A Strongly Polynomial Algorithm for Approximate Forster
Transforms and its Application to Halfspace Learning’

Ilias Diakonikolas
University of Wisconsin-Madison
Madison, USA
ilias@cs.wisc.edu

Christos Tzamos
University of Wisconsin-Madison
& University of Athens
Madison, USA

Daniel M. Kane
University of California, San Diego
San Diego, USA
dakane@ucsd.edu

tzamos@wisc.edu

ABSTRACT

The Forster transform is a method of regularizing a dataset by
placing it in radial isotropic position while maintaining some of
its essential properties. Forster transforms have played a key
role in a diverse range of settings spanning computer science
and functional analysis. Prior work had given weakly polyno-
mial time algorithms for computing Forster transforms, when
they exist. Our main result is the first strongly polynomial
time algorithm to compute an approximate Forster transform
of a given dataset or certify that no such transformation ex-
ists. By leveraging our strongly polynomial Forster algorithm,
we obtain the first strongly polynomial time algorithm for
distribution-free PAC learning of halfspaces. This learning re-
sult is surprising because proper PAC learning of halfspaces
is equivalent to linear programming. Our learning approach
extends to give a strongly polynomial halfspace learner in the
presence of random classification noise and, more generally,
Massart noise.

CCS CONCEPTS

« Theory of computation — Machine learning theory.

KEYWORDS
PAC learning, Halfspaces, Massart Noise

ACM Reference Format:

Ilias Diakonikolas, Christos Tzamos, and Daniel M. Kane. 2023. A
Strongly Polynomial Algorithm for Approximate Forster Transforms
and its Application to Halfspace Learning. In Proceedings of the 55th
Annual ACM Symposium on Theory of Computing (STOC °23), June
20-23, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3564246.3585191

1 INTRODUCTION

The Forster transform is a method of regularizing a dataset X
(in particular, by placing it in radial isotropic position) while

* Author names are in randomized order.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

STOC ’23, June 20-23, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to
ACM.

ACM ISBN 978-1-4503-9913-5/23/06...$15.00
https://doi.org/10.1145/3564246.3585191

maintaining some of its essential properties. Forster trans-
forms have been an essential tool in a diverse range of settings,
including functional analysis [4, 25], communication com-
plexity [22], coding theory [21], mixed determinant/volume
approximation [30], learning theory [17, 18, 32, 33] and the
Paulsen problem in frame theory [31, 35]. The reader is re-
ferred to [3] for a more detailed discussion.

Known algorithms for computing (approximate) Forster
transforms [3, 17, 32] rely on black-box convex optimization
(e.g., the ellipsoid algorithm) and consequently have weakly
polynomial runtimes. Here we study the question of whether
Forster transforms can be computed in strongly polynomial
time. We then leverage Forster transforms for the problem of
PAC learning halfspaces (both in the realizable setting and in
the presence of semi-random label noise).

Intuitively speaking, a Forster transform is a mapping that
turns a dataset into one with good anti-concentration proper-
ties. Specifically, given a dataset X C R4!, a Forster transform
of X is an invertible linear transformation A € R¥9 such
that the set of points Y = {Ax/||Ax|l2, x € X} is in isotropic
position (i.e., has identity second moment matrix). Formally,
we have the following more general definition allowing for
approximate isotropic position.

Definition 1.1 (Approximate Forster Transform). Let X be a
set of n nonzero points in R? and 0 < € < 1be an error param-
eter. An e-approximate Forster transform of X is an invertible

linear transformation A € R4%4 such that, considering the

mapping fa : R? — §9 defined by fa(x) f Ax/||Ax||2, the
matrix Ma(X) ' (1/n) Syex fa(x) fa(x) T satisfies 1€ T <
Ma(X) = 1

An exact Forster transform (corresponding to € = 0 in Defi-
nition 1.1) aims to linearly transform a given dataset so that
the normalizations of these points are in isotropic position.
This notion is known as “Forster’s isotropic position” or “ra-
dial isotropic position” and can be viewed as an outlier-robust
analogue of isotropic position. As already mentioned, radial
isotropy has been extensively studied in functional analysis
and computer science.

REMARK 1.2. At a high-level, a Forster transform aims to
transform a given dataset so that it becomes “well-conditioned”
in a well-defined technical sense. We note that several other
such transformations have been studied in the literature, in-
cluding the “outlier-removal technique” of Dunagan and Vem-
pala [19] (improving on [7]) and the rescaling method of Duna-
gan and Vempala [20] for linear programming. We provide

IWe use R, to denote the set R \ {0}.

STOC ’23, June 20-23, 2023, Orlando, FL, USA

a summary of these techniques and a comparison to radial
isotropy in Section 1.4.

Existence. Forster [22] showed that if the set of points X
is in general position, then a Forster transform exists. Interest-
ingly, generalizations of Forster’s theorem appear implicitly
in [4] and explicitly in [30]. We note that there are datasets
for which a Forster transform does not exist. For example, if
there is a d/3-dimensional subspace that contains half of the
points in X, then after applying any such transformation to
our dataset, this will still be the case; thus, there will be a
d/3-dimensional subspace over which the trace of the second
moment matrix is at least 1/2. In a recent refinement of the
aforementioned works, [33] showed that this is the only thing
that can go wrong. That is, a Forster transform of a given
dataset X exists unless there is a k-dimensional subspace, for
some 0 < k < d, containing at least a k/d-fraction of the
points in X.

Efficient Computability. Forster’s existence proof proceeds
via a non-constructive iterative argument. By analyzing a con-
vex program proposed by Barthe [4], Hardt and Moitra [32]
(see also [3]) showed that the ellipsoid method yields a weakly
polynomial time algorithm to compute an approximate Forster
transform (when it exists). (More recently, [17] pointed out
that a simple explicit SDP can be used to obtain a similar guar-
antee.) We remind the reader that the term weakly polynomial
time algorithm refers to the fact that the number of arithmetic
operations performed by the algorithm scales polynomially
with the bit complexity of the numbers in the input. Specifically,
in our Forster setting, the number of arithmetic operations re-
quired by the ellipsoid method is poly(n, d, b, log(1/€)), where
€ is the accuracy parameter of Definition 1.1, n is the size of
the dataset X, and b is the bit complexity of X.

Starting from the convex programming formulation in [4],
Artstein-Avidan, Kaplan, and Sharir [3] gave an SVD-based
gradient-descent method for computing approximate Forster
transforms. This method incurs a poly(1/¢) runtime depen-
dence and is still weakly polynomial, i.e., the number of arith-
metic operations scales polynomially in the bit complexity b.
Finally, it is interesting to remark that Forster’s rescaling is a
special case of operator scaling and tensor scaling (see [24]
for a survey). Efficient algorithms have been developed for
these more general tasks, see, e.g., [1, 9], albeit with weakly
polynomial guarantees.

Weakly versus Strongly Polynomial Time. As is standard
for computational purposes, we assume that every integer
or rational number appearing in the input is encoded using
its binary representation. Let N € Z, denote the number
of integer numbers given as input and b € Z, denote the
bit complexity of the largest integer appearing in the input
description. An algorithm for the underlying computational
problem is called weakly polynomial, if its worst-case running
time is bounded by a fixed-degree polynomial in the Turing
machine model of computation.

The concept of strongly polynomial time was introduced
by Megiddo [39], under the name “genuinely polynomial”. A
strongly polynomial time algorithm satisfies the following

llias Diakonikolas, Christos Tzamos, and Daniel M. Kane

properties (see, e.g., Section 1.3 of [29]): (i) it uses only ele-
mentary arithmetic operations (specifically, integer addition,
subtraction, multiplication, and division), (ii) the number of
arithmetic operations is bounded above by a polynomial in N,
and (iii) the algorithm is a polynomial space algorithm: that
is, all numbers appearing in all intermediate computations
are rational numbers with bit complexity bounded above by a
polynomial in the input size (i.e., poly(N, b)).

The key difference between strongly and weakly polyno-
mial time lies in property (ii) above. In a weakly polynomial
algorithm, the number of arithmetic operations is allowed to
scale with the bit complexity of the numbers in the input. In
sharp contrast, in a strongly polynomial time algorithm no bit
complexity dependence is allowed.

Forster Transforms in Strongly Polynomial Time? Moti-
vated by the fundamental nature and the varied applications
of Forster transforms, here we ask the following question:

Is there a strongly polynomial time algorithm to compute
an approximate Forster transform of a given dataset (assuming
one exists)?

Our main algorithmic result (Theorem 1.5) answers this ques-
tion in the affirmative by giving the first randomized strongly
polynomial-time algorithm for computing approximate Forster
transforms — corresponding to € = Q(poly(1/(n,d))) in Defi-
nition 1.1. Importantly, a constant value of € suffices for our
learning theory application to learning halfspaces. Obtaining
a strongly polynomial time algorithm for inverse exponential
values of € is left as an interesting open problem (see Section 7
for a discussion).

1.1 Halfspaces and Efficient PAC
Learnability

One of the main motivations behind this work was leveraging
Forster transforms as a tool for the algorithmic problem of
distribution-free PAC learning of halfspaces. We review the
relevant background in the subsequent discussion.

Halfspaces. We are concerned with the efficient learnabil-
ity of halfspaces in Valiant’s distribution-free PAC model [53].
A halfspace or Linear Threshold Function (LTF) is any Boolean-
valued function f : RY - {1} of the form f(x) = sign(w-x—
1), for some w € R? (known as the weight vector) and t € R
(known as the threshold). (The function sign : R — {+1} is
defined as sign(u) = 1if u > 0, and sign(u) = —1 otherwise.)
Halfspaces are one of the most extensively studied classes of
Boolean functions due to their central role in several areas,
including complexity theory, learning theory, and optimiza-
tion [23, 28, 40, 42, 43, 48, 49, 54, 58].

Background on PAC Learning. The major goal of compu-
tational learning theory is to develop learning algorithms for
expressive concept classes that are both statistically and com-
putationally efficient. To facilitate the subsequent discussion,
we formally define Valiant’s PAC model.

Definition 1.3 (PAC Learning). Let C be a class of Boolean-
valued functions over X = R¥ and Dx be a fixed but unknown
distribution over X. Let f be an unknown target function
in C. A PAC example oracle, EX(f, Dx), works as follows:

A Strongly Polynomial Algorithm for Approximate Forster Transforms and its Application to Halfspace Learning

Each time EX(f, Dx) is invoked, it returns a labeled example
(x,y), where x ~ Dx and y = f(x). Let D denote the joint
distribution on (x, y) generated by the above oracle. Given an
accuracy parameter y > 0 and access to ii.d. samples from D,
the learner wants to output a hypothesis & : R? — {+1} such
that with high probability the misclassification error of h is at
most y, i.e., we have that Pr(,) p[h(x) # y] <y.

