
A Strongly Polynomial Algorithm for Approximate Forster
Transforms and its Application to Halfspace Learning∗

Ilias Diakonikolas
University of Wisconsin-Madison

Madison, USA
ilias@cs.wisc.edu

Christos Tzamos
University of Wisconsin-Madison

& University of Athens
Madison, USA

tzamos@wisc.edu

Daniel M. Kane
University of California, San Diego

San Diego, USA
dakane@ucsd.edu

ABSTRACT

The Forster transform is a method of regularizing a dataset by

placing it in radial isotropic positionwhile maintaining some of

its essential properties. Forster transforms have played a key

role in a diverse range of settings spanning computer science

and functional analysis. Prior work had given weakly polyno-

mial time algorithms for computing Forster transforms, when

they exist. Our main result is the first strongly polynomial

time algorithm to compute an approximate Forster transform

of a given dataset or certify that no such transformation ex-

ists. By leveraging our strongly polynomial Forster algorithm,

we obtain the first strongly polynomial time algorithm for

distribution-free PAC learning of halfspaces. This learning re-

sult is surprising because proper PAC learning of halfspaces

is equivalent to linear programming. Our learning approach

extends to give a strongly polynomial halfspace learner in the

presence of random classification noise and, more generally,

Massart noise.

CCS CONCEPTS

· Theory of computation→Machine learning theory.

KEYWORDS

PAC learning, Halfspaces, Massart Noise

ACM Reference Format:

Ilias Diakonikolas, Christos Tzamos, and Daniel M. Kane. 2023. A

Strongly Polynomial Algorithm for Approximate Forster Transforms

and its Application to Halfspace Learning. In Proceedings of the 55th

Annual ACM Symposium on Theory of Computing (STOC ’23), June

20ś23, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3564246.3585191

1 INTRODUCTION

The Forster transform is a method of regularizing a dataset X

(in particular, by placing it in radial isotropic position) while

∗Author names are in randomized order.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

STOC ’23, June 20ś23, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-9913-5/23/06. . . $15.00
https://doi.org/10.1145/3564246.3585191

maintaining some of its essential properties. Forster trans-

forms have been an essential tool in a diverse range of settings,

including functional analysis [4, 25], communication com-

plexity [22], coding theory [21], mixed determinant/volume

approximation [30], learning theory [17, 18, 32, 33] and the

Paulsen problem in frame theory [31, 35]. The reader is re-

ferred to [3] for a more detailed discussion.

Known algorithms for computing (approximate) Forster

transforms [3, 17, 32] rely on black-box convex optimization

(e.g., the ellipsoid algorithm) and consequently have weakly

polynomial runtimes. Here we study the question of whether

Forster transforms can be computed in strongly polynomial

time. We then leverage Forster transforms for the problem of

PAC learning halfspaces (both in the realizable setting and in

the presence of semi-random label noise).

Intuitively speaking, a Forster transform is amapping that

turns a dataset into one with good anti-concentration proper-

ties. Specifically, given a dataset X ⊂ Rd∗ 1, a Forster transform
of X is an invertible linear transformation A ∈ Rd×d such

that the set of points Y = {Ax/∥Ax ∥2,x ∈ X } is in isotropic

position (i.e., has identity second moment matrix). Formally,

we have the following more general definition allowing for

approximate isotropic position.

Definition 1.1 (Approximate Forster Transform). Let X be a

set of n nonzero points in Rd and 0 ≤ ϵ ≤ 1 be an error param-

eter. An ϵ-approximate Forster transform of X is an invertible

linear transformation A ∈ Rd×d such that, considering the

mapping fA : Rd∗ 7→ Sd defined by fA (x)
def
= Ax/∥Ax ∥2, the

matrix MA (X)
def
= (1/n)

∑

x ∈X fA (x) fA (x)
⊤ satisfies 1−ϵ

d
I ⪯

MA (X) ⪯ 1+ϵ
d

I .

An exact Forster transform (corresponding to ϵ = 0 in Defi-

nition 1.1) aims to linearly transform a given dataset so that

the normalizations of these points are in isotropic position.

This notion is known as łForster’s isotropic positionž or łra-

dial isotropic positionž and can be viewed as an outlier-robust

analogue of isotropic position. As already mentioned, radial

isotropy has been extensively studied in functional analysis

and computer science.

Remark 1.2. At a high-level, a Forster transform aims to

transform a given dataset so that it becomes łwell-conditionedž

in a well-defined technical sense. We note that several other

such transformations have been studied in the literature, in-

cluding the łoutlier-removal techniquež of Dunagan and Vem-

pala [19] (improving on [7]) and the rescaling method of Duna-

gan and Vempala [20] for linear programming. We provide

1We use R∗ to denote the set R \ {0}.

STOC ’23, June 20ś23, 2023, Orlando, FL, USA Ilias Diakonikolas, Christos Tzamos, and Daniel M. Kane

a summary of these techniques and a comparison to radial

isotropy in Section 1.4.

Existence. Forster [22] showed that if the set of points X

is in general position, then a Forster transform exists. Interest-

ingly, generalizations of Forster’s theorem appear implicitly

in [4] and explicitly in [30]. We note that there are datasets

for which a Forster transform does not exist. For example, if

there is a d/3-dimensional subspace that contains half of the

points in X , then after applying any such transformation to

our dataset, this will still be the case; thus, there will be a

d/3-dimensional subspace over which the trace of the second

moment matrix is at least 1/2. In a recent refinement of the

aforementioned works, [33] showed that this is the only thing

that can go wrong. That is, a Forster transform of a given

dataset X exists unless there is a k-dimensional subspace, for

some 0 < k < d , containing at least a k/d-fraction of the

points in X .

Efficient Computability. Forster’s existence proof proceeds

via a non-constructive iterative argument. By analyzing a con-

vex program proposed by Barthe [4], Hardt and Moitra [32]

(see also [3]) showed that the ellipsoid method yields a weakly

polynomial time algorithm to compute an approximate Forster

transform (when it exists). (More recently, [17] pointed out

that a simple explicit SDP can be used to obtain a similar guar-

antee.) We remind the reader that the term weakly polynomial

time algorithm refers to the fact that the number of arithmetic

operations performed by the algorithm scales polynomially

with the bit complexity of the numbers in the input. Specifically,

in our Forster setting, the number of arithmetic operations re-

quired by the ellipsoid method is poly(n,d,b, log(1/ϵ)), where

ϵ is the accuracy parameter of Definition 1.1, n is the size of

the dataset X , and b is the bit complexity of X .

Starting from the convex programming formulation in [4],

Artstein-Avidan, Kaplan, and Sharir [3] gave an SVD-based

gradient-descent method for computing approximate Forster

transforms. This method incurs a poly(1/ϵ) runtime depen-

dence and is still weakly polynomial, i.e., the number of arith-

metic operations scales polynomially in the bit complexity b.

Finally, it is interesting to remark that Forster’s rescaling is a

special case of operator scaling and tensor scaling (see [24]

for a survey). Efficient algorithms have been developed for

these more general tasks, see, e.g., [1, 9], albeit with weakly

polynomial guarantees.

Weakly versus Strongly Polynomial Time. As is standard

for computational purposes, we assume that every integer

or rational number appearing in the input is encoded using

its binary representation. Let N ∈ Z+ denote the number

of integer numbers given as input and b ∈ Z+ denote the

bit complexity of the largest integer appearing in the input

description. An algorithm for the underlying computational

problem is called weakly polynomial, if its worst-case running

time is bounded by a fixed-degree polynomial in the Turing

machine model of computation.

The concept of strongly polynomial time was introduced

by Megiddo [39], under the name łgenuinely polynomialž. A

strongly polynomial time algorithm satisfies the following

properties (see, e.g., Section 1.3 of [29]): (i) it uses only ele-

mentary arithmetic operations (specifically, integer addition,

subtraction, multiplication, and division), (ii) the number of

arithmetic operations is bounded above by a polynomial in N ,

and (iii) the algorithm is a polynomial space algorithm: that

is, all numbers appearing in all intermediate computations

are rational numbers with bit complexity bounded above by a

polynomial in the input size (i.e., poly(N ,b)).

The key difference between strongly and weakly polyno-

mial time lies in property (ii) above. In a weakly polynomial

algorithm, the number of arithmetic operations is allowed to

scale with the bit complexity of the numbers in the input. In

sharp contrast, in a strongly polynomial time algorithm no bit

complexity dependence is allowed.

Forster Transforms in Strongly Polynomial Time? Moti-

vated by the fundamental nature and the varied applications

of Forster transforms, here we ask the following question:

Is there a strongly polynomial time algorithm to compute

an approximate Forster transform of a given dataset (assuming

one exists)?

Our main algorithmic result (Theorem 1.5) answers this ques-

tion in the affirmative by giving the first randomized strongly

polynomial-time algorithm for computing approximate Forster

transforms Ð corresponding to ϵ = Ω(poly(1/(n,d))) in Defi-

nition 1.1. Importantly, a constant value of ϵ suffices for our

learning theory application to learning halfspaces. Obtaining

a strongly polynomial time algorithm for inverse exponential

values of ϵ is left as an interesting open problem (see Section 7

for a discussion).

1.1 Halfspaces and Efficient PAC

Learnability

One of the main motivations behind this work was leveraging

Forster transforms as a tool for the algorithmic problem of

distribution-free PAC learning of halfspaces. We review the

relevant background in the subsequent discussion.

Halfspaces. We are concerned with the efficient learnabil-

ity of halfspaces in Valiant’s distribution-free PAC model [53].

A halfspace or Linear Threshold Function (LTF) is any Boolean-

valued function f : Rd 7→ {±1} of the form f (x) = sign(w ·x−
t), for somew ∈ Rd (known as the weight vector) and t ∈ R
(known as the threshold). (The function sign : R 7→ {±1} is
defined as sign(u) = 1 if u ≥ 0, and sign(u) = −1 otherwise.)
Halfspaces are one of the most extensively studied classes of

Boolean functions due to their central role in several areas,

including complexity theory, learning theory, and optimiza-

tion [23, 28, 40, 42, 43, 48, 49, 54, 58].

Background on PAC Learning. The major goal of compu-

tational learning theory is to develop learning algorithms for

expressive concept classes that are both statistically and com-

putationally efficient. To facilitate the subsequent discussion,

we formally define Valiant’s PAC model.

Definition 1.3 (PAC Learning). Let C be a class of Boolean-

valued functions overX = Rd andDX be a fixed but unknown

distribution over X . Let f be an unknown target function

in C. A PAC example oracle, EX(f ,DX), works as follows:

A Strongly Polynomial Algorithm for Approximate Forster Transforms and its Application to Halfspace Learning STOC ’23, June 20ś23, 2023, Orlando, FL, USA

Each time EX(f ,DX) is invoked, it returns a labeled example

(x ,y), where x ∼ DX and y = f (x). Let D denote the joint

distribution on (x ,y) generated by the above oracle. Given an

accuracy parameter γ > 0 and access to i.i.d. samples from D,

the learner wants to output a hypothesis h : Rd 7→ {±1} such
that with high probability the misclassification error of h is at

most γ , i.e., we have that Pr(x,y)∼D[h(x) , y] ≤ γ .

The hypothesis h in Definition 1.3 does not necessarily

belong to the class C. Namely, we focus on the standard no-

tion of improper learning, where the learner can output any

efficiently computable hypothesis. The special case where h is

required to lie in C is known as proper learning. While proper

learning might be desirable for some applications (e.g., due

to its interpretability), there exist natural concept classes for

which proper learning is computationally hard and improper

learning is easy (see, e.g., [34]). An improper hypothesis is

as useful as a proper one for the purpose of predicting new

function values.

