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Abstract
This paper continues the study initiated in Davey (Arch Ration Mech Anal 228:159–196,
2018), where a high-dimensional limiting technique was developed and used to prove certain
parabolic theorems from their elliptic counterparts. In this article, we extend these ideas to the
variable-coefficient setting. This generalized technique is demonstrated through new proofs
of three important theorems for variable-coefficient heat operators, one of which establishes
a result that is, to the best of our knowledge, also new. Specifically, we give new proofs of
L2 → L2 Carleman estimates and the monotonicity of Almgren-type frequency functions,
and we prove a new monotonicity of Alt–Caffarelli–Friedman-type functions. The proofs in
this article rely only on their related elliptic theorems and a limiting argument. That is, each
parabolic theorem is proved by taking a high-dimensional limit of a related elliptic result.

Mathematics Subject Classification 35J15 · 35K10

1 Introduction

In this paper, we explore the connections between the elliptic and parabolic theory of partial
differential equations, generalizing the work done by the first-named author for constant-
coefficient equations in [18]. Specifically, we generalize the ideas from [18] and establish
a technique that can be used to prove variable-coefficient parabolic theorems from their
appropriate elliptic counterparts. The key idea is that certain parabolic estimates may be
obtained by taking high-dimensional limits of their corresponding elliptic results. We obtain
information about solutions to div(A∇u) + ∂t u = 0 on the parabolic side by analyzing
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the behavior of solutions to non-homogeneous equations of the form div(κ∇v) = κ� on
the elliptic side. Here, A has a specific structure, v and κ are defined in terms of u and
A (see Lemmas 2.1 and 2.2), respectively, and � depends on both u and A. Rewriting our
elliptic equation as κ−1div(κ∇v) = �, we notice that the associated operator is a special
type of Witten Laplacian, or weighted Laplacian (see 2.4 in [34], and also [14, 15, 28,
34, 41–44]). From this perspective, the ideas in this article show how to obtain results for
variable-coefficient parabolic operators from those for the Witten Laplacian.

Perelman first considered parabolic theory as a high-dimensional limit of elliptic theory in
[47]. This general principle was discussed in the blog of Tao [52], modified in the coursenotes
of Sverak [51], then developed and applied in [18]. In our setting, we follow the ideas from
[18]; namely, we use classical probabilistic formulae, essentially going back to Wiener [54],
with a slight modification used by Sverak in [51]. However, to account for the presence of
variable-coefficients, we have modified (and complicated) the change of variables formula
from [18]. Once the general framework has been established, we demonstrate the utility of
this technique by establishing three new proofs of theorems regarding variable-coefficient
parabolic equations. In comparison to the results of [18] for constant-coefficient equations,
the techniques here are substantially modified to account for the variable-coefficients.

At the heart of the high-dimensional limiting process is a sequence ofmaps Fd,n : Rd×n →
R
d × R+ which take high-dimensional space points y ∈ R

d×n on the elliptic side to space–
time points (x, t) ∈ R

d × R+ on the parabolic side. These maps can be viewed from three
perspectives. First, they naturally arise through certain random walk processes. Second, we
can use the chain rule to see how these maps connect elliptic and parabolic operators. That is,
suppose we are given some parabolic function u = u (x, t) defined onRd ×R+ andwe define
vn = vn(y) on Rd×n by vn(y) = u

(
Fd,n(y)

)
. A computation involving only the chain rules

shows that if div (A∇u)+∂t u = 0, then div(κn∇vn) = κn �n , where κn and �n are defined in
terms of u and A. In other words, the maps Fd,n provide a way of constructing a sequence of
“elliptic" functions from a given “parabolic" function. Finally, we can see the power of these
maps through their pushforward measures. In the constant-coefficient case, the pushforward
by Fd,n of the Lebesguemeasureweightedwith the fundamental solution of the Laplacian is a
space–time Lebesguemeasure that is weighted by a function that approximates the Gaussian.
That is, the pushforward connects the elliptic and parabolic fundamental solutions. In our
variable-coefficient setting, we do not have explicit descriptions of the fundamental solutions,
so this connection is not as precise, but it mimics the constant-coefficient behavior.

Once we have the transformation maps, our general technique is as follows: Given a
parabolic function u, we use Fd,n to construct a sequence of functions {vn}. We apply an
elliptic result to each of the vn functions, and then use the pushforward relationships to
reinterpret this result in terms of u. After a limiting process, we arrive at a result for the
original parabolic function u.

Our first new proof is of an L2 → L2 Carleman estimate for parabolic operators of the
form div(A∇) + ∂t . For elliptic operators, the original Carleman estimates are attributed to
Carleman [13], with subsequent advances by Cordes [16], Aronszajn [5] and Aronszajn et al
[6]. Significant contributions to the theory of elliptic Carleman estimates with applications to
strong unique continuation include the work of Jerison and Kenig [37], Sogge [50], Koch and
Tataru [38], and the references therein. When A = I , the parabolic Carleman estimate was
proved by Escauriaza in [21]; see also [24–26, 46, 53] for (variable-coefficient) generaliza-
tions that followed. The article [39] of Koch and Tataru provides a nice overview of parabolic
Carleman estimates, and the results therein apply to very general parabolic operators.

Our second novel proof shows that Almgren-type frequency functions [1] associated
with parabolic operators of type div(A∇) + ∂t are monotonically non-decreasing. In the
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variable-coefficient elliptic setting, Almgren-type monotonicity formulas have been used
to establish unique continuation results, see [29, 30]. When A = I , monotonicity of the
parabolic frequency function was originally proved by Poon in [49] and used to establish
strong unique continuation results for caloric functions. Since then, the frequency function
approach has been used extensively in the study of parabolic unique continuation problems;
see for example [12, 22, 23, 40, 55].

Both the Carleman estimates and the monotonicity of the Almgren-type frequency func-
tions, motivated by their elliptic counterparts, allowed the authors of [21, 49] (for example)
to use the established techniques for elliptic theory to prove strong unique continuation for
solutions to the heat equation. Since then, a wealth of unique continuation results for variable-
coefficient heat operators have been established using bothCarleman estimates and frequency
functions. Recently, Carleman techniques have been used to establish space-like quantitative
uniqueness of solutions to variable-coefficient parabolic equations that are averaged in time
[56] and at a particular time-slice [7].

Almgren-type monotonicity formulas have also been used extensively in the context of
free boundary problems to obtain regularity of solutions and of the free boundary. In the case
of the parabolic constant-coefficient Signorini problem, a truncated version of Almgren’s
monotonicity formula was proved in [17], leading to the optimal regularity of solutions
and analysis of the free boundary. Elliptic variable-coefficient Almgren-type monotonicity
formulas have also been widely used to study numerous free boundary problems; see for
example [8, 20, 31–33, 35, 36]. We refer the reader to [48] for a beautiful introduction to the
use of Almgren-type monotonicity formulas in free boundary problems.

Our third new proof establishes a result that is, to the best of our knowledge, also new. In
other words, our technique leads to an original parabolic result: We prove an Alt–Caffarelli–
Friedman-type (ACF-type) monotonicity formula for variable-coefficient heat operators. The
groundbreaking work of Alt, Caffarelli, and Friedman in [2] introduced the use of one such
monotonicity formula to study two-phase free boundary elliptic problems. Another version
of this formula was proved in [9] by Caffarelli and extended by Caffarelli and Kenig in [10]
to establish the regularity of solutions to parabolic equations and their singular perturbations.
Later on, Caffarelli, Jerison, and Kenig [11] considered non-homogeneous elliptic equations
in which the right-hand side of the equation need not vanish at the free boundary. Their
main result is not a monotonicity result per se, but rather a clever uniform bound on the
monotonicity functional, which is just as useful as monotonicity itself. Later on, Matevosyan
and Petrosyan [45] further extended that result, proving an almost monotonicity estimate for
non-homogeneous elliptic and parabolic operators with variable coefficients. We refer the
interested reader to [4, 48] for an introduction to the use of the ACF monotonicity formula;
[48] deals with the elliptic setting, while [4] addresses both the parabolic and elliptic settings.
In the context of almost minimizers of variable-coefficient Bernoulli-type functionals, ACF-
type monotonicity formulas have also been used to study the free boundary, see for example
[19].

Given that our transformation maps relate solutions to homogeneous parabolic equa-
tions to a sequence of solutions to non-homogeneous elliptic equations, our proofs of the
monotonicity results have added complexity. More specifically, given that each vn solves an
elliptic equations with a right-hand side, we require elliptic monotonicity results that apply
to solutions to non-homogeneous equations. Therefore, the first step in each parabolic mono-
tonicity proof is to establish the related underlying variable-coefficient elliptic result with a
right-hand side. These new elliptic results, which appear at the beginning of Sects. 5 and 6,
may be of independent interest. We point out that these elliptic estimates generalize both the
constant-coefficient and the homogeneous results.
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The monotonicity of frequency functions is often proved by showing that the derivative
of the frequency function has a fixed sign. In our proofs of the monotonicity of variable-
coefficient Almgren-type and ACF-type frequency functions, we show that each parabolic
frequency function may be described as a pointwise limit of a sequence of elliptic frequency
functions. While we know that each such elliptic frequency function is differentiable and
almost monotonic, that is not sufficient to guarantee the differentiability of the corresponding
parabolic frequency function. Therefore, our proofs rely on a more delicate analysis that
allows us to conclude directly that our parabolic frequency functions are monotonic. These
ideas are described at the ends of the proofs of Theorems 5.3 and 6.4.

We work with time-independent variable-coefficient operators for which the coefficient
matrix has a specific structure. That is, we consider symmetric matrices of the form A =
GGT , where G is the Jacobian of some invertible map g : Rd → R

d . Clearly, there are
bounded, elliptic coefficient matrices A whose structure is not of this form. However, if
A = I , then A is associated to the identity map g(z) = z with Jacobian G = I , showing that
this structural condition on A is a reasonable generalization to constant-coefficient operators.
In subsequent work, we will explore operators with even more general coefficient matrices.

The article is organized as follows. In Sects. 2 and 3, we develop the framework that
connects the elliptic and parabolic theory. That is, we introduce and examine the maps Fd,n :
R
d×n → R

d × R+ that take points in the high-dimensional (elliptic) space to space–time
(parabolic) points. Section2 takes the perspective of random walks to introduce these maps,
then uses the chain rule to explore how these maps relate elliptic and parabolic operators.
Section3 examines thesemaps from ameasure theoretic perspective. In particular, we present
the pushforward computations and describe how the integrals on the elliptic side are related
to those on the parabolic side. These two sections contain a collection of calculations and
statements that will be referred to throughout the article.

