapolation learning rate suggested by theory η̄ =
τ−1(1 − (1 − ητ)γ+1). While both methods yield linear convergence to the QRE, two-timescale
method outperforms its single-timescale counterpart in the case with constant and known delay and
the case where the feedback is permutated with bounded delay, which verifies our theory.
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Figure 2: KL
(
π⋆
τ ∥π(t)

)
with respect to iteration count t of single-timescale and two-timescale

OMWU under various asynchronous settings. (a): random delays bounded by γ = 25. (b): constant
delays γ = 50. (c): permuted feedback with delay bounded by γ = 25.

6 CONCLUSION

This paper studies asynchronous gradient play in zero-sum polymatrix games, by investigating the
convergence behaviors of entropy-regularized OMWU with delayed feedbacks under two different
schedules of the learning rates. We demonstrate that single-timescale OMWU enjoys a linear last-
iterate convergence to the QRE even under mild statistical delays. However, the presence of the delay
noticeably limits the allowable range of learning rates and slows down the convergence. To mitigate
the impact, we further show that the method benefits from adopting a two-timescale learning rate
in a delay-aware manner, which achieves a faster last-iterate convergence when the delay is fixed
and known, and continues to converge provably even when the delays are arbitrarily bounded in
an average-iterate manner. We believe our work lays the foundation for further understandings of
delayed feedback in games under symmetric and independent learning.
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A FURTHER RELATED WORKS

Learning in two-player zero-sum matrix games. Freund & Schapire (1999) proved that Multi-
plicative Weights Update (MWU) method achieve an average-iterate convergence rate of O(1/

√
T )

through the lens of regret analysis. Daskalakis et al. (2011) is the first to achieve an optimal conver-
gence rate of O(1/T ) with the excessive gap technique of Nesterov (Nesterov, 2005a;b). Rakhlin
& Sridharan (2013) achieved the same rate with OMD, which is more commonly referred to as
OMWU when entropy regularization is in use for the mirror descent update rule. In terms of last-
iterate convergence, Daskalakis & Panageas (2018) established asymptotic last-iterate convergence
for OMWU assuming the uniqueness of NE. Wei et al. (2021) improved upon the analysis under the
same assumption by showing a problem-dependent linear rate of convergence, which is extended to
a class of extensive-form games (Lee et al., 2021). Cen et al. (2021) showed that entropy-regularized
OMWU converges linearly to the QRE of two-player zero-sum matrix game, which translates to an
iteration complexity of Õ(1/T ) for finding an ϵ-NE, without assuming its uniqueness; the linear
convergence to the QRE continues to hold with smooth value updates (Cen et al., 2022). Sokota
et al. (2022) showed that linear convergence to QRE can be achieved without resorting to optimistic
update rules, e.g., using entropy-regularized MWU, albeit with a more restrictive learning rate. It is
worth pointing out that the idea of learning rate separation has been explored for equilibrium finding
in two-player zero-sum games with instant feedback (Fasoulakis et al., 2022) and online learning
with delayed feedback (Hsieh et al., 2020), but lacks study in an asynchronous multi-player game
setting.
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Asynchronous optimization. Asynchronous and decentralized optimization algorithms have been
extensively studied since the proposal of Bertsekas & Tsitsiklis (1989), where a number of agents
seek to find an approximate global optimizer of a common loss function, by performing iterative
gradient-based methods in a collaborative manner. Typical approaches including parallelizing the
computation of gradient with regard to data (Tong et al., 2020), or parallelizing the model updates by
imposing coordinate update rules (Nesterov, 2012; Liu et al., 2014; Liu & Wright, 2015). Delayed
gradient (feedback) is also common in these scenarios due to the existence of other agents updating
the model. Moreover, the zero-sum polymatrix setting considered in this work is inherently non-
collaborative by requiring every agent to maximize its own utility function and compete with other
agents, and leads to substantially difference analysis techniques.

B PROOF FOR SINGLE-TIMESCALE OMWU (SECTION 3)

Before delving into the main proof, we first record a useful lemma pertaining to a basic property
of zero-sum polymatrix games; the proof is deferred to Appendix E.1. For i ∈ V , we denote by
Ni = {j : (i, j) ∈ E} the neighbors of agent i in the graph (V,E). For notational simplicity, we
denote by x 1

= y the equivalence between two vectors x and y up to a global shift, i.e.,

x = y + c · 1 (17)

for some constant c ∈ R, where 1 is the all-one vector.
Lemma 1. For any zero-sum polymatrix game G, it holds that for π, π′ ∈ ∆(S) that∑

i∈V

[
ui(πi, π

′
−i) + ui(π

′
i, π−i)

]
= 0. (18)

Or equivalently,
∑

i∈V

[
π⊤
i Aiπ

′ + (π′
i)

⊤Aiπ
]
= 0. It follows that∑

i∈V

〈
πi − π′

i, Ai(π − π′)
〉
=
∑
i∈V

[ui(π) + ui(π
′)]−

∑
i∈V

[
π⊤
i Aiπ

′ + (π′
i)

⊤Aiπ
]
= 0.

B.1 PROOF OF THEOREM 1

We start with the following lemma that characterizes the iterates of OMWU, which generalizes Cen
et al. (2021, Lemma 1) for zero-sum two-player games to zero-sum polymatrix games. The proof
can be found in Appendix E.2.
Lemma 2. The iterates of OMWU based on the update rule (9) satisfy〈

log π(t+1) − (1− ητ) log π(t) − ητ log π⋆
τ , π

(t+1) − π⋆
τ

〉
= 0.

To continue, by the definition of KL divergence, we have〈
log π(t+1) − (1− ητ) log π(t) − ητ log π⋆

τ , π
(t+1)

〉
=
〈
log π(t+1) − (1− ητ) log π(t) − ητ log π⋆

τ , π
(t+1)

〉
−
〈
log π(t+1) − log π(t+1), π(t+1)

〉
−
〈
log π(t+1) − log π(t+1), π(t+1) − π(t+1)

〉
= (1− ητ)KL

(
π(t+1) ∥π(t)

)
+ ητKL

(
π(t+1) ∥π⋆

τ

)
+ KL

(
π(t+1) ∥π(t+1)

)
−
〈
log π(t+1) − log π(t+1), π(t+1) − π(t+1)

〉
.

In addition,

−
〈
log π(t+1) − (1− ητ) log π(t) − ητ log π⋆

τ , π
⋆
τ

〉
= KL

(
π⋆
τ ∥π(t+1)

)
− (1− ητ)KL

(
π⋆
τ ∥π(t)

)
.

Summing up the above two relations, in view of Lemma 2, it holds that

KL
(
π⋆
τ ∥π(t+1)

)
= (1− ητ)KL

(
π⋆
τ ∥π(t)

)
− (1− ητ)KL

(
π(t+1) ∥π(t)

)
− KL

(
π(t+1) ∥π(t+1)

)
+
〈
log π(t+1) − log π(t+1), π(t+1) − π(t+1)

〉
− ητKL

(
π(t+1) ∥π⋆

τ

)
.

(19)
We now proceed to bound the terms of interest one by one.
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Bounding KL
(
π⋆
τ ∥π(t)

)
. We aim to control the right-hand-side (RHS) of (19). Based on the

update rule of π(t+1)
i in Algorithm 1, we have

log π
(t+1)
i − log π

(t+1)
i

1
= ηAi(π

(t) − π(t+1)) (20)
1
= ηAi(π

(t) − π(t)) + ηAi(π
(t) − π(t+1)).

It follows that〈
log π

(t+1)
i − log π

(t+1)
i , π

(t+1)
i − π

(t+1)
i

〉
= η

∑
j∈Ni

(π
(t+1)
i − π

(t+1)
i )⊤Aij(π

(t)
j − π

(t)
j ) + η

∑
j∈Ni

(π
(t+1)
i − π

(t+1)
i )⊤Aij(π

(t)
j − π

(t+1)
j )

≤ η
∑
j∈Ni

∥Aij∥∞
∥∥π(t+1)

i − π
(t+1)
i

∥∥
1

∥∥π(t)
j − π

(t)
j

∥∥
1
+ η

∑
j∈Ni

∥Aij∥∞
∥∥π(t+1)

i − π
(t+1)
i

∥∥
1

∥∥π(t)
j − π

(t+1)
j

∥∥
1

≤ η

2
∥A∥∞

∑
j∈Ni

(∥∥π(t)
j − π

(t)
j

∥∥2
1
+
∥∥π(t+1)

j − π
(t)
j

∥∥2
1
+ 2
∥∥π(t+1)

i − π
(t+1)
i

∥∥2
1

)
≤ η ∥A∥∞

∑
j∈Ni

(
KL
(
π
(t)
j ∥π(t)

j

)
+ KL

(
π
(t+1)
j ∥π(t)

j

)
+ 2KL

(
π
(t+1)
i ∥π(t+1)

i

))
, (21)

where the last line follows from Pinsker’s inequality. Summing the inequality over i ∈ V , we get〈
log π(t+1) − log π(t+1), π(t+1) − π(t+1)

〉
≤ ηdmax ∥A∥∞

(
KL
(
π(t) ∥π(t)

)
+ KL

(
π(t+1) ∥π(t)

)
+ 2KL

(
π(t+1) ∥π(t+1)

))
.

Plugging the above inequality back into (19) yields

KL
(
π⋆
τ ∥π(t+1)

)
≤ (1− ητ)KL

(
π⋆
τ ∥π(t)

)
− (1− ητ − ηdmax ∥A∥∞)KL

(
π(t+1) ∥π(t)

)
− (1− 2ηdmax ∥A∥∞)KL

(
π(t+1) ∥π(t+1)

)
+ ηdmax ∥A∥∞ KL

(
π(t) ∥π(t)

)
− ητKL

(
π(t+1) ∥π⋆

τ

)
. (22)

With the choice of the learning rate

0 < η ≤ min

{
1

2τ
,

1

4dmax ∥A∥∞

}
,

it holds that 1− ητ − ηdmax ∥A∥∞ > 0 and

ηdmax ∥A∥∞ ≤ 1

4
≤ (1− ητ)(1− 2ηdmax ∥A∥∞). (23)

This allows us to further relax (22) by

KL
(
π⋆
τ ∥π(t+1)

)
+ (1− 2ηdmax ∥A∥∞)KL

(
π(t+1) ∥π(t+1)

)
≤ (1− ητ)KL

(
π⋆
τ ∥π(t)

)
+ ηdmax ∥A∥∞ KL

(
π(t) ∥π(t)

)
≤ (1− ητ)

(
KL
(
π⋆
τ ∥π(t)

)
+ (1− 2ηdmax ∥A∥∞)KL

(
π(t) ∥π(t)

))
.

Let us now introduce the potential function of iterates

L(t) := KL
(
π⋆
τ ∥π(t)

)
+ (1− 2ηdmax ∥A∥∞)KL

(
π(t) ∥π(t)

)
,

which allows us to simply the previous inequality as

L(t+1) ≤ (1− ητ)L(t) ≤ (1− ητ)t+1L(0) = (1− ητ)t+1KL
(
π⋆
τ ∥π(0)

)
, (24)

where the last equality follows from the definition π(0) = π(0). Hence, we have

KL
(
π⋆
τ ∥π(t)

)
≤ L(t) ≤ (1− ητ)tKL

(
π⋆
τ ∥π(0)

)
.
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Bounding KL
(
π⋆
τ ∥π(t+1)

)
. Following similar approaches to (21), we can bound

−
〈
π⋆
i,τ − π

(t+1)
i , log π

(t+1)
i − log π

(t+1)
i

〉
= η(π

(t+1)
i − π⋆

i,τ )
⊤Ai(π

(t) − π(t)) + η(π
(t+1)
i − π⋆

i,τ )
⊤Ai(π

(t) − π(t+1))

≤ η ∥A∥∞
∑
j∈Ni

(
KL
(
π
(t)
j ∥π(t)

j

)
+ KL

(
π
(t+1)
j ∥π(t)

j

)
+ 2KL

(
π⋆
i,τ ∥π(t+1)

i

))
. (25)

Summing the inequality over i ∈ V leads to

−
〈
π⋆
τ − π(t+1), log π(t+1) − log π(t+1)

〉
≤ ηdmax ∥A∥∞

[
KL
(
π(t) ∥π(t)

)
+ KL

(
π(t+1) ∥π(t)

)
+ 2KL

(
π⋆
τ ∥π(t+1)

)]
.

On the other hand, by the definition of KL divergence, we have

KL
(
π⋆
τ ∥π(t+1)

)
= KL

(
π⋆
τ ∥π(t+1)

)
−KL

(
π(t+1) ∥π(t+1)

)
−
〈
π⋆
τ−π(t+1), log π(t+1)−log π(t+1)

〉
.

(26)
Combining the above two inequalities, we get

(1− 2ηdmax ∥A∥∞)KL
(
π⋆
τ ∥π(t+1)

)
≤ KL

(
π⋆
τ ∥π(t+1)

)
+ ηdmax ∥A∥∞

(
KL
(
π(t) ∥π(t)

)
+ KL

(
π(t+1) ∥π(t)

))
.

Plugging the above inequality back into (22), we have

(1− 2ηdmax ∥A∥∞)KL
(
π⋆
τ ∥π(t+1)

)
≤ (1− ητ)KL

(
π⋆
τ ∥π(t)

)
− (1− ητ − 2dmaxη ∥A∥∞)KL

(
π(t+1) ∥π(t)

)
− ητKL

(
π(t+1) ∥π⋆

τ

)
− (1− 2ηdmax ∥A∥∞)KL

(
π(t+1) ∥π(t+1)

)
+ 2ηdmax ∥A∥∞ KL

(
π(t) ∥π(t)

)
≤ (1− ητ)KL

(
π⋆
τ ∥π(t)

)
+ 2ηdmax ∥A∥∞ KL

(
π(t) ∥π(t)

)
≤ KL

(
π⋆
τ ∥π(t)

)
+ (1− 2ηdmax ∥A∥∞)KL

(
π(t) ∥π(t)

)
= L(t),

where the second and third inequalities follow from the choice of the learning rate, and the last line
follows from the definition of the potential function L(t). Then the result follows from (24) as

1

2
KL
(
π⋆
τ ∥π(t+1)

)
≤ (1− 2ηdmax ∥A∥∞)KL

(
π⋆
τ ∥π(t+1)

)
≤ L(t) ≤ (1− ητ)tKL

(
π⋆
τ ∥π(0)

)
.

Bounding the QRE-Gap. Finally, we bound the QRE-gap, which can be linked to the KL diver-
gence using the following lemma. The proof can be found in Appendix E.3.
Lemma 3. For any π ∈ ∆(S) and QRE π⋆

τ ∈ ∆(S), it holds that

QRE-Gapτ (π) ≤ τKL
(
π ∥π⋆

τ

)
+
d2max ∥A∥2∞

τ
KL
(
π⋆
τ ∥π

)
.

Lemma 3 tells us

QRE-Gapτ (π
(t)) ≤ τKL

(
π(t) ∥π⋆

τ

)
+
d2max ∥A∥2∞

τ
KL
(
π⋆
τ ∥π(t)

)
. (27)

With KL
(
π⋆
τ ∥π(t)

)
controlled in the above, we still need to control KL

(
π(t) ∥π⋆

τ

)
. From (22), it

follows that

τKL
(
π(t) ∥π⋆

τ

)
≤ η−1(1− ητ)L(t−1) ≤ η−1(1− ητ)tL(0) = η−1(1− ητ)tKL

(
π⋆
τ ∥π(0)

)
.

Plugging them back to (27), we arrive at

QRE-Gapτ (π
(t)) ≤

(
η−1 + 2τ−1d2max∥A∥2∞

)
(1− ητ)t−1KL

(
π⋆
τ ∥π(0)

)
.

B.2 PROOF OF THEOREM 2

We begin with bounding the KL divergence KL
(
π⋆
τ ∥π(t)

)
and then move to bound the QRE-gap by

linking it to the KL divergence.
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Bounding the term KL
(
π⋆
τ ∥π(t)

)
. We start with the following equation

(1− ητ)KL
(
π⋆
i,τ ∥π(t)

i

)
= (1− ητ)KL

(
π
(t+1)
i ∥π(t)

i

)
+ ητKL

(
π
(t+1)
i ∥π⋆

i,τ

)
+ KL

(
π
(t+1)
i ∥π(t+1)

i

)
+ KL

(
π⋆
i,τ ∥π(t+1)

i

)
−
〈
log π

(t+1)
i − log π

(t+1)
i , π

(t+1)
i − π

(t+1)
i

〉
+ η(π

(t+1)
i − π⋆

i,τ )
⊤Ai(π

(κ
(t)
i ) − π⋆

τ ) (28)

where its proof follows a similar deduction as (19). Our first target is to bound the last two terms on
the RHS of (28) with

ητKL
(
π
(t+1)
i ∥π⋆

i,τ

)
+ KL

(
π
(t+1)
i ∥π(t+1)

i

)
+ (1− ητ)KL

(
π
(t+1)
i ∥π(t)

i

)
.