Remark 1.4. The PAC model of Definition 1.3 is known

as realizable because of the assumption that the labels are con-

sistent with the target concept. While our main learning ap-

plication is on the realizable learning of halfspaces in strongly

polynomial time (Theorem 1.6), our positive result extends for

learning halfspaces in the presence of random or semi-random

label noise (Theorem 1.8).

PAC Learning Halfspaces and Linear Programming. With

this terminology, we return to our discussion on halfspaces.

Supposewe are given amultiset ofn labeled examples, (x (i) ,y (i)),

with x (i) ∼ DX and y (i) = f ∗ (x (i)), where f ∗ (x) = sign(w∗ ·
x − t∗) is the target halfspace. Then we can find a consistent

halfspace hypothesis h(x) = sign(ŵ · x − t̂) (i.e., a halfspace
that agrees with the training set) via a reduction to Linear Pro-

gramming (LP); see, e.g., [37]. Indeed, each example (x (i) ,y (i))

gives rise to the linear inequality (w · x (i) − t)y (i) ≥ 0 over

variables (w, t) ∈ Rd+1. This gives us an LPwithd+1 variables
and n constraints, which is feasible (as (w∗, t∗) is a feasible so-
lution by assumption). We can thus use any polynomial-time

LP algorithm to compute a feasible solution (ŵ, t̂). By standard

VC-dimension generalization results (see, e.g., [34]), if the sam-

ple sizen is sufficiently large, namely for somen = Õ (d/γ), the

halfspace hypothesis h(x) = sign(ŵ · x − t̂) with high proba-

bility satisfies Pr(x,y)∼D[h(x) , y] ≤ γ . This straightforward

reduction gives a PAC learning algorithm for halfspaces on Rd

with sample complexity Õ (d/γ) and running time polynomial

in the input size. Formally speaking, the running time of such

an algorithm is weakly polynomial, i.e., its worst-case number

of arithmetic operations scales with the bit complexity of the

input examples.

Interestingly, the aforementioned reduction can be re-

versed. That is, one can use any PAC learner that outputs a

halfspace hypothesis as a black-box to solve the linear feasibil-

ity problem Aw ≥ 0,w , 0, where A ∈ Rn×d andw ∈ Rd , by
considering each linear constraint as an example. Intuitively,

the vectorw can be viewed as the weight vector defining the

target halfspace.

Learning Halfspaces in Strongly Polynomial Time? All

known polynomial time algorithms for LP, including the ellip-

soid algorithm and interior-point methods, are weakly poly-

nomial. The existence of a strongly polynomial LP algorithm

is a major open question in computer science, famously high-

lighted by Smale [50]. The straightforward reduction of PAC

learning halfspaces to LP leads to a weakly polynomial learner.

Interestingly, the reduction in the opposite direction has lead

various authors (see [11] and recently [10, 14]) to suggest that

learning halfspaces in strongly polynomial time is equivalent

to strongly polynomial LP. The catch, of course, is that this

equivalence only holds if we restrict ourselves to proper learn-

ers.

Several weakly polynomial time algorithms for PAC learn-

ing halfspaces have been developed over the past thirty years,

starting with the pioneering works [7, 11, 20] and recently

in [10, 14, 17]. (These works do not proceed by a black-box

reduction to solving LPs.) These learners succeed not only

in the realizable setting, but also in the presence of (semi)-

random label noise. Importantly, all prior learners are weakly

polynomial Ð even restricted to the realizable setting. This

discussion serves as a motivation for the following question:

Is there a strongly polynomial time algorithm for PAC learning

halfspaces?

The main learning-theoretic result of this paper (Theorem 1.6)

answers the above question in the affirmative. This algorithmic

result generalizes to yield strongly polynomial time algorithms

for learning halfspaces in łbenignž noise models, including

Random Classification Noise (RCN) [2] and, more generally,

Massart noise [38] (Theorem 1.8).

1.2 Our Results

The main algorithmic result of this work is the first random-

ized strongly polynomial time algorithm for computing an

approximate Forster transform of a given dataset, assuming

that one exists.

Theorem 1.5 (Approximate Forster Transforms in

Strongly Polynomial Time). There exists a randomized al-

gorithm that given a set X ⊂ Rd∗ of size n and a parameter

ϵ ∈ (0, 1), runs in time strongly polynomial in nd/ϵ , and has the

following high probability guarantee: either the algorithm com-

putes an ϵ-approximate Forster transform of X , or it correctly

detects that no Forster transform of X exists by finding a proper

subspaceW ⊂ Rd such that |X ∩W | > (n/d) dim(W).

In more detail, the algorithm of Theorem 1.5 performs

poly(n,d, 1/ϵ) arithmetic operations on poly(n,d, 1/ϵ,b)-bit

numbers, where b is the bit complexity of the points in X .

As discussed in the introduction, previous algorithms for this

problem rely on the ellipsoid method and therefore are weakly

polynomial even for constant values of ϵ . The running time of

our algorithm has a polynomial dependence in 1/ϵ ; hence, our

algorithm does not run in polynomial time when ϵ is inverse

super-polynomially small in n,d . Importantly, for our applica-

tion in halfspace learning (and several other applications of

Forster transforms) constant values of the parameter ϵ suffice.

By using the algorithm of Theorem 1.5 as a black-box

(for ϵ = 1/2), we establish our main learning result (see Theo-

rem 6.5 for a more detailed statement).

STOC ’23, June 20ś23, 2023, Orlando, FL, USA Ilias Diakonikolas, Christos Tzamos, and Daniel M. Kane

Theorem 1.6 (PAC Learning Halfspaces in Strongly

Polynomial Time). Let D be a distribution over labeled exam-

ples (x ,y) ∈ Rd × {±1} such that the distribution over examples

is arbitrary and the label y of example x satisfies y = f (x), for

an unknown halfspace f : Rd 7→ {±1}. There is an algorithm

that, given γ > 0, draws n = poly(d/γ) i.i.d. samples from D,

runs in strongly polynomial time, and returns a strongly polyno-

mial time computable hypothesis h : Rd 7→ {±1} such that with

high probability we have that Pr(x,y)∼D[h(x) , y] ≤ γ .

Given the equivalence of proper halfspace learning and

LP, we view this algorithmic result as fairly surprising. Theo-

rem 1.6 gives the first strongly polynomial time PAC learning

algorithm for halfspaces. In more detail, if b is the bit complex-

ity of the examples (i.e., the maximum number of bits required

to represent each coordinate of each example vector), our al-

gorithm uses poly(n) arithmetic operations on poly(n,b)-bit

numbers. Finally, we note that the hypothesis h computed by

our algorithm is a decision-list of poly(d/γ) many halfspaces.

Importantly, for each point x , the value h(x) is computable in

strongly polynomial time (in n).

Remark 1.7. The list of concept classes for which effi-

cient learners have been developed in Valiant’s distribution-

free PAC model is fairly short. The class of halfspaces is of

central importance in this list. Specifically, a strongly poly-

nomial algorithm for PAC learning halfspaces immediately

implies (via the kernel trick) strongly polynomial learners

for broader concept classes, including degree-k polynomial

threshold functions for any k = O (1) (see, e.g., [8]).

It is worth pointing out that the idea of using Forster

transforms for halfspace learning was recently used in [17]

for the problem of PAC learning with Massart noise. In the

Massart model [38], an adversary independently flips the label

of each point x with unknown probability η(x) ≤ η < 1/2. The

learner of [17] used a weakly polynomial Forster transform

routine. By instead using our algorithm of Theorem 1.5, we

obtain the following generalization of Theorem 1.6.

Theorem 1.8 (PAC Learning Massart Halfspaces in

Strongly Polynomial Time). Let D be a distribution over

labeled examples (x ,y) ∈ Rd × {±1} such that the distribu-

tion over examples is arbitrary and the label y of example

x satisfies (i) y = f (x) with probability 1 − η(x), and (ii)

y = −f (x) with probability η(x), for an unknown halfspace

f : Rd 7→ {±1}. Here η(x) is an unknown function that satisfies

η(x) ≤ η < 1/2 for all x . There is an algorithm that, given

γ > 0, draws n = poly(d/γ) i.i.d. samples from D, runs in

strongly polynomial time, and returns a strongly polynomial

time computable hypothesis h : Rd 7→ {±1} such that with high

probability we have that Pr(x,y)∼D[h(x) , y] ≤ η + γ .

Theorem 1.8 generalizes Theorem 1.6 (which corresponds

to the case of η = 0). For the special case of uniform noise (i.e.,

whenη(x) = η < 1/2 for all x) Ð this is known as RandomClas-

sification Noise [2] Ð Theorem 1.8 achieves the information-

theoretically optimal error and runs in strongly polynomial

time. It thus qualitatively improves on the classical work of [7]

who gave a weakly polynomial time algorithm with the same

error guarantee.

Theorem 1.8 similarly improves prior work on learning

halfspaces with Massart noise. Prior algorithms for learning

Massart halfspaces have weakly polynomial runtimes and

achieve the same error as Theorem 1.8, which is believed to be

the computational limit for the problem. Inmore detail, the first

(weakly) polynomial learner for Massart halfspaces was given

in [14] and achieves error η+γ , as our Theorem 1.8. While this

error guarantee is not information-theoretically optimal in the

Massart model (the optimal error is OPT = Ex [η(x)]), there

exists strong evidence [15, 16, 41] that the bound ofη cannot be

improved by any polynomial time algorithm. Finally, we note

that subsequent work to [14] gave a proper learner for Massart

halfspaces [10], which is inherently weakly polynomial.

1.3 Our Techniques

1.3.1 Strongly Polynomial Approximate Forster Transform.

Overview of Approach. Letting fA (x)
def
= Ax/∥Ax ∥2, given

a dataset X of n points in Rd∗ , our goal is to efficiently com-

pute an invertible linear transformation A ∈ Rd×d such that

the matrix MA (X)
def
= (1/n)

∑

x ∈X fA (x) fA (x)
⊤ is approx-

imately equal to (1/d) I ; in particular, we would like it to

have eigenvalues in [1−ϵ
d
, 1+ϵ

d
]. Since the trace of MA (X),

tr(MA (X)), is always equal to 1, this goal is equivalent to

finding a matrix A such that the squared Frobenius norm of

MA (X), ∥MA (X)∥2
F
, is close to 1/d (Lemma 3.1). This obser-

vation gives rise to the natural idea of using an iterative al-

gorithm to compute such an A. In particular, given a linear

transformation A such that ∥MA (X)∥2
F
is somewhat small,

our goal is then to find another linear transformation C ∈
R
d×d such that the corresponding second moment matrix

MCA (X) = (1/n)
∑

x ∈X fCA (x) fCA (x)
⊤ has squared Frobe-

nius norm, ∥MCA (X)∥2
F
, somewhat smaller than ∥MA (X)∥2

F
.

Equivalently, since for any point x ∈ Rd∗ it holds that fCA (x) =
fC (fA (x)), we consider the set of transformed points XA =

fA (X)
def
= { fA (x) : x ∈ X } and aim to make the second mo-

ment matrix of fC (XA) smaller than the second moment ma-

trix of XA. If for any invertible A we can find such a C , then

by iteratively replacing A by CA we can achieve smaller and

smaller values of ∥MA (X)∥2
F
, until in the limit it approaches

1/d .