The L2 → L2 variable-coefficient parabolic Carleman estimate is proved in Sect. 4. The
Almgren-type frequency function theorem for variable-coefficient heat operators is presented
in Sect. 5. Finally, Sect. 6 contains themonotonicity result for Alt–Caffarelli–Friendman-type
energies associated with variable-coefficient heat operators.

2 Elliptic-to-parabolic transformations

In this section, we construct the transformations that connect so-called parabolic functions
u = u(x, t) defined on Rd × (0, T ) to a sequence of elliptic functions vn = vn(y) defined in
R
d×n for all n ∈ N. More specifically, for each n ∈ N, we construct a mapping of the form

Fd,n : Rd×n → R
d × R+

y �→ (x, t)

that takes element y in (high-dimensional) space R
d×n to elements (x, t) in space–time

R
d × R+. Given a function u = u(x, t) defined on a space–time domain, i.e. a subset

of Rd × R+, we use Fd,n to define a function vn = vn(y) on the space R
d×n by setting

vn(y) = u(Fd,n(y)). As we show below via the chain rule, if u is a solution to a backward
parabolic equation, then each vn is a solution to some non-homogeneous elliptic equation.
This observation explains why we think of u as a parabolic function and of each vn as an
elliptic function. Moreover, as n becomes large, the function vn behaves (heuristically) more
and more like a solution to a homogeneous elliptic equation. As such, the transformation
Fd,n becomes more useful to our purposes as n → ∞, thereby illuminating why the notion

123



Variable-coefficient parabolic theory as a high-dimensional… Page 5 of 47 40

of a high-dimensional limit is relevant here. From another perspective, when we use Fd,n to
pushforward measures on spheres and balls in R

d×n , we produce measures in space–time
that are weighted by approximations to generalized Gaussians. This perspective is explored
in the next section, Sect. 3.

We can think of the transformations Fd,n : Rd×n → R
d×R+ in a number of ways. On one

hand, as we show in this section, these maps are constructed so that each vn solves an elliptic
equation whenever u solves a parabolic equation. This viewpoint is purely computational
as these relationships are illuminated by the chain rule. This perspective is perhaps the
most (easily) checkable, but it is somewhat mysterious. Random walks are the underlying
mechanism in defining these mappings, so we begin with that perspective.

Let y = (
y1,1, y1,2, . . . , y1,n, . . . , yd,1, yd,2, . . . , yd,n

) ∈ R
d×n denote the variables that

play the role of the “random steps" in our random walk. For some t > 0, assume that y
satisfies

2dt =
d∑

i=1

n∑

j=1

y2i, j . (1)

In this setting, we do not fix the step size but simply assume that y is uniformly distributed
over the sphere of radius

√
2dt . Define

zi = yi,1 + yi,2 + · · · + yi,n for i = 1, . . . , d (2)

so that z = (z1, . . . , zd) ∈ R
d . In the notation from [18], we define fd,n : Rd×n → R

d so
that

z = fd,n(y). (3)

Now let

g : Rd → R
d

be an invertible function with inverse function

h : Rd → R
d .

Set x = g(z) ∈ R
d so that

xi = gi (z) for i = 1, . . . , d (4)

and then since z = h(x) we have

zi = hi (x) for i = 1, . . . , d.

For the moment, assume that g is sufficiently regular for the computations below to hold in
a weak sense. When further regularity is needed, we specify it.

The Jacobian of g = (g1, . . . , gd) is a d × d invertible matrix function whose inverse
matrix is the Jacobian of h = (h1, . . . , hd). Let G and H denote the Jacobian matrices of g
and h, respectively. That is,

G(z) =

⎡

⎢⎢⎢⎢
⎣

∂g1
∂z1

∂g1
∂z2

. . .
∂g1
∂zd

∂g2
∂z1

∂g2
∂z2

. . .
∂g2
∂zd

...
. . .

...
∂gd
∂z1

∂gd
∂z2

. . .
∂gd
∂zd

⎤

⎥⎥⎥⎥
⎦

, H(x) =

⎡

⎢⎢⎢⎢
⎣

∂h1
∂x1

∂h1
∂x2

. . . ∂h1
∂xd

∂h2
∂x1

∂h2
∂x2

. . . ∂h2
∂xd

...
. . .

...
∂hd
∂x1

∂hd
∂x2

. . .
∂hd
∂xd

⎤

⎥⎥⎥⎥
⎦

. (5)
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Let γ (z) = detG(z) and η(x) = det H(x). From (5), we obtain

I = G(z)H(x) = G(z)H(g(z)) = G(h(x))H(x)

I = H(x)G(z) = H(x)G(h(x)) = H(g(z))G(z)

1 = γ (z)η(x) = γ (h(x))η(x) = γ (z)η(g(z)).

Now we collect some observations that follow from the Chain Rule. For the first lemma,
we describe how these determinants and their derivatives transform through the map g ◦ fd,n .

Lemma 2.1 (Determinant Chain Rule Lemma) For γ (z) = detG(z) and η(x) = det H(x)
as above, define κn : Rd×n → R to satisfy

κn(y) = γ ( fd,n(y)) = γ (z) = 1

η (x)
= 1

η
(
g( fd,n(y))

) . (6)

Then

∂ log κn

∂ yi, j
= tr

(
H (g(z))

∂G(z)

∂zi

)
= tr

(
H (x)

∂G

∂zi
(h(x))

)

y · ∇y log κn = tr (H(g(z)) 〈∇G(z), z〉) = tr (H(x) 〈∇zG(h(x)), h(x)〉) .

Proof Since
∂zk
∂ yi, j

= δk,i , then an application of Jacobi’s formula shows that

∂ log κn(y)

∂ yi, j
= ∂ log γ (z)

∂zi
= tr

(
G−1(z)

∂G(z)

∂zi

)
= tr

(
H (g(z))

∂G(z)

∂zi

)
. (7)

We then get

y · ∇y log κn =
d∑

i=1

n∑

j=1

yi, j
∂ log κn(y)

∂ yi, j
=

d∑

i=1

zi
∂ log γ (z)

∂zi
= 〈∇ log γ (z), z〉

= tr [H(g(z)) 〈∇G(z), z〉] .
The next set of observations shows how the derivatives of some parabolic function u :

R
d × (0, T ) → R can be related to those of its associated elliptic functions vn : B√

2dT ⊂
R
d×n → R. That is, given a parabolic function u = u(x, t), we define the elliptic functions

vn = vn(y) = u(Fd,n(y)), where

Fd,n(y) = (x, t) =
((

g ◦ fd,n
)
(y),

|y|2
2d

)
. (8)

The following set of results justifies why we refer to u as parabolic and each vn as elliptic.

Lemma 2.2 (SolutionChainRule Lemma) Given u : Rd×(0, T ) → R, define vn : B√
2dT ⊂

R
d×n → R to satisfy

vn(y) = u
(
Fd,n(y)

)
.

Define B = B(z) to be a d × d matrix function with entries

bk,� = ∇zgk · ∇zg� =
d∑

i=1

∂gk
∂zi

∂g�

∂zi
.
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That is, B = GGT . We then set A(x) = B (h(x)) = B(z) so that A = H−1
(
H−1

)T
. Then

∂vn

∂ yi, j
=
〈
∇xu,

∂g

∂zi

〉
+ ∂u

∂t

yi, j
d

y · ∇yvn = 〈∇xu,G(z)z〉 + 2t
∂u

∂t
=
〈
A(x)∇xu, H(x)T h(x)

〉
+ 2t

∂u

∂t
∣
∣∇yvn

∣
∣2 = n

∣
∣
∣G(z)T∇xu

∣
∣
∣
2 + 2

d

∂u

∂t

[
〈∇xu,G(z) z〉 + t

∂u

∂t

]

= n 〈A(x)∇xu,∇xu〉 + 2

d

∂u

∂t

[〈
A(x)∇xu, H(x)T h(x)

〉
+ t

∂u

∂t

]
.

Moreover, with κn as in (6),

divy
(
κn(y)∇yvn

)

κn(y)
= n

[
divx (A∇xu) + ∂u

∂t

]
+ 2

d

[〈
A∇x

∂u

∂t
, HT h

〉

+∂u

∂t

tr (H 〈∇zG(h), h〉)
2

+ t
∂2u

∂t2

]
, (9)

where the expression on the right depends on x and t.

The proof of this result relies on the chain rule and can be found in “Appendix A”. When
u is a solution to a variable-coefficient backwards heat equation, we immediately reach the
following consequence.

Corollary 2.3 (Chain Rule Corollary) If u : Rd × R+ → R is a solution to divx (A∇xu) +
∂t u = 0 and we define vn : Rd×n → R to satisfy

vn(y) = u
(
Fd,n(y)

)
,

then

divy
(
κn(y)∇yvn

) = κn(y)�n(y),

where

�n = 2

d

[〈
A∇x

∂u

∂t
, HT h

〉
+ 1

2

∂u

∂t
tr (H 〈∇zG(h), h〉) − t divx

(
A∇x

∂u

∂t

)]
.

In summary, we have constructed a sequence of maps Fd,n , given in (8), that serve as the
connection between the elliptic and parabolic settings. The following table describes these
relationships and the notation that we use to describe our elliptic and parabolic settings. Note
that Fd,n is the connection between the elliptic column and the parabolic column.

Elliptic Parabolic

Space high-dimensional space space–time
Elements y ∈ R

d×n (x, t) ∈ R
d × R+

Functions vn = vn(y) u = u (x, t)
PDEs divy

(
κn∇yvn

) = κn �n divx (A∇xu) + ∂t u = 0

Going forward, we write∇u to indicate∇xu, unless explicitly indicated otherwise. Similarly,
we write∇vn to indicate∇yvn , unless explicitly indicated otherwise. That is, u is understood
to be a function of x and t , while vn is a function of y, and all derivatives are interpreted
appropriately.
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The results above will be used extensively when we prove our parabolic theorems.
Therefore, we work with variable-coefficient operators for which the coefficient matrix has
the specific structure that is described by the previous two results. That is, we consider
A(x) = B(z) where B = GGT and G is the Jacobian of some invertible map g : Rd → R

d .
Clearly, there are bounded, elliptic coefficient matrices A whose structure is not of this
form. However, if A = I , then A is associated to the identity map g(z) = z with Jaco-
bian G = I , showing that this structural condition on A is a reasonable generalization to
constant-coefficient operators.