The hypothesis h in Definition 1.3 does not necessarily
belong to the class C. Namely, we focus on the standard no-
tion of improper learning, where the learner can output any
efficiently computable hypothesis. The special case where h is
required to lie in C is known as proper learning. While proper
learning might be desirable for some applications (e.g., due
to its interpretability), there exist natural concept classes for
which proper learning is computationally hard and improper
learning is easy (see, e.g., [34]). An improper hypothesis is
as useful as a proper one for the purpose of predicting new
function values.

REMARK 1.4. The PAC model of Definition 1.3 is known
as realizable because of the assumption that the labels are con-
sistent with the target concept. While our main learning ap-
plication is on the realizable learning of halfspaces in strongly
polynomial time (Theorem 1.6), our positive result extends for
learning halfspaces in the presence of random or semi-random
label noise (Theorem 1.8).

PAC Learning Halfspaces and Linear Programming. With
this terminology, we return to our discussion on halfspaces.

Suppose we are given a multiset of n labeled examples, (D), y(i)),

with x() ~ Dy and y® = £*(x(D)), where f*(x) = sign(w* -
x — t¥) is the target halfspace. Then we can find a consistent
halfspace hypothesis h(x) = sign(i - x — t) (i.e., a halfspace
that agrees with the training set) via a reduction to Linear Pro-
gramming (LP); see, e.g., [37]. Indeed, each example (x, y(i))
gives rise to the linear inequality (w - x({) — t)y{) > 0 over
variables (w, t) € R4*!. This gives us an LP with d+1 variables
and n constraints, which is feasible (as (w*, t*) is a feasible so-
lution by assumption). We can thus use any polynomial-time
LP algorithm to compute a feasible solution (w, t). By standard
VC-dimension generalization results (see, e.g., [34]), if the sam-
ple size n is sufficiently large, namely for some n = O(d/y), the
halfspace hypothesis h(x) = sign(i - x — t) with high proba-
bility satisfies Pr(y, ,)~p[h(x) # y] < y. This straightforward
reduction gives a PAC learning algorithm for halfspaces on R4
with sample complexity O(d/y) and running time polynomial
in the input size. Formally speaking, the running time of such
an algorithm is weakly polynomial, i.e., its worst-case number
of arithmetic operations scales with the bit complexity of the
input examples.

Interestingly, the aforementioned reduction can be re-
versed. That is, one can use any PAC learner that outputs a
halfspace hypothesis as a black-box to solve the linear feasibil-
ity problem Aw > 0, w # 0, where A € R"*? and w € R?, by
considering each linear constraint as an example. Intuitively,
the vector w can be viewed as the weight vector defining the
target halfspace.

STOC ’23, June 20-23, 2023, Orlando, FL, USA

Learning Halfspaces in Strongly Polynomial Time? All
known polynomial time algorithms for LP, including the ellip-
soid algorithm and interior-point methods, are weakly poly-
nomial. The existence of a strongly polynomial LP algorithm
is a major open question in computer science, famously high-
lighted by Smale [50]. The straightforward reduction of PAC
learning halfspaces to LP leads to a weakly polynomial learner.
Interestingly, the reduction in the opposite direction has lead
various authors (see [11] and recently [10, 14]) to suggest that
learning halfspaces in strongly polynomial time is equivalent
to strongly polynomial LP. The catch, of course, is that this
equivalence only holds if we restrict ourselves to proper learn-
ers.

Several weakly polynomial time algorithms for PAC learn-
ing halfspaces have been developed over the past thirty years,
starting with the pioneering works [7, 11, 20] and recently
in [10, 14, 17]. (These works do not proceed by a black-box
reduction to solving LPs.) These learners succeed not only
in the realizable setting, but also in the presence of (semi)-
random label noise. Importantly, all prior learners are weakly
polynomial — even restricted to the realizable setting. This
discussion serves as a motivation for the following question:

Is there a strongly polynomial time algorithm for PAC learning
halfspaces?

The main learning-theoretic result of this paper (Theorem 1.6)
answers the above question in the affirmative. This algorithmic
result generalizes to yield strongly polynomial time algorithms
for learning halfspaces in “benign” noise models, including
Random Classification Noise (RCN) [2] and, more generally,
Massart noise [38] (Theorem 1.8).

1.2 Our Results

The main algorithmic result of this work is the first random-
ized strongly polynomial time algorithm for computing an
approximate Forster transform of a given dataset, assuming
that one exists.

THEOREM 1.5 (APPROXIMATE FORSTER TRANSFORMS IN
STRONGLY PoLYNOMIAL TIME). There exists a randomized al-
gorithm that given a set X C R4 of size n and a parameter
€ € (0, 1), runs in time strongly polynomial in nd/e, and has the
following high probability guarantee: either the algorithm com-
putes an e-approximate Forster transform of X, or it correctly
detects that no Forster transform of X exists by finding a proper
subspace W C R4 such that X N W| > (n/d) dim(W).

In more detail, the algorithm of Theorem 1.5 performs
poly(n, d, 1/€) arithmetic operations on poly(n,d, 1/€, b)-bit
numbers, where b is the bit complexity of the points in X.
As discussed in the introduction, previous algorithms for this
problem rely on the ellipsoid method and therefore are weakly
polynomial even for constant values of €. The running time of
our algorithm has a polynomial dependence in 1/¢; hence, our
algorithm does not run in polynomial time when ¢ is inverse
super-polynomially small in n, d. Importantly, for our applica-
tion in halfspace learning (and several other applications of
Forster transforms) constant values of the parameter € suffice.

By using the algorithm of Theorem 1.5 as a black-box
(for € = 1/2), we establish our main learning result (see Theo-
rem 6.5 for a more detailed statement).

STOC ’23, June 20-23, 2023, Orlando, FL, USA

THEOREM 1.6 (PAC LEARNING HALFSPACES IN STRONGLY
PorynoMIAL TIME). Let D be a distribution over labeled exam-
ples (x,y) € R¥ x {+1} such that the distribution over examples
is arbitrary and the label y of example x satisfiesy = f(x), for
an unknown halfspace f : RY + {+1}. There is an algorithm
that, given y > 0, draws n = poly(d/y) i.i.d. samples from D,
runs in strongly polynomial time, and returns a strongly polyno-
mial time computable hypothesis h : R? - {+1} such that with
high probability we have that Pr(, ,).p[h(x) # y] <y.

Given the equivalence of proper halfspace learning and
LP, we view this algorithmic result as fairly surprising. Theo-
rem 1.6 gives the first strongly polynomial time PAC learning
algorithm for halfspaces. In more detail, if b is the bit complex-
ity of the examples (i.e., the maximum number of bits required
to represent each coordinate of each example vector), our al-
gorithm uses poly(n) arithmetic operations on poly(n, b)-bit
numbers. Finally, we note that the hypothesis h computed by
our algorithm is a decision-list of poly(d/y) many halfspaces.
Importantly, for each point x, the value h(x) is computable in
strongly polynomial time (in n).

REMARK 1.7. The list of concept classes for which effi-
cient learners have been developed in Valiant’s distribution-
free PAC model is fairly short. The class of halfspaces is of
central importance in this list. Specifically, a strongly poly-
nomial algorithm for PAC learning halfspaces immediately
implies (via the kernel trick) strongly polynomial learners
for broader concept classes, including degree-k polynomial
threshold functions for any k = O(1) (see, e.g., [8]).

It is worth pointing out that the idea of using Forster
transforms for halfspace learning was recently used in [17]
for the problem of PAC learning with Massart noise. In the
Massart model [38], an adversary independently flips the label
of each point x with unknown probability (x) < n < 1/2. The
learner of [17] used a weakly polynomial Forster transform
routine. By instead using our algorithm of Theorem 1.5, we
obtain the following generalization of Theorem 1.6.

THEOREM 1.8 (PAC LEARNING MASSART HALFSPACES IN
STRONGLY PoLyNomIAL TIME). Let D be a distribution over
labeled examples (x,y) € R x {+1} such that the distribu-
tion over examples is arbitrary and the label y of example
x satisfies (i) y = f(x) with probability 1 — n(x), and (ii)
y = —f(x) with probability n(x), for an unknown halfspace
f :R? > {£1}. Here (x) is an unknown function that satisfies
n(x) < n < 1/2 for all x. There is an algorithm that, given
Yy > 0, draws n = poly(d/y) i.i.d. samples from D, runs in
strongly polynomial time, and returns a strongly polynomial
time computable hypothesis h : R¥ > {+1} such that with high
probability we have that Pr(,). p[h(x) £yl < n+y.

Theorem 1.8 generalizes Theorem 1.6 (which corresponds
to the case of = 0). For the special case of uniform noise (i.e.,
when n(x) = n < 1/2for all x) — this is known as Random Clas-
sification Noise [2] — Theorem 1.8 achieves the information-
theoretically optimal error and runs in strongly polynomial
time. It thus qualitatively improves on the classical work of [7]
who gave a weakly polynomial time algorithm with the same
error guarantee.

llias Diakonikolas, Christos Tzamos, and Daniel M. Kane

Theorem 1.8 similarly improves prior work on learning
halfspaces with Massart noise. Prior algorithms for learning
Massart halfspaces have weakly polynomial runtimes and
achieve the same error as Theorem 1.8, which is believed to be
the computational limit for the problem. In more detail, the first
(weakly) polynomial learner for Massart halfspaces was given
in [14] and achieves error n+y, as our Theorem 1.8. While this
error guarantee is not information-theoretically optimal in the
Massart model (the optimal error is OPT = E,[5(x)]), there
exists strong evidence [15, 16, 41] that the bound of 5 cannot be
improved by any polynomial time algorithm. Finally, we note
that subsequent work to [14] gave a proper learner for Massart
halfspaces [10], which is inherently weakly polynomial.

1.3 Our Techniques
1.3.1 Strongly Polynomial Approximate Forster Transform.

. . def .
Overview of Approach. Letting f4(x) = Ax/||Ax|l2, given
a dataset X of n points in RZ, our goal is to efficiently com-
pute an invertible linear transformation A € R%*? such that

the matrix M4 (X) def (1/n) Yxex fa(x)fa(x)T is approx-
imately equal to (1/d) I; in particular, we would like it to
have eigenvalues in [PTE, 1%] Since the trace of My (X),
tr(Ma (X)), is always equal to 1, this goal is equivalent to
finding a matrix A such that the squared Frobenius norm of
Ma(X), ||MA(X)||12:, is close to 1/d (Lemma 3.1). This obser-
vation gives rise to the natural idea of using an iterative al-
gorithm to compute such an A. In particular, given a linear
transformation A such that ||My4 (X)IIIZ; is somewhat small,
our goal is then to find another linear transformation C €
R9%d guch that the corresponding second moment matrix
Mca(X) = (1/n) Xxex fea(®) fea(x)T has squared Frobe-
nius norm, ||MCA(X)||12,, somewhat smaller than IIMA(X)H}Z,.