Let us introduce the potential function of iterates

Ψ
(l)
i := KL

(
π
(l+1)
i ∥π(l)

i

)
+KL

(
π
(l)
i ∥π(l)

i

)
, Ψ(l) =

∑
i∈V

Ψ
(l)
i = KL

(
π(l+1) ∥π(l)

)
+KL

(
π(l) ∥π(l)

)
,

which will be used repetitively in the rest of this proof. For notational simplicity, let Ψ(l)
i = 0 when

l < 0.

Step 1: bounding
〈
log π

(t+1)
i − log π

(t+1)
i , π

(t+1)
i − π

(t+1)
i

〉
. Following a similar argument as

(21), we get〈
log π

(t+1)
i − log π

(t+1)
i , π

(t+1)
i − π

(t+1)
i

〉
= η

∑
j∈Ni

(π
(t+1)
i − π

(t+1)
i )⊤Aij(π

(κ
(t+1)
i )

j − π
(κ

(t)
i )

j )

≤ ηdmax ∥A∥∞ KL
(
π
(t+1)
i ∥π(t+1)

i

)
+
η ∥A∥∞

2

∑
j∈Ni

∥∥π(κ
(t+1)
i )

j − π
(κ

(t)
i )

j

∥∥2
1
. (29)

To control the term
∥∥π(κ

(t+1)
i )

j − π
(κ

(t)
i )

j

∥∥2
1
, when t = 0, we have∥∥π(κ

(t+1)
i )

j − π
(κ

(t)
i )

j

∥∥2
1
=
∥∥π(κ

(t+1)
i )

j − π
(0)
j

∥∥2
1
≤
∥∥π(1)

j − π
(0)
j

∥∥2
1
≤ 2Ψ

(0)
j (30)

by Pinsker’s inequality. For t ≥ 1, consider the decomposition

π
(t)
j − π

(t−k)
j =

t−1∑
l=t−k

(
π
(l+1)
j − π

(l)
j

)
, ∀1 ≤ k ≤ t,

it then follows that∥∥π(t)
j − π

(t−k)
j

∥∥2
1
≤ k

t−1∑
l=t−k

∥∥π(l+1)
j − π

(l)
j

∥∥2
1

≤ 2k
t−1∑

l=t−k

(∥∥π(l+1)
j − π

(l)
j

∥∥2
1
+
∥∥π(l)

j − π
(l)
j

∥∥2
1

)

≤ 4k
t−1∑

l=t−k

Ψ
(l)
j , (31)

where the last line applies Pinsker’s inequality. Depending on whether γ(t+1)
i > 0, we proceed to

bound the terms
∥∥π(κ

(t+1)
i )

j − π
(κ

(t)
i )

j

∥∥2
1

in (29) considering the following two cases based on (31).

• γ(t+1)
i = 0. Then∥∥π(κ

(t+1)
i )

j − π
(κ

(t)
i )

j

∥∥2
1
≤ 2
∥∥π(t+1)

j − π
(t)
j

∥∥2
1
+ 2
∥∥π(t)

j − π
(κ

(t)
i )

j

∥∥2
1
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≤ 8Ψ
(t)
j + 8γ

(t)
i

t−1∑
l=t−γ

(t)
i

Ψ
(l)
j ,

where the last step uses (31) and∥∥π(t+1)
j − π

(t)
j

∥∥2
1
≤ 2

(∥∥π(t+1)
j − π

(t)
j

∥∥2
1
+
∥∥π(t)

j − π
(t)
j

∥∥2
1

)
≤ 4Ψ

(t)
j

via again Pinsker’s inequality.

• γ(t+1)
i > 0. Then it follows similarly that

∥∥π(κ
(t+1)
i )

j − π
(κ

(t)
i )

j

∥∥2
1
≤

t−1∑
l=t+1−γ

(t+1)
i

∥∥π(l+1)
j − π

(l)
j

∥∥2
1
+

t−1∑
l=t−γ

(t)
i

∥∥π(l+1)
j − π

(l)
j

∥∥2
1

≤ 4γ
(t+1)
i

t−1∑
l=t−γ

(t+1)
i

Ψ
(l)
j + 4γ

(t)
i

t−1∑
l=t−γ

(t)
i

Ψ
(l)
j .

Combining the above two bounds together, we get∥∥π(κ
(t+1)
i )

j − π
(κ

(t)
i )

j

∥∥2
1
≤ 8Ψ

(t)
j + 8γ

(t)
i

t−1∑
l=t−γ

(t)
i

Ψ
(l)
j + 4γ

(t+1)
i

t−1∑
l=t−γ

(t+1)
i

Ψ
(l)
j (32)

when t > 0. In view of (30) when t = 0, the above bound (32) holds for all t ≥ 0. Plugging the
above inequality into (29) yields〈

log π
(t+1)
i − log π

(t+1)
i , π

(t+1)
i − π

(t+1)
i

〉
≤ 2η ∥A∥∞

∑
j∈Ni

t−1∑
l=t−γ

(t+1)
i

γ
(t+1)
i Ψ

(l)
j + 4η ∥A∥∞

∑
j∈Ni

t−1∑
l=t−γ

(t)
i

γ
(t)
i Ψ

(l)
j

+ 4η ∥A∥∞
∑
j∈Ni

Ψ
(t)
j + ηdmax ∥A∥∞ KL

(
π
(t+1)
i ∥π(t+1)

i

)
. (33)

Step 2: bounding (π
(t+1)
i −π⋆

i,τ )
⊤Ai(π

(κ
(t+1)
i ) −π⋆

τ ). Let us begin with the following decompo-
sition

(π
(t+1)
i − π⋆

i,τ )
⊤Ai(π

(κ
(t+1)
i ) − π⋆

τ ) = (π
(t+1)
i − π⋆

i,τ )
⊤Ai(π

(t+1) − π⋆
τ )

+ (π
(t+1)
i − π⋆

i,τ )
⊤Ai(π

(κ
(t+1)
i ) − π(t+1)), (34)

where the second term in the RHS of (34) can be bounded by

(π
(t+1)
i − π⋆

i,τ )
⊤Ai(π

(κ
(t+1)
i ) − π(t+1))

=
∑
j∈Ni

(π
(t+1)
i − π⋆

i,τ )
⊤Aij(π

(κ
(t+1)
i )

j − π
(t+1)
j )

≤ ∥A∥∞
∑
j∈Ni

∥∥π(t+1)
i − π⋆

i,τ

∥∥
1

∥∥π(κ
(t+1)
i )

j − π
(t+1)
j

∥∥
1

≤ 1

2
∥A∥∞

∑
j∈Ni

(
τ

dmax ∥A∥∞
∥∥π(t+1)

i − π⋆
i,τ

∥∥2
1
+
dmax ∥A∥∞

τ

∥∥π(κ
(t+1)
i )

j − π
(t+1)
j

∥∥2
1

)

≤ τKL
(
π
(t+1)
i ∥π⋆

i,τ

)
+
dmax ∥A∥2∞

2τ

∑
j∈Ni

∥∥π(κ
(t+1)
i )

j − π
(t+1)
j

∥∥2
1
.

Following similar deduction of (32) for the second term, we attain

(π
(t+1)
i − π⋆

i,τ )
⊤Ai(π

(κ
(t+1)
i ) − π(t+1))
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≤ τKL
(
π
(t+1)
i ∥π⋆

i,τ

)
+

4dmax ∥A∥2∞
τ

∑
j∈Ni

(
Ψ

(t)
j +

t−1∑
l=t−γ

(t+1)
i

γ
(t+1)
i Ψ

(l)
j

)
.

Plugging the above inequality back to (34) results in

(π
(t+1)
i − π⋆

i,τ )
⊤Ai(π

(κ
(t+1)
i ) − π⋆

τ ) ≤ (π
(t+1)
i − π⋆

i,τ )
⊤Ai(π

(t+1) − π⋆
τ )

+ τKL
(
π
(t+1)
i ∥π⋆

i,τ

)
+

4dmax ∥A∥2∞
τ

∑
j∈Ni

(
Ψ

(t)
j +

t−1∑
l=t−γ

(t+1)
i

γ
(t+1)
i Ψ

(l)
j

)
.

(35)

Step 3: combining the bounds. For simplicity, we introduce the short-hand notation

cτ = 1 +
dmax ∥A∥∞

τ
and cA = dmax ∥A∥∞ . (36)

Combining (33) and (35) into (28), and summing over i ∈ V gives

(1− ητ)KL
(
π⋆
τ ∥π(t)

)
≥ (1− ητ)KL

(
π(t+1) ∥π(t)

)
+ (1− 2ηcA)KL

(
π(t+1) ∥π(t+1)

)
+ KL

(
π⋆
τ ∥π(t+1)

)
− 4η ∥A∥∞

∑
i∈V

∑
j∈Ni

(
t−1∑

l=t−γ
(t+1)
i

cτγ
(t+1)
i Ψ

(l)
j +

t−1∑
l=t−γ

(t)
i

γ
(t)
i Ψ

(l)
j + cτΨ

(t)
j

)

≥ KL
(
π⋆
τ ∥π(t+1)

)
+ (1− 4ηcA(cτ + 1))Ψ(t)

− 4η ∥A∥∞
∑
i∈V

∑
j∈Ni

(
cτ

t−1∑
l=t−γ

(t+1)
i

γ
(t+1)
i Ψ

(l)
j +

t−1∑
l=t−γ

(t)
i

γ
(t)
i Ψ

(l)
j

)
, (37)

where we make use of the fact∑
i∈V

(π
(t+1)
i − π⋆

i,τ )
⊤Ai(π

(t+1) − π⋆
τ ) = 0

from Lemma 1 in the first inequality, and the second inequality uses the relation∑
i∈V

∑
j∈Ni

Ψ
(t)
j =

∑
i∈V

diΨ
(t)
i ≤ dmaxΨ

(t).

Step 4: finishing up via averaging the delay. We now evaluate the expectation of
KL
(
π⋆
τ ∥π(t+1)

)
. Recall that we use subscript Eγ(t) [·] to represent the conditional expectation given

γ(t) = {γ(t)i }i∈V . We shall first control the conditional expectation of the last term in (37). Ob-
serving that π(l+1)

j , π
(l)
j are independent of γ(t)i for j ∈ Ni and l ≤ t − 1. Using the definition of

E(t− l), we have∑
i∈V

∑
j∈Ni

Eγ(t)

[
γ
(t)
i

t−1∑
l=t−γ

(t)
i

Ψ
(l)
j

]
=
∑
i∈V

t−1∑
l=0

∑
j∈Ni

E
t−l≤γ

(t)
i

[
γ
(t)
i Ψ

(l)
j

]

≤
t−1∑
l=0

E(t− l)
∑
i∈V

∑
j∈Ni

Ψ
(l)
j

=
t−1∑
l=0

E(t− l)
∑
i∈V

∑
j∈Ni

Ψ
(l)
i

≤ dmax

t−1∑
l=0

E(t− l)
∑
i∈V

Ψ
(l)
i = dmax

t−1∑
l=0

E(t− l)Ψ(l), (38)
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where the second line follows from the definition of E(t − l) in Assumption 1. Applying a sim-
ilar argument to bound

∑
i∈V

∑
j∈Ni

Eγ(t+1)

[
γ
(t+1)
i

∑t−1

l=t−γ
(t+1)
i

Ψ
(l)
j

]
, and taking expectation of

γ(t), γ(t+1) on both sides of (37), we get

(1− ητ)Eγ(t)

[
KL
(
π⋆
τ ∥π(t)

)]
≥ Eγ(t),γ(t+1)

[
KL
(
π⋆
τ ∥π(t+1)

)
+ (1− 4cA(cτ + 1))Ψ(t)

]
− 4ηcA(cτ + 1)

t−1∑
l=0

E(t− l)Ψ(l).

Taking expectation on both sides over all the delays yields

(1− ητ)E
[
KL
(
π⋆
τ ∥π(t)

)]
≥ E

[
KL
(
π⋆
τ ∥π(t+1)

)]
+ E

[
(1− 4ηcA(cτ + 1))Ψ(t) − 4ηcA(cτ + 1)

∑t−1

l=0
E(t− l)Ψ(l)︸ ︷︷ ︸

=:U(t)

]
.

(39)

Telescoping over t = 0, 1, . . . , T , we get

(1− ητ)T+1KL
(
π⋆
τ ∥π(0)

)
≥ E

[
KL
(
π⋆
τ ∥π(T+1)

)]
+

T∑
t=0

(1− ητ)T−tE
[
U (t)

]
, (40)

which leads to the desired bound if
t∑

t=0

(1− ητ)T−tE
[
U (t)

]
≥ 0. (41)

Proof of (41). To begin, notice that with the choice of the learning rate

0 < η ≤ min

{
τ

24d2max ∥A∥2∞ (L+ 1)
,
ζ − 1

ζτ

}
,

it follows that
1

1− ητ
≤ ζ (42a)

and

4ηcA(cτ + 1)(L+ 1) < 4
τ

24d2max ∥A∥2∞ (L+ 1)
dmax ∥A∥∞

(
2 +

dmax ∥A∥∞
τ

)
(L+ 1)

=
τ

6dmax ∥A∥∞

(
2 +

dmax ∥A∥∞
τ

)
=

τ

3dmax ∥A∥∞
+

1

6
≤ 1

2
(42b)

as τ ≤ dmax ∥A∥∞. Both of these relations will be useful in our follow-up analysis.

Now, taking the definition of U (t) (cf. (39)), we have

T∑
t=0

(1− ητ)T−tU (t) =
T∑

t=0

(1− ητ)T−t

[
(1− 4ηcA(cτ + 1))Ψ(t) − 4ηcA(cτ + 1)

t−1∑
l=0

E(t− l)Ψ(l)

]
,

where the second half of the RHS can be further controlled via
T∑

t=0

(1− ητ)T−t
t−1∑
l=0

E(t− l)Ψ(l) =
T∑

t=0

Ψ(t)
T∑

l=t+1

(1− ητ)T−lE(l − t)

≤
T∑

t=0

Ψ(t)
T−t∑
l′=0

(1− ητ)T−(t+l′)E(l′)
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=
T∑

t=0

(1− ητ)T−tΨ(t)
T−t∑
l′=0

(1− ητ)−l′E(l′)

≤
T∑

t=0

(1− ητ)T−tΨ(t)
∞∑
l=0

ζlE(l)

=
T∑

t=0

(1− ητ)T−tLΨ(t),

where the first line follows by changing the order of summation, the second line follows from the
change of variable l′ = l− t, and the last line follows from (42a) and the definition of L in Assump-
tion 1. Plugging the above relation back leads to

T∑
t=0

(1− ητ)T−tU (t) ≥
T∑

t=0

(1− ητ)T−t [(1− 4ηcA(cτ + 1))− 4ηcA(cτ + 1)L] Ψ(t)

≥
T∑

t=0

1

2
(1− ητ)T−tΨ(t) ≥ 0, (43)

where the second line results from (42b).

Bounding the term KL
(
π⋆
τ ∥π(t+1)

)
. With a similar deduction of (19), we get

(1− ητ)KL
(
π⋆
τ ∥π(t)

)
+ η

∑
i∈V

(π
(t+1)
i − π⋆

τ )
⊤Ai(π

(κ
(t)
i ) − π⋆

τ )

= KL
(
π⋆
τ ∥π(t+1)

)
+ (1− ητ)KL

(
π(t+1) ∥π(t)

)
+ ητKL

(
π(t+1) ∥π⋆

τ

)
. (44)

Following the similar argument of (35), we have

(π
(t+1)
i − π⋆

i,τ )
⊤Ai(π

(κ
(t)
i ) − π⋆

τ ) ≤ (π
(t+1)
i − π⋆

i,τ )
⊤Ai(π

(t+1) − π⋆
τ )

+
τ

2
KL
(
π
(t+1)
i ∥π⋆

i,τ

)
+

8dmax ∥A∥2∞
τ

∑
j∈Ni

(
Ψ

(t)
j +

t−1∑
l=t−γ

(t)
i

γ
(t)
i Ψ

(l)
j

)
.

Summing over i ∈ V and plugging into (44) yields

(1− ητ)KL
(
π⋆
τ ∥π(t)

)
+

8ηdmax ∥A∥2∞
τ

∑
(i,j)∈E

(
Ψ

(t)
j +

t−1∑
l=t−γ

(t)
i

γ
(t)
i Ψ

(l)
j

)
≥ KL

(
π⋆
τ ∥π(t+1)

)
+ (1− ητ)KL

(
π(t+1) ∥π(t)

)
+
ητ

2
KL
(
π(t+1) ∥π⋆

τ

)
≥ KL

(
π⋆
τ ∥π(t+1)

)
+
ητ

2
KL
(
π(t+1) ∥π⋆

τ

)
.