Before concluding this section, we examine some examples of non-trivial coefficient
matrices that satisfy our structural condition. For simplicity, we assume that d = 1.

Given a bounded, elliptic function λ ≤ C(x) ≤ 	, we construct a function g such that
the corresponding function A(x) coincides with C(x). Recall that

A(x) = G(h(x))GT (h(x)) = [
g′(h(x))

]2
.

For C(x) = A(x) to hold, we need
√
C(x) = g′(h(x)). Since g = h−1 and h = g−1, then

g′(h(x)) = 1

h′(x)
, so we need to solve h′(x) = 1√

C(x)
.

Example 2.4 Let C(x) =
(
1+x2

2+x2

)2
. Notice that 1

4 ≤ C(x) ≤ 1 and
1√
C(x)

= 2 + x2

1 + x2
so

that ˆ
dx√
C(x)

=
ˆ

2 + x2

1 + x2
dx = x + arctan(x) + c.

If we want h(0) = 0, then define h(x) = x + arctan(x) and take g(z) = h−1(z).

Example 2.5 Let C(x) = 2 + sin(x) and notice that 1 ≤ C(x) ≤ 3. We define

h(x) =
ˆ

1√
2 + sin(x)

dx = −2√
3
F

(
π − 2x

4

∣∣∣
2

3

)
,

where F(x |m) is the elliptic integral of the first kind with parameter m = k2. Again, we
define g(z) = h−1(z).

3 Integral relationships

Inwhat follows,we examine how integrals of functionsφ(x, t)defined in space–timeRd×R+
can be related to integrals of φ(Fd,n(y)) in high-dimensional space Rd×n . We start from a
probabilistic viewpoint. That is if y ∈ R

d×n is uniformly distributed over a fixed sphere, we
seek to determine the probability distribution of x ∈ R

d , where (x, t) = Fd,n(y). As we
show below, understanding this probability distribution on the parabolic side reduces to a
pushforward computation which we carry out explicitly. We then collect the consequences
that will be used in our elliptic-to-parabolic proofs.

Let Snt denote the sphere of radius
√
2dt in R

d×n . That is,

Snt =
{
y ∈ R

d×n |y|2 = 2dt
}

. (10)

Let σ t
dn−1 denote the canonical surface measure on this sphere Snt . We make the assumption

that the vectors y = (y1,1, y1,2, . . . , yd,1, . . . , yd,n) ∈ R
d×n are uniformly distributed over
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Snt with respect to σ t
dn−1. Set μt

d,n to be the normalized surface measure on the sphere Snt ;
that is,

μt
d,n = 1

|Sdn−1|(2dt) dn−1
2

σ t
dn−1.

Our goal is to find the probability distribution of x in the limit as n → ∞, where x = g(z) =
g( fd,n(y)) and z = fd,n(y) is as in (3).

We first define an intermediate measure on z ∈ R
d for each fixed t via the pushforward

as ωt
d,n = fd,n#μt

d,n . This is the pushforward from [18] and it is shown there that

dωt
d,n =

∣
∣Sdn−1−d

∣
∣

∣
∣Sdn−1

∣
∣ (2dnt)

d
2

(

1 − z21 + · · · + z2d
2dnt

) dn−d−2
2

χBnt (z) dz1 . . . dzd

=
∣
∣Sdn−1−d

∣
∣

∣
∣Sdn−1

∣
∣ (2dnt)

d
2

(

1 − |z|2
2dnt

) dn−d−2
2

χBnt (z) dz,

where we have introduced the notation

Bnt = {z ∈ R
d |z|2 < 2dnt} (11)

for the ball of radius
√
2dnt in R

d .
The probability distribution of x is the push-forward of μt

d,n by g ◦ fd,n :

νtd,n := (g ◦ fd,n)#
(
μt
d,n

)
.

This implies, in particular, that for all ϕ ∈ C0(R
d),

ˆ
Rd

ϕ(x) dνtd,n(x) =
ˆ
Snt

ϕ(g( fd,n(y))) dμt
d,n(y).

Now observe that

νtd,n = (
g ◦ fd,n

)
#μt

d,n = g#
(
fd,n#μ

t
d,n

) = g#ωt
d,n .

Since g : Rd → R
d is invertible, computing the pushforward here is the same as carrying

out a change of variables. By definition, we have that

∣∣Sdn−1−d
∣∣

∣∣Sdn−1
∣∣ (2dnt)

d
2

ˆ
Rd

ϕ (g(z))

(

1 − |z|2
2dnt

) dn−d−2
2

χBnt (z) dz

=
ˆ
Rd

ϕ (g(z)) dωt
d,n =

ˆ
Rd

ϕ (x) dνtd,n .

Since dx = γ (z) dz, η(g(z))γ (z) = 1, and z = h(g(z)), then

ˆ
Rd

ϕ (g(z))

(

1 − |z|2
2dnt

) dn−d−2
2

χBnt (z) dz

=
ˆ
Rd

ϕ (g (z))

(

1 − |z|2
2dnt

) dn−d−2
2

η (g (z)) χBnt (z) γ (z) dz
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=
ˆ
Rd

ϕ (x) η (x)

(

1 − |h (x)|2
2dnt

) dn−d−2
2

χBnt (h(x)) dx .

It follows that νtd,n = η(x) Kt,n(h(x)) dx , where we introduce

Kt,n(x) = Kn(x, t) =
∣
∣Sdn−1−d

∣
∣

∣
∣Sdn−1

∣
∣ (2dnt)

d
2

(

1 − |x |2
2dnt

) dn−d−2
2

χBnt (x). (12)

As shown in [18, Lemma 6],

Kt (x) = K (x, t) := lim
n→∞ Kt,n(x) =

(
1

4π t

) d
2

exp

(

−|x |2
4t

)

, (13)

where the limit is pointwise. Amuch stronger version of convergence holds for this sequence,
stated as follows.

Lemma 3.1 (Uniform convergence of {Kn}) Given any t0 > 0, the sequence {Kn(x, t)}∞n=1
converges uniformly to K (x, t) in R

d × {t ≥ t0}.

The proof of this result can be found in “Appendix A”. In fact, the arguments there, in
combination the proof of [18, Lemma 1], show that there exists Cd so that for every n ∈ N

and every (x, t) ∈ R
d × R+,

Kt,n(x) ≤ Cd Kt (x). (14)

This bound will be used in many of our subsequent arguments.
One might wonder how our transformed heat kernel relates to the standard one. The

following lemma, proved in “Appendix A”, shows that K (h(x), t) is not a solution to the
associated homogeneous variable-coefficient heat equation.

Lemma 3.2 (Kernel solution) With uK (x, t) = K (h(x), t), it holds that

div (A∇uK ) − ∂t uK = − 1

2t

d∑

j,k,�=1

∂2gk
∂z j∂z�

(h(x))
∂h�

∂xk
h j uK �= 0.

Summarizing our pushforward computations, we have established the following result:

Lemma 3.3 (cf. Lemma 2 and Lemma 3 in [18]) Let Snt , Kt,n and Kt be as given in (10),
(12) and (13), respectively. If ϕ : Rd → R is integrable with respect to Kt (h(x)) dx, then
for every n ∈ N, ϕ is integrable with respect to Kt,n (h(x)) dx and it holds that

 
Snt

κn(y)ϕ
(
g ◦ fd,n (y)

)
dσ t

dn−1 =
ˆ
Snt

κn(y)ϕ
(
g ◦ fd,n (y)

)
dμt

n,d

=
ˆ
Rd

ϕ (x) Kt,n (h(x)) dx,

where κn is as defined in (6).

Remark 3.4 Going forward, we often use the notation dσ or dσ(y) in place of dσ t
dn−1.
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It is also helpful to interpret the measures νtd,n as time slices of a space–time object, which

comes from the projection of some global measure in the space y ∈ R
d×n onto the space–

time. To do so, we project a measure μd,n on R
d×n to the space–time Rd × R+ by the map

Fd,n as given in (8). With m denoting Lebesgue measure, define

μd,n = d

|Sdn−1||y|dn−2m.

The “slices” of the measure μd,n by the spheres Stn project by Fd,n onto the measures νtd,n ;
that is,

Fd,n#μd,n =
ˆ ∞

0
(g ◦ fd,n)#

(
μt
d,n

)
dt =

ˆ ∞

0
νtd,ndt .

Let Bn
t denote the open ball in Rd×n for which ∂Bt

n = Stn , i.e.

Bn
t =

{
y ∈ R

d×n |y|2 < 2dt
}

. (15)

Integrating the equality from Lemma 3.3 leads to the following result. 455

Lemma 3.5 (cf. Lemma 4 in [18]) Let Bn
t , Kn and K be as given in (15), (12) and (13),

respectively. If φ : Rd × (0, T ) → R is integrable with respect to K (h(x)) dx dt, then for
every n ∈ N, φ is integrable with respect to Kn (h(x)) dx dt and for every t ∈ (0, T ), it holds
that

1

d
∣∣Sdn−1

∣∣

ˆ
Bn
t

κn(y)φ
(
Fd,n (y)

) |y|2−dn dy =
ˆ t

0

ˆ
Rd

φ (x, s) Kn (h(x), s) dx ds,

where κn is as defined in (6). In fact, if T = ∞, then

1

d
∣∣Sdn−1

∣∣

ˆ
Rd×n

κn(y)φ
(
Fd,n (y)

) |y|2−dn dy =
ˆ ∞

0

ˆ
Rd

φ (x, s) Kn (h(x), s) dx ds.

Lemmas 3.3 and 3.5 will be used many times in our proofs below. Lemma 3.3 transforms
a κn-weighted integral over a sphere in Rd×n to a Kt,n-weighted integral at a particular slice
in space–time. Similarly, Lemma 3.5 transforms a weighted integral over a ball in R

d×n

to a Kt,n-weighted integral in space–time. Of note, the elliptic weight in Lemma 3.5 is κn
times the fundamental solutions of the Laplacian, while by (13), the parabolic weight is an
approximation to a transformed heat kernel. As dimension-limiting arguments will be crucial
to our proofs below, we need to understand what happens when n → ∞. By (13) and 14 in
combination with the Dominated Convergence Theorem, the parabolic integrals in both of
these lemmas converge to K (h(x), t)-weighted integrals.