Equivalently, since for any point x € R4 it holds that fealx) =
fc(fa(x)), we consider the set of transformed points X4 =

fa(X) def {fa(x) : x € X} and aim to make the second mo-
ment matrix of fc(X4) smaller than the second moment ma-
trix of X 4. If for any invertible A we can find such a C, then
by iteratively replacing A by CA we can achieve smaller and
smaller values of ||[M4 (X)|| IZE, until in the limit it approaches
1/d.

Since tr(Ma (X)) = 1, if ||MA(X)||12: is bounded away
from 1/d, some of the eigenvalues of M4 (X) (which average
to 1/d) must differ substantially from 1/d. This in turn implies
that M4 (X) must have a reasonably-sized eigenvalue gap. In
particular, this means that there exist subspaces V and V-,
that are each spanned by eigenvectors of M4 (X), such that
the eigenvalues of V1 exceed the eigenvalues on V by at least
some reasonably large § > 0. Roughly speaking, if we can
find a matrix C that decreases the squared Frobenius norm
of Ma(X) on V+ x V1 and increases the squared Frobenius
norm on V XV, this will improve the desired squared Frobenius
norm.

A natural approach to achieve this goal is to let C be equal
to Iy1 + (1 + &)y, the identity on V+, and (1 + a) times the
identity on V, for some suitable a > 0. It is not hard to see
that this choice of C strictly decreases the second moment
matrix on V1, and strictly increases it on V. Unfortunately,

A Strongly Polynomial Algorithm for Approximate Forster Transforms and its Application to Halfspace Learning

it might also create cross-terms that will increase the Frobe-
nius norm. To understand the effect of the cross-terms, it is
important to consider how close vectors in X4 are to being in
V or in V1. In particular, let 8 be the maximum distance that
any vector in X4 is from being in either V or V1. If « = O(1),
this moves approximately a? of the trace of M4 (X) from V+
to V, which improves (i.e., decreases) the squared Frobenius
norm by roughly a? (times some inverse poly(dn/e) factors).
On the other hand, this also creates cross-terms in the order
of aff, which increases the squared Frobenius norm by a quan-
tity on the order of a?f?. Thus, as long as « is less than f
times a sufficiently small polynomial in dn/e, we obtain an
improvement in the squared Frobenius norm on the order of
af?/poly(dn/e).

This improvement suffices for our purposes, unless hap-
pens to be very small. The latter occurs if all of the points in X 4
are either very close to V or very close to V. In such a case, the
simple choice of matrix C described in the previous paragraph
may not be sufficient, as it will produce too many cross-terms.
In order to make progress here, we require a different approach,
which we describe next. To describe our approach for this case,
we introduce additional terminology. We let XE\ be the set of
points in X 4 that are close to V. Moreover, let U be the span of
the |V| smallest eigenvectors of the matrix 3’ X8 xx T, and let

U+ be the orthogonal subspace. We now define the new matrix
Ctobe Iy1 +(1+a)Iy, the identity on U+ and some very large
multiple (1 + «) of the identity on U. We claim that this choice
actually does not create much in the way of cross-terms. In
: : T_ T T
particular, the matrix ¥, XB (Cx)(Cx)" =C" ¥, e XB XX C
will have no U x U~ term, since 3 xexB xx" does not —as U
A
is an eigenspace of 3} s xx . The second moment matrix
A
Yeexs fo(x) fc(x)T will have some contribution to U x U+
A
cross-terms coming from the renormalization; but these will
only be on the order of (a §)*. On the other hand, the ma-
trix erXA\Xf\ fo(x) fe(x)T will have small U x U terms,

because each fc(x) will nearly lie in U+. If § is sufficiently
small, this leads to roughly (« f)? mass being moved from
UL x U to U x U, while only creating off-diagonal terms on
the order of (a f)*. Thus, this alternate choice of C can be used
to decrease the squared Frobenius norm by poly(a/(dn)).

The preceding outline provides a procedure that pro-
duces a sequence of matrices A, Ay, ... such that if e; =
[IMa,(X) ||% —1/d, thenej+1 < ej—poly(e;/(dn)). Therefore, af-
ter polynomially many iterations, we have that [|M4 , (X) ||12[, <
1/d+(e/d)?, which implies we have obtained an e-approximate
Forster transform. This gives us an efficient algorithm for com-
puting an approximate Forster transform in the real RAM
model, assuming the availability of an algorithm for exact
eigendecomposition computation.

Additional Technical Obstacles. The above iterative pro-
cedure forms the basis of our final strongly polynomial time
algorithm. Unfortunately, as is, this procedure does not di-
rectly imply a strongly polynomial time algorithm for two
reasons: First, we need to control the bit complexities of the
matrices A; (which might become exponentially large). Second,
we need to show that our algorithm works with approximate

STOC ’23, June 20-23, 2023, Orlando, FL, USA

eigendecompositions (which can further be implemented in
strongly polynomial time). We elaborate on these issues in the
following discussion.

Controlling the Bit Complexity via Rounding. Recall that,
in a strongly polynomial time algorithm, all intermediate num-
bers computed throughout the algorithm must fit in polyno-
mial space. To handle the bit complexity in our setting, we
establish the following statement. If the points in the initial
dataset X c R? of size n have bit complexity at most b, then
the following holds: given a matrix A € R¥*? and any & > 0,
we can approximate A by another matrix A” of bit complexity
poly(b, d, n,1og(1/5)) such that ||M 4/ (X)IIIZ, < IIMA(X)II% +6
(see Theorem 5.1). This structural result suffices for our pur-
poses for the following reason: Replacing each intermediate
matrix A; (in our iterative procedure) by the corresponding
A obtained by rounding (for an appropriately small 8) at each
step of our algorithm suffices to keep the bit-complexity under
control.

To prove the desired structural result, we proceed as fol-
lows: First, if A has condition number at most exp(poly(n, b, d)),
it suffices to merely approximate each entry of A to some
poly(bdn/log(1/8)) bits of precision. The difficulty arises if
the condition number of A is quite large — in fact, exponen-
tially large in our other parameters. If the condition number
of A is large, it is because there are large multiplicative gaps
in the singular values of A. In such a case, there will be sub-
spaces V and V+ such that the V*-component of any vector
is multiplied by a huge amount relative to the V-component.
In particular, any vector that was not exponentially close to
V to begin with, after multiplying by A ends up essentially
in VL. Our basic strategy here is to decrease the size of this
singular value gap of A to be at most (merely) exponential,
without much affecting any of the normalized transformed
vectors. Our goal is to scale down the subspace V! to decrease
the multiplicative eigenvalue gap. However, we must ensure
that the vectors of X that are sufficiently close to V* after
applying A do not end up being essentially in V. To achieve
this, we consider a subspace W spanned by such problematic
vectors and build an improved matrix AT such that T does not
affect vectors in W, but rescales significantly vectors lying in
a subspace R that is very close to V1. Via this step, we can
reduce the condition number of A to be appropriately bounded
without affecting the mapping f4 significantly; after that, we
can make do with a suitably precise rounding to obtain the
output matrix A’.

Approximate Eigendecomposition in Strongly Polynomial
Time. So far, we have assumed the availability of a routine
for exact eigendecomposition. In fact, there are several places
in the above intuitive overview of our algorithmic approach
where we need to compute an eigenvalue decomposition of
a matrix. This is required first when we need to find the ini-
tial eigenvalue gap in M4 (X) o Yy ex, xx 7, and again later
when we need to find the span of the large eigenvalues of
Yixe X8 xx 7. Unfortunately, computing exact eigenvalues is
impossible in our model of computation (as doing so might

require finding roots of high-degree polynomials). Fortunately,
it is sufficient for us to find merely an approximate eigenvalue

STOC ’23, June 20-23, 2023, Orlando, FL, USA

decomposition of these matrices. A subtle and important point
is that our required notion of approximation is significantly
stronger than the typical guarantees explicitly available in the
literature. Interestingly, we show that the desired strongly
polynomial guarantees can be achieved in our model using
some variation of the power iteration method. This requires a
novel proof of correctness, that we provide here.

We are now ready to describe our strongly polynomial
approximate eigendecomposition routine in tandem with a
sketch of its analysis (see Proposition 4.1). The standard power
iteration method says that in order to approximate the prin-
cipal eigenvector of a symmetric, PSD matrix M, it suffices
to multiply a random vector v by a large power ¢ of M. If we
express v as a linear combination of eigenvectors of M, then
multiplying by a large power of M scales each of these compo-
nents by an amount depending on the eigenvalue. It is not hard
to see that if there is a reasonable gap between the largest and
second largest eigenvalues, then the vector M?v will likely
end up close to a multiple of the largest eigenvector. Once
an approximate principal eigenvector is computed, one can
attempt to repeat the same procedure, i.e., projecting onto the
orthogonal subspace to find the second largest eigenvalue; and
so on. This iterative procedure is known to succeed in finding
approximations to the eigenvectors and eigenvalues in ques-
tion, so long as the eigenvalues are not too close to each other.
On the other hand, if M has (nearly) degenerate eigenspaces,
then this method may fail to separate eigenvectors with very
similar eigenvalues. However, in this (near-)degenerate case,
such an approximation is usually not needed, as the eigenval-
ues are close to begin with. One can hope that the matrix M
corresponding to the computed eigendecomposition is close
to M in an appropriate sense. In particular, standard results
(see, e.g., [47]) show how to compute such an M satisfying
1M = Mlly < el M]lz.

Unfortunately, this notion of approximation is not sufficient
for our purposes. For example, in the case where the param-
eter 8 is small in our Forster algorithm, it is important for
us to compute the spaces V/ and W’ to very good accuracy.
This is because the linear transformation that we apply will
multiply elements of V” by a large factor of roughly 1/f. This
means that we need to compute V’ to error on the order of
B in order to ensure the accuracy of our result. More gener-
ally, we will need a qualitatively stronger guarantee for our
approximate eigenvalue decomposition. In particular, we need
that for some small € > 0, for any vector v, it holds that
[oT (M - M)v| < (0T Mv). This means that if v lies in a space
spanned by eigenvectors of M with very small eigenvalues
(as V"’ is above), then we need that Mo to be correspondingly
small. Fortunately, we can obtain this much stronger “multi-
plicative” guarantee via power iteration. The intuitive reason
this works is essentially because if we have a space V’ spanned
by eigenvectors of M with eigenvalues at most f, then mul-
tiplying a random vector v by powers of M reduces the size
of the projection of v onto V’ by a power of . This means
that power iteration produces vectors that are very nearly
orthogonal to V” with the error in this approximation scaling
with S.

llias Diakonikolas, Christos Tzamos, and Daniel M. Kane

1.3.2 Learning Halfspaces in Strongly Polynomial Time. As
already mentioned in the introduction, we leverage our algo-
rithm for approximate Forster transforms to obtain the first
strongly polynomial algorithm for PAC learning halfspaces. It
turns out that this approach goes through both in the realiz-
able case (Definition 1.3) and in the presence of (semi-random)
Massart noise on the labels. In fact, it is not difficult to verify
that by plugging in our new Forster algorithm into the learning
algorithm of [17], one directly obtains a strongly polynomial
halfspace learner in the presence of Massart noise. For the
sake of the completeness, here we focus on the realizable case
and provide a simpler, self-contained algorithm and proof.