Since tr(MA (X)) = 1, if ∥MA (X)∥2
F
is bounded away

from 1/d , some of the eigenvalues ofMA (X) (which average

to 1/d) must differ substantially from 1/d . This in turn implies

thatMA (X) must have a reasonably-sized eigenvalue gap. In

particular, this means that there exist subspaces V and V⊥,
that are each spanned by eigenvectors of MA (X), such that

the eigenvalues of V⊥ exceed the eigenvalues on V by at least

some reasonably large δ > 0. Roughly speaking, if we can

find a matrix C that decreases the squared Frobenius norm

of MA (X) on V⊥ ×V⊥ and increases the squared Frobenius

norm onV ×V , this will improve the desired squared Frobenius

norm.

A natural approach to achieve this goal is to letC be equal

to IV ⊥ + (1 + α)IV , the identity on V⊥, and (1 + α) times the

identity on V , for some suitable α > 0. It is not hard to see

that this choice of C strictly decreases the second moment

matrix on V⊥, and strictly increases it on V . Unfortunately,

A Strongly Polynomial Algorithm for Approximate Forster Transforms and its Application to Halfspace Learning STOC ’23, June 20ś23, 2023, Orlando, FL, USA

it might also create cross-terms that will increase the Frobe-

nius norm. To understand the effect of the cross-terms, it is

important to consider how close vectors in XA are to being in

V or in V⊥. In particular, let β be the maximum distance that

any vector in XA is from being in either V or V⊥. If α = O (1),

this moves approximately αβ2 of the trace ofMA (X) fromV⊥

to V , which improves (i.e., decreases) the squared Frobenius

norm by roughly αβ2 (times some inverse poly(dn/ϵ) factors).

On the other hand, this also creates cross-terms in the order

of αβ , which increases the squared Frobenius norm by a quan-

tity on the order of α2β2. Thus, as long as α is less than β

times a sufficiently small polynomial in dn/ϵ , we obtain an

improvement in the squared Frobenius norm on the order of

αβ2/poly(dn/ϵ).

This improvement suffices for our purposes, unless β hap-

pens to be very small. The latter occurs if all of the points inXA

are either very close toV or very close toV⊥. In such a case, the
simple choice of matrixC described in the previous paragraph

may not be sufficient, as it will produce too many cross-terms.

In order tomake progress here, we require a different approach,

which we describe next. To describe our approach for this case,

we introduce additional terminology. We let XB
A
be the set of

points inXA that are close toV⊥. Moreover, letU be the span of

the |V | smallest eigenvectors of thematrix
∑

x ∈X B
A

xx⊤, and let

U⊥ be the orthogonal subspace. We now define the newmatrix

C to be IU ⊥+ (1+α)IU , the identity onU⊥ and some very large

multiple (1+α) of the identity onU . We claim that this choice

actually does not create much in the way of cross-terms. In

particular, the matrix
∑

x ∈X B
A

(Cx) (Cx)⊤ = C⊤
∑

x ∈X B
A

xx⊤C

will have noU ×U⊥ term, since
∑

x ∈X B
A

xx⊤ does not Ð asU

is an eigenspace of
∑

x ∈X B
A

xx⊤. The second moment matrix
∑

x ∈X B
A

fC (x) fC (x)
⊤ will have some contribution toU ×U⊥

cross-terms coming from the renormalization; but these will

only be on the order of (α β)4. On the other hand, the ma-

trix
∑

x ∈XA\X B
A

fC (x) fC (x)
⊤ will have small U × U⊥ terms,

because each fC (x) will nearly lie in U⊥. If β is sufficiently

small, this leads to roughly (α β)2 mass being moved from

U⊥ ×U⊥ toU ×U , while only creating off-diagonal terms on

the order of (α β)4. Thus, this alternate choice ofC can be used

to decrease the squared Frobenius norm by poly(α/(dn)).

The preceding outline provides a procedure that pro-

duces a sequence of matrices A1,A2, . . . such that if ei =

∥MAi (X)∥2
F
−1/d , then ei+1 < ei−poly(ei/(dn)). Therefore, af-

ter polynomially many iterations, we have that ∥MAm (X)∥2
F
<

1/d+(ϵ/d)2, which implies we have obtained an ϵ-approximate

Forster transform. This gives us an efficient algorithm for com-

puting an approximate Forster transform in the real RAM

model, assuming the availability of an algorithm for exact

eigendecomposition computation.

Additional Technical Obstacles. The above iterative pro-

cedure forms the basis of our final strongly polynomial time

algorithm. Unfortunately, as is, this procedure does not di-

rectly imply a strongly polynomial time algorithm for two

reasons: First, we need to control the bit complexities of the

matricesAi (whichmight become exponentially large). Second,

we need to show that our algorithm works with approximate

eigendecompositions (which can further be implemented in

strongly polynomial time). We elaborate on these issues in the

following discussion.

Controlling the Bit Complexity via Rounding. Recall that,

in a strongly polynomial time algorithm, all intermediate num-

bers computed throughout the algorithm must fit in polyno-

mial space. To handle the bit complexity in our setting, we

establish the following statement. If the points in the initial

dataset X ⊂ Rd∗ of size n have bit complexity at most b, then

the following holds: given a matrix A ∈ Rd×d and any δ > 0,

we can approximate A by another matrix A′ of bit complexity

poly(b,d,n, log(1/δ)) such that ∥MA′ (X)∥2
F
< ∥MA (X)∥2

F
+ δ

(see Theorem 5.1). This structural result suffices for our pur-

poses for the following reason: Replacing each intermediate

matrix Ai (in our iterative procedure) by the corresponding

A′i obtained by rounding (for an appropriately small δ) at each

step of our algorithm suffices to keep the bit-complexity under

control.

To prove the desired structural result, we proceed as fol-

lows: First, ifAhas condition number atmost exp(poly(n,b,d)),

it suffices to merely approximate each entry of A to some

poly(bdn/ log(1/δ)) bits of precision. The difficulty arises if

the condition number of A is quite large Ð in fact, exponen-

tially large in our other parameters. If the condition number

of A is large, it is because there are large multiplicative gaps

in the singular values of A. In such a case, there will be sub-

spaces V and V⊥ such that the V⊥-component of any vector

is multiplied by a huge amount relative to the V -component.

In particular, any vector that was not exponentially close to

V to begin with, after multiplying by A ends up essentially

in V⊥. Our basic strategy here is to decrease the size of this

singular value gap of A to be at most (merely) exponential,

without much affecting any of the normalized transformed

vectors. Our goal is to scale down the subspaceV⊥ to decrease

the multiplicative eigenvalue gap. However, we must ensure

that the vectors of X that are sufficiently close to V⊥ after

applying A do not end up being essentially in V . To achieve

this, we consider a subspaceW spanned by such problematic

vectors and build an improved matrix AT such thatT does not

affect vectors inW , but rescales significantly vectors lying in

a subspace R that is very close to V⊥. Via this step, we can
reduce the condition number ofA to be appropriately bounded

without affecting the mapping fA significantly; after that, we

can make do with a suitably precise rounding to obtain the

output matrix A′.

Approximate Eigendecomposition in Strongly Polynomial

Time. So far, we have assumed the availability of a routine

for exact eigendecomposition. In fact, there are several places

in the above intuitive overview of our algorithmic approach

where we need to compute an eigenvalue decomposition of

a matrix. This is required first when we need to find the ini-

tial eigenvalue gap inMA (X) ∝ ∑

x ∈XA
xx⊤, and again later

when we need to find the span of the large eigenvalues of
∑

x ∈X B
A

xx⊤. Unfortunately, computing exact eigenvalues is

impossible in our model of computation (as doing so might

require finding roots of high-degree polynomials). Fortunately,

it is sufficient for us to find merely an approximate eigenvalue

STOC ’23, June 20ś23, 2023, Orlando, FL, USA Ilias Diakonikolas, Christos Tzamos, and Daniel M. Kane

decomposition of these matrices. A subtle and important point

is that our required notion of approximation is significantly

stronger than the typical guarantees explicitly available in the

literature. Interestingly, we show that the desired strongly

polynomial guarantees can be achieved in our model using

some variation of the power iteration method. This requires a

novel proof of correctness, that we provide here.

We are now ready to describe our strongly polynomial

approximate eigendecomposition routine in tandem with a

sketch of its analysis (see Proposition 4.1). The standard power

iteration method says that in order to approximate the prin-

cipal eigenvector of a symmetric, PSD matrix M , it suffices

to multiply a random vector v by a large power t ofM . If we

express v as a linear combination of eigenvectors ofM , then

multiplying by a large power ofM scales each of these compo-

nents by an amount depending on the eigenvalue. It is not hard

to see that if there is a reasonable gap between the largest and

second largest eigenvalues, then the vector Mtv will likely

end up close to a multiple of the largest eigenvector. Once

an approximate principal eigenvector is computed, one can

attempt to repeat the same procedure, i.e., projecting onto the

orthogonal subspace to find the second largest eigenvalue; and

so on. This iterative procedure is known to succeed in finding

approximations to the eigenvectors and eigenvalues in ques-

tion, so long as the eigenvalues are not too close to each other.

On the other hand, ifM has (nearly) degenerate eigenspaces,

then this method may fail to separate eigenvectors with very

similar eigenvalues. However, in this (near-)degenerate case,

such an approximation is usually not needed, as the eigenval-

ues are close to begin with. One can hope that the matrix M̂

corresponding to the computed eigendecomposition is close

to M in an appropriate sense. In particular, standard results

(see, e.g., [47]) show how to compute such an M̂ satisfying

∥M − M̂ ∥2 ≤ ϵ ∥M ∥2.
Unfortunately, this notion of approximation is not sufficient

for our purposes. For example, in the case where the param-

eter β is small in our Forster algorithm, it is important for

us to compute the spaces V ′ andW ′ to very good accuracy.

This is because the linear transformation that we apply will

multiply elements of V ′ by a large factor of roughly 1/β . This

means that we need to compute V ′ to error on the order of

β in order to ensure the accuracy of our result. More gener-

ally, we will need a qualitatively stronger guarantee for our

approximate eigenvalue decomposition. In particular, we need

that for some small ϵ > 0, for any vector v , it holds that

|v⊤ (M − M̂)v | ≤ ϵ (v⊤Mv). This means that ifv lies in a space

spanned by eigenvectors of M with very small eigenvalues

(as V ′ is above), then we need that M̂v to be correspondingly

small. Fortunately, we can obtain this much stronger łmulti-

plicativež guarantee via power iteration. The intuitive reason

this works is essentially because if we have a spaceV ′ spanned
by eigenvectors of M with eigenvalues at most β , then mul-

tiplying a random vector v by powers of M reduces the size

of the projection of v onto V ′ by a power of β . This means

that power iteration produces vectors that are very nearly

orthogonal to V ′ with the error in this approximation scaling

with β .

1.3.2 Learning Halfspaces in Strongly Polynomial Time. As

already mentioned in the introduction, we leverage our algo-

rithm for approximate Forster transforms to obtain the first

strongly polynomial algorithm for PAC learning halfspaces. It

turns out that this approach goes through both in the realiz-

able case (Definition 1.3) and in the presence of (semi-random)

Massart noise on the labels. In fact, it is not difficult to verify

that by plugging in our new Forster algorithm into the learning

algorithm of [17], one directly obtains a strongly polynomial

halfspace learner in the presence of Massart noise. For the

sake of the completeness, here we focus on the realizable case

and provide a simpler, self-contained algorithm and proof.