For the remainder of this section, we introduce some definitions and draw some conclu-
sions based on Lemmas 3.3 and 3.5.

Definition 3.6 (Weighted L1 spaces) Given φ : Rd × (0, T ) → R and h : Rd → R
d as in

Sect. 2, define P (·;φ, h) : (0, T ) → R as

P (t;φ, h) =
ˆ
Rd

|φ(x, t)| exp
(

−|h(x)|2
4t

)

dx .

We say that P (·;φ, h) ∈ L1
(
[0, t] , s− d

2 ds
)
if

ˆ t

0
s− d

2

ˆ
Rd

|φ(x, s)| exp
(

−|h(x)|2
4s

)

dx ds < ∞.
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With this definition and Lemma 3.5, we reach the following result.

Corollary 3.7 (Weighed integrability on the elliptic side) Letφ : Rd×(0, T ) → R, h : Rd →
R
d and assume that P (·;φ, h) ∈ L1

(
[0, t] , s− d

2 ds
)
. For each ψn : Bn

T ⊂ R
d×n → R

defined by ψn(y) = φ
(
Fd,n(y)

)
, ψn is integrable with respect to κn(y) dy in Bn

t for every
n ≥ 2.

Proof An application of Lemma 3.5 shows thatˆ
Bn
t

κn(y) |ψn(y)| dy =
ˆ
Bn
t

κn(y)
∣
∣φ

(
Fd,n(y)

)∣∣ |y|dn−2 |y|2−dn dy

= d
∣
∣
∣Sdn−1

∣
∣
∣
ˆ t

0

ˆ
Rd

|φ (x, s)| (2ds) dn−2
2 Kn ((h(x), s) dxds

≤ d
∣
∣
∣Sdn−1

∣
∣
∣Cd

ˆ t

0

ˆ
Rd

|φ(x, s)| (2ds) dn−2
2 K ((h(x), s) dxds

≤ (2dt)
dn
2 Cd

∣
∣Sdn−1

∣
∣

2t (4π)
d
2

ˆ t

0
s− d

2 P (s;φ, h) ds,

where we have applied (14) and that dn ≥ 2d ≥ d . ��
Now we introduce some function classes for parabolic and elliptic functions that will be

used below.

Definition 3.8 (Moderate h-growth at infinity) Let u : Rd × (0, T ) → R be a continuous
function with locally integrable weak first order derivatives. With h : Rd → R

d as in Sect. 2

and A = H−1
(
H−1

)T
, define

H (t) = H (t; u, h) =
ˆ
Rd

|u(x, t)|2 exp
(

−|h(x)|2
4t

)

dx

D (t) = D (t; u, h) =
ˆ
Rd

〈A(x)∇u(x, t),∇u(x, t)〉 exp
(

−|h(x)|2
4t

)

dx

T (t) = T (t; u, h) =
ˆ
Rd

∣∣∣∣
∂u

∂t
(x, t)

∣∣∣∣

2

exp

(

−|h(x)|2
4t

)

dx .

(16)

We say that such a function u has moderate h-growth at infinity if H, D, and T belong to

L1
(
[0, T ] , t− d

2 dt
)
.

Definition (κ-weighted Sobolev space) For BR ⊂ R
N , we say that a function v : BR → R

belongs to L p (BR, κ(y) dy), the space of κ-weighted p-integrable functions, ifˆ
BR

κ(y) |v(y)|p dy < ∞.

Moreover, if both v and∇v ∈ L2 (BR, κ(y) dy), then we say that v belongs to the κ-weighted
Sobolev space and write v ∈ W 1,2 (BR, κ(y) dy).

Now we may connect these two function classes.

123



Variable-coefficient parabolic theory as a high-dimensional… Page 13 of 47 40

Lemma 3.9 (Function class relationship) If u : Rd × (0, T ) → R has moderate h-growth
at infinity, then for vn : Bn

T ⊂ R
d×n → R defined by vn(y) = u

(
Fd,n(y)

)
and κn defined by

(6), it holds that vn ∈ W 1,2
(
Bn
T , κn(y)dy

)
, whenever n ≥ 2.

Proof An application of Lemma 3.5 shows that
ˆ
Bn
T

κn(y) |vn(y)|2 dy =
ˆ
Bn
T

κn(y)
∣
∣u
(
Fd,n(y)

)∣∣2 |y|dn−2 |y|2−dn dy

= d
∣
∣
∣Sdn−1

∣
∣
∣
ˆ T

0

ˆ
Rd

|u(x, s)|2 (2ds)
dn−2
2 Kn ((h(x), s) dxds

≤ (2d)
dn
2 Cd

∣
∣Sdn−1

∣
∣

2 (4π)
d
2

ˆ T

0
s
dn−d−2

2 H (s) ds,

where we have applied (14). Since u has moderate h-growth at infinity, then

ˆ
Bn
T

κn(y) |vn(y)|2 dy ≤ (2dT )
dn
2 Cd

∣
∣Sdn−1

∣
∣

2T (4π)
d
2

‖H‖
L1

(
[0,T ],t−

d
2 dt

) < ∞.

For the gradient term, we use Lemma 3.5 in combination with Lemma 2.2 to get
ˆ
Bn
T

κn(y) |∇vn(y)|2 dy

= dn
∣∣∣Sdn−1

∣∣∣
ˆ T

0

ˆ
Rd

〈A∇u,∇u〉 (2ds)
dn−2
2 Kn ((h(x), s) dxds

+
∣∣∣Sdn−1

∣∣∣
ˆ T

0

ˆ
Rd

2s

(
∂u

∂s

)2

(2ds)
dn−2
2 Kn ((h(x), s) dxds

+
∣∣∣Sdn−1

∣∣∣
ˆ T

0

ˆ
Rd

2
∂u

∂s

〈(
H−1)T ∇u, h

〉
(2ds)

dn−2
2 Kn ((h(x), s) dxds

≤ 2dn
∣∣∣Sdn−1

∣∣∣
ˆ T

0

ˆ
Rd

〈A∇u,∇u〉 (2ds)
dn−2
2 Kn ((h(x), s) dxds

+ 2
∣∣∣Sdn−1

∣∣∣
ˆ T

0

ˆ
Rd

s

(

1 + |h(x)|2
2dns

)(
∂u

∂s

)2

(2ds)
dn−2
2 Kn ((h(x), s) dxds,

where the last step uses Cauchy–Schwarz. Since |h(x)|2 ≤ 2dns on the support of Kn(h(x)),
thenˆ

Bn
T

κn(y) |∇vn(y)|2 dy

≤ (2d)
dn
2 Cdn

∣∣Sdn−1
∣∣

(4π)
d
2

(ˆ T

0
s
dn−d−2

2 D (s) ds + 2

dn

ˆ T

0
s
dn−d
2 T (s) ds

)

≤ (2dT )
dn
2 Cdn

∣∣Sdn−1
∣∣

T (4π)
d
2

⎛

⎝‖D‖
L1

(
[0,T ],t−

d
2 dt

) + 2T

dn
‖T‖

L1

(
[0,T ],t−

d
2 dt

)

⎞

⎠ < ∞,

where we have again used that u has moderate h-growth at infinity. ��
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4 Carleman estimates

Carleman estimates have played a significant role in the development of the theory of unique
continuation for both elliptic and parabolic equations. The original idea (used in the elliptic
setting) is attributed to Carleman [13], with subsequent work accomplished by Cordes [16],
Aronszajn [5] and Aronszajn et al [6]. Since then, a wealth of results have been produced for
both elliptic and parabolic operators; see for example [21, 24–26, 37–39, 46, 50, 53]. Addi-
tional applications of Carleman estimates include geometry, inverse problems, and control
theory.

The following elliptic Carleman estimate is the L2 → L2 case of Theorem 1 from [3]. The
original theoremwas used to establish unique continuation properties of functions that satisfy
partial differential inequalities of the form |�v| ≤ |V | |v|, for v ∈ W 2,q

loc (�), V ∈ Lw
loc (�),

where w > N
2 , and � ⊂ R

N is open and connected.

Proposition 4.1 ([3], Theorem 1) For any τ ∈ R and all v ∈ W 2,2
0

(
R

N\ {0}), the following
inequality holds

c (τ, N )
∥
∥|y|−τ v

∥
∥
L2(RN )

≤ ∥
∥|y|−τ+2 �v

∥
∥
L2(RN )

, (17)

where

c (τ, N ) = inf
�∈Z≥0

∣∣∣∣

(
N

2
+ � + τ − 2

)(
N

2
+ � − τ

)∣∣∣∣ .

Remark 4.2 In order for this theorem to bemeaningful, we choose τ ∈ R so that τ− N
2 /∈ Z≥0.

Remark 4.3 Other versions of this theorem hold with more general norms. More specifically,
[3, Theorem 1] establishes that for any 1 ≤ q ≤ 2 ≤ p < ∞ and μ := 2 − N

w
=

2 − N
(
1
q − 1

p

)
> 0,

∥∥|y|−τ v
∥∥
L p(RN )

�
∥∥|y|−τ+μ �v

∥∥
Lq(RN )

.

However, since the condition that μ > 0 is equivalent to N <
2pq
p−q , we must have that p

and q are both very close to 2 for large N . In particular, when N → ∞, p, q → 2. Since
we use the high-dimensional limit of this elliptic Carleman estimate to establish its parabolic
counterpart, this explains why we restrict to the L2 → L2 Carleman estimate.

The following parabolic Carleman estimate is a variable-coefficient L2 → L2 version of
Theorem 1 from [21], and it resembles [24, Theorem 4]. For a much more general result, we
refer the reader to [39, Theorem 3]. The original theorem was used to prove strong unique
continuation of solutions to the heat equation. As such, this version could be used to establish
unique continuation results for solutions to variable-coefficient heat equations.

Theorem 4.4 (c.f. [21], Theorem 1) For H is as in (5) and η = det H, assume that
(
H−1

)T ∇ log η ∈ L∞ (
R
d
)
and div

[
H−1

(
H−1

)T ∇ log η
]

∈ L∞ (
R
d
)
. Let d ≥ 1 and

take α ∈ R so that 2α − d
2 − 3 ∈ (0,∞) \Z. Define ε := dist

(
2α − d

2 − 1,Z≥0
)
and for

some δ ∈ (0, 1), set

T0 = ε
√
1 − δ

∥∥∥∥2 div
[
H−1 (H−1)T ∇ log η

]
+
∣∣∣
(
H−1)T ∇ log η

∣∣∣
2
∥∥∥∥

−1

L∞(Rd)
.
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Then there is a constant C, depending only on ε and δ, such that for every u ∈
C∞
0

(
R
d × (0, T0) \ {(0, 0)}), it holds that

ˆ T0

0

ˆ
Rd

|u (x, t)|2 t−2αe− |h(x)|2
4t dx dt

≤ C (ε, δ)

ˆ T0

0

ˆ
Rd

|div (A∇u) + ∂t u|2 t−2α+2e− |h(x)|2
4t dx dt,

where h is some invertible function and A = H−1
(
H−1

)T
.