Note that it is without loss of generality to assume that
the threshold of the target halfspace is zero (one can reduce the
general case to the homogeneous case). The main challenge in
PAC learning halfspaces is that the target halfspace may have
very bad anti-concentration (aka “margin”). If the margin is
not too small (i.e., at least inverse polynomial), simple iterative
algorithms (e.g., perceptron) efficiently learn halfspaces (in
strongly polynomial time). A natural idea is then to reduce
the general case to the large margin case by appropriately
transforming the data. A number of such reductions have
been developed in the literature [7, 17, 19, 20]. The methods
developed in [7, 19, 20] are inherently not strongly polynomial.
Recently, [17] pointed out that one can use Forster transforms
for this purpose.

For our purposes, we require a stronger guarantee than
what is provided by the vanilla perceptron algorithm. Specif-
ically, we want a learning algorithm for halfspaces that cor-
rectly classifies at least some reasonable fraction of points, if
the points are guaranteed to be well-conditioned (for exam-
ple, in the sense of being unit vectors with E[xx"] ~ I). By
using an approximate Forster algorithm, we can transform the
input points in order to make them well-conditioned, while
preserving the notion of halfspaces. We can then apply our
learner to this set in order to learn a classifier that works on
some reasonable fraction of the points. Repeating this proce-
dure iteratively on the unclassified points eventually gives a
halfspace learning algorithm.

More precisely, the modified perceptron algorithm of [20]
is a strongly polynomial time algorithm with the following
performance guarantee: given labeled examples consistent
with an unknown linear classifier, the algorithm learns a clas-
sifier that correctly labels all points whose margin is not too
small. It is not hard to see that, for points in approximate ra-
dial isotropic position, at least a 1/d-fraction of points have
not-too-small margin. Therefore, if we have a set of points in
approximate radial isotropic position, the modified perceptron
algorithm finds (in strongly polynomial time) an explicit half-
space that separates out a roughly 1/d-fraction of the points
all of the same sign. By standard generalization bounds, this
gives us an algorithm that in strongly polynomial time learns
a partial classifier, i.e., outputs a partial function that correctly
classifies an Q(1/d)-fraction of the points while misclassifying
an O(y/d)-fraction. In other words, this procedure produces
a partial classifier that labels at least a 1/d-fraction of points
and misclassifies at most a y-fraction of these points.

To learn an arbitrary halfspace, we use our approximate
Forster transform to put the points in approximate radial

A Strongly Polynomial Algorithm for Approximate Forster Transforms and its Application to Halfspace Learning

isotropic position without changing the notion of a halfspace
on them. We then apply the above partial learner to these new
points in order to obtain a non-trivial partial classifier that
makes mistakes on only a y-fraction of its classified set. We
repeat this process on the unclassified points, using a new
approximate Forster transform, to learn a non-trivial fraction
of the unclassified points. Repeating this procedure iteratively
as necessary, we eventually obtain a partial classifier that pro-
duces an answer on essentially all points of the domain and
only makes mistakes on a y-fraction of them.

1.4 Related Work

Comparison to Strongly Polynomial Algorithm for Matrix
Completion. It is worthwhile to compare our techniques for
the Forster transform to [36], who developed the first strongly
polynomial time algorithm for the matrix scaling problem.
To put this problem in terms more analogous to ours, one is
given a set of d vectors x1, x2, ..., x4 in RY. The goal is to find
a diagonal matrix A such that if y; := Ax;/||Ax;||; is the {;
normalization of Ax;, then the absolute deviation of the j¢ h
coordinates of the y’s around 0 are (approximately) the same
for all j. In particular, it should hold that Z?:l [(yi)j] = 1 for
all 1 < j < d. Note that for our problem, we have n (possibly
greater than d) vectors, A can be any matrix, we take y; to be
the {2 normalization and we want the mean square deviation
of the y’s in any direction (not just along coordinate axes) to
be approximately the same.

The algorithm in [36] works roughly as follows. We con-
struct A through an iterative sequence of improvements. Given
a specific A, we compute the appropriate values of y; and then
compute the absolute deviations of each coordinate. If these
are all close to each other, we are done. Otherwise, by sorting
the deviations and finding the largest gap, we can split our
coordinates into two sets, B and S, so that the deviation of any
coordinate in B is substantially larger than the deviation of
any coordinate in S. One then defines the diagonal matrix C to
be (1+6) on the coordinates in S and 1 on the coordinates in B,
and replaces A by A’ := CA. It is not hard to see that by doing
this, one increases the deviations along all coordinates in S
while decreasing it along all coordinates in B (and keeping the
total sum of deviations the same). By picking § carefully, [36]
show that the variance of these coordinate-wise deviations
can be decreased by some polynomial amount in each step.
Thus, by iterating this method a polynomial number of times,
one obtains a scaling where the coordinate-wise deviations
are sufficiently close.

The starting point for our algorithm is somewhat similar.
Given a matrix A, we try to find a matrix C such that the matrix
A’ := CAis closer to satisfying our condition (in the sense that
[|M4(X)||F should be smaller than ||[M4(X)||F by an additive
inverse polynomial term). To do this, we compute subspaces
Vs and Vp (by finding an eigenvalue gap in M4 (X)) such that
the variance of the y; := Ax;/||Ax;||2 in any direction along Vg
is substantially larger than along any direction in Vs. Ideally,
we would like to take C = I + aly, for some carefully selected
a. While this does only increase the variance in directions
along Vs and decrease it along Vg, in our setting this also
creates off-diagonal terms that increase our potential. While it

STOC ’23, June 20-23, 2023, Orlando, FL, USA

is always possible to ensure that this error does not overwhelm
the progress we make by taking a small enough, in some cases
(particularly where all of the y’s are either very close to lying
in Vg or very close to lying in Vs), this is not compatible
with making polynomial progress in each step. In this other
case, we need to use a subtly different method for finding C
in order to minimize the contribution of these off-diagonal
terms. Furthermore, unlike in [36], the matrices C used might
have large numerical complexity (perhaps on the order of the
complexity of A). If we naively apply the iterative algorithm
as is, it might lead to computations involving matrices with
exponentially large bit complexity. In order to fix this, we also
need to add a rounding step, whereby in each stage we reduce
the numerical complexity of A down to some manageable level
but without substantially affecting our potential.

Comparison to Other Data Transformations. The Forster
transform is one of several data transformations that have been
studied in the literature to make a dataset “well-conditioned”.
Here we explain two similar in spirit such transformations,
namely the “outlier removal” technique [7, 19] and the rescal-
ing method of [20]. Both of these techniques have been used to
obtain weakly polynomial learners for halfspaces with random
noise.

The “outlier-removal” technique was introduced in [7]
and was significantly refined by Dunagan and Vempala [19].
Given a dataset X and a parameter f > 0, a point in X is
called a S-outlier if there exists a direction v such that the
squared length of x along v is more than § times the average
squared length of X along v. The goal of the method is to
efficiently find a large subset of X’ C X such that X’ has
no f-outliers, for as small f as possible. This would give a
reasonable sized sub-distribution on which the desired anti-
concentration holds. As shown in [19], the parameter § (which
affects the quality of the resulting anti-concentration) needs
to scale polynomially with the bit complexity b of the dataset
X. Consequently, the resulting runtimes in applications of this
method will be inherently weakly polynomial. Interestingly,
this is the reason that the (random noise tolerant) halfspace
learner of [7] is only weakly polynomial.

A different algorithm for learning halfspaces with ran-
dom classification noise is implicit in the rescaled perceptron
algorithm of Dunagan and Vempala [20] for efficiently solving
linear programs (see also [5]). The key ingredient of their ap-
proach is a rescaling step that linearly transforms the data so
that, roughly speaking, the margin increases in each iteration
by a factor of 1 + 1/d. Since the initial margin scales with the
bit complexity, so does the total number of iterations. (Since
this leads to a proper learning algorithm, a dependence on
the bit complexity is expected; otherwise, one would obtain a
strongly polynomial algorithm for LP!)

Strongly Polynomial Special Cases of LP. A line of work,
starting in the 80s, has developed strongly polynomial time
algorithms for interesting special cases of LP, including min-
imum cost circulations [27, 46, 51], min cost flow and multi-
commodity flow problems [52, 55], and generalized flow max-
imization [44, 45, 56] (see also [12, 13]). Strongly polynomial

STOC ’23, June 20-23, 2023, Orlando, FL, USA

time algorithms have also been developed for certain struc-
tured convex programs, see, e.g. [26, 57] in the context of
equilibrium computation, and [36] for matrix scaling.

1.5 Organization

In Section 2, we record basic notation and facts that will be
used throughout this paper. Section 3 presents our Forster de-
composition algorithm, assuming exact eigendecomposition
and ignoring bit complexity issues. Section 4 establishes our
strongly polynomial guarantees for approximate eigendecom-
position. Section 5 shows that we can efficiently round the
entries of the underlying matrix without losing much in the
desired guarantees. Section 6 presents our strongly polyno-
mial halfspace learning algorithm. Finally, in Section 7 we
summarize our results and provide directions for future work.
Due to space limitations, most proofs have been deferred to
the full version of this work.

2 PRELIMINARIES

Basic Notation. We use Z4 to denote the non-negative
integers, R¥ for the d-dimensional real coordinate space, Rf
for RY \ {0}, and S for the unit £3-sphere. For a set S C R, we

will denote max(S) def maxy s x and min(S) def minyeg X.