Note that it is without loss of generality to assume that

the threshold of the target halfspace is zero (one can reduce the

general case to the homogeneous case). The main challenge in

PAC learning halfspaces is that the target halfspace may have

very bad anti-concentration (aka łmarginž). If the margin is

not too small (i.e., at least inverse polynomial), simple iterative

algorithms (e.g., perceptron) efficiently learn halfspaces (in

strongly polynomial time). A natural idea is then to reduce

the general case to the large margin case by appropriately

transforming the data. A number of such reductions have

been developed in the literature [7, 17, 19, 20]. The methods

developed in [7, 19, 20] are inherently not strongly polynomial.

Recently, [17] pointed out that one can use Forster transforms

for this purpose.

For our purposes, we require a stronger guarantee than

what is provided by the vanilla perceptron algorithm. Specif-

ically, we want a learning algorithm for halfspaces that cor-

rectly classifies at least some reasonable fraction of points, if

the points are guaranteed to be well-conditioned (for exam-

ple, in the sense of being unit vectors with E[xx⊤] ≈ I). By

using an approximate Forster algorithm, we can transform the

input points in order to make them well-conditioned, while

preserving the notion of halfspaces. We can then apply our

learner to this set in order to learn a classifier that works on

some reasonable fraction of the points. Repeating this proce-

dure iteratively on the unclassified points eventually gives a

halfspace learning algorithm.

More precisely, the modified perceptron algorithm of [20]

is a strongly polynomial time algorithm with the following

performance guarantee: given labeled examples consistent

with an unknown linear classifier, the algorithm learns a clas-

sifier that correctly labels all points whose margin is not too

small. It is not hard to see that, for points in approximate ra-

dial isotropic position, at least a 1/d-fraction of points have

not-too-small margin. Therefore, if we have a set of points in

approximate radial isotropic position, the modified perceptron

algorithm finds (in strongly polynomial time) an explicit half-

space that separates out a roughly 1/d-fraction of the points

all of the same sign. By standard generalization bounds, this

gives us an algorithm that in strongly polynomial time learns

a partial classifier, i.e., outputs a partial function that correctly

classifies an Ω(1/d)-fraction of the points while misclassifying

an O (γ/d)-fraction. In other words, this procedure produces

a partial classifier that labels at least a 1/d-fraction of points

and misclassifies at most a γ -fraction of these points.

To learn an arbitrary halfspace, we use our approximate

Forster transform to put the points in approximate radial

A Strongly Polynomial Algorithm for Approximate Forster Transforms and its Application to Halfspace Learning STOC ’23, June 20ś23, 2023, Orlando, FL, USA

isotropic position without changing the notion of a halfspace

on them. We then apply the above partial learner to these new

points in order to obtain a non-trivial partial classifier that

makes mistakes on only a γ -fraction of its classified set. We

repeat this process on the unclassified points, using a new

approximate Forster transform, to learn a non-trivial fraction

of the unclassified points. Repeating this procedure iteratively

as necessary, we eventually obtain a partial classifier that pro-

duces an answer on essentially all points of the domain and

only makes mistakes on a γ -fraction of them.

1.4 Related Work

Comparison to Strongly Polynomial Algorithm for Matrix

Completion. It is worthwhile to compare our techniques for

the Forster transform to [36], who developed the first strongly

polynomial time algorithm for the matrix scaling problem.

To put this problem in terms more analogous to ours, one is

given a set of d vectors x1,x2, . . . ,xd in Rd . The goal is to find

a diagonal matrix A such that if yi := Axi/∥Axi ∥1 is the ℓ1
normalization of Axi , then the absolute deviation of the jth

coordinates of the y’s around 0 are (approximately) the same

for all j. In particular, it should hold that
∑d
i=1 |(yi)j | ≈ 1 for

all 1 ≤ j ≤ d . Note that for our problem, we have n (possibly

greater than d) vectors, A can be any matrix, we take yi to be

the ℓ2 normalization and we want the mean square deviation

of the y’s in any direction (not just along coordinate axes) to

be approximately the same.

The algorithm in [36] works roughly as follows. We con-

structA through an iterative sequence of improvements. Given

a specificA, we compute the appropriate values of yi and then

compute the absolute deviations of each coordinate. If these

are all close to each other, we are done. Otherwise, by sorting

the deviations and finding the largest gap, we can split our

coordinates into two sets, B and S , so that the deviation of any

coordinate in B is substantially larger than the deviation of

any coordinate in S . One then defines the diagonal matrixC to

be (1+δ) on the coordinates in S and 1 on the coordinates in B,

and replaces A by A′ := CA. It is not hard to see that by doing

this, one increases the deviations along all coordinates in S

while decreasing it along all coordinates in B (and keeping the

total sum of deviations the same). By picking δ carefully, [36]

show that the variance of these coordinate-wise deviations

can be decreased by some polynomial amount in each step.

Thus, by iterating this method a polynomial number of times,

one obtains a scaling where the coordinate-wise deviations

are sufficiently close.

The starting point for our algorithm is somewhat similar.

Given a matrixA, we try to find a matrixC such that the matrix

A′ := CA is closer to satisfying our condition (in the sense that

∥MA′ (X)∥F should be smaller than ∥MA (X)∥F by an additive

inverse polynomial term). To do this, we compute subspaces

VS and VB (by finding an eigenvalue gap inMA (X)) such that

the variance of theyi := Axi/∥Axi ∥2 in any direction alongVB
is substantially larger than along any direction in VS . Ideally,

we would like to takeC = I + α IVS for some carefully selected

α . While this does only increase the variance in directions

along VS and decrease it along VB , in our setting this also

creates off-diagonal terms that increase our potential. While it

is always possible to ensure that this error does not overwhelm

the progress we make by taking α small enough, in some cases

(particularly where all of the y’s are either very close to lying

in VB or very close to lying in VS), this is not compatible

with making polynomial progress in each step. In this other

case, we need to use a subtly different method for finding C

in order to minimize the contribution of these off-diagonal

terms. Furthermore, unlike in [36], the matrices C used might

have large numerical complexity (perhaps on the order of the

complexity of A). If we naively apply the iterative algorithm

as is, it might lead to computations involving matrices with

exponentially large bit complexity. In order to fix this, we also

need to add a rounding step, whereby in each stage we reduce

the numerical complexity ofA down to some manageable level

but without substantially affecting our potential.

Comparison to Other Data Transformations. The Forster

transform is one of several data transformations that have been

studied in the literature to make a dataset łwell-conditionedž.

Here we explain two similar in spirit such transformations,

namely the łoutlier removalž technique [7, 19] and the rescal-

ing method of [20]. Both of these techniques have been used to

obtain weakly polynomial learners for halfspaces with random

noise.

The łoutlier-removalž technique was introduced in [7]

and was significantly refined by Dunagan and Vempala [19].

Given a dataset X and a parameter β > 0, a point in X is

called a β-outlier if there exists a direction v such that the

squared length of x along v is more than β times the average

squared length of X along v . The goal of the method is to

efficiently find a large subset of X ′ ⊆ X such that X ′ has
no β-outliers, for as small β as possible. This would give a

reasonable sized sub-distribution on which the desired anti-

concentration holds. As shown in [19], the parameter β (which

affects the quality of the resulting anti-concentration) needs

to scale polynomially with the bit complexity b of the dataset

X . Consequently, the resulting runtimes in applications of this

method will be inherently weakly polynomial. Interestingly,

this is the reason that the (random noise tolerant) halfspace

learner of [7] is only weakly polynomial.

A different algorithm for learning halfspaces with ran-

dom classification noise is implicit in the rescaled perceptron

algorithm of Dunagan and Vempala [20] for efficiently solving

linear programs (see also [5]). The key ingredient of their ap-

proach is a rescaling step that linearly transforms the data so

that, roughly speaking, the margin increases in each iteration

by a factor of 1 + 1/d . Since the initial margin scales with the

bit complexity, so does the total number of iterations. (Since

this leads to a proper learning algorithm, a dependence on

the bit complexity is expected; otherwise, one would obtain a

strongly polynomial algorithm for LP!)

Strongly Polynomial Special Cases of LP. A line of work,

starting in the 80s, has developed strongly polynomial time

algorithms for interesting special cases of LP, including min-

imum cost circulations [27, 46, 51], min cost flow and multi-

commodity flow problems [52, 55], and generalized flow max-

imization [44, 45, 56] (see also [12, 13]). Strongly polynomial

STOC ’23, June 20ś23, 2023, Orlando, FL, USA Ilias Diakonikolas, Christos Tzamos, and Daniel M. Kane

time algorithms have also been developed for certain struc-

tured convex programs, see, e.g. [26, 57] in the context of

equilibrium computation, and [36] for matrix scaling.

1.5 Organization

In Section 2, we record basic notation and facts that will be

used throughout this paper. Section 3 presents our Forster de-

composition algorithm, assuming exact eigendecomposition

and ignoring bit complexity issues. Section 4 establishes our

strongly polynomial guarantees for approximate eigendecom-

position. Section 5 shows that we can efficiently round the

entries of the underlying matrix without losing much in the

desired guarantees. Section 6 presents our strongly polyno-

mial halfspace learning algorithm. Finally, in Section 7 we

summarize our results and provide directions for future work.

Due to space limitations, most proofs have been deferred to

the full version of this work.

2 PRELIMINARIES

Basic Notation. We use Z+ to denote the non-negative

integers, Rd for the d-dimensional real coordinate space, Rd∗
for Rd \ {0}, and Sd for the unit ℓ2-sphere. For a set S ⊂ R, we
will denote max(S)

def
= maxx ∈S x and min(S)

def
= minx ∈S x .

For x ∈ Rd , we use ∥x ∥2 to denotes the ℓ2-norm of x .

We use tr(·), ∥ · ∥F , and ∥ · ∥2 for the trace, Frobenius norm,

and spectral norm of a square matrix. For matrices A,B ∈
R
d×d , we write A ⪰ B (or B ⪯ A) to denote that A − B is

positive semidefinite (PSD). We use I for the d × d identity

matrix, where the dimension will be clear from the context.

IfM ∈ Rd×d is a PSD matrix, we denote by λi (M) and qi (M)

the i-th largest eigenvalue and corresponding eigenvector

of M . That is, λ1 (M) ≥ λ2 (M) ≥ . . . ≥ λd (M) ≥ 0 and

Mqi (M) = λi (M)qi (M) for all i ∈ [d]. We denote by Λ(M)

the set of eigenvalues ofM and Q (M) the set of eigenvectors.

That is, Λ(M) = {λi (M), i ∈ [d]} and Q (M) = {qi (M), i ∈ [d]}.
For S ⊆ [d], we denote ΛS (M) = {λi (M), i ∈ S } and QS (M) =

{qi (M), i ∈ S }.
For a finite set of vectors S ⊂ Rd , we use span(S) for

their span. For a subspace V ⊂ Rd , we use dim(V) for its

dimension andV⊥ for its orthogonal complement. For x ∈ Rd
and a subspace V , we will denote by projV x the projection

of x onto V . If V = span(S), we will sometimes use projS x to

denote projV x . For conciseness, we sometimes use x (V) for

projV x . We denote by IV the d × d matrix with eigenvalues 1

in V and 0 in V⊥ (the projection of I onto V).

Additional Notation. For a dataset X ⊂ Rd∗ of size |X | = n
and a linear transformation A ∈ Rd×d , let fA : Rd∗ → Sd
be defined by fA (x)

def
=

Ax
∥Ax ∥2 . We aim to find an invert-

ible A ∈ Rd×d such that fA brings a given dataset X in

(approximate) radial isotropic position. We denote fA (X)
def
={

Ax
∥Ax ∥2 | x ∈ X

}
We will use various łcovariance-likež ma-

trices for the initial dataset X and its subsets. For X ′ ⊆ X ,

we denote MA (X
′)

def
= (1/n)

∑

x ∈X ′ fA (x) fA (x)
⊤. For sub-

spaces V1,V2 ⊂ Rd and X ′ ⊆ X , we denote byM
V1,V2

A
(X ′)

def
=

(1/n)
∑

x ∈X ′ f
(V1)
A

(x) f
(V2)
A

(x)⊤, where we used the shorthand

notation y (V)
= projV y. Note that the normalization factor is

fixed in both cases.