We show that Theorem 4.4 follows from the elliptic result, Proposition 4.1, Lemma 3.5,
and the results of Sect. 2. More specifically, given u, we define a sequence of functions {vn}
and we then apply Proposition 4.1 to each one. Applications of Lemma 3.5 allow us to
transform the integral inequalities for vn into integral inequalities for u. By taking a limit of
this sequence of inequalities and using (13), we arrive at our conclusion.

Proof Let u ∈ C∞
0

(
R
d × (0, T0) \ {(0, 0)}). For every n ∈ N, let vn : Rd×n → R satisfy

vn (y) = u
(
Fd,n (y)

)
,

where Fd,n is as defined in (8). Note that each vn is compactly supported in Bn
T0

= B√
2dT0 .

With γ (z) = 1
η(x) , define κn : Rd×n → R to satisfy

κn (y) = 1

η
(
g( fd,n(y))

) .

For α ∈ R so that 2α − d
2 − 3 ∈ (0,∞) \Z, set τn = 2α + dn−d−2

2 . Since τn − dn
2 =

2α − d
2 − 1 ∈ (2,∞) \Z, then τn − dn

2 /∈ Z≥0.
Since

�
(√

κnvn
) = div

(√
κn∇vn + ∇κn

2
√

κn
vn

)
= √

κn�vn + ∇κn√
κn

· ∇vn + div

( ∇κn

2
√

κn

)
vn

= 1√
κn

div (κn∇vn) − div
(
κn∇

(
κ

−1/2
n

))
vn,

then for δ > 0 as given,

∣∣�
(√

κnvn
)∣∣2 ≤ Cδκn

[
1

κn
div (κn∇vn)

]2
+ cδ

κn

[
div

(
κn∇

(
κ

−1/2
n

))]2 ∣∣√κnvn
∣∣2 ,

where Cδ = 1 + δ−1 and cδ = 1 + δ. An application of Theorem 4.1 with v = √
κnvn and

τ = τn shows that

c (τn, dn)2
ˆ
Bn
T0

∣∣√κnvn
∣∣2 |y|−2τn dy

≤
ˆ
Bn
T0

∣∣�
(√

κnvn
)∣∣2 |y|−2τn+4 dy

≤ Cδ

ˆ
Bn
T0

κn

[
1

κn
div (κn∇vn)

]2
|y|−2τn+4 dy

+ cδ

ˆ
Bn
T0

[
|y|2√

κn
div

(
κn∇

(
κ

−1/2
n

))]2
∣∣√κnvn

∣∣2 |y|−2τn dy.

(18)
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Since u ∈ C∞
0

(
R
d × (0, T0) \ {(0, 0)}), then |u|2 (2dt)

dn
2 −1−τn satisfies the hypotheses of

Lemma 3.5 and it follows thatˆ
Bn
T0

∣
∣
∣
√

κn(y)vn (y)
∣
∣
∣
2 |y|−2τn dy

=
ˆ
Bn
T0

κn(y) |vn (y)|2 |y|−2τn dy

=
ˆ
Bn
T0

κn(y)

∣
∣
∣
∣
∣
u

(

g ◦ fd,n(y),
|y|2
2d

)∣∣
∣
∣
∣

2

|y|dn−2−2τn |y|2−dn dy

= d
∣
∣
∣Sdn−1

∣
∣
∣
ˆ T0

0

ˆ
Rd

|u (x, t)|2 (2dt)
dn
2 −1−τn Kn (h(x), t) dx dt .

(19)

Because
{
div (A∇u) + ∂u

∂t + 2
dn

[〈
A∇ ∂u

∂t , H
T h

〉 + 1
2

∂u
∂t tr (H 〈∇zG(h), h〉) + t ∂2u

∂t2

]}2

(2dt)
dn
2 +1−τn also satisfies the hypotheses of Lemma 3.5, then another application of Lemma

3.5 shows that

1
∣∣Sdn−1

∣∣

ˆ
Bn
T0

κn

[
1

κn
div (κn∇vn)

]2
|y|−2τn+4 dy

= 1
∣∣Sdn−1

∣∣

ˆ
Bn
T0

κn (y)

[
1

κn
div (κn∇vn)

]2
|y|dn+2−2τn |y|2−dn dy

≤ 2dn2
ˆ T0

0

ˆ
Rd

∣∣∣∣div (A∇u) + ∂u

∂t

∣∣∣∣

2

(2dt)
dn
2 +1−τn Kn (h(x), t) dx dt

+ 8

d

ˆ T0

0

ˆ
Rd

∣∣∣∣

〈
A∇ ∂u

∂t
, HT h

〉
+ 1

2

∂u

∂t
tr (H 〈∇zG(h), h〉) + t

∂2u

∂t2

∣∣∣∣

2

× (2dt)
dn
2 +1−τn Kn (h(x), t) dx dt,

(20)

where we have used (9) from Lemma 2.2 and the triangle inequality to reach the last line.

Finally, because
[
2dnt

div(A∇√
η)√

η

]2 |u|2 (2dt)
dn
2 −1−τn satisfies the hypotheses of Lemma3.5,

we see that

ˆ
Bn
T0

[
|y|2√

κn
div

(
κn∇

(
κ

−1/2
n

))]2
∣
∣√κnvn

∣
∣2 |y|−2τn dy

= d
∣
∣∣Sdn−1

∣
∣∣
ˆ T0

0

ˆ
Rd

[

2dnt
div

(
A∇√

η
)

√
η

]2

|u (x, t)|2 (2dt)
dn
2 −1−τn Kn (h(x), t) dx dt

≤ dn2
∣∣
∣Sdn−1

∣∣
∣

∥
∥∥
∥∥
div

(
A∇√

η
)

√
η

∥
∥∥
∥∥

2

L∞(Rd)

ˆ T0

0

ˆ
Rd

|u (x, t)|2 (2dt)
dn
2 +1−τn Kn (h(x), t) dx dt,

(21)

since (9) with vn = κ
−1/2
n gives

|y|2√
κn(y)

divy
(
κn(y)∇y

(
κn(y)

−1/2)) = 2dnt
divx

(
A(x)∇x

√
η(x)

)

√
η(x)

.
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A computation shows that

div
(
A∇√

η
)

√
η

=
div

[
H−1

(
H−1

)T √
η ∇ log η

]

2
√

η

= 1

2
div

[
H−1 (H−1)T ∇ log η

]
+ 1

4

∣
∣
∣
(
H−1)T ∇ log η

∣
∣
∣
2
,

which belongs to L∞ (
R
d
)
by assumption. Substituting (19), (20), and (21) into (18) and

simplifying shows that

c (τn, dn)2
ˆ T0

0

ˆ
Rd

|u (x, t)|2 t dn
2 −1−τn Kn (h(x), t) dx dt

≤ 2Cδ (2dn)2
ˆ T0

0

ˆ
Rd

∣
∣
∣
∣div (A∇u) + ∂u

∂t

∣
∣
∣
∣

2

t
dn
2 +1−τn Kn (h(x), t) dx dt

+ 32Cδ

ˆ T0

0

ˆ
Rd

[〈
A∇ ∂u

∂t , H
T h

〉
+ 1

2
∂u
∂t tr (H 〈∇zG(h), h〉) + t ∂2u

∂t2

]2
t
dn
2 +1−τn Kn (h(x), t) dx dt

+ (dnε)2
(
1 − δ2

) ˆ T0

0

ˆ
Rd

|u (x, t)|2 t dn
2 −1−τn Kn (h(x), t) dx dt,

(22)

where we have used the definition of cδ and that 4T0

∥∥∥∥∥
div

(
A∇√

η
)

√
η

∥∥∥∥∥
L∞(Rd)

= ε
√
1 − δ to

reach the last line. Observe that

c (τn, dn) = inf
�∈Z≥0

∣
∣∣
∣

[
dn

2
+ � +

(
2α + dn − d − 2

2

)
− 2

] [
dn

2
+ � −

(
2α + dn − d − 2

2

)]∣∣∣
∣

= inf
�∈Z≥0

∣
∣∣
∣

[
dn − 2 + � +

(
2α − d

2
− 1

)][
� −

(
2α − d

2
− 1

)]∣∣∣
∣ ≥ dnε,

since we assumed that 2α − d
2 − 3 > 0. Returning to (22), the last term on the right may be

absorbed into the left to get
ˆ T0

0

ˆ
Rd

|u (x, t)|2 t d
2 −2αKn (h(x), t) dx dt

≤ 2Cδ

(
2

εδ

)2 ˆ T0

0

ˆ
Rd

∣
∣∣
∣div (A∇u) + ∂u

∂t

∣
∣∣
∣

2

t
d
2 −2α+2Kn (h(x), t) dx dt

+ 2Cδ

(
4

dnεδ

)2 ˆ T0

0

ˆ
Rd

[〈
A∇ ∂u

∂t , H
T h

〉
+ 1

2
∂u
∂t tr (H 〈∇zG(h), h〉) + t ∂2u

∂t2

]2
t
d
2 −2α+2Kn (h(x), t) dx dt,

with 2α = τn − dn−d−2
2 . We now take the limit as n → ∞. An application of Lemma 3.1

shows that

ˆ T0

0

ˆ
Rd

|u (x, t)|2 t−2α exp

(

−|h(x)|2
4t

)

dx dt

≤ 8 (1 + δ)

ε2δ2

ˆ T0

0

ˆ
Rd

∣∣∣∣div (A∇u) + ∂u

∂t

∣∣∣∣

2

t−2α+2 exp

(

−|h(x)|2
4t

)

dx dt,

as required. ��
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5 Almgrenmonotonicity formula

In this section, we show that the Almgren-type frequency function associated with the
parabolic operator div(A∇) + ∂t is monotonically non-decreasing. When A = I , a cor-
responding result goes back to Poon [49]. In that paper, the monotonicity was key in the
proof of unique continuation results for caloric functions. A version of this result was later
proved in the context of the parabolic, constant-coefficient Signorini problem in [17], where
the authors used the monotonicity to establish the optimal regularity of solutions and study
the free boundary.