Taking expectation on both sides over all delays and using (38) leads to

(1− ητ)E
[
KL
(
π⋆
τ ∥π(t)

)]
+

8ηd2max ∥A∥2∞
τ

E

[
Ψ(t) +

t−1∑
l=0

E(t− l)Ψ(l)

]
≥ E

[
KL
(
π⋆
τ ∥π(t+1)

)]
+
ητ

2
E
[
KL
(
π(t+1) ∥π⋆

τ

)]
. (45)

Notice that with the choice of the learning rate

0 < η ≤ min

{
τ

24d2max ∥A∥2∞ (L+ 1)
,
ζ − 1

ζτ

}
,

we have
8(L+ 1)ηd2max ∥A∥2∞

τ
≤ 1

2
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and

(1− ητ)t+1KL
(
π⋆
τ ∥π(0)

)
≥ 1

2

t∑
l=0

(1− ητ)t−lE
[
Ψ(l)

]
by combining (43) and (40). It follows that

E
[
Ψ(t)

]
≤ 2(1− ητ)t+1KL

(
π⋆
τ ∥π(0)

)
and

E

[
t−1∑
l=0

E(t− l)Ψ(l)

]
(i)

≤ E

[
t−1∑
l=0

(1− ητ)t−lΨ(l) · E(t− l)ζt−l

]

≤ E

[
t−1∑
l=0

(1− ητ)t−lΨ(l)
t−1∑
l=0

E(t− l)ζt−l

]
(ii)

≤ 2L(1− ητ)t+1KL
(
π⋆
τ ∥π(0)

)
,

where (i) is by the bound (1−ητ)−1 ≤ ζ and (ii) uses the definition of L in Assumption 1. Plugging
the above inequalities into (45) leads to

(1− ητ)E
[
KL
(
π⋆
τ ∥π(t)

)]
+ (1− ητ)t+1KL

(
π⋆
τ ∥π(0)

)
≥ E

[
KL
(
π⋆
τ ∥π(t+1)

)]
+
ητ

2
E
[
KL
(
π(t+1) ∥π⋆

τ

)]
.

Then from (40) we have

E
[
KL
(
π⋆
τ ∥π(t+1)

)]
≤ E

[
KL
(
π⋆
τ ∥π(t+1)

)]
+
ητ

2
E
[
KL
(
π(t+1) ∥π⋆

τ

)]
≤ (1− ητ)t+1KL

(
π⋆
τ ∥π(0)

)
+ (1− ητ)t+1KL

(
π⋆
τ ∥π(0)

)
= 2(1− ητ)t+1KL

(
π⋆
τ ∥π(0)

)
. (46)

Bounding the QRE-Gap. Combining (27) and (46), we have

E
[
QRE-Gapτ (π

(t+1))
]
≤ τE

[
KL
(
π(t+1) ∥π⋆

τ

)]
+
d2max ∥A∥2∞

τ
E
[
KL
(
π⋆
τ ∥π(t+1)

)]
≤ 2

η

(ητ
2
E
[
KL
(
π(t+1) ∥π⋆

τ

)]
+ E

[
KL
(
π⋆
τ ∥π(t+1)

)])
≤ 4(1− ητ)t+1

η
KL
(
π⋆
τ ∥π(0)

)
,

where the second line uses the learning rate bound

2

η
>

24d2max ∥A∥2∞ (L+ 1)

τ
>
d2max ∥A∥2∞

τ
.

C REGRET ANALYSIS OF SINGLE-TIMESCALE OMWU

For completeness, we also provide the regret analysis of single-timescale OMWU in both syn-
chronous and asynchronous settings, which might be of independent interest. To begin, for τ ≥ 0,
the regret for each player i ∈ V is defined as

Regreti,τ
(
T
)
= max

πi∈∆(Si)

T∑
t=1

ui,τ (πi, π
(t)
−i)−

T∑
t=1

ui,τ (π
(t)), (47)

which measures the performance gap compared to the optimal fixed strategy in hindsight for player
i, when the rest of the players follow the strategies derived from Algorithm 1.

22



Published as a conference paper at ICLR 2023

Synchronous setting. We begin with the following no-regret guarantee of single-timescale
OMWU in the synchronous setting.
Theorem 5 (No-regret without delays). Suppose all players i ∈ V follow single-timescale OMWU
in Algorithm 1 with the initialization π

(0)
i = 1

|Si|1 and the learning rate obeys 0 < η ≤
1

4dmax∥A∥∞+4τ . Then, for T ≥ 1, it holds that

Regreti,τ
(
T
)
≤ 1

η
log |Si|+ 16η degi ∥A∥2∞

∑
k∈V

log |Sk|.

By optimizing the learning rate η, Theorem 5 suggests that the regret is bounded by

max
i∈V

Regreti,τ
(
T
)
≲ Õ

(
∥A∥∞

√
ndmax

)
up to logarithmic factors. Compared with the OMD method for multi-agent games in Anagnostides
et al. (2022), which only provided the regret bound for τ = 0, our bound is more general by allowing
entropy regularization. Moreover, our bound is tighter by a factor of n/dmax by exploiting the graph
connectivity pattern, which is significant for large sparse graphs.

Asynchronous setting. We next move to the asynchronous case, and show that single-timescale
OMWU continues to enjoy no-regret learning as long as the delays have finite second-order mo-
ments.
Assumption 4 (Random delays). Recall the definition of E(ℓ) in (12). There exists some constant

σ > 0, such that E
[
(γ

(t)
i )2

]
≤∑∞

ℓ=0E(ℓ) ≤ σ2, for all t ≥ 0 and i ∈ V .

Clearly Assumption 4 is weaker than Assumption 1, since it only requires the second-order moments
to be finite, instead of an exponential decay of γ(t)i . We have the following theorem.
Theorem 6 (No-regret with random delays). Under Assumption 4, suppose all players i ∈ V follow
single-timescale OMWU in Algorithm 1 with the initialization π

(0)
i = 1

|Si|1, the regularization
parameter τ < min{1, ∥A∥∞}, and the learning rate obeys 0 < η ≤ τ

24d2
max∥A∥2

∞(σ2+1)
. Then, for

T ≥ 1, it holds that

E
[
Regreti,τ

(
T
)]

≤ 1

η
log |Si|+ 8dmax ∥A∥∞

(
dmax ∥A∥∞

τ
+ 2

)
(σ2 + 1)

∑
i∈V

log |Si|. (48)

Theorem 6 guarantees that the iterate among {π(t)}t≥1 enjoys a regret bound on the order of

max
i∈V

E
[
Regreti,τ

(
T
)]

≲ Õ
(
σ2ndmax ∥A∥2∞

τ

)
by optimizing the learning rate η.

C.1 PROOF OF THEOREM 5

Recall the expression of the regret

Regreti,τ
(
T
)
= max

πi∈∆(Si)
Regreti,τ

(
πi, T

)
,

where

Regreti,τ
(
πi, T

)
:=

T∑
t=1

ui,τ (πi, π
(t)
−i)−

T∑
t=1

ui,τ (π
(t))

=
T∑

t=0

(〈
πi − π

(t+1)
i , Aiπ

(t+1)
〉
+ τH(πi)− τH(π

(t+1)
i )

)
. (49)

Therefore, it is sufficient to bound Regreti,τ
(
πi, T

)
for any πi ∈ ∆(Si). To begin, we record the

following useful lemma whose proof can be found in Appendix E.4.
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Lemma 4. For any τ ≥ 0 and T ≥ 0, we have

∑
i∈V

Regreti,τ
(
T + 1

)
=
∑
i∈V

max
πi∈∆(Si)

T∑
t=0

(〈
πi − π

(t+1)
i , Aiπ

(t+1)
〉
+ τH(πi)− τH(π

(t+1)
i )

)
≥ 0.

Let us now proceed with the following regret decomposition〈
πi − π

(t+1)
i , Aiπ

(t+1)
〉
+ τH(πi)− τH(π

(t+1)
i )

=
〈
πi − π

(t+1)
i , Aiπ

(t+1)
〉
+ τH(πi) +

〈
π
(t+1)
i − π

(t+1)
i , Aiπ

(t)
〉
− τH(π

(t+1)
i )

−
〈
π
(t+1)
i − π

(t+1)
i , Aiπ

(t+1) −Aiπ
(t)
〉
. (50)

We proceed to bound each term on the RHS of (50).

• To begin, note that log π(t+1)
i

1
= (1− ητ) log π

(t)
i + ηAiπ

(t+1). The first term in (50) can then be
written as〈
πi − π

(t+1)
i , Aiπ

(t+1)
〉
+ τH(πi)

=
1

η

〈
log π

(t+1)
i − log π

(t)
i , πi − π

(t+1)
i

〉
+ τ
〈
log π

(t)
i , πi − π

(t+1)
i

〉
− τ
〈
log πi, πi

〉
=

(
1

η
− τ

)
KL
(
πi ∥π(t)

i

)
− 1

η

(
KL
(
πi ∥π(t+1)

i

)
+ KL

(
π
(t+1)
i ∥π(t)

i

))
− τ
〈
log π

(t)
i , π

(t+1)
i

〉
,

(51)

where the second step is derived from the definition of KL divergence.
• Similarly, the second term in (50) has the form〈

π
(t+1)
i − π

(t+1)
i , Aiπ

(t)
〉
− τH(π

(t+1)
i )

=
1

η

(
KL
(
π
(t+1)
i ∥π(t)

i

)
− KL

(
π
(t+1)
i ∥π(t+1)

i

))
−
(
1

η
− τ

)
KL
(
π
(t+1)
i ∥π(t)

i

)
+ τ
〈
log π

(t)
i , π

(t+1)
i

〉
. (52)

• Moving to the third term on the RHS of (50), we first make the following claim, which shall be
proven at the end of this proof:∥∥π(t+1)

i − π
(t+1)
i

∥∥
1
≤ η

∥∥Aiπ
(t+1) −Aiπ

(t)
∥∥
∞. (53)

With (53) in place, we have

−
〈
π
(t+1)
i − π

(t+1)
i , Aiπ

(t+1) −Aiπ
(t)
〉
≤
∑
j∈Ni

∥A∥∞
∥∥π(t+1)

i − π
(t+1)
i

∥∥
1

∥∥π(t+1)
j − π

(t)
j

∥∥
1

≤ η
∑
j∈Ni

∥A∥∞
∥∥Ai(π

(t+1) − π(t))
∥∥
∞

∥∥π(t+1)
j − π

(t)
j

∥∥
1

≤ η ∥A∥2∞
( ∑

j∈Ni

∥∥π(t+1)
j − π

(t)
j

∥∥
1

)2
.

The latter term can be further bounded by( ∑
j∈Ni

∥∥π(t+1)
j − π

(t)
j

∥∥
1

)2
≤ degi

∑
j∈Ni

∥∥π(t+1)
j − π

(t)
j + π

(t)
j − π

(t)
j

∥∥2
1

≤ 2 degi
∑
j∈Ni

(∥∥π(t+1)
j − π

(t)
j

∥∥2
1
+
∥∥π(t)

j − π
(t)
j

∥∥2
1

)
≤ 4 degi

∑
j∈Ni

(
KL
(
π
(t+1)
j ∥π(t)

j

)
+ KL

(
π
(t)
j ∥π(t)

j

))
,
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where it follows respectively from Cauchy-Schwarz inequality, ∥a+ b∥21 ≤ 2
(
∥a∥21 + ∥b∥21

)
, and

Pinsker’s inequality. Plugging this into the previous inequality leads to

−
〈
π
(t+1)
i − π

(t+1)
i , Aiπ

(t+1) −Aiπ
(t)
〉
≤ 4η degi ∥A∥2∞

∑
j∈Ni

(
KL
(
π
(t+1)
j ∥π(t)

j

)
+ KL

(
π
(t)
j ∥π(t)

j

))
.

(54)

Plugging (51), (52), and (54) into (50) yields〈
πi − π

(t+1)
i , Aiπ

(t+1)
〉
+ τH(πi)− τH(π

(t+1)
i )

≤ 1

η

(
KL
(
πi ∥π(t)

i

)
− KL

(
πi ∥π(t+1)

i

))
− 1

η
KL
(
π
(t+1)
i ∥π(t+1)

i

)
−
(
1

η
− τ

)
KL
(
π
(t+1)
i ∥π(t)

i

)
− τKL

(
πi ∥π(t)

i

)
+ 4η degi ∥A∥2∞

∑
j∈Ni

(
KL
(
π
(t+1)
j ∥π(t)

j

)
+ KL

(
π
(t)
j ∥π(t)

j

))
.

Telescoping the sum over t = 0, 1, . . . , T leads to

Regreti,τ
(
πi, T + 1

)
≤ 1

η
KL
(
πi ∥π(0)

i

)
− 1

η

T∑
t=0

KL
(
π
(t+1)
i ∥π(t+1)

i

)
−
(
1

η
− τ

) T∑
t=0

KL
(
π
(t+1)
i ∥π(t)

i

)
+ 4η degi ∥A∥2∞

T∑
t=0

∑
j∈Ni

(
KL
(
π
(t+1)
j ∥π(t)

j

)
+ KL

(
π
(t)
j ∥π(t)

j

))
(55)

≤ 1

η
log |Si|+ 4η degi ∥A∥2∞

T∑
t=0

(
KL
(
π(t+1) ∥π(t)

)
+ KL

(
π(t) ∥π(t)

))
,

(56)

where the last line follows from the fact that KL
(
πi ∥π(0)

i

)
≤ log |Si| and 1/η > τ . The proof is

thus complete if we can establish
T∑

t=0

KL
(
π(t) ∥π(t)

)
+

T∑
t=0

KL
(
π(t+1) ∥π(t)

)
≤ 4

∑
k∈V

log |Sk|. (57)

Therefore, it remains to establish (53) and (57), which shall be completed as follows.

Proof of (53). By the update rules of π(t+1)
i and π(t+1)

i , from (20) we can deduce that〈
log π

(t+1)
i − log π

(t+1)
i , π

(t+1)
i − π

(t+1)
i

〉
= η

〈
Ai(π

(t) − π(t+1)), π
(t+1)
i − π

(t+1)
i

〉
. (58)

By Pinsker’s inequality, we have〈
log π

(t+1)
i − log π

(t+1)
i , π

(t+1)
i − π

(t+1)
i

〉
≥
∥∥π(t+1)

i − π
(t+1)
i

∥∥2
1
.

In addition,〈
Ai(π

(t) − π(t+1)), π
(t+1)
i − π

(t+1)
i

〉
≤
∥∥π(t+1)

i − π
(t+1)
i

∥∥
1

∥∥Ai(π
(t) − π(t+1))

∥∥
∞.

Plugging the above two relations into (58) then leads to (53).

Proof of (57). Summing (55) over i ∈ V gives∑
i∈V

Regreti,τ
(
πi, T + 1

)
≤ 1

η
KL
(
π ∥π(0)

)
− 1

η

T∑
t=0

KL
(
π(t+1) ∥π(t+1)

)
−
(
1

η
− τ

) T∑
t=0

KL
(
π(t+1) ∥π(t)

)
+ 4ηd2max ∥A∥2∞

T∑
t=0

(
KL
(
π(t+1) ∥π(t)

)
+ KL

(
π(t) ∥π(t)

))
≤ 1

η

(
KL
(
π ∥π(0)

)
+ KL

(
π(0) ∥π(0)

))
−
(
1

η
− τ − 4ηd2max ∥A∥2∞

) T∑
t=0

KL
(
π(t+1) ∥π(t)

)
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−
(
1

η
− 4ηd2max ∥A∥2∞

) T∑
t=0

KL
(
π(t) ∥π(t)

)
≤ 1

η

∑
k∈V

log |Sk| −
1

4η

T∑
t=0

KL
(
π(t+1) ∥π(t)

)
− 1

4η

T∑
t=0

KL
(
π(t) ∥π(t)

)
,

(59)

where the last line follows from π(0) = π(0), KL
(
π ∥π(0)

)
≤∑k∈V log |Sk| for any π since π(0) is

a uniform distribution, as well as the choice of the learning rate such that

4ηd2max ∥A∥2∞ ≤ 1

4η
and τ ≤ 1

2η
.

Taking supremum over π on both sides of (59) and applying Lemma 4 gives (57) as advertised.