3 APPROXIMATE FORSTER TRANSFORM

IN STRONGLY POLYNOMIAL TIME

In this section, we describe and analyze our algorithm that

either computes an approximate Forster transform of a given

dataset or certifies that no Forster transform exists. There

are two technical caveats in the algorithm presented in this

section: First, we assume the existence of exact routines for

matrix eigendecomposition. Second, we do not bound the bit

complexity of the associated numbers. Both of these technical

issues are handled in subsequent sections.

3.1 Algorithm Pseudocode

The algorithm aims to find a matrix A ∈ Rd×d such that the

transformation fA : Rd → Rd brings the set X in (approxi-

mate) radial isotropic position. Starting from the initial guess

A = I , the algorithm iteratively improves the current matrix A

until the desired approximation is obtained or a proper sub-

spaceW of Rd is found such that |X ∩W |/n ≥ dim(W)/d .

Algorithm 1 Algorithm for computing Forster Transform

1: function ForsterTransform (set X ⊂ Rd∗ of n points,

accuracy parameter ϵ)

2: Let A ← I ▷ Initialization of transformation

matrix A

3: MA ← MA (X) = (1/n)
∑

x ∈X fA (x) fA (x)
⊤

4: while ∥MA∥2F >
1
d
+

ϵ 2

d2 do

5: Set A← ImproveTransform(A,X)

6: SetMA ← MA (X) = (1/n)
∑

x ∈X fA (x) fA (x)
⊤

7: return A

3.2 Analysis of Algorithm 1

Our Potential Function. Our algorithm measures the im-

provements between consecutive iterations using the potential

function

ΦX (A)
def
= ∥MA∥2F (1)

corresponding to the squared Frobenius norm of the matrix

MA
def
= MA (X)

def
= (1/n)

∑

x ∈X
fA (x) fA (x)

⊤ .

Recall that approximate radial isotropy condition amounts

to the condition 1−ϵ
d

I ⪯ MA ⪯ 1+ϵ
d

I . Equivalently, we want

that ∥MA − 1
d
I ∥2 ≤ ϵ

d
or that the eigenvalues of MA lie in

[1−ϵ
d
, 1+ϵ

d
]. This is guaranteed to hold when the potential func-

tion becomes less than 1/d + ϵ2/d2, as shown in the following

lemma.

Lemma 3.1. Consider any dataset X ⊆ Rd∗ and any full-

rank matrix A ∈ Rd×d . The following properties hold for the

potential ΦX (A)= ∥MA∥2F .
(1) 1/d ≤ ΦX (A) ≤ 1.

(2) If ΦX (A) ≤ 1/d + ϵ2/d2 for some ϵ ∈ (0, 1), then for

every eigenvalue λ ofMA it holds that |λ − 1/d | ≤ ϵ/d .

A Strongly Polynomial Algorithm for Approximate Forster Transforms and its Application to Halfspace Learning STOC ’23, June 20ś23, 2023, Orlando, FL, USA

Algorithm 2 Find Improved Transform Matrix

1: function ImproveTransform (current matrixA ∈ Rd×d ,
X⊂ Rd∗ , accuracy parameter ϵ)

2: SetMA ← MA (X) = (1/n)
∑

x ∈X fA (x) fA (x)
⊤

3: Compute the set of eigenvalues, Λ = Λ(MA), and

eigenvectors, Q = Q (MA), ofMA.

4: Set γ ← O (ϵ 2

d4n2), where n := |X |
5: Partition (Λ,Q) into two sets of eigenvalues and cor-

responding eigenvectors, (ΛB,QB) and (ΛS,QS), maximiz-

ing min(ΛB) −max(ΛS).

▷ Consider the Following Two Cases

6: if ∃x ∈ X s.t.

projQB

fA (x)

2 ,

projQS
fA (x)

2 ≥ γ

then

7: SetU ← span(QS).

8: Set α ← ϵ
8nd3 .

9: else

10: XB ← {x ∈ X : ∥projQB
fA (x)∥2 ≥ γ }.

11: MB
A
← MA (X

B)
def
= (1/n)

∑

x ∈X B fA (x) fA (x)
⊤.

12: Let Qb and Qs be the sets of top |QB | and bottom

|QS | eigenvectors ofMB
A
respectively.

13: U ← span(Qs).

14: β ← maxx ∈X B ∥ f (U)
A

(x)∥2.
15: if β = 0 then

▷ No Forster Transform Exists

16: Output the subspace span(Qb).

17: else ▷ Case where β > 0

18: Set α ← 1
β
ϵ/(3d2n) − 1

19: return A′ := (I + α IU)A

(3) If ΦX (A) > 1/d + ϵ2/d2 for some ϵ ∈ (0, 1), then

(a) there exists an eigenvalue λ of MA such that |λ −
1/d | > ϵ/d2 and (b) there exists a pair of consecutive

eigenvalues λi and λi+1 ofMA such that λi − λi+1 >
ϵ/d3.

Bounding the Decrease in Potential. We now proceed with

the analysis. We show that the algorithm ImproveTransform

either correctly determines that no Forster transform exists

or computes a transformation matrix with significantly re-

duced potential value. This statement implies correctness and

simultaneously allows us to bound the running time of our

algorithm.

The main result of this section is the following proposi-

tion.

Proposition 3.2. LetA ∈ Rd×d be a full-rank matrix and

X be a set of n points in Rd∗ such that ΦX (A) > 1
d
+

ϵ 2

d2 for some

ϵ ∈ (0, 1). The algorithm ImproveTransform returns a matrix

A′ such that

ΦX (A) − ΦX (A′) ≥ Ω(ϵ5/(n5d11)) (2)

or correctly determines that no Forster Transform of X exists,

in which case it returns a subspaceW such that |X ∩W | >
(n/d) dim(W).

In the rest of this section, we provide a proof of Proposi-

tion 3.2.

Assuming that a Forster transform of X exists, the algo-

rithm ImproveTransform returns thematrixA′ = (I + α IV)A,

where V ⊂ Rd is an appropriate proper subspace of Rd and

α ∈ R>0 is a carefully selected parameter (that depends on

the structure of the dataset X). The algorithm distinguishes

two cases: In the first case, α is a small positive quantity, equal

to ϵ/(8nd3), see Line 8 in Algorithm 2. In the second case, α is

set to 1
β
ϵ/(3d2n) − 1, and can be significantly larger than 1 as

it depends on a small parameter β which is a function of the

dataset X . See Line 18 in Algorithm 2.

3.2.1 A Useful Structural Result. We will use the notation

MA = MA (X) andMA′ = MA′ (X). To bound the desired quan-

tity, ΦX (A) − ΦX (A′) = ∥MA∥2F − ∥MA′ ∥2F , we will make

essential use of the following key lemma:

Lemma 3.3. For any X ⊂ Rd∗ and any full-rank matrix

A ∈ Rd×d the following holds. For any subspace V ⊂ Rd and

any scalar α > 0, for A′
def
= (I + α IV)A, we have that

ΦX (A)−ΦX (A′) ≥ 2(λk (M
V ⊥,V ⊥

A
)−λ1 (MV ,V

A
)−2Df)Df −2∥M

V ,V ⊥

A′ ∥2F ,
(3)

where k = dim(V⊥) and

Df
def
=

1

n

∑

x ∈X

(

∥ f (V)
A′ (x)∥22 − ∥ f

(V)
A

(x)∥22
)

.

Lemma 3.3 bounds the improvement in potential in terms

of two opposing contributions. On the one hand, there is a

decrease in the potential proportional to the amount of mass

Df transferred from the subspace V⊥ to the subspace V times

the eigenvalue gap between the subspaces V and V⊥. On the

other hand, there is an increase in potential due to the cross

terms V ×V⊥ that get created after the transformation by A′.
In the following two subsections, we analyze the two

cases of ImproveTransform separately. Note that Improve-

Transform requires that we be able to do exact singular value

decompositions in order to compute the subspaceU . Our final

algorithm will not be able to do this exactly and will need

to make do with an approximate singular value decomposi-

tion (see Section 4). In order to make our extension easier, we

will show that the potential decrease holds even when U is

replaced by someV which satisfies some approximation of the

properties thatU does.

3.2.2 Case I: ∃x ∈ X s.t. ∥projQB
fA (x)∥2, ∥projQS

fA (x)∥2 ≥
γ . To analyze this case, we prove the following proposition:

Proposition 3.4. Suppose that X is a set of n points in

R
d
∗ and A an invertible d × d matrix. Suppose that V ⊂ Rd is a

subspace so that for α , ρ > 0 with α ≤ ϵ/(64nd3):

(1) Themaximum overx ∈ X ofmin(∥ f (V)
A

(x)∥2, ∥ f (V
⊥)

A
(x)∥2)

equals ρ.

(2) λmin (M
V ⊥V ⊥

A
(X)) − λmax (M

VV
A

(X)) ≥ ϵ
2d3 .

(3) ∥MVV ⊥

A
(X)∥F ≤ αρ.

Then for C = (I + αIV)A we have that ΦX (C) ≤ ΦX (A) −
ρ2ϵ/(8nd3).

STOC ’23, June 20ś23, 2023, Orlando, FL, USA Ilias Diakonikolas, Christos Tzamos, and Daniel M. Kane

We note that if ΦX (A) > 1
d
+

ϵ 2

d2 , then by Lemma 3.1

part 3, the difference between the largest and smallest eigen-

values ofMA (X) will be at least ϵ/d2, and therefore the largest

eigenvalue gap will be at least ϵ/d3. Thus, forV taken to be the

U given in Algorithm 2, Property 2 will hold. Furthermore, for

asU is an eigenspace ofMA (X),MU ,U ⊥

A
(X) = 0 and Property

3 will hold.

The rest of this section will be devoted to proving Propo-

sition 3.4.

To bound below the improvement in potential, we will

make essential use of Lemma 3.3. We bound the relevant quan-

tities in the following lemmas.

Lemma 3.5. LetDf =
1
n

∑

x ∈X
(

∥ f (V)
C

(x)∥22 − ∥ f
(V)
A

(x)∥22
)

.

We have that
αρ2

2n ≤ Df ≤ 2α .

Finally, we bound ∥MV ,V ⊥

C
∥2
F
from above in the following

lemma:

Lemma 3.6. We have that ∥MV ,V ⊥

C
∥2
F
≤ 4α2ρ2.

Combining the above lemmas, we obtain that

ΦX (A) − ΦX (C) ≥
(

ϵ

2d3
− 4α

)

αρ2

n
− 8α2ρ2 .

We note that so long as α ≤ ϵ/(64nd3) the above is at least

(

αρ2
)

((

ϵ

4d3

)

1

n
− 8α

)

≥ αρ2ϵ/(8nd3) .

This completes our proof of Proposition 3.4.