To establish our parabolic result through the high-dimensional limiting technique, we
require a similar result for solutions to non-homogeneous variable-coefficient elliptic equa-
tions. Many similar results for the homogenous setting have been previously established. For
example, Almgren-type monotonicity formulas for variable-coefficient operators have also
been extensively used to study a wide variety of free boundary problems, as in [8, 20, 31–33,
35, 36]. The following result is crucial to our upcoming parabolic proof, but it may also be
of independent interest.

Proposition 5.1 For some R > 0, let BR ⊂ R
N . Assume that for κ : BR → R+ it holds that

∇ log κ · y ∈ L∞ (BR). Let v ∈ W 1,2 (BR, κdy) be a weak solution to div (κ∇v) = κ� in
BR, where � is integrable with respect to both κ v and κ∇v · y on each Br , for r ∈ (0, R).
For every r ∈ (0, R), assuming that each v|∂Br is non-trivial, define

H(r) = H(r; v, κ) =
ˆ

∂Br
κ (y) |v(y)|2 dσ(y)

D(r) = D(r; v, κ) =
ˆ
Br

κ(y) |∇v(y)|2 dy

L(r) = L(r; v, κ) = r D(r; v, κ)

H(r; v, κ)
.

Set L̃(r) = r2ϒ L(r), where ϒ ≥ ‖∇ log κ · y‖L∞(BR). Then for all r ∈ (0, R), it holds that

L̃ ′(r) ≥ 2r2ϒ

⎡

⎢
⎣

(´
Br

κ �v dy
) (´

∂Br
κ v ∇v · y dσ(y)

)

(´
∂Br

κ |v|2 dσ(y)
)2 −

(´
Br

κ �∇v · y dy
)

(´
∂Br

κ |v|2 dσ(y)
)

⎤

⎥
⎦ .

Remark 5.2 Notice that if v is a solution to the homogeneous equation div (κ∇v) = 0 in
BR , i.e. � = 0, then L̃(r) is non-decreasing in r . Moreover, if κ = 1, we recover the non-
homogenous elliptic result from [18, Corollary 1], which is the non-homogeneous version of
Poon’s result [49]. In particular, we recover the expected monotonicity formula for solutions
to elliptic equations.

Proof Observe first that since

H(r) =
ˆ

∂Br
κ (y) |v(y)|2 dσ(y) = r N−1

ˆ
∂B1

κ (rζ ) |v(rζ )|2 dσ(ζ ),

then

H ′(r) = N − 1

r
H(r) + 2r N−1

ˆ
∂B1

κ (rζ ) v(rζ )∇v(rζ ) · ζdσ(ζ )

+ r N−1
ˆ

∂B1
∇κ (rζ ) · ζ |v(rζ )|2 dσ(ζ )
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= N − 1

r
H(r) + 2

ˆ
∂Br

κ v ∇v · n̂ +
ˆ

∂Br
∇κ · n̂ |v|2 ,

where n̂ indicates the outer unit normal. Moreover, integration by parts and the equation for
v shows that

D(r) =
ˆ
Br

κ |∇v|2 =
ˆ
Br

1

2
div

[
κ∇ (

v2
)] − div (κ∇v) v =

ˆ
∂Br

κv∇v · n̂ −
ˆ
Br

κ�v.

(23)

Now differentiating and integrating by parts shows that

D′(r) =
ˆ

∂Br
κ |∇v|2 = 1

r

ˆ
∂Br

κ |∇v|2 y · n̂ = 1

r

ˆ
Br

div
(
κ |∇v|2 y)

= N

r

ˆ
Br

κ |∇v|2 + 2

r

ˆ
Br

κ∇v · D2v y + 1

r

ˆ
Br

∇κ · y |∇v|2

= N

r

ˆ
Br

κ |∇v|2 − 2

r

ˆ
Br

κ |∇v|2

− 2

r

ˆ
Br

div (κ∇v) ∇v · y + 2

r2

ˆ
∂Br

κ (∇v · y)2 + 1

r

ˆ
Br

∇κ · y |∇v|2

= N − 2

r
D(r) + 2

ˆ
∂Br

κ
(∇v · n̂)2 +

ˆ
Br

∇κ · y
r

|∇v|2 − 2
ˆ
Br

κ �∇v · y
r
.

Therefore, by putting it all together, we see that

H(r)2L ′(r) = D(r)H(r) + r D′(r)H(r) − r D(r)H ′(r)
= D(r)H(r)

+
[
(N − 2) D(r) + 2r

ˆ
∂Br

κ
(∇v · n̂)2 + r

ˆ
Br

∇κ · y

r
|∇v|2 − 2r

ˆ
Br

κ � ∇v · y

r

]
H(r)

− D(r)

[
(N − 1) H(r) + 2r

ˆ
∂Br

κv∇v · n̂ + r
ˆ
∂Br

∇κ · n̂ |v|2
]

= r

(
2
ˆ
∂Br

κ
(∇v · n̂)2 +

ˆ
Br

∇κ · y

r
|∇v|2 − 2

ˆ
Br

κ � ∇v · y

r

)(ˆ
∂Br

κ |v|2
)

− 2r

(ˆ
∂Br

κv∇v · n̂ −
ˆ
Br

κ �v

)(ˆ
∂Br

κv∇v · n̂
)

− r

(ˆ
Br

κ |∇v|2
)(ˆ

∂Br
∇κ · n̂ |v|2

)

= − 2

r

[(ˆ
∂Br

κ v∇v · y
)2

−
(ˆ

∂Br
κ |v|2

)(ˆ
∂Br

κ (∇v · y)2
)]

−
[(ˆ

Br
κ |∇v|2

)(ˆ
∂Br

∇κ · y
κ

κ |v|2
)

−
(ˆ

Br

∇κ · y
κ

κ |∇v|2
)(ˆ

∂Br
κ |v|2

)]

+ 2

[(ˆ
Br

κ �v

)(ˆ
∂Br

κ v ∇v · y
)

−
(ˆ

Br
κ � ∇v · y

)(ˆ
∂Br

κ |v|2
)]

.

An application of Cauchy–Schwartz shows that

(ˆ
∂Br

κv∇v · y
)2

≤
(ˆ

∂Br
κ |v|2

)(ˆ
∂Br

κ (∇v · y)2
)
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while with ϒ ≥ ‖∇ log κ · y‖L∞(BR), we get that
∣
∣∣
∣

(ˆ
Br

κ |∇v|2
)(ˆ

∂Br

∇κ · y
κ

κ |v|2
)

−
(ˆ

Br

∇κ · y
κ

κ |∇v|2
)(ˆ

∂Br
κ |v|2

)∣∣∣
∣ ≤ 2ϒD (r) H (r) .

It follows that

L ′(r) ≥ −2ϒ

r

r D (r)

H (r)
+ 2

⎡

⎢
⎣

(´
Br

κ �v
) (´

∂Br
κv∇v · y

)

(´
∂Br

κ |v|2
)2 −

(´
Br

κ �∇v · y
)

(´
∂Br

κ |v|2
)

⎤

⎥
⎦ ,

or rather,

(
r2ϒ L(r)

)′ = r2ϒ L ′(r) + 2ϒ

r
r2ϒ L(r)

≥ 2r2ϒ

⎡

⎢
⎣

(´
Br

κ �v
) (´

∂Br
κv∇v · y

)

(´
∂Br

κ |v|2
)2 −

(´
Br

κ �∇v · y
)

(´
∂Br

κ |v|2
)

⎤

⎥
⎦ .

��
Now we use Lemma 3.3 in combination with Proposition 5.1 to establish its parabolic

counterpart. Before stating the result, we discuss the kinds of solutions that we work with.
Let u : Rd × (0, T ) → R have moderate h-growth at infinity, as described in Definition

3.8. For every t ∈ (0, T ), assume first that u is sufficiently regular to define the functionals

I(t) = I(t; u, h) =
ˆ
Rd

|u (x, t)|
∣∣∣
〈
A∇u, HT h

〉
+ 2t ∂t u

∣∣∣ exp

(

−|h(x)|2
4t

)

dx

J(t) = J(t; u, h) =
ˆ
Rd

|J (x, t)| |u (x, t)| exp
(

−|h(x)|2
4t

)

dx

K(t) = K(t; u, h) =
ˆ
Rd

|J (x, t)|
∣∣∣
〈
A∇u, HT h

〉
+ 2t ∂t u

∣∣∣ exp

(

−|h(x)|2
4t

)

dx,

(24)

where

J (x, t) = J (x, t; u, h) = 1

d

[
2

〈
A∇ ∂u

∂t
, HT h

〉
+ ∂u

∂t
tr (H 〈∇zG(h), h〉) + 2t

∂2u

∂t2

]

(25)

and all derivatives are interpreted in the weak sense. Then we say that such a function u
belongs to the function class A

(
R
d × (0, T ) , h

)
if u has moderate h-growth at infinity (so

is consequently continuous), and for every t0 ∈ (0, T ), there exists ε ∈ (0, t) so that

I ∈ L∞ [t0 − ε, t0] (26)

and there exists p > 1 so that

J ∈ L p
(
[0, t0] , t

− d
2 dt

)
, K ∈ L p

(
[0, t0] , t

− d
2 dt

)
. (27)

This is the class of functions that we consider in our result. We remark that this may not be
the weakest set of conditions under which our proof holds, but it is far less restrictive than
assuming that our solutions are smooth and compactly supported, for example.

123



Variable-coefficient parabolic theory as a high-dimensional… Page 21 of 47 40

Theorem 5.3 Assume that tr (H 〈∇zG(h), h〉) ∈ L∞(Rd), where h, H, and G are described

by (4), (2), and (5). Define A = H−1
(
H−1

)T : Rd → R
d×d and let u ∈ A

(
R
d × (0, T ) , h

)

be a non-trivial solution to div (A∇u)+ ∂t u = 0 inRd × (0, T ). For every t ∈ (0, T ), define

H (t) = H (t; u, h) =
ˆ
Rd

|u(x, t)|2 e− |h(x)|2
4t dx

D (t) = D (t; u, h) =
ˆ
Rd

〈A(x)∇u(x, t),∇u(x, t)〉 e− |h(x)|2
4t dx

L (t) = L (t; u, h) = tD (t; u, h)

H (t; u, h)
.