C.2 PROOF OF THEOREM 6

Similar to the proof of Theorem 5 in Appendix C.1, it suffices to bound Regreti,τ
(
πi, T

)
for any

πi ∈ ∆(Si), where

Regreti,τ
(
πi, T

)
:=

T∑
t=1

ui,τ (πi, π
(t)
−i)−

T∑
t=1

ui,τ (π
(t))

=
T∑

t=0

(〈
πi − π

(t+1)
i , Aiπ

(t+1)
〉
+ τH(πi)− τH(π

(t+1)
i )

)
. (60)

Consider the following decomposition:〈
πi − π

(t+1)
i , Aiπ

(t+1)
〉
+ τH(πi)− τH(π

(t+1)
i )

=
〈
πi − π

(t+1)
i , Aiπ

(κ
(t+1)
i )

〉
+
〈
πi − π

(t+1)
i , Aiπ

(t+1) −Aiπ
(κ

(t+1)
i )

〉
+ τH(πi)− τH(π

(t+1)
i )

=
〈
πi − π

(t+1)
i , Aiπ

(κ
(t+1)
i )

〉
+
〈
π
(t+1)
i − π

(t+1)
i , Aiπ

(κ
(t)
i )
〉

−
〈
π
(t+1)
i − π

(t+1)
i , Aiπ

(κ
(t+1)
i ) −Aiπ

(κ
(t)
i )
〉

+
〈
πi − π

(t+1)
i , Aiπ

(t+1) −Aiπ
(κ

(t+1)
i )

〉
. (61)

We now bound each term on the RHS of (61). For simplicity, we reuse the short-hand notation in
(36).

• To begin with, note that π(t+1)
i = (1 − ητ)π

(t)
i + ηAiπ

(κ
(t+1)
i ) + ci1 for some normalization

constant ci. Thus we have〈
πi − π

(t+1)
i , Aiπ

(κ
(t+1)
i )

〉
=

1

η

〈
log π

(t+1)
i − log π

(t)
i , πi − π

(t+1)
i

〉
+ τ
〈
log π

(t)
i , πi − π

(t+1)
i

〉
=

1

η

(
KL
(
πi ∥π(t)

i

)
− KL

(
πi ∥π(t+1)

i

)
− KL

(
π
(t+1)
i ∥π(t)

i

))
+ τ
〈
log π

(t)
i , πi − π

(t+1)
i

〉
,

(62)

where the second step is derived from the definition of KL-divergence.

• Similarly, it holds that〈
π
(t+1)
i − π

(t+1)
i , Aiπ

(κ
(t)
i )
〉

=
1

η

(
KL
(
π
(t+1)
i ∥π(t)

i

)
− KL

(
π
(t+1)
i ∥π(t+1)

i

)
− KL

(
π
(t+1)
i ∥π(t)

i

))
+ τ
〈
log π

(t)
i , π

(t+1)
i − π

(t+1)
i

〉
.

(63)
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• For the term
−
〈
π
(t+1)
i − π

(t+1)
i , Aiπ

(κ
(t+1)
i ) −Aiπ

(κ
(t)
i )
〉

in (61), following the deduction of (33), we get

−
〈
π
(t+1)
i − π

(t+1)
i , Aiπ

(κ
(t+1)
i ) −Aiπ

(κ
(t)
i )
〉

≤ 2 ∥A∥∞
∑
j∈Ni

(
Ψ

(t)
j +

t−1∑
l=t−γ

(t+1)
i

γ
(t+1)
i Ψ

(l)
j +

t−1∑
s=t−γ

(t)
i

γ
(t)
i Ψ

(l)
j

)
+ 2cAKL

(
π
(t+1)
i ∥π(t+1)

i

)
.

(64)

• For the last term in (61), it similarly follows that〈
πi − π

(t+1)
i , Aiπ

(t+1) −Aiπ
(κ

(t+1)
i )

〉
=
〈
πi − π

(t)
i , Aiπ

(t+1) −Aiπ
(κ

(t+1)
i )

〉
+
〈
π
(t)
i − π

(t+1)
i , Aiπ

(t+1) −Aiπ
(κ

(t+1)
i )

〉
≤ 2cAKL

(
π
(t+1)
i ∥π(t)

i

)
+ 4cτ ∥A∥∞

∑
j∈Ni

(
Ψ

(t)
j +

t−1∑
l=t−γ

(t+1)
i

γ
(t+1)
i Ψ

(l)
j

)
. (65)

Plugging (62) (63) (64) (65) into (61) yields〈
πi − π

(t+1)
i , Aiπ

(t+1)
〉
+ τ

(
H(πi)−H(π

(t+1)
i )

)
≤ 1

η

(
KL
(
πi ∥π(t)

i

)
− KL

(
πi ∥π(t+1)

i

))
−
(
1

η
− 2cA

)
Ψ

(t)
i

+ 4cτ ∥A∥∞
∑
j∈Ni

Ψ
(t)
j + 2γ

(t)
i ∥A∥∞

∑
j∈Ni

t−1∑
l=t−γ

(t)
i

Ψ
(l)
j

+ 4cτ ∥A∥∞ γ
(t+1)
i

∑
j∈Ni

t−1∑
l=t−γ

(t+1)
i

Ψ
(l)
j + τ

〈
log π

(t)
i , πi − π

(t)
i

〉
+ τ

(
H(πi)−H(π

(t+1)
i )

)
.

Note that

H(πi)−H(π
(t+1)
i ) +

〈
log π

(t)
i , πi − π

(t+1)
i

〉
= −

〈
log πi − log π

(t)
i , πi

〉
+
〈
log π

(t+1)
i − log π

(t)
i , π

(t+1)
i

〉
= KL

(
π
(t+1)
i ∥π(t)

i

)
− KL

(
πi ∥π(t)

i

)
.

Then we have〈
πi − π

(t+1)
i , Aiπ

(t+1)
〉
+ τ

(
H(πi)−H(π

(t+1)
i )

)
≤ 1

η

(
KL
(
πi ∥π(t)

i

)
− KL

(
πi ∥π(t+1)

i

))
−
(
1

η
− 2cA − τ

)
Ψ

(t)
i

+ 4cτ ∥A∥∞
∑
j∈Ni

Ψ
(t)
j + 2γ

(t)
i ∥A∥∞

∑
j∈Ni

t−1∑
l=t−γ

(t)
i

Ψ
(l)
j + 4cτ ∥A∥∞ γ

(t+1)
i

∑
j∈Ni

t−1∑
l=t−γ

(t+1)
i

Ψ
(l)
j .

(66)

Since the learning rate satisfies

1

η
≥ 24d2max ∥A∥2∞

τ
(σ2 + 1) ≥ 2dmax ∥A∥∞ + τ = 2cA + τ,

taking expectation on both sides of (66) leads to

E
[〈
πi − π

(t+1)
i , Aiπ

(t+1)
〉
+ τ

(
H(πi)−H(π

(t+1)
i )

)]
≤ 1

η
E
[
KL
(
πi ∥π(t)

i

)
− KL

(
πi ∥π(t+1)

i

)]
−
(
1

η
− 2cA − τ

)
E
[
Ψ

(t)
i

]
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+ 4cτ ∥A∥∞ E
[
Ψ(t)

]
+ 4cτ ∥A∥∞ E

[
t−1∑
l=0

E(t− l)Ψ(l)

]

≤ 1

η
E
[
KL
(
πi ∥π(t)

i

)
− KL

(
πi ∥π(t+1)

i

)]
+ 4cτ ∥A∥∞ E

[
Ψ(t)

]
+ 4cτ ∥A∥∞ E

[
t−1∑
l=0

E(t− l)Ψ(l)

]
,

(67)

where we use the fact
∑

j∈Ni
Ψ

(l)
j ≤ Ψ(l) and the definition of E(t− l). Since

∑∞
l=0E(l) ≤ σ2 by

definition in Assumption 4, summing (67) over t = 0, 1, . . . , T yields

E
[
Regreti,τ

(
T + 1

)]
≤ 1

η
E
[
KL
(
πi ∥π(0)

i

)]
+ 4cτ ∥A∥∞ (σ2 + 1)E

[
T∑

t=0

Ψ(t)

]

≤ 1

η
log |Si|+ 4cτ ∥A∥∞ (σ2 + 1)E

[
T∑

t=0

Ψ(t)

]
. (68)

It remains to establish

E

[
T∑

t=0

Ψ(t)

]
≤ 2

∑
i∈V

log |Si|. (69)

Proof of (69). Summing (66) over i ∈ V gives∑
i∈V

〈
πi − π

(t+1)
i , Aiπ

(t+1)
〉
+ τ

(
H(πi)−H(π

(t+1)
i )

)
≤ 1

η

(
KL
(
π ∥π(t)

)
− KL

(
π ∥π(t+1)

))
−
(
1

η
− 2cA − τ

)
Ψ(t)

+ 4cτ ∥A∥∞
∑
i∈V

∑
j∈Ni

Ψ
(t)
j + 2γ

(t)
i ∥A∥∞

∑
i∈V

∑
j∈Ni

t−1∑
l=t−γ

(t)
i

Ψ
(l)
j + 4cτ ∥A∥∞

∑
i∈V

γ
(t+1)
i

∑
j∈Ni

t−1∑
l=t−γ

(t+1)
i

Ψ
(l)
j .

Taking expectation of on both sides and using (38) leads to

E

[∑
i∈V

〈
πi − π

(t+1)
i , Aiπ

(t+1)
〉
+ τ

(
H(πi)−H(π

(t+1)
i )

)]

≤ 1

η
E
[
KL
(
π ∥π(t)

)
− KL

(
π ∥π(t+1)

)]
−
(
1

η
− 4cA(cτ + 1)− τ

)
E
[
Ψ(t)

]
+ 4cA(cτ + 1)E

[
t−1∑
l=0

E(t− l)Ψ(l)

]
− τ

2
E
[
KL
(
π ∥π(t)

)]
.

Summing over t = 0, 1, . . . , T yields

E

[∑
i∈V

Regreti,τ
(
π, T + 1

)]
≤ 1

η
E
[
KL
(
π ∥π(0)

)]
−
(
1

η
− 4cA(cτ + 1)(σ2 + 1)

)
E

[
T∑

t=0

Ψ(t)

]

≤ 1

η
E
[
KL
(
π ∥π(0)

)]
− 1

2η
E

[
T∑

t=0

Ψ(t)

]
, (70)

where the second line follows from

4cA(cτ + 1)(σ2 + 1)η ≤ 4dmax ∥A∥∞
(
2 +

dmax ∥A∥∞
τ

)
(σ2 + 1)

τ

24d2max ∥A∥2∞ (σ2 + 1)
<

1

2

due to τ ≤ dmax ∥A∥∞ and η ≤ τ
24d2

max∥A∥2
∞(σ2+1)

. Taking supremum with respect to π on both
sides, in view of Lemma 4, we arrive at the advertised bound (69).
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D PROOF FOR TWO-TIMESCALE OMWU (SECTION 4)

D.1 PROOF OF THEOREM 3

Bounding KL
(
π⋆
τ ∥π(t)

)
. For notational convenience, we set π(t) = π(t) = π(0) for t < 0. The

following lemma parallels Lemma 2 by focusing on delayed feedbacks. The proof is postponed to
Appendix E.5.

Lemma 5. Assuming constant delays γ(t)i = γ, the iterates of OMWU based on the update rule (10)
satisfy 〈

log π(t+1) − (1− ητ) log π(t) − ητ log π⋆
τ , π

(t−γ+1) − π⋆
τ

〉
= 0.

By following a similar argument in (19), we conclude that

KL
(
π⋆
τ ∥π(t+1)

)
= (1− ητ)KL

(
π⋆
τ ∥π(t)

)
− (1− ητ)KL

(
π(t−γ+1) ∥π(t)

)
− KL

(
π(t+1) ∥π(t−γ+1)

)
+
〈
log π(t−γ+1) − log π(t+1), π(t−γ+1) − π(t+1)

〉
− ητKL

(
π(t−γ+1) ∥π⋆

τ

)
.

(71)

It boils down to control the term −
〈
log π(t−γ+1) − log π(t+1), π(t−γ+1) − π(t+1)

〉
. When t ≥ γ,

by taking logarithm on the both sides of the update rules (7) and (10), we have

log π
(t−γ+1)
i

1
= (1− ητ) log π

(t−γ)
i + ηAiπ

(t−2γ)

and

log π
(t+1)
i

1
= (1− ητ) log π

(t)
i + ηAiπ

(t−γ+1)

1
= (1− ητ)γ+1 log π

(t−γ)
i + η

γ∑
l=0

(1− ητ)lAiπ
(t−γ−l+1).

Subtracting the above equalities and taking inner product with π(t−γ+1)
i − π

(t+1)
i gives〈

log π
(t−γ+1)
i − log π

(t+1)
i , π

(t−γ+1)
i − π

(t+1)
i

〉
= η

γ∑
l=0

(1− ητ)l
〈
π
(t−γ+1)
i − π

(t+1)
i , Ai(π

(t−2γ) − π(t−γ−l+1))
〉
,

where the log π
(t−γ)
i terms cancel out due to the choice 1 − ητ = (1 − ητ)γ+1. Summing over

i ∈ V , 〈
log π(t−γ+1) − log π(t+1), π(t−γ+1) − π(t+1)

〉
= η

∑
i∈V

γ∑
l=0

(1− ητ)
l 〈
π
(t−γ+1)
i − π

(t+1)
i , Ai(π

(t−2γ) − π(t−γ−l+1))
〉

≤ η ∥A∥∞
∑

(i,j)∈E

γ∑
l=0

(1− ητ)l
∥∥π(t−γ+1)

i − π
(t+1)
i

∥∥
1

∥∥π(t−2γ)
j − π

(t−γ−l+1)
j

∥∥
1
. (72)

Using the triangle inequality, we can bound
∥∥π(t−2γ) − π(t−γ−l+1)

∥∥
1

as

∥∥π(t−2γ) − π(t−γ−l+1)
∥∥
1
≤

t−l∑
l1=t−γ

∥∥π(l1−γ)
i − π

(l1−γ+1)
j

∥∥
1

≤
t−l∑

l1=t−γ

(∥∥π(l1−γ)
i − π

(l1)
i

∥∥
1
+
∥∥π(l1−γ+1)

j − π
(l1)
j

∥∥
1

)
.

Substitution of the bound into (72) yields〈
log π(t−γ+1) − log π(t+1), π(t−γ+1) − π(t+1)

〉
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≤ η ∥A∥∞
∑

(i,j)∈E

γ∑
l=0

(1− ητ)l
t−l∑

l1=t−γ

∥∥π(t−γ+1)
i − π

(t+1)
i

∥∥
1

(∥∥π(l1−γ)
j − π

(l1)
j

∥∥
1
+
∥∥π(l1−γ+1)

j − π
(l1)
j

∥∥
1

)

= η ∥A∥∞
∑

(i,j)∈E

t∑
l1=t−γ

t−l1∑
l=0

(1− ητ)l
∥∥π(t−γ+1)

i − π
(t+1)
i

∥∥
1

(∥∥π(l1−γ)
j − π

(l1)
j

∥∥
1
+
∥∥π(l1−γ+1)

j − π
(l1)
j

∥∥
1

)

≤ 1

2
η ∥A∥∞

∑
(i,j)∈E

[
2

t∑
l1=t−γ

t−l1∑
l=0

(1− ητ)l
∥∥π(t−γ+1)

i − π
(t+1)
i

∥∥2
1

+
t∑

l1=t−γ

t−l1∑
l=0

(1− ητ)l
(∥∥π(l1−γ)

j − π
(l1)
j

∥∥2
1
+
∥∥π(l1−γ+1)

j − π
(l1)
j

∥∥2
1

)]

≤ ηdmax ∥A∥∞
[
2(γ + 1)2KL

(
π(t+1) ∥π(t−γ+1)

)
+

t∑
l1=t−γ

t−l1∑
l=0

(1− ητ)l
(
KL
(
π(l1) ∥π(l1−γ)

)
+ KL

(
π(l1−γ+1) ∥π(l1)

)) ]
. (73)

Plugging the above inequality into (71) and recursively applying the inequality gives

KL
(
π⋆
τ ∥π(t+1)

)
+ KL

(
π(t+1) ∥π(t−γ+1)

)
+ ητKL

(
π(t−γ+1) ∥π⋆

τ

)
≤ (1− ητ)t+1−γKL

(
π⋆
τ ∥π(γ)

)
−

t∑
l1=γ

(1− ητ)t−l1
(
KL
(
π(l1+1) ∥π(l1−γ+1)

)
+ (1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

))

+ ηdmax ∥A∥∞
[
2(γ + 1)2

t∑
l1=γ

(1− ητ)t−l1KL
(
π(l1+1) ∥π(l1−γ+1)

)
+

t∑
t2=γ

(1− ητ)t−l2

l2∑
l1=l2−γ

l2−l1∑
l=0

(1− ητ)l
(
KL
(
π(l1) ∥π(l1−γ)

)
+ KL

(
π(l1−γ+1) ∥π(l1)

))]
(i)
≤ (1− ητ)t+1−γKL

(
π⋆
τ ∥π(γ)

)
−

t∑
l1=γ

(1− ητ)t−l1
(
KL
(
π(l1+1) ∥π(l1−γ+1)