For x € RY, we use x|z to denotes the £3-norm of x.
We use tr(+), || - ||F, and || - ||2 for the trace, Frobenius norm,
and spectral norm of a square matrix. For matrices A,B €
R4 we write A > B (or B < A) to denote that A — B is
positive semidefinite (PSD). We use I for the d X d identity
matrix, where the dimension will be clear from the context.
If M € R js a PSD matrix, we denote by A;(M) and g; (M)
the i-th largest eigenvalue and corresponding eigenvector
of M. That is, Ay(M) > Aa(M) > ... > A4(M) > 0 and
Mgqi(M) = A;(M)q;(M) for all i € [d]. We denote by A(M)
the set of eigenvalues of M and Q(M) the set of eigenvectors.
That is, A(M) = {A;(M), i € [d]} and Q(M) = {q;(M), i € [d]}.
For S C [d], we denote Ag(M) = {1;(M),i € S} and Qs(M) =
(qi(M),i €).

For a finite set of vectors S ¢ R?, we use span(S) for
their span. For a subspace V c R<, we use dim(V) for its
dimension and V' for its orthogonal complement. For x € R9
and a subspace V, we will denote by projy, x the projection
of x onto V. If V = span(S), we will sometimes use projg x to
denote projy, x. For conciseness, we sometimes use x) for
projy x. We denote by Iy the d X d matrix with eigenvalues 1
in V and 0 in V* (the projection of I onto V).

Additional Notation. For a dataset X C Rf of size |[X| =n

and a linear transformation A € R4 let f4 : R — §y
be defined by f4(x) def Hf—;‘”z. We aim to find an invert-
ible A € R%9 such that fa brings a given dataset X in

. L g . . def
(approximate) radial isotropic position. We denote f4(X) =
{H:‘}Txllz |xeX } We will use various “covariance-like” ma-
trices for the initial dataset X and its subsets. For X’ C X,

we denote M4 (X’) def (1/n) Yxex fa(x)fa(x)T. For sub-
spaces V1,V C R? and X’ C X, we denote by MXI’VZ x") def

(1/n) Yxex ff(\Vl) (x)fl‘gvz) (x)T, where we used the shorthand

llias Diakonikolas, Christos Tzamos, and Daniel M. Kane

notation y(V) = projy y. Note that the normalization factor is

fixed in both cases.

3 APPROXIMATE FORSTER TRANSFORM
IN STRONGLY POLYNOMIAL TIME

In this section, we describe and analyze our algorithm that
either computes an approximate Forster transform of a given
dataset or certifies that no Forster transform exists. There
are two technical caveats in the algorithm presented in this
section: First, we assume the existence of exact routines for
matrix eigendecomposition. Second, we do not bound the bit
complexity of the associated numbers. Both of these technical
issues are handled in subsequent sections.

3.1 Algorithm Pseudocode

The algorithm aims to find a matrix A € R%*? such that the
transformation f4 : R¢ — R? brings the set X in (approxi-
mate) radial isotropic position. Starting from the initial guess
A =1, the algorithm iteratively improves the current matrix A
until the desired approximation is obtained or a proper sub-
space W of R9 is found such that |X N W|/n > dim(W)/d.

Algorithm 1 Algorithm for computing Forster Transform

1: function FORSTERTRANSFORM (set X C Rf of n points,
accuracy parameter €)
2: Let A « I
matrix A
3 Ma e Ma(X) = (1/n) Txex fa(x)falx)"
while [[Mall% > 1 + £ do
Set A « IMPROVETRANSFORM(A, X)
Set Mg « Ma(X) = (1/n) Zxex fa(x)falx) "
7: return A

> Initialization of transformation

A A

3.2 Analysis of Algorithm 1

Our Potential Function. Our algorithm measures the im-
provements between consecutive iterations using the potential

function

Oy (A) €Ml (1)

corresponding to the squared Frobenius norm of the matrix

Ma €M) E (1) Y faG) fa) T
xeX

Recall that approximate radial isotropy condition amounts
to the condition 17761 <My < ”Tel . Equivalently, we want
that ||[My — %IHZ < § or that the eigenvalues of My lie in
[I?Te 1%5] This is guaranteed to hold when the potential func-
tion becomes less than 1/d + €2/d?, as shown in the following
lemma.

LemMA 3.1. Consider any dataset X € R% and any full-
rank matrix A € R4 The following properties hold for the
potential Dx (A)= ||Mall2.

(1) 1/d £ &x(A) < 1.

(2) Ifox (A) < 1/d + €%/d? for some € € (0,1), then for

every eigenvalue A of M4 it holds that |A —1/d| < €/d.

A Strongly Polynomial Algorithm for Approximate Forster Transforms and its Application to Halfspace Learning

Algorithm 2 Find Improved Transform Matrix

1: function IMPROVETRANSFORM (current matrix A € RY%d,

Xc Rf, accuracy parameter €)

2 Set Mg Ma(X) = (1/n) Sex fa(0)fa()T

3: Compute the set of eigenvalues, A = A(My,), and
eigenvectors, Q = Q(M4), of M 4.

4 Sety « O(di—jlz), where n := |X]|

5: Partition (A, Q) into two sets of eigenvalues and cor-
responding eigenvectors, (Ap, Op) and (As, Qs), maximiz-
ing min(Ap) — max(Ag).

> Consider the Following Two Cases

6: if dx € X sit. ||pr0jQBfA(x)|

o [proigufatl, = v

then
7: Set U « span(Qs).
8: Seta — 5.
9: else
10: XB — {x € X : lIprojg, fa(®)ll2 = y}.

def

11: MB — Ma(XB) S (1/n) L yexp fa) fa(x)T.
12: Let Qp, and Qs be the sets of top |Qp| and bottom

|Qs| eigenvectors of ME respectively.
13: U « span(Qs).

U

14: B max, cys ”f,fx)(x)llg,
15: if f = 0 then

> No Forster Transform Exists
16: Output the subspace span(Qy,).
17: else > Case where f > 0
18: Set a « %e/(3d2n) -1

19: return A’ ;= (I +aly) A

(3) If &x(A) > 1/d + €%/d? for some € € (0,1), then
(a) there exists an eigenvalue A of M4 such that |A —
1/d| > €/d? and (b) there exists a pair of consecutive
eigenvalues A; and Aj+1 of Mg such that A; — i1 >
eld3.

Bounding the Decrease in Potential. We now proceed with
the analysis. We show that the algorithm IMPROVETRANSFORM
either correctly determines that no Forster transform exists
or computes a transformation matrix with significantly re-
duced potential value. This statement implies correctness and
simultaneously allows us to bound the running time of our
algorithm.

The main result of this section is the following proposi-
tion.

PROPOSITION 3.2. Let A € R4*9 pe a full-rank matrix and

2
X be a set of n points inRY such that ®x (A) > % + % for some
€ € (0,1). The algorithm IMPROVETRANSFORM returns a matrix
A’ such that

Dx (A) — Dx(A') > Q(/(n°d™)) ()

or correctly determines that no Forster Transform of X exists,
in which case it returns a subspace W such that | X N W| >
(n/d) dim(W).

STOC ’23, June 20-23, 2023, Orlando, FL, USA

In the rest of this section, we provide a proof of Proposi-
tion 3.2.

Assuming that a Forster transform of X exists, the algo-
rithm IMPROVETRANSFORM returns the matrix A’ = (I + a Iy) A,
where V c R? is an appropriate proper subspace of R¢ and
a € Ry is a carefully selected parameter (that depends on
the structure of the dataset X). The algorithm distinguishes
two cases: In the first case, a is a small positive quantity, equal
to €/(8nd>), see Line 8 in Algorithm 2. In the second case, « is
set to %e/(Sdzn) — 1, and can be significantly larger than 1 as
it depends on a small parameter f which is a function of the
dataset X. See Line 18 in Algorithm 2.

3.2.1 A Useful Structural Result. We will use the notation
Mg = Ma(X) and My = M4 (X). To bound the desired quan-
tity, ®x (A) — Ox(A") = [IMall - IMa %, we will make
essential use of the following key lemma:

LEmMA 3.3. For any X ¢ R? and any full-rank matrix
A e R the following holds. For any subspace V. C R? and

d
any scalar & > 0, for A’ tef (I + aly)A, we have that

L L L
Ox (A)-0x (A") = 2 M)y V)= (M) =2Dp)Dp-2I My I1E

®3)
where k = dim(V+) and

o S (1A i -1 1)

xeX

Lemma 3.3 bounds the improvement in potential in terms
of two opposing contributions. On the one hand, there is a
decrease in the potential proportional to the amount of mass
Dy transferred from the subspace VL to the subspace V times
the eigenvalue gap between the subspaces V and V. On the
other hand, there is an increase in potential due to the cross
terms V x V+ that get created after the transformation by A’.

In the following two subsections, we analyze the two
cases of IMPROVETRANSFORM separately. Note that IMPROVE-
TRANSFORM requires that we be able to do exact singular value
decompositions in order to compute the subspace U. Our final
algorithm will not be able to do this exactly and will need
to make do with an approximate singular value decomposi-
tion (see Section 4). In order to make our extension easier, we
will show that the potential decrease holds even when U is
replaced by some V which satisfies some approximation of the
properties that U does.

3.22 Casel:dx € X s.t. ||pronBfA(x)|Iz, ||pr0jQSfA(x)||2 >
y. To analyze this case, we prove the following proposition:

PROPOSITION 3.4. Suppose that X is a set of n points in
RY and A an invertible d x d matrix. Suppose that V.c R is a
subspace so that for a, p > 0 with a < €/(64nd>):

V) ()

(1) The maximumoverx € X ofmin(l|f, " (x)llz, Ify, ~(x)ll2)

equals p.
@) Amm(/\f,‘{ VHX)) = Amax(MYY (X)) > 555
3) 1MV X)lIF < ap.

Then for C = (I + aly)A we have that ®x (C) < x (A) —
p?e/(8nd>).

STOC ’23, June 20-23, 2023, Orlando, FL, USA

We note that if ®x(A) > dz’ then by Lemma 3.1
part 3, the difference between the largest and smallest eigen-
values of M (X) will be at least e/d?, and therefore the largest
eigenvalue gap will be at least €/d>. Thus, for V taken to be the
U given in Algorithm 2, Property 2 will hold. Furthermore, for
as U is an eigenspace of My (X), MU (X) = 0 and Property
3 will hold.

The rest of this section will be devoted to proving Propo-
sition 3.4.

To bound below the improvement in potential, we will
make essential use of Lemma 3.3. We bound the relevant quan-
tities in the following lemmas.

Lewna35. LetDy = & Seox (IF 0IE - 157 0)1).

We have that %2 < D/ <
e have that 5~ < Dy < 2a.
. vV, v+t 2 . .
Finally, we bound || M c I 7 from above in the following
lemma:

L
LEMMA 3.6. We have that ||MX’V IIfT < 4a?p?.

Combining the above lemmas, we obtain that

2
Oy (A) — Dx(C) 2 (S —dar) Z2° —8a?p? .
2d3 n

We note that so long as & < €/(64nd>) the above is at least
1
((xpz) ((%) - - Sa) > ape/(8nd®) .