3.2.3 Case II: For all x ∈ X , either ∥projQB
fA (x)∥2 ≤ γ or

∥projQS
fA (x)∥2 ≤ γ . In this case, all points x ∈ X lie within

a γ margin from the subspaces spanned by the vectors QB

and QS . The algorithm updates the matrix A by considering

only the set of łbigž points XB, i.e., the points in X whose

images under fA have sufficiently large projections on the

subspace spanned by the large eigenvectors of MA. In more

detail, instead of using the eigenvectors QB,QS of the matrix

MA = MA (X), the algorithm uses the eigenvectors Qb ,Qs

of the matrix MA (X
B) = (1/n)

∑

x ∈X B fA (x) fA (x)
⊤, setting

U = span(Qs). This is done to ensure that the cross-terms

M
U ,U ⊥

A
(XB) start out at 0 initially and remain small despite

significant rescaling of the subspaceU . Moreover, despite the

change in the definition, we show (in Claim 3.8 and Claim 3.9)

that the corresponding subspacesU andU⊥ satisfy a similar

margin condition to the subspaces spanned byQB andQS and

that there is still a significant eigenvalue gap betweenU and

U⊥. The margin condition is shown in Claim 3.8 and Claim 3.9,

and the eigenvalue bounds are proven in Lemmas 3.11 and 3.10.

These properties will allow us to bound the decrease in

potential in this case. We will show the following result.

Proposition 3.7. Suppose that X is a set of n points in Rd∗
and A an invertible d × d matrix. Suppose that for some k < n

that λk (MA (X)) −λk+1 (MA (X)) ≥ ϵ/(2d3). LetW be the span

of the d − k smallest eigenvalues ofMA (X).

Suppose furthermore that for some γ at most a sufficiently

small multiple of ϵ2/(d4n2) that every x ∈ X satisfies

min(∥ f (W)
A

(x)∥2, ∥ f (W
⊥)

A
(x)∥2) ≤ γ .

Let XB denote the set of x ∈ X so that ∥ f (W)
A

(x)∥2 ≤ γ and

XS
= X\XB. Let 0 < δ < γ . Suppose that V ⊂ Rd is a (d − k)-

dimensional subspace so that:

(1) tr(MV ,V
A

(XB)) ≤ tr(MW ,W
A

(XB)) + δ2,

(2) tr(MV ⊥,V ⊥

A
(XB)) ≥ tr(MW ⊥,W ⊥

A
(XB)) − δ2,

(3) λk (M
V ⊥,V ⊥

A
(XB)) ≥ λk (MA (X

B)) − δ ,
(4) ∥MV ,V ⊥

A
(XB)∥F ≤ βδ ,

where β = maxx ∈X B ∥ f (V)
A

(x)∥2. Then if β = 0, V⊥ con-

tains more than kn/d elements of X . Otherwise, setting α =

ϵ/(3βd2n) − 1 and C = (I + αIV)A, we have that

ΦX (C) ≤ ΦX (A) − Ω(ϵ3/(d7n3)) .

We note that if V is taken to be the space of the bot-

tom d − k eigenvalues of MA (X
B) that the above properties

trivially hold with δ = 0. Properties 1 and 2 follow from the

variational characterization of eigenspaces. Properties 3 and 4

hold trivially.

We know that elements of XB are close toW ⊥ and elements

of XS are close toW . We will need to claim that elements of

XB are also close toV⊥ and elements of XS are close toV . We

establish this in the next two claims.

Claim 3.8. We have that 1
n

∑

x ∈X B ∥ f (V)
A

(x)∥22 ≤ γ 2+δ2.

In particular, for any x ∈ XB, it holds that ∥ f (V)
A

(x)∥2 ≤
√
2nγ .

Claim 3.9. Wehave that 1
n

∑

x ∈X \X B ∥ f (V
⊥)

A
(x)∥22 ≤ γ 2+

δ2. In particular, for any x ∈ X \XB, it holds that ∥ f (V
⊥)

A
(x)∥2 ≤√

2nγ .

The case that β > 0: Here we assume that β > 0 and show

that we can obtain an improvement in our potential function.

To bound below the improvement in potential, we will make

essential use of Lemma 3.3, and we bound the relevant quanti-

ties in a sequence of lemmas.

We begin by bounding below λk (M
V ⊥,V ⊥

A
(X)). In partic-

ular, we show that it is nearly as big as λk (MA (X)). Morally,

this holds because

λk (MA (X)) = λk (M
W ⊥,W ⊥

A
(X)) ≈ λk (M

V ⊥,V ⊥

A
(X)) .

Formally, we have the following.

Lemma 3.10. Wehave that λk (M
V ⊥,V ⊥

A
(X)) ≥ λk (MA (X))−

4γ , for k = dim(V⊥).

Next we bound from above λ1 (M
V ,V
A

(X)). In particular,

we show that it is not much larger than λk+1 (MA (X)). Morally,

this holds because

λk+1 (MA (X)) = λ1 (M
W ,W
A

(X)) ≈ λ1 (M
V ,V
A

(X)) .

Formally, we have the following.

Lemma 3.11. Wehave that λ1 (M
V ,V
A

(X)) ≤ λk+1 (MA (X))+

8γ .

Together Lemmas 3.10 and 3.11 show that λk (M
V ⊥,V ⊥

A
(X))−

λ1 (M
V ,V
A

(X)) is nearly as large as λk (MA (X))−λk+1 (MA (X)) ≥
ϵ/(2d3).

Next we bound the off-diagonal terms of the transformed

vectors.

A Strongly Polynomial Algorithm for Approximate Forster Transforms and its Application to Halfspace Learning STOC ’23, June 20ś23, 2023, Orlando, FL, USA

Lemma 3.12. We have that ∥MV ,V ⊥

C
∥2
F
≤ ((1 + α)3β3 +

(1 + α)βδ + 2γ)2.

Finally, we need to bound Df , showing that it is neither

too big nor too small. This follows by noting that the greatest

amount that any vector was modified is on the order of αβ . In

particular, we have that:

Lemma 3.13. We have that 1
n

(

(1+α)2β 2

1+(1+α)2β 2 − γ 2
)

≤ Df ≤
(1 + α)2β2 + 2γ 2, where

Df =
1

n

∑

y∈fC (X)

∥y (V) ∥22 −
1

n

∑

y∈fA (X)

∥y (V) ∥22 .

Combining the Lemmas 3.10, 3.11, 3.12, 3.13with Lemma 3.3

and setting η = (1 + α)β = ϵ/(3d2n), we get that

ΦX (A) − ΦX (C) ≥

≥
(

ϵ

2d3
− 16γ − 2η2

)

(

η2 − 2γ 2

n

)

− 2(η3 + ηδ + 2γ)2

≥
(

ϵ

2d3
− 16γ − 2η2

)

(

η2 − 2γ 2

n

)

− 6η6 − 6(ηδ)2 − 24γ 2.

Given that both γ and η2 are less than a sufficiently small

multiple of ϵ
d3 , the above is at least

ϵη2

3d3n
− 6η6 − 6(ηδ)2 − 24γ 2.

Given that δ is less than a sufficiently small multiple of ϵ
dn

,

and γ a small multiple of ϵ2/(d4n2), this is

Ω(ϵη2/(d3n)) = Ω(ϵ3/(d7n3)).

The case of β = 0: We now argue that in the case that

β = 0, no Forster transform exists, as the algorithm correctly

identifies a subspace of dimension k containing more than a

k/d fraction of the points of X .

Since we have that λk (MA (X))−λk+1 (MA (X)) ≥ ϵ/(2d3)

by assumption, either λk (MA (X)) ≥ 1
d
+

ϵ
4d3 or λk+1 (MA (X)) ≤

1
d
− ϵ

4d3 . The algorithm returns the subspace V⊥ of dimen-

sion k , which contains all points XB as β = 0. We claim that

|XB |/n > k/d , which would complete our analysis. This is

essentially because the large eigenvalues of MA (X) on V⊥

imply that XB must have many points.

We consider two subcases below.

Case 1: λk (MA (X)) ≥ 1
d
+

ϵ
4d3 . In this case, we have that

|XB |
n
= tr(MA (X

B)) ≥ k λk (MA (X
B))

≥ kλk (M
V ⊥,V ⊥

A
(XB)) − kδ

≥ kλk (M
V ⊥,V ⊥

A
(X)) − kδ − 2kγ 2

≥ kλk (MA (X)) − 7kγ

≥ k/d + k (ϵ/(4d3) − 7γ) > k/d ,

where the second line above follows from Property 3, the

third line from Claim 3.9. The fourth line follows from

Lemma 3.10, and the rest from ϵ/d3 ≫ γ > δ .

Case 2: λk+1 (MA (X)) ≤ 1
d
− ϵ

4d3 . In this case, we have that

|XS |
n
= tr(MA (X

S)) = tr(MV ,V
A

(XS)) + tr(MV ⊥,V ⊥

A
(XS)).

By Claim 3.9 we have that tr(MV ⊥,V ⊥

A
(XS)) ≤ 2γ 2. On the

other hand since β = 0, all elements of XB are orthogonal

to V and thus

tr(MV ,V
A

(XS)) = tr(MV ,V
A

(X)).

This is at most (k − d)λ1 (MV ,V
A

(A)), which by Lemma 3.11

is at most (k − d)λk+1 (MA (X)) + 8dγ . Combining with the

above, we get that

|XS |
n

≤ (k − d)λk+1 (MA (X)) + 10dγ

≤ (k − d)/d − (k − d)ϵ/(4d3) + 10dγ < (k − d)/d .

Hence, in this case as well |XB |/n = 1 − |XS |/n > k/d .

This completes the proof of Proposition 3.7.

This completes the proof of Proposition 3.2. □

4 APPROXIMATE

EIGENDECOMPOSITION

In this section, we give a simple algorithm that computes an

approximate eigendecomposition with multiplicative error

guarantees in strongly polynomial time.

Proposition 4.1. Given a d × d PSD matrixM , an accu-

racy parameter ϵ > 0 and a failure probability δ > 0, there is

an algorithm that computes orthogonal vectors q1, . . . ,qd and

scalars ai such that the matrix M̂ =
∑d
i=1 aiqiq

⊤
i satisfies the

following: for all v ∈ Rd , it holds that

|v⊤ (M − M̂)v | ≤ ϵ (v⊤Mv) .

The algorithm performs poly(d/ϵ, log(1/δ)) arithmetic opera-

tions on poly(d/ϵ, log(1/δ),b)-bit numbers, where b is the bit

complexity of the entries ofM .

Our algorithm is presented in pseudocode below.

Algorithm 3 Computing the approximate eigendecomposi-

tion of a matrixM

1: function EigenDecomposition(MatrixMd×d , accuracy
parameter ϵ , error probability δ)

2: Let A be a random d × d matrix where the entries are

i.i.d. uniform samples from {1, 2, . . . ,N }, for N at least a

sufficiently large constant multiple of d/δ .

3: Letw1,w2, . . . ,wd be the column vectors ofMtA, for

t a sufficiently large constant multiple of d6/ϵ2 log(d/δ).

4: for i = 1 to d do

5: Let qi be the projection ofwi onto the orthogonal

complement ofw1,w2, . . . ,wi−1.
6: Let ai = 0 if qi = 0 and ai = q⊤i Mqi/(qi · qi)

otherwise.

7: return {ai ,qi }

It is easy to see that this algorithm runs in the appropriate

time and bit-complexity bounds. The difficulty is in showing

that the resulting M̂ satisfies the desired error bounds. The

proof is given in the full version.