)
+ (1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

))

+ 2(γ + 1)2ηdmax ∥A∥∞
t∑

l1=γ

(1− ητ)t−l1KL
(
π(l1+1) ∥π(l1−γ+1)

)
+ 2(γ + 1)2ηdmax ∥A∥∞

t∑
l1=0

(1− ητ)t−l1
(
KL
(
π(l1+1) ∥π(l1−γ+1)

)
+ (1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

))
(ii)
≤ (1− ητ)t+1−γKL

(
π⋆
τ ∥π(γ)

)
+ 2(γ + 1)2ηdmax ∥A∥∞

γ−1∑
l1=0

(1− ητ)t−l1
(
KL
(
π(l1+1) ∥π(l1−γ+1)

)
+ (1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

))
,

(74)
where (i) results from basic calculation

t∑
t2=γ

(1− ητ)t−l2

l2∑
l1=l2−γ

l2−l1∑
l=0

(1− ητ)l
(
KL
(
π(l1) ∥π(l1−γ)

)
+ KL

(
π(l1−γ+1) ∥π(l1)

))

=

t∑
l1=0

(1− ητ)t−l1

l1+γ∑
l2=l1

l2−l1∑
l=0

(1− ητ)l1−l2+l
(
KL
(
π(l1) ∥π(l1−γ)

)
+ KL

(
π(l1−γ+1) ∥π(l1)

))

=
t∑

l1=0

(1− ητ)t−l1

γ∑
l′=0

l′∑
l=0

(1− ητ)l−l′
(
KL
(
π(l1) ∥π(l1−γ)

)
+ KL

(
π(l1−γ+1) ∥π(l1)

))
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≤
t∑

l1=0

(1− ητ)t−l1(γ + 1)2
(
1− 1

2(γ + 1)

)−(γ+1)

(1− ητ)
(
KL
(
π(l1) ∥π(l1−γ)

)
+ KL

(
π(l1−γ+1) ∥π(l1)

))

≤ 2(γ + 1)2
t∑

l1=0

(1− ητ)t−l1(1− ητ)
(
KL
(
π(l1) ∥π(l1−γ)

)
+ KL

(
π(l1−γ+1) ∥π(l1)

))

≤ 2(γ + 1)2
t∑

l1=0

(1− ητ)t−l1
(
KL
(
π(l1+1) ∥π(l1−γ+1)

)
+ (1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

))
and (ii) is due to η ≤ min

{
1

2τ(γ+1) ,
1

5dmax∥A∥∞(γ+1)2

}
. To proceed, we introduce the following

lemma concerning the error KL
(
π⋆
τ ∥π(γ)

)
, with the proof postponed to Appendix E.6.

Lemma 6. With constant delays γ(t)i = γ, the iterates of OMWU based on the update rule (10)
satisfy

KL
(
π⋆
τ ∥π(γ)

)
≤ (1− ητ)γKL

(
π⋆
τ ∥π(0)

)
−

γ−1∑
l1=0

(1− ητ)γ−1−l1
(
KL
(
π(l1+1) ∥π(l1−γ+1)

)
+ (1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

))
+ 2ηγ2dmax ∥A∥∞.

With the lemma above in mind, we can continue to bound (74) by

KL
(
π⋆
τ ∥π(t+1)

)
≤ (1− ητ)t+1KL

(
π⋆
τ ∥π(0)

)
+ 2(1− ητ)t+1−γηγ2dmax ∥A∥∞

−
γ−1∑
l1=0

(1− ητ)t−l1
(
KL
(
π(l1+1) ∥π(l1−γ+1)

)
+ (1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

))

+ 2(γ + 1)2ηdmax ∥A∥∞
γ−1∑
l1=0

(1− ητ)t−l1
(
KL
(
π(l1+1) ∥π(l1−γ+1)

)
+ (1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

))
≤ (1− ητ)t+1KL

(
π⋆
τ ∥π(0)

)
+ (1− ητ)t+1−γ .

Bounding KL
(
π⋆
τ ∥π(t−γ+1)

)
. By definition of KL divergence, we have

KL
(
π⋆
τ ∥π(t−γ+1)

)
= KL

(
π⋆
τ ∥π(t+1)

)
+
〈
π⋆
τ , log π

(t+1) − log π(t−γ+1)
〉

= KL
(
π⋆
τ ∥π(t+1)

)
+ KL

(
π(t+1) ∥π(t−γ+1)

)
+
〈
π⋆
τ − π(t+1), log π(t+1) − log π(t−γ+1)

〉
. (75)

It remains to control the term
〈
π⋆
τ − π(t+1), log π(t+1) − log π(t−γ+1)

〉
. By following a similar

argument in (73), we have〈
π⋆
τ − π(t+1), log π(t+1) − log π(t−γ+1)

〉
= η

∑
i∈V

γ∑
l=0

(1− ητ)
l 〈
π⋆
i,τ − π

(t+1)
i , Ai(π

(t−2γ) − π(t−γ−l+1))
〉

≤ η ∥A∥∞
∑

(i,j)∈E

γ∑
l=0

(1− ητ)
l ∥∥π⋆

i,τ − π
(t+1)
i

∥∥
1

∥∥π(t−2γ)
j − π

(t−γ−l+1)
j

∥∥
1

≤ η ∥A∥∞
∑

(i,j)∈E

γ∑
l=0

(1− ητ)l
t−l∑

l1=t−γ

∥∥π⋆
i,τ − π

(t+1)
i

∥∥
1

(∥∥π(l1−γ)
j − π

(l1)
j

∥∥
1
+
∥∥π(l1−γ+1)

j − π
(l1)
j

∥∥
1

)

= η ∥A∥∞
∑

(i,j)∈E

t∑
l1=t−γ

t−l1∑
l=0

(1− ητ)l
∥∥π⋆

i,τ − π
(t+1)
i

∥∥
1

(∥∥π(l1−γ)
j − π

(l1)
j

∥∥
1
+
∥∥π(l1−γ+1)

j − π
(l1)
j

∥∥
1

)
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≤ ηdmax ∥A∥∞
[
2(γ + 1)2KL

(
π⋆
τ ∥π(t+1)

)
+

t∑
l1=t−γ

t−l1∑
l=0

(1− ητ)l
(
KL
(
π(l1) ∥π(l1−γ)

)
+ KL

(
π(l1−γ+1) ∥π(l1)

)) ]
.

Substitution of the above inequality into (75) yields

KL
(
π⋆
τ ∥π(t−γ+1)

)
+ ητKL

(
π(t−γ+1) ∥π⋆

τ

)
= (1 + 2(γ + 1)2ηdmax)KL

(
π⋆
τ ∥π(t+1)

)
+ KL

(
π(t+1) ∥π(t−γ+1)

)
+ ητKL

(
π(t−γ+1) ∥π⋆

τ

)
+ ηdmax ∥A∥∞

t∑
l1=t−γ

t−l1∑
l=0

(1− ητ)l
(
KL
(
π(l1) ∥π(l1−γ)

)
+ KL

(
π(l1−γ+1) ∥π(l1)

))
(i)
≤ 2
(
KL
(
π⋆
τ ∥π(t+1)

)
+ KL

(
π(t+1) ∥π(t−γ+1)

)
+ ητKL

(
π(t−γ+1) ∥π⋆

τ

))
+ 2(γ + 1)ηdmax ∥A∥∞

t∑
l1=0

(1− ητ)t−l1
(
KL
(
π(l1+1) ∥π(l1−γ+1)

)
+ (1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

))
(ii)
≤ 2(1− ητ)t+1−γKL

(
π⋆
τ ∥π(γ)

)
− 2

t∑
l1=γ

(1− ητ)t−l1
(
KL
(
π(l1+1) ∥π(l1−γ+1)

)
+ (1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

))

+ 4(γ + 1)2ηdmax ∥A∥∞
t∑

l1=γ

(1− ητ)t−l1KL
(
π(l1+1) ∥π(l1−γ+1)

)
+ 6(γ + 1)2ηdmax ∥A∥∞

t∑
l1=0

(1− ητ)t−l1
(
KL
(
π(l1+1) ∥π(l1−γ+1)

)
+ (1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

))
≤ 2(1− ητ)t+1−γKL

(
π⋆
τ ∥π(γ)

)
+ 6(γ + 1)2ηdmax ∥A∥∞

γ−1∑
l1=0

(1− ητ)t−l1
(
KL
(
π(l1+1) ∥π(l1−γ+1)

)
+ (1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

))
,

where (i) results from
t∑

l1=t−γ

t−l1∑
l=0

(1− ητ)l
(
KL
(
π(l1) ∥π(l1−γ)

)
+ KL

(
π(l1−γ+1) ∥π(l1)

))

=

t∑
l1=t−γ

(1− ητ)t−l1

t−l1∑
l=0

(1− ητ)l+l1−t
(
KL
(
π(l1) ∥π(l1−γ)

)
+ KL

(
π(l1−γ+1) ∥π(l1)

))

≤
t∑

l1=t−γ

(1− ητ)t−l1(γ + 1)(1− ητ)−(γ+1)(1− ητ)
(
KL
(
π(l1) ∥π(l1−γ)

)
+ KL

(
π(l1−γ+1) ∥π(l1)

))

≤ 2(γ + 1)
t∑

l1=0

(1− ητ)t−l1
(
KL
(
π(l1+1) ∥π(l1−γ+1)

)
+ (1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

))
.

and (ii) is due to the bound established in (74). Finally, applying Lemma 6 yields

KL
(
π⋆
τ ∥π(t−γ+1)

)
+ ητKL

(
π(t−γ+1) ∥π⋆

τ

)
≤ 2(1− ητ)t+1KL

(
π⋆
τ ∥π(0)

)
+ 4(1− ητ)t+1−γηγ2dmax ∥A∥∞

− 2

γ−1∑
l1=0

(1− ητ)t−l1
(
KL
(
π(l1+1) ∥π(l1−γ+1)

)
+ (1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

))

+ 6(γ + 1)2ηdmax ∥A∥∞
γ−1∑
l1=0

(1− ητ)t−l1
(
KL
(
π(l1+1) ∥π(l1−γ+1)

)
+ (1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

))
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≤ 2(1− ητ)t+1KL
(
π⋆
τ ∥π(0)

)
+ 2(1− ητ)t+1−γ . (76)

Bounding the QRE gap. With Lemma 3, we have

QRE-Gapτ (π
(t−γ+1)) ≤ d2max ∥A∥2∞

τ
KL
(
π⋆
τ ∥π(t−γ+1)

)
+ τKL

(
π(t−γ+1) ∥π⋆

τ

)
≤ max

{d2max ∥A∥2∞
τ

,
1

η

}(
KL
(
π⋆
τ ∥π(t−γ+1)

)
+ ητKL

(
π(t−γ+1) ∥π⋆

τ

))
≤ 2max

{d2max ∥A∥2∞
τ

,
1

η

}(
(1− ητ)t+1KL

(
π⋆
τ ∥π(0)

)
+ (1− ητ)t+1−γ

)
,

where the last step results from (76).

D.2 PROOF OF THEOREM 4

Bounding the term KL
(
π⋆
τ ∥π(t)

)
. Recall that the update rule of π(t)

i (k) is given by

π
(t)
i (k) ∝ π

(t−1)
i (k)1−ητ exp(η[Aiπ

(κ
(t)
i )]k). (77)

We introduce an auxiliary variable π̃(t)
i :

π̃
(t)
i (k) ∝ π

(t−1)
i (k)1−η̃

(t)
i τ exp

(
η̃
(t)
i [Aiπ

(κ
(t)
i )]k

)
, (78)

which can be viewed as a conceptual alternative update of π(t)
i with a different step size η̃(t)i > 0

satisfying

(1− η̃
(t)
i τ)(1− ητ)t−κ

(t)
i = 1− ητ

or equivalently

1− η̃
(t)
i τ = (1− ητ)γ+1−t+κ

(t)
i .

It directly follows that η̃(t)i ≥ η. Since κ(t)i ≤ t, we have 1 − η̃
(t)
i τ ≥ 1 − (γ + 1 − t + κ

(t)
i )ητ ≥

1 − (γ + 1)ητ , which implies η̃(t)i ≤ (γ + 1)η. For notational convenience, we set π̃(t)
i = π(0),

η̃
(t)
i = η and κ(t)i = 0 when t ≤ 0. The following lemma establishes a one-step analysis, with the

proof postponed to Appendix E.7.
Lemma 7. When t ≥ 1, it holds that

KL
(
π⋆
i,τ ∥π(t)

i

)
+ ητKL

(
π
(κ

(t)
i )

i ∥π⋆
i,τ

)
= (1− ητ)KL

(
π⋆
i,τ ∥π(t−1)

i

)
− η(π

(κ
(t)
i )

i − π⋆
i,τ )

⊤Ai(π
(κ

(t)
i ) − π⋆

τ )− ψ
(t)
i

+
η

η̃
(t)
i

〈
log π

(κ
(t)
i )

i − log π̃
(t)
i , π

(κ
(t)
i )

i − π̃
(t)
i

〉
, (79)

where

ψ
(t)
i :=

(
1− η

η̃
(t)
i

)
KL
(
π
(t)
i ∥π(t−1)

i

)
+

η

η̃
(t)
i

[
(1− η̃

(t)
i τ)KL

(
π
(κ

(t)
i )

i ∥π(t−1)
i

)
+ KL

(
π̃
(t)
i ∥π(κ

(t)
i )

i

)
+ KL

(
π
(t)
i ∥ π̃(t)

i

)]
.

We proceed to control the term
〈
log π

(κ
(t)
i )

i − log π̃
(t)
i , π

(κ
(t)
i )

i − π̃
(t)
i

〉
. By definition, we have

log π̃
(t)
i

1
= (1− η̃

(t)
i τ) log π

(t−1)
i + η̃

(t)
i Aiπ

(κ
(t)
i )

1
= (1− η̃

(t)
i τ)(1− ητ)t−κ

(t)
i log π(κ

(t)
i −1)
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+ η̃
(t)
i

(
Aiπ

(κ
(t)
i ) +

t−1∑
l=κ

(t)
i

(1− η̃
(t)
i τ)(1− ητ)t−1−lAiπ

(κ
(l)
i )

)
and

log π
(κ

(t)
i )

i
1
= (1− ητ) log π(κ

(t)
i −1) + ηAiπ

(κ
(κ

(t)
i

−1)

i )

when κ(t)i ≥ 1. Subtracting the two equations yields

log π
(κ

(t)
i )

i − log π̃
(t)
i

1
= η̃

(t)
i

(
Ai(π

(κ
(κ

(t)
i

−1)

i ) − π(κ
(t)
i ))

+
t−1∑

l=κ
(t)
i

(1− η̃
(t)
i τ)(1− ητ)t−1−lAi(π

(κ
(κ

(t)
i

−1)

i ) − π(κ
(l)
i ))

)
,

(80)

where the log π(κ
(t)
i −1) terms cancel out due to (1− η̃

(t)
i τ)(1− ητ)t−κ

(t)
i = 1− ητ . It follows that〈

log π
(κ

(t)
i )

i − log π̃
(t)
i , π

(κ
(t)
i )

i − π̃
(t)
i

〉
= η̃

(t)
i

(〈
π
(κ

(t)
i )

i − π̃
(t)
i , Ai(π

(κ
(κ

(t)
i

−1)

i ) − π(κ
(t)
i ))

〉
+

t−1∑
l=κ

(t)
i

(1− η̃
(t)
i τ)(1− ητ)t−1−l

〈
π
(κ

(t)
i )

i − π̃
(t)
i , Ai(π

(κ
(κ

(t−1)
i

)

i ) − π(κ
(l)
i ))

〉)

≤ η̃
(t)
i ∥A∥∞

∥∥π(κ
(t)
i )

i − π̃
(t)
i

∥∥
1

∑
j∈Ni

t∑
l=κ

(t)
i

∥∥π(κ
(l)
i )

j − π
(κ

(κ
(t−1)
i

)

i )
j

∥∥
1
. (81)