Set L̃ (t) = tϒL (t), where ϒ ≥ ‖tr (H 〈∇zG(h), h〉)‖L∞(Rd ). Then L̃ (t) is monotonically
non-decreasing in t.

Proof We first check that with κn and vn defined through the transformation maps Fd,n , the
hypothesis of Lemma 5.1 are satisfied. Recall that Bn

T ⊂ R
d×n is given by (15). Let κn be as

in Lemma 2.1, which shows that

‖∇ log κn · y‖L∞(Bn
T ) ≤ ‖tr (H 〈∇zG(h), h〉)‖L∞(Rd ) < ∞.

In particular, ∇ log κn · y ∈ L∞(Bn
T ) for each n.

Let u ∈ A
(
R
d × (0, T ) , h

)
be a non-trivial solution to div (A∇u) + ∂t u = 0 in R

d ×
(0, T ). For every n ∈ N≥2, let vn : Bn

T → R satisfy

vn (y) = u
(
Fd,n (y)

)
.

Since u has moderate h-growth at infinity, then Lemma 3.9 shows that each vn belongs to
W 1,2

(
Bn
T , κn(y) dy

)
.

An application of Corollary 2.3 shows that

1

κn(y)
div (κn(y)∇vn) = J (x, t) ,

where J is defined in (25) and does not depend on n. For every n, define �n : Bn
T → R so

that

�n (y) = J
(
Fd,n (y)

)

and then

div (κn∇vn) = κn�n .

Since u ∈ A
(
R
d × (0, T ) , h

)
, then (27) implies that for every t ∈ (0, T ), J belongs to

L1
(
[0, t] , s− d

2 ds
)
. Corollary 3.7 then shows that �nvn is integrable with respect to κn dy in

each Bn
t . Similarly, becauseK belongs to L1

(
[0, t] , s− d

2 ds
)
, then Lemma 2.2 and Corollary

3.7 show that �n∇vn · y is integrable with respect to κn dy in each Bn
t . Rephrased, this means

that �n is integrable with respect to both κn vn and κn ∇vn · y on each Bn
t .

By backward uniqueness of heat equations, (as in [46], for example), u (·, t) is a non-trivial
function of x for each t ∈ (0, T ).

Since vn |∂Br = u
(
·, r2

2d

)
is non-trivial for each r ∈

(
0,

√
2dT

)
, then all of the assump-

tions from Proposition 5.1 hold. Therefore, we may apply Proposition 5.1 to each vn on any
ball of radius

√
2dt for t < T .
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First we compute the frequency function associated to vn on the ball of radius
√
2dt . By

Lemma 3.3,

H
(√

2dt; vn, κn

)
=
ˆ
Snt

κn(y) |vn (y)|2 dσ(y)

= (2dt)
dn−1
2

∣
∣
∣Sdn−1

∣
∣
∣
ˆ
Rd

|u (x, t)|2 Kt,n (h (x)) dx . (28)

Lemmas 2.2 and 3.3 imply that

(2dt)− dn−1
2

∣
∣Sdn−1

∣
∣

ˆ
Snt

κn(y)vn (y) (y · ∇vn (y)) dσ(y)

=
ˆ
Rd

[〈
A∇u, HT h

〉
+ 2t∂t u

]
u (x, t) Kt,n (h (x)) dx,

(29)

while Lemma 3.5 implies that

1
∣∣Sdn−1

∣∣

ˆ
Bn
t

κn(y)�n (y) vn (y) |y|dn−2 |y|2−dn dy

= d
ˆ t

0

ˆ
Rd

J (x, s)u (x, s) (2ds)
dn−2
2 Kn (h (x) , s) dx ds.

(30)

Using the expression (23) along with (29) and (30), we see that

1
∣∣Sdn−1

∣∣D
(√

2dt; vn, κn

)
= (2dt)

dn−2
2

ˆ
Rd

[〈
A∇u, HT h

〉
+ 2t∂t u

]
u (x, t) Kt,n (h (x)) dx

− d
ˆ t

0

ˆ
Rd

J (x, s)u (x, s) (2ds)
dn−2
2 Kn (h (x) , s) dx ds.

We remark that since u ∈ A
(
R
d × (0, T )

)
, then Lemmas 3.3 and 3.5 guarantee that the

integrals in (28), (29), and (30) are all well-defined. Therefore,

Ln(t) := 1

2
L
(√

2dt; vn , κn

)
=

√
2dtD

(√
2dt; vn , κn

)

2H
(√

2dt; vn , κn

)

=
´
Rd u (x, t)

[〈
A∇u, HT h

〉 + 2t∂t u
]
Kt,n (h (x)) dx − d

´ t
0

´
Rd J (x, s)u (x, s)

( s
t

) dn−2
2 Kn (h (x) , s) dx ds

2
´
Rd |u (x, t)|2 Kt,n (h (x)) dx

=
´
Rd u (x, t)

[〈
A∇u, HT h

〉 + 2t∂t u
]
Kt,n(h(x))dx

2
´
Rd |u (x, t)|2 Kt,n(h(x))dx

−
d
´ t
0

´
Rd J (x, s)u (x, s)

(
s
t − |h(x)|2

2dnt

) dn−d−2
2

χBns (h(x))dx ds

2
´
Rd |u (x, t)|2

(
1 − |h(x)|2

2dnt

) dn−d−2
2

χBnt (h(x))dx

.

Thus,

lim
n→∞ Ln(t) =

´
Rd u (x, t)

[〈
A∇u, HT h

〉 + 2t∂t u
]
Kt (h (x)) dx

2
´
Rd |u (x, t)|2 Kt (h (x)) dx

,
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where we use lim
n→∞ Kt,n(x) = Kt (x) from (13), the bound (14), and that

lim
n→∞

∣
∣
∣
∣
∣
∣

(
s

t
− |h(x)|2

2dnt

) dn−d−2
2

χBns (h(x))

∣
∣
∣
∣
∣
∣
≤ lim

n→∞
( s
t

) dn−d−2
2 = 0

for every s ∈ (0, t) along with the Dominated Convergence Theorem.
Since ∂t u = − div (A∇u) and ∇ (Kt ◦ h) = − 1

2t H
T h Kt (h), then

1

2

ˆ
Rd

u (x, t)
[〈
A∇u, HT h

〉
+ 2t∂t u

]
Kt (h (x)) dx

= −t
ˆ
Rd

u (x, t) [〈A∇u,∇Kt (h(x))〉 + div (A∇u) Kt (h(x))] dx

= −t
ˆ
Rd

u (x, t) div [A∇u Kt (h(x))] dx = t
ˆ
Rd

〈A∇u,∇u〉 Kt (h(x)) dx

and we deduce that

lim
n→∞ Ln(t) = L (t; u, h) . (31)

Define L̃n(t) = tϒn Ln(t) for some ϒn ≥ ‖∇ log κn · y‖L∞(Bn
T ). Lemma 2.1 shows that

‖∇ log κn · y‖L∞(Bn
T ) ≤ ‖tr (H 〈∇zG(h), h〉)‖L∞(Rd ) =: ϒ,

so we may choose ϒn = ϒ for all n ∈ N. Observe that

L̃n(t) = tϒ Ln(t) = 1

2
tϒ L

(√
2dt; vn, κn

)

= 1

2 (2d)ϒ
(2dt)ϒ L

(√
2dt; vn, κn

)
= 1

2 (2d)ϒ
L̃
(√

2dt; vn, κn

)
,

where L̃ is as given in Proposition 5.1. An application of the chain rule shows that

d

dt
L̃n(t) = 1

2 (2d)ϒ
L̃ ′ (√2dt; vn, κn

) √
2d

2
√
t
.

By Proposition 5.1, it follows that

d

dt
L̃n(t) ≥ tϒ

√
d

2t

⎡

⎢
⎣

(´
Snt

κn vn y · ∇vn

) (´
Bn
t
κn �n vn

)

(´
Snt

κn |vn |2
)2 −

´
Bn
t
κn �n y · ∇vn´
Snt

κn |vn |2

⎤

⎥
⎦ .

By Lemmas 2.2 and 3.5

1

d
∣∣Sdn−1

∣∣

ˆ
Bn
t

κn(y) �n (y) (y · ∇vn (y)) |y|dn−2 |y|2−dn dy

=
ˆ t

0

ˆ
Rd

J (x, s)
[〈
A∇u, HT h

〉
+ 2s ∂su

]
(2ds)

dn−2
2 Kn (h(x), s) dx ds.

Therefore, substituting this along with the expressions from (28), (29) and (30) into the
previous inequality shows that

d

dt
L̃n (t) ≥ −dtϒ−1

´ t
0
( s
t
) dn−2

2
´
Rd J (x, s)

[〈
A∇u, HT h

〉
+ 2s ∂su

]
Kn (h(x), s) dx ds

2
´
Rd

|u (x, t)|2 Kt,n (h (x)) dx
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+ dtϒ−1

(´
Rd u (x, t)

[〈
A∇u, HT h

〉
+ 2t ∂t u

]
Kt,n (h (x)) dx

)(´ t
0
( s
t
) dn−2

2
´
Rd J (x, s)u (x, s) Kn (h (x) , s) dx ds

)

2
(´

Rd
|u (x, t)|2 Kt,n (h (x)) dx

)2 .

Estimate (14) along with (51) and (52) show that

d

dt
L̃n(t) ≥ − dCd t

ϒ−1

2αdHn (t)

[ˆ t

0

( s
t

) dn−2
2

K(s) ds + CdI(t)

αdHn(t)

ˆ t

0

( s
t

) dn−2
2

J(s) ds

]

=: F̃n(t),
(32)

where I, J, and K are defined in (24) and we have introduced

Hn (t) = Hn (t; u, h) :=
ˆ
Rd

|u(x, t)|2
(

1 − |h(x)|2
2dnt

) dn−d−2
2

χBnt (h(x))dx . (33)

To show that L̃ is monotone non-decreasing, it suffices to show that given any t0 ∈ (0, T ],
there exists δ ∈ (0, t0) so that F̃n converges uniformly to 0 on [t0 − δ, t0]. Indeed, since
d
dt L̃n(t) ≥ F̃n(t), then for any t ∈ [t0 − δ, t0], it holds that

L̃n(t0) − L̃n(t) ≥
ˆ t0

t
F̃n(s)ds.