STOC ’23, June 20ś23, 2023, Orlando, FL, USA Ilias Diakonikolas, Christos Tzamos, and Daniel M. Kane

5 MATRIX ROUNDING

In this section, we establish our efficient rounding procedure,

establishing the following:

Theorem 5.1 (Matrix Rounding). There is an algorithm

that given (i) a set of n points X ⊆ {−2b , . . . , 2b }d \ {0} with
b ∈ Z+, so that X spans Rd , (ii) a full-rank d × d matrix

A ∈ {−2rb , . . . , 2rb }d×d , with r ∈ Z+, and (iii) an accuracy

parameter ϵ ∈ (0, 1), outputs a matrix A′ with integer en-

tries of magnitude at most (dϵ)
O (d3b) such that for all points

x ∈ X it holds ∥ fA (x) − fA′ (x)∥2 ≤ ϵ . The algorithm performs

poly(d,n, r) arithmetic operations on poly(d,n, r ,b, log(1/ϵ))-

bit numbers.

This theorem will allow us to avoid having the matrices

A in our main algorithm blow up in bit complexity since every

round we can replace A by A′ to reduce the bit complexity

with at most a small loss of potential. See the full version for

the details.

6 PAC LEARNING HALFSPACES IN

STRONGLY POLYNOMIAL TIME

In this section, we give our strongly polynomial improper PAC

learner for halfspaces, thereby establishing Theorem 1.6.

6.1 Approximate Forster Decomposition

Theorem 1.5 is often difficult to use directly as it does not

always guarantee a Forster ransform. This is necessary because

if many points are concentrated on a subspace, it may be the

case that no such transform exists. However, in this case we

can at least find a dense subspace and hopefully can find a

Forster transform on that subspace. In general, we have the

following result:

Proposition 6.1 (Forster Decomposition). There is an

algorithm that given a multiset X of n points in Rd∗ and ϵ >

0, runs in time strongly-polynomial in d n/ϵ , and with high

probability returns a subspace V ⊆ Rd with V , 0 and a linear

transformation A : V → Rdim(V) , such that

(1) |X ∩V | ≥ (n/d) dim(V).

(2) The eigenvalues of 1
|X∩V |

∑

x ∈X∩V fA (x) (fA (x))
⊤ are

in [(1 − ϵ)/ dim(V), (1 + ϵ)/ dim(V)].

6.2 PAC Learning Halfspaces

Since we work in the distribution-independent setting, will

assume without loss of generality that the target halfspace

is homogeneous, i.e., has zero threshold. We can straightfor-

wardly reduce the general case to the homogeneous case by

increasing the dimension by 1. In particular, if we associate

point x ∈ Rd with x ′ = (x ,−1) ∈ Rd+1∗ , then we note that

w · x − t = (w, t) · (x ,−1), and thus a general halfspace over

the x vectors is equivalent to a homogeneous halfspace over

the x ′.
The basic idea of our PAC learning algorithm is that if

we are given a set of points in approximate radial isotropic

position, we can use a variant of the perceptron algorithm

to efficiently compute a hypothesis that correctly classifies

a reasonable fraction of these points. In particular, we will

be using the following lemma, a version of which appears

in [6, 20]:

Lemma 6.2. Let S be a set of n labeled examples (x ,y) ∈
R
d × {±1} such that there exists an unknown vector w ∈ Rd∗

with y = sign(w · x) for each (x ,y) ∈ S , and let γ > 0 be a

parameter. There exists an algorithm that given S and γ has

running time strongly polynomial in nd/γ , and returns a vector

v ∈ Rd∗ that for all (x ,y) ∈ S with |v · x | ≥ γ ∥v ∥2∥x ∥2 satisfies
y = sign(v · x).

Combining themodified perceptron algorithm of Lemma 6.2

with an approximate Forster transform, gives us a way to learn

a reasonable fraction of the points for any linearly separable

dataset.

Lemma 6.3. Let S be a multiset of labeled examples (x ,y) ∈
R
d
∗ × {±1} such that there exists an unknown vector w ∈ Rd∗

with y = sign(w · x) for each (x ,y) ∈ S . There exists a strongly
polynomial time algorithm that with high probability returns

a subspace V of Rd , a linear transformation A : V → Rdim(V) ,

and a vectorv ∈ V such that for every (x ,y) ∈ S with x ∈ V and

|v · (Ax) | ≥ ∥v ∥2 ∥Ax ∥2/(2
√
d) we have that y = sign(v · x).

Furthermore, this holds for at least a 1/(4d)-fraction of points

(x ,y) ∈ S .

Ideally, we would like a version of Lemma 6.3 that works

over a distribution rather than a finite set. This can be achieved

by running the algorithm of Lemma 6.3 on a suitably large set

of samples. To establish generalization guarantees, we leverage

the fact that the collection of possible classifiers comes from a

set of bounded VC-dimension.

Proposition 6.4. Let D be a distribution over Rd × {±1}
such that for some unknown vector w ∈ Rd∗ we have that for

(x ,y) ∼ D that y = sign(w · x) almost surely. Given ϵ,δ > 0

with ϵ < 1/(20d), there exists an algorithm that draws n =

O (d2 log(1/δ)/ϵ2) i.i.d. samples from D, runs in time strongly

polynomial in n,d , and with probability at least 1 − δ returns

a vector subspace V in Rd , a linear transformation A : V →
R
dim(V) and a vector v ∈ V , such that:

(1) The probability over (x ,y) ∼ D that x ∈ V , |v ·(Ax) | ≥
∥v ∥2 ∥Ax ∥2/(2

√
d), and y , sign(v · x) is at most ϵ .

(2) The probability over (x ,y) ∼ D that x ∈ V and |v ·
(Ax) | ≥ ∥v ∥2 ∥Ax ∥2/(2

√
d) is at least 1/(5d).

We are now ready to prove the main result of this section.

Theorem 6.5. Let D be a distribution over Rd × {±1}
such that for some unknown vector w ∈ Rd∗ we have that

for (x ,y) ∼ D that y = sign(w · x) almost surely. Given

ϵ,δ > 0 with ϵ < 1/(20d) there is an algorithm that draws

n = O (d9/2 log(1/ϵ) log(d/ϵδ)/ϵ2) i.i.d. samples from D, runs

in strongly polynomial time, and returns a strongly polynomial

time computable function f : Rd → {±1} such that with prob-

ability 1 − δ over the samples it holds that Pr(x,y)∼D[f (x) ,
y] ≤ ϵ .

7 CONCLUSIONS AND OPEN PROBLEMS

In this work, we designed the first strongly polynomial time

algorithm for computing ϵ-approximate Forster transforms of

A Strongly Polynomial Algorithm for Approximate Forster Transforms and its Application to Halfspace Learning STOC ’23, June 20ś23, 2023, Orlando, FL, USA

Algorithm 4 Halfspace Learning Algorithm

1: function LearnLTF (sample access to distribution D
over Rd∗ × {±1}, accuracy parameter ϵ)

2: Let f0 ≡ 0.

3: Let C > 0 be a sufficiently large universal constant.

4: Let r = C
√
d log(1/ϵ) ∈ Z+.

5: for i = 1 to r do

6: TakeM := Cd4 log(d/ϵδ)/ϵ2 samples from D and

call the resulting multiset T .

7: Let S be the set of (x ,y) ∈ T such that fi−1 (x) = 0.

8: if |S | < ϵM/4 then

9: return fi−1
10: else

11: Run the algorithm from Proposition 6.4 with

parameters ϵ ← ϵ/(10d) and δ ← δ/(2r) to obtainV ,A,v ,

using S as the set of samples.

12: Let

fi (x) :=



fi−1 (x) , if fi−1 (x) , 0

sign(v · (Ax)) , if fi−1 = 0,x ∈ V , and |v · (Ax) |/(2
√
d)

0 , otherwise.

a given dataset2. By using this algorithm is an essential ingre-

dient, we gave the first strongly polynomial time algorithm for

distribution-free PAC learning of halfspaces, both in the real-

izable setting and in the presence of semi-random label noise.

This algorithmic result is surprising (even in the realizable

case), as obtaining a strongly polynomial proper PAC learner

is equivalent to strongly polynomial LP Ð a major unsolved

problem in TCS.

A number of open problems suggest themselves:

• Our ϵ-approximate Forster transform algorithm has run-

time scaling polynomially with 1/ϵ . That is, our algorithm

runs in strongly polynomial time when ϵ is at least inverse

polynomial in n,d . An obvious open question is to develop

a strongly polynomial algorithm with a polylog(1/ϵ) run-

time dependence. To achieve such a guarantee with our

approach, one needs to circumvent two obstacles: First, one

would need to reduce the number of iterations of our algo-

rithm (that is controlled by the progress in our potential

function). Second, one would require a strongly polyno-

mial approximate eigendecomposition subroutine with a

polylog(1/ϵ) runtime dependence.

• We believe that the following question is of independent in-

terest: Is there a strongly polynomial time algorithm for ap-

proximate eigendecomposition with a polylog(1/ϵ) runtime

dependence? Moreover, is there a deterministic algorithm?

• The running time of our algorithm is strongly polynomial

in n,d , but the polynomial dependence is quite large (of the

order of (nd)10). While we did not make any effort to opti-

mize the degree of the polynomials, it would be interesting

to understand the quantitative limitations of our approach.

2While our Forster algorithm is randomized, we remark that the only source of
randomness is due to the method we use to compute an approximate eigende-
composition. It is plausible that deterministic algorithms exist for this purpose,
in which case our Forster algorithm becomes deterministic as well.

Can our approach lead to algorithms with good practical

performance?

• As mentioned in the introduction of this paper, Forster’s

rescaling can be viewed as a very special cases of operator

scaling and tensor scaling [24]. These tasks have attracted

significant attention in recent years from various communi-

ties, and efficient (weakly polynomial) algorithms (in some

cases with a poly(1/ϵ) dependence) have been developed,

see, e.g., [1, 9] and references therein. It would be interesting

to explore whether our approach can be extended to yield

strongly polynomial algorithms (when ϵ is not too small)

for such generalizations.

ACKNOWLEDGEMENTS

I.D. was supported by by NSF Medium Award CCF-2107079,

NSF Award CCF-1652862 (CAREER), a Sloan Research Fel-

lowship, and a DARPA Learning with Less Labels (LwLL)

grant. C.T. was supported by NSF Award CCF-2008006 and

NSF Award CCF-2144298 (CAREER). D.K. was supported by

NSF Medium Award CCF-2107547, NSF Award CCF-1553288

(CAREER), and a grant from CasperLabs.

We thank Ravi Kannan, Santosh Vempala, and Mihalis

Yannakakis for encouragement and insightful conversations

about this work. We are grateful to Daniel Dadush for shar-

ing his expertise on optimization, and for detailed feedback

that improved the presentation of this paper. We are indebted

to Nikhil Srivastava for answering our questions about the

complexity of eigenvalue decomposition, and for technical

correspondence regarding our strongly polynomial eigende-

composition routine.

REFERENCES
[1] Z. Allen-Zhu, A. Garg, Y. Li, R. M. de Oliveira, and A. Wigderson. 2018.

Operator scaling via geodesically convex optimization, invariant theory
and polynomial identity testing. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018. ACM, 172ś181.

[2] D. Angluin and P. Laird. 1988. Learning From Noisy Examples. Mach.
Learn. 2, 4 (1988), 343ś370.

[3] S. Artstein-Avidan, H. Kaplan, and M. Sharir. 2020. On Radial
Isotropic Position: Theory and Algorithms. CoRR abs/2005.04918 (2020).
arXiv:2005.04918 https://arxiv.org/abs/2005.04918

[4] F. Barthe. 1998. On a reverse form of the Brascamp-Lieb inequality. Inven-
tiones mathematicae 134 (1998), 335ś361.

[5] U. Betke. 2004. New Combinatorial and Polynomial Algorithms for the
Linear Feasibility Problem. Discrete & Computational Geometry 32 (2004),
317ś338.