The next lemma establishes an upper bound on the term
∑t

l=κ
(t)
i

∥∥π(κ
(l)
i )

j − π
(κ

(κ
(t−1)
i

)

i )
j

∥∥
1
, with the

proof postponed to Appendix E.8.
Lemma 8. Let νj(t) denote the time index when agent j receives the payoff from the t-th iteration,
i.e., κ(νj(t))

j = t. For t = 0, we set νj(0) to an arbitrary index that satisfies κ(νj(0))
j = 0. When

t ≥ 2γ + 1, it holds that

t∑
l=κ

(t)
i

∥∥π(κ
(l)
i )

j − π
(κ

(κ
(t−1)
i

)

i )
j

∥∥
1
≤ 4

√
2(γ + 1)

t+γ∑
l=t−2γ

√
ψ
(l)
j + 2

√
2(γ + 1)2

√
ψ
(νj(κ

(κ
(t−1)
i

)

i ))
j ,

Plugging Lemma 8 into (81) gives〈
log π

(κ
(t)
i )

i − log π̃
(t)
i , π

(κ
(t)
i )

i − π̃
(t)
i

〉
≤ η̃

(t)
i ∥A∥∞

∥∥π(κ
(k)
i )

i − π̃
(t)
i

∥∥
1

∑
j∈Ni

[
4
√
2(γ + 1)

t+γ∑
l=t−2γ

√
ψ
(l)
j + 2

√
2(γ + 1)2

√
ψ
(νj(κ

(κ
(t−1)
i

)

i ))
j

]
(i)
≤ 1

2
η̃
(t)
i ∥A∥∞

{
14dmax(γ + 1)3/2

∥∥π(κ
(t)
i )

i − π̃
(t)
i

∥∥2
1

+
∑
j∈Ni

[
8(γ + 1)3/2

t+γ∑
l=t−2γ

ψ
(l)
j + 4(γ + 1)5/2ψ

(νj(κ
(κ

(t−1)
i

)

i ))
j

]}
(ii)
≤ η̃

(t)
i ∥A∥∞

{
14dmax(γ + 1)5/2ψ

(t)
i +

∑
j∈Ni

[
4(γ + 1)3/2

t+γ∑
l=t−2γ

ψ
(l)
j + 2(γ + 1)5/2ψ

(νj(κ
(κ

(t−1)
i

)

i ))
j

]}
,

(82)
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where (i) results from Young’s inequality∥∥π(κ
(t)
i )

i − π̃
(t)
i

∥∥
1

√
ψ
(l)
j ≤ 1

2

( 1√
2(γ + 1)1/2

∥∥π(κ
(t)
i )

i − π̃
(t)
i

∥∥2
1
+

√
2(γ + 1)1/2ψ

(l)
j

)

and (ii) follows from
∥∥∥∥π(κ

(t)
i )

i − π̃
(t)
i

∥∥∥∥2
1

≤ 2KL
(
π̃
(t)
i ∥π(κ

(t)
i )

i

)
≤ 2(γ + 1)ψ

(t)
i . Plugging (82) into

(79) and summing over i ∈ V yields

KL
(
π⋆
τ ∥π(t)

)
+ ητ

∑
i∈V

KL
(
π
(κ

(t)
i )

i ∥π⋆
τ

)
≤ (1− ητ)KL

(
π⋆
τ ∥π(t−1)

)
− η

∑
i∈V

(π
(κ

(t)
i )

i − π⋆
i,τ )

⊤Ai(π
(κ

(t)
i ) − π⋆

τ )

− (1− 14ηdmax ∥A∥∞ (γ + 1)5/2)
∑
i∈V

ψ
(t)
i + 2η ∥A∥∞ (γ + 1)5/2

∑
(i,j)∈E

ψ
(νj(κ

(κ
(t−1)
i

)

i ))
j

+ 4ηdmax ∥A∥∞ (γ + 1)3/2
t+γ∑

l=t−2γ

ψ(l), (83)

where we denote
∑

i∈V ψ
(l)
i by ψ(l) for notation simplicity. We then seek to sum the above equation

over t = 2γ + 1, · · · , T . Before proceeding, we note that

T∑
t=2γ+1

t+γ∑
l=t−2γ

ψ(l) ≤
T+γ∑
l=1

l+2γ∑
t=l−γ

ψ(l) ≤ 3(γ + 1)

T+γ∑
l=1

ψ(l),

and that

T∑
t=2γ+1

∑
(i,j)∈E

ψ
(νj(κ

(κ
(t−1)
i

)

i ))
j ≤

∑
(i,j)∈E

T+γ−1∑
t=0

ψ
(t)
j ≤ dmax

T+γ−1∑
t=1

ψ(t),

where the first step is due to the mapping t 7→ νj(κ
(κ

(t−1)
i )

i ) being injective when t ≥ 2γ + 1 (cf.
Assumptions 2, 3). Note that ψ(t)

j = 0 when t ≤ 0 and hence can be safely discarded. Taken
together, we arrive at

ητ

T∑
t=2γ+1

KL
(
π⋆
τ ∥π(t)

)
+ ητ

T∑
t=2γ+1

∑
i∈V

KL
(
π
(κ

(t)
i )

i ∥π⋆
i,τ

)
≤ (1− ητ)KL

(
π⋆
τ ∥π(2γ)

)
− η

T∑
t=2γ+1

∑
i∈V

(π
(κ

(t)
i )

i − π⋆
i,τ )

⊤Ai(π
(κ

(t)
i ) − π⋆

τ )

−
(
1− 14ηdmax ∥A∥∞ (γ + 1)5/2

) T∑
t=2γ+1

ψ(t) + 12ηdmax ∥A∥∞ (γ + 1)5/2
T+γ∑
l=1

ψ(l)

+ 2ηdmax ∥A∥∞ (γ + 1)5/2
T+γ−1∑
t=1

ψ(t)

≤ (1− ητ)KL
(
π⋆
τ ∥π(2γ)

)
− η

T∑
t=2γ+1

∑
i∈V

(π
(κ

(t)
i )

i − π⋆
i,τ )

⊤Ai(π
(κ

(t)
i ) − π⋆

τ )

−
(
1− 28ηdmax ∥A∥∞ (γ + 1)5/2

) T∑
t=2γ+1

ψ(t) + 14ηdmax ∥A∥∞ (γ + 1)5/2
∑
l∈Γ

ψ(l)

35



Published as a conference paper at ICLR 2023

≤ (1− ητ)KL
(
π⋆
τ ∥π(2γ)

)
− η

T∑
t=2γ+1

∑
i∈V

(π
(κ

(t)
i )

i − π⋆
i,τ )

⊤Ai(π
(κ

(t)
i ) − π⋆

τ ) +
1

3

∑
l∈Γ

ψ(l), (84)

where Γ = {1, · · · , 2γ} ∪ {T + 1, · · · , T + γ}. The last step results from the choice of learn-

ing rate η ≤ 1
28dmax∥A∥∞(γ+1)5/2

. It now remains to bound the terms
∑T

t=2γ+1

∑
i∈V (π

(κ
(t)
i )

i −
π⋆
i,τ )

⊤Ai(π
(κ

(t)
i ) − π⋆

τ ), KL
(
π⋆
τ ∥π(2γ)

)
and

∑
l∈Γ ψ

(l). In view of Lemma 1, we have

−
T∑

t=2γ+1

∑
i∈V

(π
(κ

(t)
i )

i − π⋆
i,τ )

⊤Ai(π
(κ

(t)
i ) − π⋆

τ )

=
T∑

t=γ+1

∑
i∈V

(π
(t)
i − π⋆

i,τ )
⊤Ai(π

(t) − π⋆
τ )−

T∑
t=2γ+1

∑
i∈V

(π
(κ

(t)
i )

i − π⋆
i,τ )

⊤Ai(π
(κ

(t)
i ) − π⋆

τ ).

We remark that each (π
(κ

(t)
i )

i − π⋆
i,τ )

⊤Ai(π
(κ

(t)
i ) − π⋆

τ ) term will cancel out due to the mapping

t 7→ κ
(t)
i being injective when t ≥ γ. In addition, we have a crude bound

(π
(t)
i − π⋆

i,τ )
⊤Ai(π

(t) − π⋆
τ ) =

∑
j∈Ni

(π
(t)
i − π⋆

i,τ )
⊤Aij(π

(t)
j − π⋆

j,τ ) ≤ 4dmax ∥A∥∞

for every i ∈ V, t ≥ 0. Applying the bound to the remaining nγ terms gives

−
T∑

t=2γ+1

∑
i∈V

(π
(κ

(t)
i )

i − π⋆
i,τ )

⊤Ai(π
(κ

(t)
i ) − π⋆

τ ) ≤ 4nγdmax ∥A∥∞ . (85)

The remaining terms KL
(
π⋆
τ ∥π(2γ)

)
and ψ(l) can be bounded with the following lemma, with the

proof postponed to Appendix E.9.
Lemma 9. It holds for all i ∈ V and t ≥ 0 that

ψ
(t)
i ≤ η(dmax ∥A∥∞ (2γ + 11) + 3τ log |Si|). (86)

In addition, we have

KL
(
π⋆
i,τ ∥π(2γ)

i

)
≤ KL

(
π⋆
i,τ ∥π(0)

i

)
+ 4ηdmax ∥A∥∞ γ. (87)

Putting all pieces together, we continue from (84) and show that

ητ
T∑

t=2γ+1

KL
(
π⋆
τ ∥π(t)

)
≤ (1− ητ)KL

(
π⋆
τ ∥π(2γ)

)
− η

T∑
t=2γ+1

∑
i∈V

(π
(κ

(t)
i )

i − π⋆
i,τ )

⊤Ai(π
(κ

(t)
i ) − π⋆

τ ) +
1

3

∑
l∈Γ

ψ(l)

≤ KL
(
π⋆
i,τ ∥π(0)

i

)
+ 8ηnγdmax ∥A∥∞ + ηγ

(
ndmax ∥A∥∞ (2γ + 11) + 3τ

∑
i∈V

log |Si|
)

≤ KL
(
π⋆
i,τ ∥π(0)

i

)
+ 8ηn

[
γdmax ∥A∥∞ + γ

(
dmax ∥A∥∞ (2γ + 11) + 3τ logSmax

)]
≤ KL

(
π⋆
i,τ ∥π(0)

i

)
+ n+ 24ητnγ logSmax.

Bounding the term KL
(
π⋆
τ ∥π(t−γ+1)

)
. By definition of KL divergence, we have

KL
(
π⋆
i,τ ∥π(t−γ+1)

i

)
= KL

(
π⋆
i,τ ∥π(t+1)

i

)
+
〈
π⋆
i,τ , log π

(t+1)
i − log π

(t−γ+1)
i

〉
= KL

(
π⋆
i,τ ∥π(t+1)

i

)
− KL

(
π
(t−γ+1)
i ∥π(t+1)

i

)
+
〈
π⋆
i,τ − π

(t−γ+1)
i , log π

(t+1)
i − log π

(t−γ+1)
i

〉
.

(88)
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It follows directly from the update rules that
log π

(t−γ+1)
i

1
= (1− ητ) log π

(t−γ)
i + ηAiπ

(κ
(t−γ)
i )

log π
(t+1)
i

1
= (1− ητ)γ+1 log π

(t−γ)
i + η

t+1∑
l=t−γ+1

(1− ητ)t−l+1Aiπ
(κ

(l)
i )
,

which enables us to control the term
〈
π⋆
i,τ − π

(t−γ+1)
i , log π

(t+1)
i − log π

(t−γ+1)
i

〉
as〈

π⋆
i,τ − π

(t−γ+1)
i , log π

(t+1)
i − log π

(t−γ+1)
i

〉
= η

t+1∑
l=t−γ+1

(1− ητ)
t−l+1 〈

π⋆
i,τ − π

(t−γ+1)
i , Ai(π

(κ
(t−γ)
i ) − π(κ

(l)
i ))

〉
≤ η ∥A∥∞

∥∥π⋆
i,τ − π

(t−γ+1)
i

∥∥
1

∑
j∈Ni

t+1∑
l=t−γ+1

∥∥π(κ
(t−γ)
i )

j − π
(κ

(l)
i )

j

∥∥
1
. (89)

In the same vein as Lemma 8, we can bound the term
∑t+1

l=t−γ+1

∥∥π(κ
(t−γ)
i )

j − π
(κ

(l)
i )

j

∥∥
1

with {ψ(l)
i },

as detailed in the following lemma. The proof is omitted due to its similarity with that of Lemma 8.
Lemma 10. When t ≥ 2γ, it holds that

t+1∑
l=t−γ+1

∥∥π(κ
(t−γ)
i )

j − π
(κ

(l)
i )

j

∥∥
1
≤ 4

√
2(γ + 1)

t+γ+1∑
l=t−2γ+1

√
ψ
(l)
i + 2

√
2(γ + 1)2

√
ψ
(νj(κ

(t−γ)
i ))

j .

Plugging the above lemma into (89), we have〈
π⋆
i,τ − π

(t−γ+1)
i , log π

(t+1)
i − log π

(t−γ+1)
i

〉
≤ η ∥A∥∞

∥∥π⋆
i,τ − π

(t−γ+1)
i

∥∥
1

∑
j∈Ni

(
4
√
2(γ + 1)

t+γ+1∑
l=t−2γ+1

√
ψ
(l)
i + 2

√
2(γ + 1)2

√
ψ
(νj(κ

(t−γ)
i ))

j

)
(i)
≤ 1

2
η ∥A∥∞

{
14dmax(γ + 1)3/2

∥∥π⋆
i,τ − π

(t−γ+1)
i

∥∥2
1

+
∑
j∈Ni

[
8(γ + 1)3/2

t+γ+1∑
l=t−2γ+1

ψ
(l)
j + 4(γ + 1)5/2ψ

(νj(κ
(t−γ)
i ))

j

]}
(ii)
≤ η ∥A∥∞

{
14dmax(γ + 1)3/2KL

(
π⋆
i,τ ∥π(t−γ+1)

i

)
+
∑
j∈Ni

[
4(γ + 1)3/2

t+γ+1∑
l=t−2γ+1

ψ
(l)
j + 2(γ + 1)5/2ψ

(νj(κ
(t−γ)
i ))

j

]}
,

where (i) results from similar arguments in (82) and (ii) invokes Pinsker’s inequality. Substitution
of the above inequality into (88) and summing over i ∈ V leads to

(1− 14ηdmax ∥A∥∞ (γ + 1)3/2)KL
(
π⋆
τ ∥π(t−γ+1)

)
≤ KL

(
π⋆
τ ∥π(t+1)

)
+ η ∥A∥∞

∑
(i,j)∈E

[
4(γ + 1)3/2

t+γ+1∑
l=t−2γ+1

ψ
(l)
j + 2(γ + 1)5/2ψ

(νj(κ
(t−γ)
i ))

j

]

≤ KL
(
π⋆
τ ∥π(t+1)

)
+ 4ηdmax ∥A∥∞ (γ + 1)3/2

t+γ+1∑
l=t−2γ+1

ψ(l) + 2ηdmax ∥A∥∞ (γ + 1)5/2ψ(νj(κ
(t−γ)
i )).

Summing the above inequality over t = 2γ − 1, · · · , T − 1 and adding∑T−1
t=2γ

∑
i∈V KL

(
π
(κ

(t+1)
i )

i ∥π⋆
i,τ

)
to the both sides,

T−1∑
t=2γ

(2
3
KL
(
π⋆
τ ∥π(t−γ+1)

)
+
∑
i∈V

KL
(
π
(κ

(t+1)
i )

i ∥π⋆
i,τ

))
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≤
T−1∑
t=2γ

KL
(
π⋆
τ ∥π(t+1)

)
+

T−1∑
t=2γ

∑
i∈V

KL
(
π
(κ

(t+1)
i )

i ∥π⋆
i,τ

)
+ 4ηdmax ∥A∥∞ (γ + 1)3/2

T−1∑
t=2γ

t+γ+1∑
l=t−2γ+1

ψ(l) + 2ηdmax ∥A∥∞ (γ + 1)5/2
T−1∑
t=2γ

ψ(νj(κ
(t−γ)
i ))

(i)
≤ 1

ητ

{
(1− ητ)KL

(
π⋆
τ ∥π(2γ)

)
− η

T∑
t=2γ+1

∑
i∈V

(π
(κ

(t)
i )

i − π⋆
i,τ )

⊤Ai(π
(κ

(t)
i ) − π⋆

τ )

−
(
1− 28ηdmax ∥A∥∞ (γ + 1)5/2

) T∑
t=2γ+1

ψ(t) + 14ηdmax ∥A∥∞ (γ + 1)5/2
∑
l∈Γ

ψ(l)

}

+ 12ηdmax ∥A∥∞ (γ + 1)5/2
T+γ∑
l=1

ψ(l) + 2ηdmax ∥A∥∞ (γ + 1)5/2
T+γ−1∑
t=0

ψ(l)

=
1

ητ

{
(1− ητ)KL

(
π⋆
τ ∥π(2γ)

)
− η

T∑
t=2γ+1

∑
i∈V

(π
(κ

(t)
i )

i − π⋆
i,τ )

⊤Ai(π
(κ

(t)
i ) − π⋆

τ )

−
(
1− 28(1 +

ητ

2
)ηdmax ∥A∥∞ (γ + 1)5/2

) T∑
t=2γ+1

ψ(t) + 14(1 + ητ)ηdmax ∥A∥∞ (γ + 1)5/2
∑
l∈Γ

ψ(l)

}
.