This completes our proof of Proposition 3.4.

3.2.3 Case ll: For all x € X, either ||pr0jQBfA(x)||2 <yor
llprojg fa(x)ll2 < y. In this case, all points x € X lie within
a y margin from the subspaces spanned by the vectors Qp
and Qg. The algorithm updates the matrix A by considering
only the set of “big” points XB, i.e., the points in X whose
images under f4 have sufficiently large projections on the
subspace spanned by the large eigenvectors of M,4. In more
detail, instead of using the eigenvectors Qp, Qs of the matrix
My = My(X), the algorithm uses the eigenvectors Qp, Qs
of the matrix M4 (X®) = (1/n) Yext fa(x)fa(x)T, setting
U = span(Qs). This is done to ensure that the cross-terms
MX’UL (XB) start out at 0 initially and remain small despite
significant rescaling of the subspace U. Moreover, despite the
change in the definition, we show (in Claim 3.8 and Claim 3.9)
that the corresponding subspaces U and U+ satisfy a similar
margin condition to the subspaces spanned by Qg and Qg and
that there is still a significant eigenvalue gap between U and
U+.The margin condition is shown in Claim 3.8 and Claim 3.9,
and the eigenvalue bounds are proven in Lemmas 3.11 and 3.10.
These properties will allow us to bound the decrease in
potential in this case. We will show the following result.

PROPOSITION 3.7. Suppose that X is a set of n points in R4
and A an invertible d X d matrix. Suppose that for somek < n
that Aj (Ma (X)) = Agy1 (Ma(X)) = €/(2d%). Let W be the span
of the d — k smallest eigenvalues of Ma(X).

Suppose furthermore that for some y at most a sufficiently
small multiple ofez/(d4n2) that everyx € X satisfies

mln(IIfA x)llz,llf (x)llz <y.

llias Diakonikolas, Christos Tzamos, and Daniel M. Kane

Let XB denote the set of x € X so that ||f(W)(x M2 < y and
XS = X\XB. Let 0 < 6 < y. Suppose that V c R% is a (d - k)-
dimensional subspace so that:

(1) (MY (X)) < (M (XP)) + 62,

(2) (M, MLV) 2 a3y " (xB)) - 82,

(3) A (M}, MV O 2 Ay (A 5,

(4) IV T < ps.
where f = max, cys ||f)(x Mlz. Then if B = 0, V* con-
tains more than kn/d elements of X. Otherwise, setting a =
€/(3Bd*n) — 1 and C = (I + aly)A, we have that

Ox(C) < Ex(A) - QE¥/(d'n?)) .

We note that if V is taken to be the space of the bot-
tom d — k eigenvalues of M4 (XPB) that the above properties
trivially hold with § = 0. Properties 1 and 2 follow from the
variational characterization of eigenspaces. Properties 3 and 4
hold trivially.

We know that elements of X® are close to W and elements
of X° are close to W. We will need to claim that elements of

XB are also close to V- and elements of X are close to V. We

establish this in the next two claims.
Craim 3.8. We have that +; L s (x)llg < yz +62.

(X)Ilz < V2ny.

Srexs If§
In particular, for any x € XB, it holds that ||fA

Cram3.9. We have that - Zxex\xB ||f/§VL)(x)||§ <yi+
. . v+
52. In particular, for anyx € X\XB, it holds that ||ff(1)(x) [l <

Vany.

The case that § > 0: Here we assume that § > 0 and show
that we can obtain an improvement in our potential function.
To bound below the improvement in potential, we will make
essential use of Lemma 3.3, and we bound the relevant quanti-
ties in a sequence of lemmas.

We begin by bounding below A (MXL vt (X)). In partic-
ular, we show that it is nearly as big as A; (M 4(X)). Morally,
this holds because

A Ma(X)) = MY W (x))

Formally, we have the following.

~ MYV (x0)

LemMA 3.10. We have that A (MY *V™ (X)) = A (Ma (X))~

4y, for k = dim(V+).

Next we bound from above A; (MX’ v (X)). In particular,
we show that it is not much larger than A, ; (M4 (X)). Morally,
this holds because

Aer1(Ma () = (MY (X)) » (MY (X))
Formally, we have the following.

LEMMA 3.11. We have that/h(MX’V(X)) < A1 Ma(X))+

8y.

TogetherLemmas310and3llsh0wthat/1k(MV (X)-
)Ll(MA (X))1snearlyaslargeaslk(MA(X)) AkH(MA(X)) >
e/(2d%).

Next we bound the off-diagonal terms of the transformed
vectors.

A Strongly Polynomial Algorithm for Approximate Forster Transforms and its Application to Halfspace Learning

LEMMA 3.12. We have that ||MX’Vl 1% < (1+a)*p® +

1+ a)Bs +2y)2.

Finally, we need to bound Dy, showing that it is neither
too big nor too small. This follows by noting that the greatest
amount that any vector was modified is on the order of ¢f. In
particular, we have that:

202
LEMMA 3.13. We have that% ((+a)"p

W—YZ)SDfS

(1 + a)%p? + 2y?%, where
1 1
D=~ WM2_ 2)2
p=— > W= > ™
yefeX) yefa(X)

Combining the Lemmas 3.10, 3.11, 3.12, 3.13 with Lemma 3.3
and setting § = (1 + a)f = €/(3d*n), we get that

Dy (A) - Px(C) =
2 2
€ n° =2y 3 2
>|—= - 16 2 —_— -2 S+ 2
(zd Yy —2n)(") (n” +né +2y)

2 2
nt -2y 6 2 2
> - 16 2 —— | —6n° —6(nd)” — 24y“.
(2 e Yy =27) (") n° —6(nd) Y
Given that both y and 5? are less than a sufficiently small

multiple of % the above is at least

6172
3d3n
Given that § is less than a sufficiently small multiple of -,

—61° — 6(n6)* — 24y%.

and y a small multiple of €?/(d*n?), this is
Q(en®/(d’n)) = Q(e’/(dn%)).

The case of f = 0: We now argue that in the case that
B = 0, no Forster transform exists, as the algorithm correctly
identifies a subspace of dimension k containing more than a
k/d fraction of the points of X.

Since we have that A (M4 (X)) =Ag41(Ma(X)) > €/(2d%)
by assumption either A (M4 (X)) > 1 42; or g1 (Ma(X)) <

% 1 d3 The algorithm returns the subspace V+ of dimen-

sion k, which contains all points XB as § = 0. We claim that
|XB|/n > k/d, which would complete our analysis. This is
essentially because the large eigenvalues of M4(X) on V1
imply that X® must have many points.

We consider two subcases below.

Case 1: A (Ma(X)) = 5 In this case, we have that

4d?

IXB| — e (Ma(XP B

BT~ a0 = k(4 00%)
> k(MY V(X)) ~ ks

> k(MY V(X)) - k8 — 2ky?

> kA (Ma(X)) = 7ky

> k/d + k(e/(4d®) - 7y) > k/d
where the second line above follows from Property 3, the
third line from Claim 3.9. The fourth line follows from

Lemma 3.10, and the rest from e/d3 >y > 4.

Case 2: Ap1(Ma(X)) < — - W In this case, we have that
X5 Lyt
T = r(Ma(X5)) = (MY (X5)) + (M Y (X5)).

STOC ’23, June 20-23, 2023, Orlando, FL, USA

By Claim 3.9 we have that tr(M MVHVr (X%)) < 2y%. On the

other hand since § = 0, all elements of XB are orthogonal
to V and thus

(MY (X)) = eV ().
This is at most (k — d)A; (MX’ V(A)), which by Lemma 3.11
is at most (k — d)Ag41(Ma (X)) + 8dy. Combining with the
above, we get that

X5

TS (k= g (Ma X)) + 10dy

IN

(k —d)/d — (k — d)e/(4d) + 10dy < (k — d)/d

Hence, in this case as well |XB|/n =1 — [X5|/n > k/d.

This completes the proof of Proposition 3.7.
This completes the proof of Proposition 3.2. O

4 APPROXIMATE
EIGENDECOMPOSITION

In this section, we give a simple algorithm that computes an
approximate eigendecomposition with multiplicative error
guarantees in strongly polynomial time.

ProrosITION 4.1. Given ad X d PSD matrix M, an accu-
racy parameter € > 0 and a failure probability § > 0, there is
an algorithm that computes orthogonal vectors ql, ...,qq and
scalars a; such that the matrix M = Zl 1 alq,ql satisfies the

following: for allv € RY, it holds that
loT (M - M)v| < e (v Mo) .

The algorithm performs poly(d/e,log(1/5)) arithmetic opera-
tions on poly(d/e,log(1/8), b)-bit numbers, where b is the bit
complexity of the entries of M.

Our algorithm is presented in pseudocode below.

Algorithm 3 Computing the approximate eigendecomposi-
tion of a matrix M

1: function EIGENDEcOMPOSITION(Matrix My 4, accuracy
parameter €, error probability &)

2 Let A be a random d X d matrix where the entries are
iid. uniform samples from {1,2,..., N}, for N at least a
sufficiently large constant multiple of d/3.

3: Let wy, wa, . . ., wg be the column vectors of M?A, for
t a sufficiently large constant multiple of d®/e? log(d/$).

4 fori=1toddo

5 Let q; be the projection of w; onto the orthogonal
complement of w1, wa, ..., wi_q.

6: Leta; = 0ifg; = 0Oand a; = q;'—Mqi/(qi - qi)
otherwise.

7: return {a;, q;}

It is easy to see that this algorithm runs in the appropriate
time and bit-complexity bounds. The difficulty is in showing
that the resulting M satisfies the desired error bounds. The
proof is given in the full version.

STOC ’23, June 20-23, 2023, Orlando, FL, USA

5 MATRIX ROUNDING

In this section, we establish our efficient rounding procedure,
establishing the following:

THEOREM 5.1 (MATRIX ROUNDING). There is an algorithm
that given (i) a set of n points X C {—Zb, .. ,2b}d \ {0} with
b € Z,, so that X spans Rd, (ii) a full-rank d x d matrix
Ae {—2”’, .. .,Z'b}dXd, with r € Z,, and (iii) an accuracy
parameter € € (0,1), outputs a matrix A’ with integer en-
tries of magnitude at most (‘E—J)O(dzb) such that for all points
x € X it holds || fa(x) = far(x)|l2 < €. The algorithm performs
poly(d, n,r) arithmetic operations on poly(d, n,r,b,log(1/€))-
bit numbers.

This theorem will allow us to avoid having the matrices
A in our main algorithm blow up in bit complexity since every
round we can replace A by A’ to reduce the bit complexity
with at most a small loss of potential. See the full version for
the details.