[6] A. Blum, A. Frieze, R. Kannan, and S. Vempala. 1997. A Polynomial Time
Algorithm for Learning Noisy Linear Threshold Functions. Algorithmica
22, 1/2 (1997), 35ś52.

[7] A. Blum, A. M. Frieze, R. Kannan, and S. Vempala. 1996. A Polynomial-Time
Algorithm for Learning Noisy Linear Threshold Functions. In 37th Annual
Symposium on Foundations of Computer Science, FOCS ’96. 330ś338.

[8] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. 1989. Learn-
ability and the Vapnik-Chervonenkis dimension. J. ACM 36, 84 (Oct. 1989),
929ś965.

[9] P. Bürgisser, C. Franks, A. Garg, R. M. de Oliveira, Michael Walter, and
A. Wigderson. 2018. Efficient Algorithms for Tensor Scaling, Quantum
Marginals, and Moment Polytopes. In 59th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2018. IEEE Computer Society, 883ś
897.

[10] S. Chen, F. Koehler, A. Moitra, and M. Yau. 2020. Classification Under
Misspecification: Halfspaces, Generalized Linear Models, and Evolvability.
InAdvances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020.

[11] E. Cohen. 1997. Learning noisy perceptrons by a perceptron in polynomial
time. In Proceedings of the Thirty-Eighth Symposium on Foundations of
Computer Science. 514ś521.

STOC ’23, June 20ś23, 2023, Orlando, FL, USA Ilias Diakonikolas, Christos Tzamos, and Daniel M. Kane

[12] D. Dadush, S. Huiberts, B. Natura, and L. A. Végh. 2020. A scaling-invariant
algorithm for linear programming whose running time depends only on
the constraint matrix. In Proccedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2020. ACM, 761ś774.

[13] D. Dadush, B. Natura, and L. A. Végh. 2020. Revisiting Tardos’s Framework
for Linear Programming: Faster Exact Solutions using Approximate Solvers.
In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS
2020. IEEE, 931ś942.

[14] I. Diakonikolas, T. Gouleakis, and C. Tzamos. 2019. Distribution-
Independent PAC Learning of Halfspaces with Massart Noise. In Advances
in Neural Information Processing Systems 32: Annual Conference on Neu-
ral Information Processing Systems 2019, NeurIPS 2019, Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox,
and Roman Garnett (Eds.). 4751ś4762.

[15] I. Diakonikolas and D. M. Kane. 2020. Near-Optimal Statistical Query
Hardness of Learning Halfspaces with Massart Noise. CoRR abs/2012.09720
(2020). arXiv:2012.09720 https://arxiv.org/abs/2012.09720 Conference
version in COLT’22..

[16] I. Diakonikolas, D.M. Kane, P.Manurangsi, and L. Ren. 2022. Cryptographic
Hardness of Learning Halfspaces with Massart Noise. CoRR abs/2207.14266
(2022). https://doi.org/10.48550/arXiv.2207.14266 arXiv:2207.14266 Con-
ference version in NeurIPS’22..

[17] I. Diakonikolas, D. M. Kane, and C. Tzamos. 2021. Forster Decomposi-
tion and Learning Halfspaces with Noise. CoRR abs/2107.05582 (2021).
arXiv:2107.05582 https://arxiv.org/abs/2107.05582 Conference version
appeared in NeurIPS’21..

[18] I. Diakonikolas, J. Park, and C. Tzamos. 2021. ReLU Regression with
Massart Noise. CoRR abs/2109.04623 (2021). arXiv:2109.04623 https:
//arxiv.org/abs/2109.04623 Conference version appeared in NeurIPS’21..

[19] J. Dunagan and S. Vempala. 2004. Optimal outlier removal in high-
dimensional spaces. J. Computer & System Sciences 68, 2 (2004), 335ś373.

[20] J. Dunagan and S. Vempala. 2004. A simple polynomial-time rescaling
algorithm for solving linear programs. In Proceedings of the 36th Annual
ACM Symposium on Theory of Computing. 315ś320.

[21] Z. Dvir, S. Saraf, and A. Wigderson. 2017. Superquadratic Lower Bound
for 3-Query Locally Correctable Codes over the Reals. Theory Comput. 13,
1 (2017), 1ś36.

[22] J. Forster. 2002. A linear lower bound on the unbounded error probabilistic
communication complexity. J. Comput. Syst. Sci. 65, 4 (2002), 612ś625.

[23] Y. Freund and R. Schapire. 1997. A decision-theoretic generalization of
on-line learning and an application to boosting. J. Comput. System Sci. 55,
1 (1997), 119ś139.

[24] A. Garg and R. M. de Oliveira. 2018. Recent progress on scaling algorithms
and applications. Bull. EATCS 125 (2018). http://eatcs.org/beatcs/index.
php/beatcs/article/view/533

[25] A. Garg, L. Gurvits, R. M. de Oliveira, and A. Wigderson. 2017. Algorith-
mic and optimization aspects of Brascamp-Lieb inequalities, via operator
scaling. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2017. ACM, 397ś409.

[26] J. Garg and L. A. Végh. 2019. A strongly polynomial algorithm for lin-
ear exchange markets. In Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2019. ACM, 54ś65.

[27] A. V. Goldberg and R. E. Tarjan. 1989. Finding minimum-cost circulations
by canceling negative cycles. J. ACM 36, 4 (1989), 873ś886.

[28] M. Goldmann, J. Håstad, and A. Razborov. 1992. Majority gates vs. general
weighted threshold gates. Computational Complexity 2 (1992), 277ś300.

[29] M. Grötschel, L. Lovász, and A. Schrijver. 1988. Geometric Algorithms and
Combinatorial Optimization. Vol. 2. Springer.

[30] L. Gurvits and A. Samorodnitsky. 2002. A Deterministic Algorithm for
Approximating the Mixed Discriminant and Mixed Volume, and a Combi-
natorial Corollary. Discrete & Computational Geometry 27 (2002), 531ś550.

[31] L. Hamilton and A. Moitra. 2019. The Paulsen Problem Made Simple. In
10th Innovations in Theoretical Computer Science Conference, ITCS 2019,
January 10-12, 2019 (LIPIcs, Vol. 124). Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 41:1ś41:6.

[32] M. Hardt and A. Moitra. 2013. Algorithms and Hardness for Robust Sub-
space Recovery. In COLT 2013. 354ś375.

[33] M. Hopkins, D. Kane, S. Lovett, and G. Mahajan. 2020. Point Location
and Active Learning: Learning Halfspaces Almost Optimally. In 61st IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2020. IEEE,
1034ś1044.

[34] M. Kearns and U. Vazirani. 1994. An Introduction to Computational Learning
Theory. MIT Press, Cambridge, MA.

[35] T. C. Kwok, L. C. Lau, Y. T. Lee, and A. Ramachandran. 2018. The Paulsen
problem, continuous operator scaling, and smoothed analysis. In Proceed-
ings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018. ACM, 182ś189.

[36] N. Linial, A. Samorodnitsky, and A. Wigderson. 2000. A Deterministic
Strongly Polynomial Algorithm for Matrix Scaling and Approximate Per-
manents. Comb. 20, 4 (2000), 545ś568. Conference version in STOC’98..

[37] W. Maass and G. Turan. 1994. How fast can a threshold gate learn?. In
Computational Learning Theory and Natural Learning Systems, S. Hanson,
G. Drastal, and R. Rivest (Eds.). MIT Press, 381ś414.

[38] P. Massart and E. Nedelec. 2006. Risk bounds for statistical learning. Ann.
Statist. 34, 5 (10 2006), 2326ś2366.

[39] N. Megiddo. 1983. Towards a Genuinely Polynomial Algorithm for Linear
Programming. SIAM J. Comput. 12, 2 (1983), 347ś353.

[40] M.Minsky and S. Papert. 1968. Perceptrons: an introduction to computational
geometry. MIT Press, Cambridge, MA.

[41] R. Nasser and S. Tiegel. 2022. Optimal SQ Lower Bounds for Learning Half-
spaces with Massart Noise. CoRR abs/2201.09818 (2022). arXiv:2201.09818
https://arxiv.org/abs/2201.09818 Conference version in COLT’22..

[42] A. Novikoff. 1962. On convergence proofs on perceptrons. In Proceedings
of the Symposium on Mathematical Theory of Automata, Vol. XII. 615ś622.

[43] R. O’Donnell. 2014. Analysis of Boolean Functions. Cambridge University
Press. http://www.cambridge.org/de/academic/subjects/computer-
science/algorithmics-complexity-computer-algebra-and-computational-
g/analysis-boolean-functions

[44] N. Olver and L. A. Végh. 2017. A simpler and faster strongly polynomial
algorithm for generalized flow maximization. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017.
ACM, 100ś111.

[45] N. Olver and L. A. Végh. 2020. A Simpler and Faster Strongly Polynomial
Algorithm for Generalized Flow Maximization. J. ACM 67, 2 (2020), 10:1ś
10:26.

[46] J. B. Orlin. 1993. A Faster Strongly Polynomial Minimum Cost Flow
Algorithm. Operations Research 41, 2 (1993), 338ś350.

[47] B. N. Parlett. 1998. The Symmetric Eigenvalue Problem. Society for Industrial
and Applied Mathematics, Philadelphia.

[48] F. Rosenblatt. 1958. The Perceptron: a probabilistic model for information
storage and organization in the brain. Psychological Review 65 (1958),
386ś407.

[49] J. Shawe-Taylor and N. Cristianini. 2000. An introduction to support vector
machines. Cambridge University Press.

[50] S. Smale. 1998. Mathematical problems for the next century. The Mathe-
matical Intelligencer 20 (1998), 7ś15.

[51] E. Tardos. 1985. A strongly polynomialminimum cost circulation algorithm.
Comb. 5, 3 (1985), 247ś256.

[52] E. Tardos. 1986. A Strongly Polynomial Algorithm to Solve Combinatorial
Linear Programs. Operations Research 34, 2 (1986), 250ś256.

[53] L. G. Valiant. 1984. A theory of the learnable. In Proc. 16th Annual ACM
Symposium on Theory of Computing (STOC). ACM Press, 436ś445.

[54] V. Vapnik. 1998. Statistical Learning Theory. Wiley-Interscience, New
York.

[55] S. A. Vavasis and Y. Ye. 1996. A primal-dual interior point method whose
running time depends only on the constraint matrix. Math. Program. 74
(1996), 79ś120.

[56] L. A. Végh. 2014. A strongly polynomial algorithm for generalized flow
maximization. In Symposium on Theory of Computing, STOC 2014. ACM,
644ś653.

[57] L. A. Végh. 2016. A Strongly Polynomial Algorithm for a Class ofMinimum-
Cost Flow Problems with Separable Convex Objectives. SIAM J. Comput.
45, 5 (2016), 1729ś1761.

[58] A. Yao. 1990. On ACC and threshold circuits. In Proceedings of the Thirty-
First Annual Symposium on Foundations of Computer Science. 619ś627.

Received 2022-11-07; accepted 2023-02-06

	Abstract
	1 Introduction
	1.1 Halfspaces and Efficient PAC Learnability
	1.2 Our Results
	1.3 Our Techniques
	1.4 Related Work
	1.5 Organization

	2 Preliminaries
	3 Approximate Forster Transform in Strongly Polynomial Time
	3.1 Algorithm Pseudocode
	3.2 Analysis of Algorithm 1

	4 Approximate Eigendecomposition
	5 Matrix Rounding
	6 PAC Learning Halfspaces in Strongly Polynomial Time
	6.1 Approximate Forster Decomposition
	6.2 PAC Learning Halfspaces

	7 Conclusions and Open Problems
	References