Here, (i) invokes the bound established in (84). We remark that our choice of learning rate

η ≤ min
{ 1

2τ(γ + 1)
,

1

42dmax ∥A∥∞ (γ + 1)5/2

}
guarantees 1− 28(1 + ητ

2 )ηdmax ∥A∥∞ (γ + 1)5/2 ≥ 0. This taken together with (85) and Lemma
9 gives
T−1∑
t=2γ

(2
3
KL
(
π⋆
τ ∥π(t−γ+1)

)
+
∑
i∈V

KL
(
π
(κ

(t+1)
i )

i ∥π⋆
i,τ

))

≤ 1

ητ

{
(1− ητ)KL

(
π⋆
τ ∥π(2γ)

)
− η

T∑
t=2γ+1

∑
i∈V

(π
(κ

(t)
i )

i − π⋆
i,τ )

⊤Ai(π
(κ

(t)
i ) − π⋆

τ ) +
1

2

∑
l∈Γ

ψ(l)

}
≤ 1

ητ

{
KL
(
π⋆
i,τ ∥π(0)

i

)
+ 8ηn

[
γdmax ∥A∥∞ +

3γ

2

(
dmax ∥A∥∞ (2γ + 11) + 3τ logSmax

)]}
≤ 1

ητ

{
KL
(
π⋆
i,τ ∥π(0)

i

)
+ n+ 36ητnγ logSmax

}
. (90)

Bounding the QRE gap. With Lemma 3, we have
T−γ−1∑
t=2γ

QRE-Gapτ (π
(t+1)) ≤

T−γ−1∑
t=2γ

(d2max ∥A∥2∞
τ

KL
(
π⋆
τ ∥π(t+1)

)
+ τKL

(
π(t+1) ∥π⋆

τ

))

≤ max
{3d2max ∥A∥2∞

2τ
, τ
} T−γ−1∑

t=2γ

(2
3
KL
(
π⋆
τ ∥π(t+1)

)
+ KL

(
π(t+1) ∥π⋆

τ

))
.

Since the mapping t 7→ νi(t) is injective, we have
T−γ−1∑
t=2γ

∑
i∈V

KL
(
π
(t+1)
i ∥π⋆

i,τ

)
=

T−γ−1∑
t=2γ

∑
i∈V

KL
(
π
(κ

(νi(t+1))

i )
i ∥π⋆

i,τ

)
≤

T−1∑
t=2γ

∑
i∈V

KL
(
π
(κ

(t+1)
i )

i ∥π⋆
i,τ

)
.

Combining the above two equalities gives
T−γ−1∑
t=2γ

QRE-Gapτ (π
(t+1))

38



Published as a conference paper at ICLR 2023

≤ max
{3d2max ∥A∥2∞

2τ
, τ
}( T−γ−1∑

t=2γ

2

3
KL
(
π⋆
τ ∥π(t+1)

)
+

T−1∑
t=2γ

KL
(
π(t+1) ∥π⋆

τ

))

≤ max
{3d2max ∥A∥2∞

2τ
, τ
} T−1∑

t=2γ

(2
3
KL
(
π⋆
τ ∥π(t−γ+1)

)
+
∑
i∈V

KL
(
π
(κ

(t+1)
i )

i ∥π⋆
i,τ

))
≤ max

{3d2max ∥A∥2∞
2τ

, τ
} 1

ητ

(
KL
(
π⋆
i,τ ∥π(0)

i

)
+ n+ 36ητnγ logSmax

)
,

where the last step results from (90).

E PROOF OF AUXILIARY LEMMAS

E.1 PROOF OF LEMMA 1

To prove this lemma, we recall a key observation in Cai et al. (2016) that allows one to transform
a zero-sum polymatrix game G = {(V,E), {Si}i∈V , {Aij}(i,j)∈E} into a pairwise constant-sum
polymatrix game G̃ = {(V,E), {Si}i∈V , {Ãij}(i,j)∈E} such that

(1) For every player i ∈ V , it has the same payoff in G and G̃:

ui(s) = ũi(s), ∀s ∈ S.

(2) For each pair (i, j) ∈ E, i ̸= j, the two-player game G̃ is constant-sum, i.e., there exist constants
αij = αji, such that

Ãij(si, sj) + Ãji(sj , si) = αij (91)
holds for all si ∈ Si, sj ∈ Sj .

We are now in a place to prove Lemma 1. Let G̃ be the pairwise constant-sum polymatrix game
associated with G after the above payoff preserving transformation. We have∑

i∈V

[
ui(πi, π

′
−i) + ui(π

′
i, π−i)

]
=
∑
i∈V

[
ũi(πi, π

′
−i) + ũi(π

′
i, π−i)

]
=

∑
(i,j)∈E

[
E

si∼πi,sj∼π′
j

[
Ãij(si, sj)

]
+ E

si∼π′
i,sj∼πj

[
Ãij(si, sj)

]]

=
∑

(i,j)∈E

[
E

si∼πi,sj∼π′
j

[
Ãij(si, sj)

]
+ E

si∼π′
i,sj∼πj

[
αij − Ãji(sj , si)

]]

=
∑

(i,j)∈E

αij = 0,

where the penultimate line uses (91), and the last line uses the fact that G̃ is also a zero-sum poly-
matrix game, which satisfies∑

(i,j)∈E

αij =
∑

(i,j)∈E

[
Ãij(si, sj) + Ãji(sj , si)

]
=
∑
i∈V

ũi(s) +
∑
j∈V

ũj(s) = 0

for any arbitrary s ∈ S.

E.2 PROOF OF LEMMA 2

In view of the update rule (7), we have

log π
(t+1)
i = (1− ητ) log π

(t)
i + ηAiπ

(t+1) + ci1
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for some constant ci. On the other hand, it follows from the expression of QRE in (4) that

ητ log π⋆
i,τ = ηAiπ

⋆
τ + c⋆i 1 (92)

for some constant c⋆i . By combining the above two equalities and taking the inner product with
π
(t+1)
i − π⋆

i,τ , we have〈
log π

(t+1)
i − (1− ητ) log π

(t)
i − ητ log π⋆

i,τ , π
(t+1)
i − π⋆

i,τ

〉
= η(π

(t+1)
i −π⋆

i,τ )
⊤Ai(π

(t+1)−π⋆
τ ).

(93)
Summing the above equality over i ∈ V gives〈

log π(t+1) − (1− ητ) log π(t) − ητ log π⋆
τ , π

(t+1) − π⋆
τ

〉
= η

∑
i∈V

(π
(t+1)
i − π⋆

i,τ )
⊤Ai(π

(t+1) − π⋆
τ )

= η
∑
i∈V

[
(π

(t+1)
i )⊤Aiπ

(t+1) + (π⋆
i,τ )

⊤Aiπ
⋆
τ

]
− η

∑
i∈V

[
(π

(t+1)
i )⊤Aiπ

⋆
τ + (π⋆

i,τ )
⊤Aiπ

(t+1)
]

= η
∑
i∈V

[
ui(π

(t+1)) + ui(π
⋆
τ )
]
= 0,

where the last line follows from
∑

i∈V

[
(π

(t+1)
i )⊤Aiπ

⋆
τ + (π⋆

i,τ )
⊤Aiπ

(t+1)
]
= 0 due to Lemma 1,

as well as that the game is zero-sum.

E.3 PROOF OF LEMMA 3

Recalling the definition

QRE-Gapτ (π) = max
i∈V

[
max

π′
i∈∆(Si)

ui,τ (π
′
i, π−i)− ui,τ (π)

]
≤
∑
i∈V

[
max

π′
i∈∆(Si)

ui,τ (π
′
i, π−i)− ui,τ (π)

]
= max

i∈V :π′
i∈∆(Si)

∑
i∈V

[ui,τ (π
′
i, π−i)− ui,τ (πi, π−i)] ,

where the inequality holds since maxπ′
i∈∆(Si) ui,τ (π

′
i, π−i)−ui,τ (π) ≥ ui,τ (πi, π−i)−ui,τ (π) = 0

for all i ∈ V . We now proceed to decompose∑
i∈V

[ui,τ (π
′
i, π−i)− ui,τ (πi, π−i)]

=
∑
i∈V

[
ui,τ (π

′
i, π−i)− ui,τ (π

⋆
i,τ , π

⋆
−i,τ )

]
− τ

∑
i∈V

(
H(πi)−H(π⋆

i,τ )
)

=
∑
i∈V

[
ui,τ (π

′
i, π−i)− ui,τ (π

′
i, π

⋆
−i,τ )− ui,τ (π

⋆
i,τ , π−i) + ui,τ (π

⋆
i,τ , π

⋆
−i,τ )

]
+
∑
i∈V

[
ui,τ (π

⋆
i,τ , π−i)− ui,τ (π

⋆
i,τ , π

⋆
−i,τ )− τ

(
H(πi)−H(π⋆

i,τ )
)]

+
∑
i∈V

[
ui,τ (π

′
i, π

⋆
−i,τ )− ui,τ (π

⋆
i,τ , π

⋆
−i,τ )

]
(94)

where the first line follows from
∑

i∈V (ui,τ (π)− τH(πi)) =
∑

i∈V

(
ui,τ (π

⋆
τ )− τH(π⋆

i,τ )
)
= 0

by the definition of zero-sum games. It boils down to control the terms on the RHS of (94).

• To control the first term, by the definition of ui,τ in (5) (see also (3)), it follows that

ui,τ (π
′
i, π−i)− ui,τ (π

′
i, π

⋆
−i,τ )− ui,τ (π

⋆
i,τ , π−i) + ui,τ (π

⋆
i,τ , π

⋆
−i,τ )

= ui(π
′
i, π−i)− ui(π

′
i, π

⋆
−i,τ )− ui(π

⋆
i,τ , π−i) + ui(π

⋆
i,τ , π

⋆
−i,τ )
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= (π′
i − π⋆

i,τ )
⊤Ai(π − π⋆

τ ) =
∑
j∈Ni

(π′
i − π⋆

i,τ )
⊤Aij(πj − π⋆

j,τ ),

which each summand can be further bounded by Young’s inequality and Pinsker’s inequality as

(π′
i − π⋆

i,τ )
⊤Aij(πj − π⋆

j,τ ) ≤ ∥A∥∞
∥∥π′

i − π⋆
i,τ

∥∥
1

∥∥πj − π⋆
j,τ

∥∥
1

≤ 1

2
∥A∥∞

(
τ

dmax ∥A∥∞
∥∥π′

i − π⋆
i,τ

∥∥2
1
+
dmax ∥A∥∞

τ

∥∥πj − π⋆
j,τ

∥∥2
1

)
≤ ∥A∥∞

(
τ

dmax ∥A∥∞
KL
(
π′
i ∥π⋆

i,τ

)
+
dmax ∥A∥∞

τ
KL
(
π⋆
j,τ ∥πj

))
.

Summing the inequality over i, j gives∑
i∈V

[
ui,τ (π

′
i, π−i)− ui,τ (π

′
i, π

⋆
−i,τ )− ui,τ (π

⋆
i,τ , π−i) + ui,τ (π

⋆
i,τ , π

⋆
−i,τ )

]
≤ τKL

(
π′ ∥π⋆

τ

)
+
d2max ∥A∥2∞

τ
KL
(
π⋆
τ ∥π

)
. (95)

• Regarding the second term, we have∑
i∈V

[
ui,τ (π

⋆
i,τ , π−i)− ui,τ (π

⋆
i,τ , π

⋆
−i,τ )− τ

(
H(πi)−H(π⋆

i,τ )
)]

=
∑
i∈V

[
(π⋆

i,τ )
⊤Ai(π − π⋆

τ ) + τ(π⊤
i log πi − (π⋆

i,τ )
⊤ log π⋆

i,τ )
]

=
∑
i∈V

[
(π⋆

i,τ )
⊤Ai(π − π⋆

τ ) + τ
(〈
πi, log πi − log π⋆

i,τ

〉
+
〈
πi − π⋆

i,τ , log π
⋆
i,τ

〉)]
=
∑
i∈V

[
(π⋆

i,τ )
⊤Ai(π − π⋆

τ ) + (πi − π⋆
i,τ )

⊤Aiπ
⋆
τ + τKL

(
πi ∥π⋆

i,τ

)]
= τKL

(
π ∥π⋆

τ

)
, (96)

where the penultimate step follows from (92) and the last step invokes Lemma 1.
• Moving to the last term, we have

ui,τ (π
⋆
i,τ , π

⋆
−i,τ )− ui,τ (π

′
i, π

⋆
−i,τ ) = (π⋆

i,τ − π′
i)

⊤Aiπ
⋆
τ − τ(π⋆

i,τ )
⊤ log π⋆

i,τ + τ(π′
i)

⊤ log π′
i

= τ(π⋆
i,τ − π′

i)
⊤ log π⋆

i,τ − τ(π⋆
i,τ )

⊤ log π⋆
i,τ + τ(π′

i)
⊤ log π′

i

= τKL
(
π′
i ∥π⋆

i,τ

)
. (97)

where the second line follows again from (92).

Plugging (95), (96) and (97) into (94) gives∑
i∈V

[ui,τ (π
′
i, π−i)− ui,τ (πi, π−i)] ≤ τKL

(
π ∥π⋆

τ

)
+
d2max ∥A∥2∞

τ
KL
(
π⋆
τ ∥π

)
.

Taking maximum over π′ finishes the proof.

E.4 PROOF OF LEMMA 4

Let π̃(T ) = 1
T+1

∑T
t=0 π

(t+1), then π̃(T ) ∈ ∆(S). The proof is completed if we can show∑
i∈V

Regreti,τ
(
T + 1

)
≥
∑
i∈V

Regreti,τ
(
π̃
(T )
i , T + 1

)
≥ 0, (98)

where the first inequality holds trivially since Regreti,τ
(
T + 1

)
≥ Regreti,τ

(
π̃
(T )
i , T

)
. It then

boils down to show the second inequality of the above relation. From the definition of zero-sum
polymatrix games, it holds that∑

i∈V

T∑
t=0

〈
π̃
(T )
i − π

(t+1)
i , Aiπ

(t+1)
〉
=
∑
i∈V

T∑
t=0

〈
π̃
(T )
i , Aiπ

(t+1)
〉
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=
∑
i∈V

〈
π̃
(T )
i , Ai

T∑
t=0

π(t+1)
〉

= (T + 1)
∑
i∈V

〈
π̃
(T )
i , Aiπ̃

(T )
〉
= 0.

In addition, applying Jensen’s inequality gives

T∑
t=0

H(π̃
(T )
i ) = (T + 1)H(π̃

(T )
i ) ≥

T∑
t=0

H(π
(t+1)
i ).

Combining the above two relations yields

∑
i∈V

Regreti,τ
(
π̃
(T )
i , T + 1

)
≥
∑
i∈V

T∑
t=0

(〈
π̃
(T )
i − π

(t+1)
i , Aiπ

(t+1)
〉
+ τH(π̃

(T )
i )− τH(π

(t+1)
i )

)
≥ 0,

which concludes the proof.

E.5 PROOF OF LEMMA 5

Taking logarithm on the both sides of (7), we have

log π
(t+1)
i

1
= (1− ητ) log π

(t)
i + ηAiπ

(t−γ+1). (99)

On the other hand, the definition of QRE in (4) gives

ητ log π⋆
i,τ

1
= ηAiπ

⋆
τ .

Subtracting the two equalities and taking inner product with π(t−γ+1)
i − π⋆

i,τ , we get〈
log π

(t+1)
i − (1− ητ) log π

(t)
i − ητ log π⋆

i,τ , π
(t−γ+1)
i − π⋆

i,τ

〉
= η

(
π
(t−γ+1)
i − π⋆

i,τ

)⊤
Ai

(
π(t−γ+1) − π⋆

τ

)
.

Summing the above equality over i ∈ V leads to〈
log π(t+1) − (1− ητ) log π(t) − ητ log π⋆

τ , π
(t−γ+1)
i − π⋆

τ

〉
= η

∑
i∈V

(
π
(t−γ+1)
i − π⋆

i,τ

)⊤
Ai

(
π(t−γ+1) − π⋆

τ

)
= 0,

where the final step results from Lemma 1.

E.6 PROOF OF LEMMA 6

Recall from (71) that

KL
(
π⋆
τ ∥π(t+1)

)
= (1− ητ)KL

(
π⋆
τ ∥π(t)

)
− (1− ητ)KL

(
π(t−γ+1) ∥π(t)

)
− KL

(
π(t+1) ∥π(t−γ+1)

)
+
〈
log π(t−γ+1) − log π(t+1), π(t−γ+1) − π(t+1)

〉
− ητKL

(
π(t−γ+1) ∥π⋆

τ

)
.

(100)

When t < γ, we have π(t−γ+1)
i = π(0). It follows that

log π
(t−γ+1)
i = log π(0) 1

= 0,

and that

log π
(t+1)
i

1
= (1− ητ)t+1 log π(0) + η

t∑
l=0

(1− ητ)lAiπ
(t−γ−l+1)
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1
= η

t∑
l=0

(1− ητ)lAiπ
(0).