6 PAC LEARNING HALFSPACES IN
STRONGLY POLYNOMIAL TIME

In this section, we give our strongly polynomial improper PAC
learner for halfspaces, thereby establishing Theorem 1.6.

6.1 Approximate Forster Decomposition

Theorem 1.5 is often difficult to use directly as it does not
always guarantee a Forster ransform. This is necessary because
if many points are concentrated on a subspace, it may be the
case that no such transform exists. However, in this case we
can at least find a dense subspace and hopefully can find a
Forster transform on that subspace. In general, we have the
following result:

PROPOSITION 6.1 (FORSTER DECOMPOSITION). There is an
algorithm that given a multiset X of n points in R% and € >
0, runs in time strongly-polynomial in dn/e, and with high
probability returns a subspace V. C R? with V # 0 and a linear
transformation A: V. — RINV) sych that

(1) X NV| > (n/d) dim(V).

(2) The eigenvalues of rkr 3 exiow fa()(fa ()T are
in[(1-¢)/dim(V), (1 +¢)/dim(V)].

6.2 PAC Learning Halfspaces

Since we work in the distribution-independent setting, will
assume without loss of generality that the target halfspace
is homogeneous, i.e., has zero threshold. We can straightfor-
wardly reduce the general case to the homogeneous case by
increasing the dimension by 1. In particular, if we associate
point x € R4 with x’ = (x,-1) € Rf“, then we note that
w-x—t=(w,t) - (x,—1), and thus a general halfspace over
the x vectors is equivalent to a homogeneous halfspace over
the x’.

The basic idea of our PAC learning algorithm is that if
we are given a set of points in approximate radial isotropic
position, we can use a variant of the perceptron algorithm
to efficiently compute a hypothesis that correctly classifies
a reasonable fraction of these points. In particular, we will

llias Diakonikolas, Christos Tzamos, and Daniel M. Kane

be using the following lemma, a version of which appears
in [6, 20]:

LEMMA 6.2. Let S be a set of n labeled examples (x,y) €
R4 x {+1} such that there exists an unknown vector w € Rf
with y = sign(w - x) for each (x,y) € S, and lety > 0 be a
parameter. There exists an algorithm that given S and y has
running time strongly polynomial in nd/y, and returns a vector
vE Rf that for all (x,y) € S with |v - x| > yl|vll2||x|l2 satisfies
y = sign(v - x).

Combining the modified perceptron algorithm of Lemma 6.2
with an approximate Forster transform, gives us a way to learn
a reasonable fraction of the points for any linearly separable
dataset.

LEMMA 6.3. LetS be a multiset of labeled examples (x,y) €
Rf X {1} such that there exists an unknown vector w € RZ
with y = sign(w - x) for each (x,y) € S. There exists a strongly
polynomial time algorithm that with high probability returns
a subspace V of R?, a linear transformation A : V — RIm(V),
and a vectorv € V such that for every (x,y) € S withx € V and
v - (Ax)| = ||vll2 ||Ax||2/(2\/3) we have that y = sign(v - x).
Furthermore, this holds for at least a 1/(4d)-fraction of points
(x,y) €S.

Ideally, we would like a version of Lemma 6.3 that works
over a distribution rather than a finite set. This can be achieved
by running the algorithm of Lemma 6.3 on a suitably large set
of samples. To establish generalization guarantees, we leverage
the fact that the collection of possible classifiers comes from a
set of bounded VC-dimension.

PROPOSITION 6.4. Let D be a distribution over RY x {+1}
such that for some unknown vector w € RZ we have that for
(x,y) ~ D thaty = sign(w - x) almost surely. Given €, > 0
with € < 1/(20d), there exists an algorithm that draws n =
O(d?1og(1/8)/€?) i.i.d. samples from D, runs in time strongly
polynomial in n,d, and with probability at least 1 — § returns
a vector subspace V in R4, a linear transformation A : V. —
RIDV) and a vector v € V, such that:

(1) The probability over (x,y) ~ D thatx € V, |v-(Ax)| >

[lvll2 ||Ax||2/(2\/c_i), andy # sign(v - x) is at most €.

(2) The probability over (x,y) ~ D thatx € V and |v -

(A0)| 2 [[vll2 [1Axll2/(2Vd) is at least 1/(5d).

We are now ready to prove the main result of this section.

THEOREM 6.5. Let D be a distribution over RY x {£1}
such that for some unknown vector w € RY we have that
for (x,y) ~ D thaty = sign(w - x) almost surely. Given
€,0 > 0 with e < 1/(20d) there is an algorithm that draws
n=0(d*? log(1/€) log(d/ed)/€?) ii.d. samples from D, runs
in strongly polynomial time, and returns a strongly polynomial
time computable function f : R? — {+1} such that with prob-
ability 1 — 5 over the samples it holds that Pr(, ,y.p[f(x) #

y] <e.

7 CONCLUSIONS AND OPEN PROBLEMS

In this work, we designed the first strongly polynomial time
algorithm for computing e-approximate Forster transforms of

A Strongly Polynomial Algorithm for Approximate Forster Transforms and its Application to Halfspace Learning

Algorithm 4 Halfspace Learning Algorithm

1: function LEARNLTF (sample access to distribution D
over RZ x {1}, accuracy parameter €)

Let fo = 0.

Let C > 0 be a sufficiently large universal constant.

Letr = C\/glog(l/e) € Zy.

fori=1tordo

Take M := Cd*log(d/e5)/e? samples from D and

call the resulting multiset T.

7: Let S be the set of (x,y) € T such that f;_;(x) = 0.
8: if |S| < eM/4 then

9: return f;_1

10: else

11: Run the algorithm from Proposition 6.4 with

parameters € « €/(10d) and § < §/(2r) to obtain V, A, v,
using S as the set of samples.
12: Let

fi-1(x) Lif fiz1(x) #0

fi(x) :== ¢sign(v - (Ax)) ,if fi-; =0,x € V,and |v- (Ax)l/(Z\/a)

0 , otherwise.

a given dataset’. By using this algorithm is an essential ingre-
dient, we gave the first strongly polynomial time algorithm for
distribution-free PAC learning of halfspaces, both in the real-
izable setting and in the presence of semi-random label noise.
This algorithmic result is surprising (even in the realizable
case), as obtaining a strongly polynomial proper PAC learner
is equivalent to strongly polynomial LP — a major unsolved
problem in TCS.
A number of open problems suggest themselves:

e Our e-approximate Forster transform algorithm has run-
time scaling polynomially with 1/e. That is, our algorithm
runs in strongly polynomial time when € is at least inverse
polynomial in n, d. An obvious open question is to develop
a strongly polynomial algorithm with a polylog(1/€) run-
time dependence. To achieve such a guarantee with our
approach, one needs to circumvent two obstacles: First, one
would need to reduce the number of iterations of our algo-
rithm (that is controlled by the progress in our potential
function). Second, one would require a strongly polyno-
mial approximate eigendecomposition subroutine with a
polylog(1/e) runtime dependence.

o We believe that the following question is of independent in-
terest: Is there a strongly polynomial time algorithm for ap-
proximate eigendecomposition with a polylog(1/€) runtime
dependence? Moreover, is there a deterministic algorithm?

e The running time of our algorithm is strongly polynomial
in n, d, but the polynomial dependence is quite large (of the
order of (nd)!?). While we did not make any effort to opti-
mize the degree of the polynomials, it would be interesting
to understand the quantitative limitations of our approach.

2While our Forster algorithm is randomized, we remark that the only source of
randomness is due to the method we use to compute an approximate eigende-
composition. It is plausible that deterministic algorithms exist for this purpose,
in which case our Forster algorithm becomes deterministic as well.

STOC ’23, June 20-23, 2023, Orlando, FL, USA

Can our approach lead to algorithms with good practical
performance?

e As mentioned in the introduction of this paper, Forster’s
rescaling can be viewed as a very special cases of operator
scaling and tensor scaling [24]. These tasks have attracted
significant attention in recent years from various communi-
ties, and efficient (weakly polynomial) algorithms (in some
cases with a poly(1/€) dependence) have been developed,
see, e.g., [1, 9] and references therein. It would be interesting
to explore whether our approach can be extended to yield
strongly polynomial algorithms (when € is not too small)
for such generalizations.

ACKNOWLEDGEMENTS

ID. was supported by by NSF Medium Award CCF-2107079,
NSF Award CCF-1652862 (CAREER), a Sloan Research Fel-
lowship, and a DARPA Learning with Less Labels (LwLL)
grant. C.T. was supported by NSF Award CCF-2008006 and
NSF Award CCF-2144298 (CAREER). D.K. was supported by
NSF Medium Award CCF-2107547, NSF Award CCF-1553288
(CAREER), and a grant from CasperLabs.

We thank Ravi Kannan, Santosh Vempala, and Mihalis
Yannakakis for encouragement and insightful conversations
about this work. We are grateful to Daniel Dadush for shar-
ing his expertise on optimization, and for detailed feedback
that improved the presentation of this paper. We are indebted
to Nikhil Srivastava for answering our questions about the
complexity of eigenvalue decomposition, and for technical
correspondence regarding our strongly polynomial eigende-
composition routine.

REFERENCES

[1] Z. Allen-Zhu, A. Garg, Y. Li, R. M. de Oliveira, and A. Wigderson. 2018.
Operator scaling via geodesically convex optimization, invariant theory
and polynomial identity testing. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018. ACM, 172-181.

[2] D. Angluin and P. Laird. 1988. Learning From Noisy Examples. Mach.
Learn. 2, 4 (1988), 343-370.

[3] S. Artstein-Avidan, H. Kaplan, and M. Sharir. 2020. On Radial
Isotropic Position: Theory and Algorithms. CoRR abs/2005.04918 (2020).
arXiv:2005.04918 https://arxiv.org/abs/2005.04918

[4] F.Barthe. 1998. On a reverse form of the Brascamp-Lieb inequality. Inven-
tiones mathematicae 134 (1998), 335-361.

[5] U. Betke. 2004. New Combinatorial and Polynomial Algorithms for the
Linear Feasibility Problem. Discrete & Computational Geometry 32 (2004),
317-338.

[6] A.Blum, A. Frieze, R. Kannan, and S. Vempala. 1997. A Polynomial Time
Algorithm for Learning Noisy Linear Threshold Functions. Algorithmica
22, 1/2 (1997), 35-52.

[7] A.Blum, A. M. Frieze, R. Kannan, and S. Vempala. 1996. A Polynomial-Time
Algorithm for Learning Noisy Linear Threshold Functions. In 37th Annual
Symposium on Foundations of Computer Science, FOCS *96. 330-338.

[8] A.Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. 1989. Learn-
ability and the Vapnik-Chervonenkis dimension. 7. ACM 36, 84 (Oct. 1989),
929-965.