Therefore, we can bound the term
〈
log π(t−γ+1) − log π(t+1), π(t−γ+1) − π(t+1)

〉
as

〈
log π(t−γ+1) − log π(t+1), π(t−γ+1) − π(t+1)

〉
=
〈
η

t∑
l=0

(1− ητ)lAiπ
(0), π(0) − π(t+1)

〉
≤ η(t+ 1)dmax ∥A∥∞

∥∥∥π(0) − π(t+1)
∥∥∥
1

≤ 2η(t+ 1)dmax ∥A∥∞. (101)

Plugging the above inequality into (100) leads to

KL
(
π⋆
τ ∥π(t+1)

)
≤ (1− ητ)KL

(
π⋆
τ ∥π(t)

)
− (1− ητ)KL

(
π(t−γ+1) ∥π(t)

)
− KL

(
π(t+1) ∥π(t−γ+1)

)
+ 2η(t+ 1)dmax ∥A∥∞.

Applying the above inequality recursively to the iterates 0, 1, . . . , γ − 1, we arrive at

KL
(
π⋆
τ ∥π(γ)

)
≤ (1− ητ)γKL

(
π⋆
τ ∥π(0)

)
−

γ−1∑
l1=0

(1− ητ)γ−1−l1
[
(1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

)
+ KL

(
π(l1+1) ∥π(l1−γ+1)

)]

+ 2η

γ−1∑
l1=0

(1− ητ)γ−1−l1(l1 + 1)dmax ∥A∥∞

≤ (1− ητ)γKL
(
π⋆
τ ∥π(0)

)
−

γ−1∑
l1=0

(1− ητ)γ−1−l1
[
(1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

)
+ KL

(
π(l1+1) ∥π(l1−γ+1)

)]
+ 2ηγ2dmax ∥A∥∞.

E.7 PROOF OF LEMMA 7

Taking logarithm on the both sides of (77) and (78), we get

η
(
log π̃

(t)
i − log π

(t−1)
i

) 1
= η̃

(t)
i

(
log π

(t)
i − log π

(t−1)
i

)
,

or equivalently
log π

(t)
i

1
=

η

η̃
(t)
i

log π̃
(t)
i +

(
1− η

η̃
(t)
i

)
log π

(t−1)
i .

Taking inner product with π⋆
i,τ − π

(t)
i ,〈

log π
(t)
i − η

η̃
(t)
i

log π̃
(t)
i −

(
1− η

η̃
(t)
i

)
log π

(t−1)
i , π⋆

i,τ − π
(t)
i

〉
= 0.

By definition of KL divergence, we have〈
log π

(t)
i − η

η̃
(t)
i

log π̃
(t)
i −

(
1− η

η̃
(t)
i

)
log π

(t−1)
i , π⋆

i,τ

〉
=
〈
(log π

(t)
i − log π⋆

i,τ )−
η

η̃
(t)
i

(log π̃
(t)
i − log π⋆

i,τ )−
(
1− η

η̃
(t)
i

)
(log π

(t−1)
i − log π⋆

i,τ ), π
⋆
i,τ

〉
= −KL

(
π⋆
i,τ ∥π(t)

i

)
+
(
1− η

η̃
(t)
i

)
KL
(
π⋆
i,τ ∥π(t−1)

i

)
+

η

η̃
(t)
i

KL
(
π⋆
i,τ ∥ π̃(t)

i

)
,

and 〈
log π

(t)
i − η

η̃
(t)
i

log π̃
(t)
i −

(
1− η

η̃
(t)
i

)
log π

(t−1)
i , π

(t)
i

〉
43



Published as a conference paper at ICLR 2023

=
η

η̃
(t)
i

KL
(
π
(t)
i ∥ π̃(t)

i

)
+
(
1− η

η̃
(t)
i

)
KL
(
π
(t)
i ∥π(t−1)

i

)
.

Taken together, we get

KL
(
π⋆
i,τ ∥π(t)

i

)
+

η

η̃
(t)
i

KL
(
π
(t)
i ∥ π̃(t)

i

)
+
(
1− η

η̃
(t)
i

)
KL
(
π
(t)
i ∥π(t−1)

i

)
=
(
1− η

η̃
(t)
i

)
KL
(
π⋆
i,τ ∥π(t−1)

i

)
+

η

η̃
(t)
i

KL
(
π⋆
i,τ ∥ π̃(t)

i

)
. (102)

On the other hand, taking logarithm of (78) and making inner product with π(κ
(t)
i )

i − π⋆
i,τ gives〈

log π̃
(t)
i − (1− η̃

(t)
i τ) log π

(t−1)
i − η̃

(t)
i τ log π⋆

i,τ , π
(κ

(t)
i )

i − π⋆
i,τ

〉
= η̃

(t)
i (π

(κ
(t)
i )

i − π⋆
i,τ )

⊤Ai(π
(κ

(t)
i ) − π⋆

τ ).

Following a similar discussion in (19) gives

KL
(
π⋆
i,τ ∥ π̃(t)

i

)
= (1− η̃

(t)
i τ)KL

(
π⋆
i,τ ∥π(t−1)

i

)
− (1− η̃

(t)
i τ)KL

(
π
(κ

(t)
i )

i ∥π(t−1)
i

)
− η̃

(t)
i τKL

(
π
(κ

(t)
i )

i ∥π⋆
i,τ

)
− KL

(
π̃
(t)
i ∥π(κ

(t)
i )

i

)
+
〈
log π

(κ
(t)
i )

i − log π̃
(t)
i , π

(κ
(t)
i )

i − π̃
(t)
i

〉
− η̃

(t)
i (π

(κ
(t)
i )

i − π⋆
i,τ )

⊤Ai(π
(κ

(t)
i ) − π⋆

τ ).

(103)

Plugging the above equation into (102),

KL
(
π⋆
i,τ ∥π(t)

i

)
+

η

η̃
(t)
i

KL
(
π
(t)
i ∥ π̃(t)

i

)
+

(
1− η

η̃
(t)
i

)
KL
(
π
(t)
i ∥π(t−1)

i

)
= (1− ητ)KL

(
π⋆
i,τ ∥π(t−1)

i

)
− η(π

(κ
(t)
i )

i − π⋆
i,τ )

⊤Ai(π
(κ

(t)
i ) − π⋆

τ )

− η

η̃
(t)
i

[
(1− η̃

(t)
i τ)KL

(
π
(κ

(t)
i )

i ∥π(t−1)
i

)
+ η̃

(t)
i τKL

(
π
(κ

(t)
i )

i ∥π⋆
i,τ

)
+ KL

(
π̃
(t)
i ∥π(κ

(t)
i )

i

)]
+

η

η̃
(t)
i

〈
log π

(κ
(t)
i )

i − log π̃
(t)
i , π

(κ
(t)
i )

i − π̃
(t)
i

〉
.

Rearranging the terms finishes the proof.

E.8 PROOF OF LEMMA 8

For notational convenience, we set

ϕ
(t)
i =

(
1− η

η̃
(t)
i

)∥∥π(t)
i − π

(t−1)
i

∥∥
1

+
η

η̃
(t)
i

(∥∥π(κ
(t)
i )

i − π
(t−1)
i

∥∥
1
+
∥∥π̃(t)

i − π
(κ

(t)
i )

i

∥∥
1
+
∥∥π(t)

i − π̃
(t)
i

∥∥
1

)
for all i ∈ V, t ≥ 0. By triangular inequality, we have ϕ(t)i ≥

∥∥∥π(t)
i − π

(t−1)
i

∥∥∥
1
. In addition, we

denote by t1 ∧ t2 := min{t1, t2} and t1 ∨ t2 := max{t1, t2}. For 0 < t1 < t2, it holds that∥∥π(κ
(t1)
i )

j − π
(κ

(t2)
i )

j

∥∥
1

≤
∥∥π(νj(κ

(t1)
i ))

j − π
(νj(κ

(t2)
i ))

j

∥∥
1
+
∥∥π(κ

(t1)
i )

j − π
(νj(κ

(t1)
i ))

j

∥∥
1
+
∥∥π(κ

(t2)
i )

j − π
(νj(κ

(t2)
i ))

j

∥∥
1

≤
νj(κ

(t1)
i )∨νj(κ

(t2)
i )∑

l=(νj(κ
(t1)
i )+1)∧(νj(κ

(t2)
i )+1)

∥∥π(l)
j − π

(l−1)
j

∥∥
1
+
∥∥π(κ

(t1)
i )

j − π̃
(νj(κ

(t1)
i ))

j

∥∥
1
+
∥∥π̃(νj(κ

(t1)
i ))

j − π
(νj(κ

(t1)
i ))

j

∥∥
1
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+
∥∥π(κ

(t2)
i )

j − π̃
(νj(κ

(t2)
i ))

j

∥∥
1
+
∥∥π̃(νj(κ

(t2)
i ))

j − π
(νj(κ

(t2)
i ))

j

∥∥
1

≤
νj(κ

(t1)
i )∨νj(κ

(t2)
i )∑

l=(νj(κ
(t1)
i )+1)∧(νj(κ

(t2)
i )+1)

ϕ
(l)
j +

η̃
(νj(κ

(t1)
i ))

j

η
ϕ
(νj(κ

(t1)
i ))

j +
η̃
(νj(κ

(t2)
i ))

j

η
ϕ
(νj(κ

(t2)
i ))

j

≤
νj(κ

(t1)
i )∨νj(κ

(t2)
i )∑

l=(νj(κ
(t1)
i )+1)∧(νj(κ

(t2)
i )+1)

ϕ
(l)
j + (γ + 1)ϕ

(νj(κ
(t1)
i ))

j + (γ + 1)ϕ
(νj(κ

(t2)
i ))

j . (104)

Therefore, we have
t∑

k=κ
(t)
i

∥∥π(κ
(k)
i )

j − π
(κ

(κ
(t−1)
i

)

i )
j

∥∥
1

≤
t∑

k=κ
(t)
i

{ νj(κ
(κ

(t−1)
i

)

i )∨νj(κ
(k)
i )∑

l=(νj(κ
(κ

(t−1)
i

)

i )+1)∧(νj(κ
(k)
i )+1)

ϕ
(l)
j + (γ + 1)ϕ

(νj(κ
(κ

(t−1)
i

)

i ))
j + (γ + 1)ϕ

(νj(κ
(k)
i ))

j

}
.

(105)

Since 0 ∨ (t− γ) ≤ κ
(t)
i ≤ t ≤ νi(t) ≤ t+ γ for all i ∈ V , t ≥ 0, the first term can be bounded by

νj(κ
(κ

(t−1)
i

)

i )∨νj(κ
(k)
i )∑

l=(νj(κ
(κ

(t−1)
i

)

i )+1)∧(νj(κ
(k)
i )+1)

ϕ
(l)
j ≤

(t+γ−1)∨(k+γ)∑
l=(t−2γ)∧(k−γ+1)

ϕ
(l)
j ≤

t+γ∑
l=t−2γ

ϕ
(l)
j .

In addition, the mapping k 7→ νj(κ
(k)
i ) is injective when k ≥ γ (cf. Assumption 2 and 3). It follows

that
t∑

k=κ
(t)
i

ϕ
(νj(κ

(k)
i ))

j ≤
t+γ∑

l=κ
(t)
i −γ

ϕ
(l)
j ≤

t+γ∑
l=t−2γ

ϕ
(l)
j

Plugging the above inequalities into (105) yields
t∑

k=κ
(t)
i

∥∥π(κ
(k)
i )

j − π
(κ

(κ
(t−1)
i

)

i )
j

∥∥
1

≤ (t+ 1− κ
(t)
i )

t+γ∑
l=t−2γ

ϕ
(l)
j + (t+ 1− κ

(t)
i )(γ + 1)ϕ

(νj(κ
(κ

(t−1)
i

)

i ))
j + (γ + 1)

t+γ∑
l=t−2γ

ϕ
(l)
j

≤ 2(γ + 1)

t+γ∑
l=t−2γ

ϕ
(l)
j + (γ + 1)2ϕ

(νj(κ
(κ

(t−1)
i

)

i ))
j .

Finally, we control the term ϕ
(t)
i with ψ(t)

i as:

(ϕ
(t)
i )2 =

((
1− η

η̃
(t)
i

)1/2
·
(
1− η

η̃
(t)
i

)1/2∥∥π(t)
i − π

(t−1)
i

∥∥
1

+
( η

η̃
(t)
i

(1− η̃
(t)
i τ)−1

)1/2
·
( η

η̃
(t)
i

(1− η̃
(t)
i τ)

)1/2∥∥π(κ
(t)
i )

i − π
(t−1)
i

∥∥
1

+
( η

η̃
(t)
i

)1/2
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+
η

η̃
(t)
i

(
(1− η̃

(t)
i τ)

∥∥π(κ
(t)
i )

i − π
(t−1)
i

∥∥2
1
+
∥∥π̃(t)

i − π
(κ

(t)
i )

i

∥∥2
1
+
∥∥π(t)

i − π̃
(t)
i

∥∥2
1

)]
(ii)
≤ 2

(
2 + (1− η̃

(t)
i τ)−1

)[(
1− η

η̃
(t)
i

)
KL
(
π
(t)
i ∥π(t−1)

i

)
+

η

η̃
(t)
i

(
(1− η̃

(t)
i τ)KL

(
π
(κ

(t)
i )

i ∥π(t−1)
i

)
+ KL

(
π̃
(t)
i ∥π(κ

(t)
i )

i

)
+ KL

(
π
(t)
i ∥ π̃(t)

i

))]
(iii)
≤ 8ψ

(t)
i , (106)

where (i) applies Cauchy-Schwarz inequality, (ii) invokes Pinsker’s inequality and (iii) is due to
η̃
(t)
i τ ≤ (γ + 1)ητ ≤ 1/2. Combining the above two inequalities finishes the proof.

E.9 PROOF OF LEMMA 9

We start with verifying the claim (86). Recall that

ψ
(t)
i :=

(
1− η

η̃
(t)
i

)
KL
(
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(t)
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i
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π
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i

)]
.

We introduce the following standard Lemma (see e.g., (Cen et al., 2020, Appendix A.2)), which
allows us to bound control KL

(
πi ∥π′

i

)
properly:

Lemma 11. Given πi, π′
i ∈ ∆(Si) and w ∈ R|Si| with log πi

1
= log π′

i + w, we have

KL
(
πi ∥π′

i
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≤
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∞ ≤ 2
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Therefore, it suffices to figure out the terms log π
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i − log π
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i −
log π

(κ
(t)
i )

i and log π
(κ

(t)
i )
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i .

• Bounding KL
(
π
(t)
i ∥π(t−1)

i

)
and KL

(
π
(t)
i ∥ π̃(t)

i

)
. The following equations follow directly from

(77) and (78): log π
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In addition, we have the following bound w.r.t. the order of
∥∥log π(t−1)

i

∥∥
∞, which we shall

establish momentarily. ∥∥τ log π(t−1)
i

∥∥
∞ ≤ τ log |Si|+ 2dmax ∥A∥∞ . (108)

This taken together with Lemma 11 yields{
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. (109)

• Bounding KL
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i )

i

)
. When κ(t)i ≥ 1, we recall from (80) that:
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which leads to a crude bound
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(111)
which yields
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This yields, by equations (107), (110), (111) and associated bounds,
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Putting all pieces together, we conclude that

ψ
(t)
i =

(
1− η

η̃
(t)
i

)
KL
(
π
(t)
i ∥π(t−1)

i

)
+

η

η̃
(t)
i

[
(1− η̃

(t)
i τ)KL

(
π
(κ

(t)
i )

i ∥π(t−1)
i

)
+ KL

(
π̃
(t)
i ∥π(κ

(t)
i )

i

)
+ KL

(
π
(t)
i ∥ π̃(t)

i

)]
≤ 3η(3dmax ∥A∥∞ + τ log |Si|) + 2ηdmax ∥A∥∞ (γ + 1)

= η(dmax ∥A∥∞ (2γ + 11) + 3τ log |Si|).
It remains to prove the claim (87):
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where the third step results from log π
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and Lemma 11.

Proof of the claim (108). First, we prove by induction that for any k, l ∈ Si,

log π
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τ
, ∀t ≥ 0. (112)

Note that the claim trivially holds for t = 0 with the uniform initialization π(0)
i = 1

|Si|1, ∀i ∈ V .

Assume that (112) holds for all t′ ≤ t − 1. Note that log π(t)
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we have
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≤ (1− ητ)
2dmax ∥A∥∞

τ
+ 2ηdmax ∥A∥∞

=
2dmax ∥A∥∞

τ
,

where the second line follows from the induction hypothesis (112). This completes the induction at
the t-th iteration. It follows that for all i ∈ V and t ≥ 0,
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