[9] P.Biirgisser, C. Franks, A. Garg, R. M. de Oliveira, Michael Walter, and
A. Wigderson. 2018. Efficient Algorithms for Tensor Scaling, Quantum
Marginals, and Moment Polytopes. In 59th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2018. IEEE Computer Society, 883—
897.

[10] S. Chen, F. Koehler, A. Moitra, and M. Yau. 2020. Classification Under
Misspecification: Halfspaces, Generalized Linear Models, and Evolvability.
In Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020.

E. Cohen. 1997. Learning noisy perceptrons by a perceptron in polynomial
time. In Proceedings of the Thirty-Eighth Symposium on Foundations of
Computer Science. 514-521.

[11

STOC ’23, June 20-23, 2023, Orlando, FL, USA

[12]

[13]

[14]

[15]

[16]

[17]

(18

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
(28]
[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

D. Dadush, S. Huiberts, B. Natura, and L. A. Végh. 2020. A scaling-invariant
algorithm for linear programming whose running time depends only on
the constraint matrix. In Proccedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2020. ACM, 761-774.

D. Dadush, B. Natura, and L. A. Végh. 2020. Revisiting Tardos’s Framework
for Linear Programming: Faster Exact Solutions using Approximate Solvers.
In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS
2020. IEEE, 931-942.

I. Diakonikolas, T. Gouleakis, and C. Tzamos. 2019. Distribution-
Independent PAC Learning of Halfspaces with Massart Noise. In Advances
in Neural Information Processing Systems 32: Annual Conference on Neu-
ral Information Processing Systems 2019, NeurIPS 2019, Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox,
and Roman Garnett (Eds.). 4751-4762.

1. Diakonikolas and D. M. Kane. 2020. Near-Optimal Statistical Query
Hardness of Learning Halfspaces with Massart Noise. CoRR abs/2012.09720
(2020). arXiv:2012.09720 https://arxiv.org/abs/2012.09720 Conference
version in COLT’22..

1. Diakonikolas, D. M. Kane, P. Manurangsi, and L. Ren. 2022. Cryptographic
Hardness of Learning Halfspaces with Massart Noise. CoRR abs/2207.14266
(2022). https://doi.org/10.48550/arXiv.2207.14266 arXiv:2207.14266 Con-
ference version in NeurIPS’22..

I. Diakonikolas, D. M. Kane, and C. Tzamos. 2021. Forster Decomposi-
tion and Learning Halfspaces with Noise. CoRR abs/2107.05582 (2021).
arXiv:2107.05582 https://arxiv.org/abs/2107.05582 Conference version
appeared in NeurIPS’21..

1. Diakonikolas, J. Park, and C. Tzamos. 2021. ReLU Regression with
Massart Noise. CoRR abs/2109.04623 (2021). arXiv:2109.04623 https:
//arxiv.org/abs/2109.04623 Conference version appeared in NeurIPS’21..
J. Dunagan and S. Vempala. 2004. Optimal outlier removal in high-
dimensional spaces. j. Computer & System Sciences 68, 2 (2004), 335-373.
J. Dunagan and S. Vempala. 2004. A simple polynomial-time rescaling
algorithm for solving linear programs. In Proceedings of the 36th Annual
ACM Symposium on Theory of Computing. 315-320.

Z. Dvir, S. Saraf, and A. Wigderson. 2017. Superquadratic Lower Bound
for 3-Query Locally Correctable Codes over the Reals. Theory Comput. 13,
1(2017), 1-36.

J. Forster. 2002. A linear lower bound on the unbounded error probabilistic
communication complexity. J. Comput. Syst. Sci. 65, 4 (2002), 612-625.

Y. Freund and R. Schapire. 1997. A decision-theoretic generalization of
on-line learning and an application to boosting. J. Comput. System Sci. 55,
1(1997), 119-139.

A. Garg and R. M. de Oliveira. 2018. Recent progress on scaling algorithms
and applications. Bull. EATCS 125 (2018). http://eatcs.org/beatcs/index.
php/beatcs/article/view/533

A. Garg, L. Gurvits, R. M. de Oliveira, and A. Wigderson. 2017. Algorith-
mic and optimization aspects of Brascamp-Lieb inequalities, via operator
scaling. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2017. ACM, 397-409.

J. Garg and L. A. Végh. 2019. A strongly polynomial algorithm for lin-
ear exchange markets. In Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2019. ACM, 54-65.

A. V. Goldberg and R. E. Tarjan. 1989. Finding minimum-cost circulations
by canceling negative cycles. . ACM 36, 4 (1989), 873-886.

M. Goldmann, J. Hastad, and A. Razborov. 1992. Majority gates vs. general
weighted threshold gates. Computational Complexity 2 (1992), 277-300.
M. Grotschel, L. Lovasz, and A. Schrijver. 1988. Geometric Algorithms and
Combinatorial Optimization. Vol. 2. Springer.

L. Gurvits and A. Samorodnitsky. 2002. A Deterministic Algorithm for
Approximating the Mixed Discriminant and Mixed Volume, and a Combi-
natorial Corollary. Discrete & Computational Geometry 27 (2002), 531-550.
L. Hamilton and A. Moitra. 2019. The Paulsen Problem Made Simple. In
10th Innovations in Theoretical Computer Science Conference, ITCS 2019,
January 10-12, 2019 (LIPIcs, Vol. 124). Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 41:1-41:6.

M. Hardt and A. Moitra. 2013. Algorithms and Hardness for Robust Sub-
space Recovery. In COLT 2013. 354-375.

M. Hopkins, D. Kane, S. Lovett, and G. Mahajan. 2020. Point Location
and Active Learning: Learning Halfspaces Almost Optimally. In 61st IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2020. IEEE,
1034-1044.

M. Kearns and U. Vazirani. 1994. An Introduction to Computational Learning
Theory. MIT Press, Cambridge, MA.

T. C. Kwok, L. C. Lau, Y. T. Lee, and A. Ramachandran. 2018. The Paulsen
problem, continuous operator scaling, and smoothed analysis. In Proceed-
ings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018. ACM, 182-189.

N. Linial, A. Samorodnitsky, and A. Wigderson. 2000. A Deterministic
Strongly Polynomial Algorithm for Matrix Scaling and Approximate Per-
manents. Comb. 20, 4 (2000), 545-568. Conference version in STOC’98..

(37]

[38

[39

[40

N
furg

[42

[43]

[44]

=
&

o
=

o
&,

o
&,

llias Diakonikolas, Christos Tzamos, and Daniel M. Kane

W. Maass and G. Turan. 1994. How fast can a threshold gate learn?. In
Computational Learning Theory and Natural Learning Systems, S. Hanson,
G. Drastal, and R. Rivest (Eds.). MIT Press, 381-414.

P. Massart and E. Nedelec. 2006. Risk bounds for statistical learning. Ann.
Statist. 34, 5 (10 2006), 2326-2366.

N. Megiddo. 1983. Towards a Genuinely Polynomial Algorithm for Linear
Programming. SIAM J. Comput. 12, 2 (1983), 347-353.

M. Minsky and S. Papert. 1968. Perceptrons: an introduction to computational
geometry. MIT Press, Cambridge, MA.

R. Nasser and S. Tiegel. 2022. Optimal SQ Lower Bounds for Learning Half-
spaces with Massart Noise. CoRR abs/2201.09818 (2022). arXiv:2201.09818
https://arxiv.org/abs/2201.09818 Conference version in COLT’22..

A. Novikoff. 1962. On convergence proofs on perceptrons. In Proceedings
of the Symposium on Mathematical Theory of Automata, Vol. XII. 615-622.
R. O’Donnell. 2014. Analysis of Boolean Functions. Cambridge University
Press. http://www.cambridge.org/de/academic/subjects/computer-
science/algorithmics-complexity-computer-algebra-and-computational-
g/analysis-boolean-functions

N. Olver and L. A. Végh. 2017. A simpler and faster strongly polynomial
algorithm for generalized flow maximization. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017.
ACM, 100-111.

N. Olver and L. A. Végh. 2020. A Simpler and Faster Strongly Polynomial
Algorithm for Generalized Flow Maximization. J. ACM 67, 2 (2020), 10:1-
10:26.

J. B. Orlin. 1993. A Faster Strongly Polynomial Minimum Cost Flow
Algorithm. Operations Research 41, 2 (1993), 338-350.

B.N. Parlett. 1998. The Symmetric Eigenvalue Problem. Society for Industrial
and Applied Mathematics, Philadelphia.

F. Rosenblatt. 1958. The Perceptron: a probabilistic model for information
storage and organization in the brain. Psychological Review 65 (1958),
386-407.

J. Shawe-Taylor and N. Cristianini. 2000. An introduction to support vector
machines. Cambridge University Press.

S. Smale. 1998. Mathematical problems for the next century. The Mathe-
matical Intelligencer 20 (1998), 7-15.

E. Tardos. 1985. A strongly polynomial minimum cost circulation algorithm.
Comb. 5, 3 (1985), 247-256.

E. Tardos. 1986. A Strongly Polynomial Algorithm to Solve Combinatorial
Linear Programs. Operations Research 34, 2 (1986), 250-256.

L. G. Valiant. 1984. A theory of the learnable. In Proc. 16th Annual ACM
Symposium on Theory of Computing (STOC). ACM Press, 436-445.

V. Vapnik. 1998. Statistical Learning Theory. Wiley-Interscience, New
York.

S. A. Vavasis and Y. Ye. 1996. A primal-dual interior point method whose
running time depends only on the constraint matrix. Math. Program. 74
(1996), 79-120.

L. A. Végh. 2014. A strongly polynomial algorithm for generalized flow
maximization. In Symposium on Theory of Computing, STOC 2014. ACM,
644-653.

L. A. Végh. 2016. A Strongly Polynomial Algorithm for a Class of Minimum-
Cost Flow Problems with Separable Convex Objectives. SIAM J. Comput.
45,5 (2016), 1729-1761.

A. Yao. 1990. On ACC and threshold circuits. In Proceedings of the Thirty-
First Annual Symposium on Foundations of Computer Science. 619-627.

Received 2022-11-07; accepted 2023-02-06

	Abstract
	1 Introduction
	1.1 Halfspaces and Efficient PAC Learnability
	1.2 Our Results
	1.3 Our Techniques
	1.4 Related Work
	1.5 Organization

	2 Preliminaries
	3 Approximate Forster Transform in Strongly Polynomial Time
	3.1 Algorithm Pseudocode
	3.2 Analysis of Algorithm 1

	4 Approximate Eigendecomposition
	5 Matrix Rounding
	6 PAC Learning Halfspaces in Strongly Polynomial Time
	6.1 Approximate Forster Decomposition
	6.2 PAC Learning Halfspaces

	7 Conclusions and Open Problems
	References