By definition and (31), L̃n(t) = tϒ Ln(t) converges pointwise to L̃(t) = tϒL(t; u, h), from
which it follows that

L̃(t0) − L̃(t) = lim
n→∞

[
L̃n(t0) − L̃n(t)

] ≥ lim
n→∞

ˆ t0

t
F̃n(s)ds.

Assuming the local uniform convergence of F̃n to 0 on [t0 − δ, t0] ⊃ [t, t0], we see that

lim
n→∞

ˆ t0

t
F̃n(s)ds =

ˆ t0

t
lim
n→∞ F̃n(s)ds = 0

and we may conclude that L̃(t0) − L̃(t) ≥ 0, as desired.
It remains to justify the local uniform convergence of F̃n to 0, as described above. Let

t0 ∈ (0, T ] and recall that since u is non-trivial, then backward uniqueness ensures thatˆ
Rd

|u (x, t0)|2 dx > 0 so that L (t0) is well-defined.

We first consider the terms in the denominator of F̃n , defined as Hn (t) above. Observe
that for any n ∈ N, we have from (33) that

Hn (t) ≥
ˆ
{|h(x)|2≤dnt

} |u (x, t)|2
(

1 − |h(x)|2
2dnt

) dn−d−2
2

dx

≥
ˆ
{|h(x)|2≤dnt

} |u (x, t)|2 exp
(

− ln 2 |h(x)|2
2t

)

dx,

(34)

where have used a Taylor expansion to show that if |h(x)|2 ≤ dnt , then

log

⎡

⎣
(

1 − |h(x)|2
2dnt

) dn−d−2
2

⎤

⎦
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= −dn − d − 2

dn

|h(x)|2
4t

⎡

⎣1 + 1

2

(
|h(x)|2
2dnt

)

+ 1

3

(
|h(x)|2
2dnt

)2

+ . . .

⎤

⎦

≥ −|h(x)|2
4t

[

1 + 1

2

(
1

2

)
+ 1

3

(
1

2

)2

+ . . .

]

= − ln 2 |h(x)|2
2t

.

Set Km = {x : |h(x)| ≤ m} and note that each Km is compact, the sets are nested, and

R
d = ⋃

m∈N Km . Thus, for any positive real number 2 H ≤
ˆ
Rd

|u (x, t0)|2 dx , there exists
M ∈ N so that ˆ

KM

|u (t0)|2 dx ≥ 3

2
H .

Fix someμ < min
{ t0
2 , T − t0

}
. Since u is continuous and KM×[t1 − μ, t1 + μ] is compact,

then there exists δ ∈ (0, μ] so that whenever x ∈ KM and |t − t0| ≤ δ, it holds that

|u(x, t) − u(x, t0)| <

√
H

2 |KM | .

In particular, if t ∈ [t0 − δ, t0], thenˆ
KM

|u (x, t)|2 dx ≥
ˆ
KM

|u (x, t0)|2 dx −
ˆ
KM

|u (x, t) − u (x, t0)|2 dx ≥ H .

If N ∈ N is large enough so that dN (t0 − δ) ≥ M2, then
{|h(x)|2 ≤ dN (t0 − δ)

} ⊃ KM .
It follows that for any n ≥ N and any t ∈ [t0 − δ, t0], we have from (34) that

Hn (t) ≥
ˆ
{|h(x)|2≤dNt

} |u (x, t)|2 exp
(

− ln 2 |h(x)|2
2t

)

dx ≥ e− dN ln 2
2

ˆ
KM

|u (x, t)|2 dx

≥ He− dN ln 2
2 > 0.

(35)

In particular, we have a uniform lower bound on allHn (t) for n ≥ N and all t ∈ [t0 − δ, t0].
Since u ∈ A

(
R
d × (0, T ) , h

)
, then there exists p > 1 so that (27) holds. Returning to

the expression (32), an application of Hölder’s inequality shows that
ˆ t

0

( s
t

) dn−2
2

J(s) ds =
ˆ t

0

( s
t

) dn+d−2
2

( s
t

)− d
2
J(s) ds

≤
[ˆ t

0

( s
t

) dn+d−2
2

p
p−1

ds

] p−1
p

‖J‖
L p

(
[0,t],s−

d
2 ds

)

= t
p−1
p

(ˆ 1

0
τ

p(dn+d−2)
2(p−1) dτ

) p−1
p

‖J‖
L p

(
[0,t],s−

d
2 ds

)

=
[

2t(p−1)

n
(
dp+ dp−2

n

)

] p−1
p

‖J‖
L p

(
[0,t],s−

d
2 ds

) .

In particular,

sup
t∈[t0−δ,t0]

ˆ t

0

( s
t

) dn−2
2

J(s) ds ≤ cp,d

(
t0
n

)1− 1
p ‖J‖

L p

(
[0,t],s−

d
2 ds

) (36)
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and an identical argument holds with K in place of J. Assuming that δ ≤ ε from (26)
(which holds by possibly redefining δ), we put (26), (35) and (36) together in (32) to see that
whenever n ≥ N ,

inf
t∈[t0−δ,t0]

F̃n(t) ≥ −Cd,pt
ϒ− 1

p
0 e

dN ln 2
2

2αd Hn1−
1
p

⎡

⎣‖K‖
L p

(
[0,t0],t

− d
2 dt

) + Cde
dN ln 2

2

H
‖I‖L∞([t0−δ,t0]) ‖J‖

L p

(
[0,t0],t

− d
2 dt

) .

The required version of uniform convergence follows from this bound and completes the
proof. ��

6 Alt–Caffarelli–Friedmanmonotonicity formula

In the groundbreaking work of Alt–Caffarelli–Friedman [2], the authors study two-phase
elliptic free boundary problems. The monotonicity formula described in Proposition 6.1,
which we refer to as ACF, is a crucial tool in their work since it is used to establish Lipschitz
continuity of minimizers, and study the regularity of the free boundary.

Proposition 6.1 ([2], Lemma 5.1) For some R > 0, let BR ⊂ R
N . Let v1, v2 be two non-

negative functions that belong to C0 (BR) ∩ W 1,2 (BR). Assume that �v1 ≥ 0 and �v2 ≥ 0
in the sense of distributions, v1v2 ≡ 0 and v1 (0) = v2 (0) = 0. Then for all r < R,

φ (r; v) = 1

r4

(ˆ
Br

|∇v1 (y)|2 |y|2−N dy

)(ˆ
Br

|∇v2 (y)|2 |y|2−N dy

)
(37)

is monotonically non-decreasing in r .

Different versions of this formula were proved in [9] by Caffarelli, and by Caffarelli and
Kenig in [10] to show the regularity of solutions to parabolic equations. Caffarelli, Jerison,
and Kenig in [11] further extended these ideas, proving a powerful uniform bound on the
monotonicity functional, instead of a monotonicity result. Later on, Matevosyan and Pet-
rosyan [45] proved another such uniform bound for non-homogeneous elliptic and parabolic
operators with variable-coefficients. ACF-type monotonicity formulas have also been used to
study almost minimizers of variable-coefficient Bernoulli-type functionals, see for example
[19].

In this section, we prove a parabolic version of theorem 6.1, given below in Theorem 6.4.
To the best of our knowledge, this result is also new.

As in the previous section, to employ the high-dimensional limiting technique to prove
this parabolic result, we first need a version of it for solutions to non-homogeneous variable-
coefficient elliptic equations. As similar results for homogeneous variable-coefficient elliptic
equations have found numerous applications, this monotonicity result could be interesting in
its own right. Once we have the suitable elliptic result in hand, we employ techniques similar
to those in the previous section to establish our parabolic ACF result.

Corollary 6.2 For some R > 0, let BR ⊂ R
N . For each i = 1, 2, we make the following

assumptions: Let κi : BR → R+ be bounded, elliptic, and regular in the sense that 0 <

λ ≤ κi ≤ 	 < ∞ in BR and ∇ log κi · y ∈ L∞(BR). Define ϒi ≥ ‖∇ log κi · y‖L∞(BR).
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Let vi ∈ C0 (BR) ∩ W 1,2 (BR, κi dy) be a non-negative function for which vi (0) = 0, and
div(κi∇vi ) ≥ κi �i in BR in the sense of distributions, where �−

i is integrable with respect to
κi vi |y|2+ϒi−N dy on each Br ⊂ BR. Assume further that for every r < R, �i,r := suppvi ∩
Sr := suppvi ∩ ∂Br has non-zero measure. Finally, assume that N ≥ max {ϒ1, ϒ2} + 2 and
that v1v2 ≡ 0. Then for all r < R, we define φ (r) = φ (r; v1, v2, κ1, κ2) as

φ(r) = 1

r4+ϒ1+ϒ2

(ˆ
Br

κ1(y)|∇v1(y)|2|y|2+ϒ1−Ndy

)(ˆ
Br

κ2(y)|∇v2(y)|2|y|2+ϒ2−Ndy

)
.

If we set φ̃ (r) = rμφ (r), where μ = 4
(

	−λ
	

) + ϒ1 + ϒ2, then it holds that

d

dr
φ̃ (r) ≥ − 2r

4
(

	−λ
	

)
−3

(N − 2)

(´
Br κ1 �−

1 v1 |y|2+ϒ1−N dy
) (´

Br κ2 |∇v2|2 |y|2+ϒ2−N dy
) (´

Sr κ1 |∇v1|2 dσ
)

(´
Sr κ1 |v1|2 dσ

)

− 2r
4
(

	−λ
	

)
−3

(N − 2)

(´
Br κ1 |∇v1|2 |y|2+ϒ1−N dy

) (´
Br κ2 �−

2 v2 |y|2+ϒ2−N dy
) (´

Sr κ2 |∇v2|2 dσ
)

(´
Sr κ2 |v2|2 dσ

) .

(38)

Remark 6.3 Notice that the main difference between our φ(r) and the one defined in (37) is
the introduction of ϒ1 and ϒ2, which depend on ∇κ1 and ∇κ2, respectively, appearing in
the powers on |y|. In fact, if we set κi = 1, we recover a monotonicity formula very similar
to [18, Corollary 2], which generalizes Proposition 6.1 to the non-homogeneous setting. If
each �i = 0, the right-hand side of (38) vanishes and we reach a true monotonicity result.

Proof Observe that for a.e. r ,

d

dr

ˆ
Br

κi |∇vi |2 |y|2+ϒi−N dy = r2+ϒi−N
ˆ
Sr

κi |∇vi |2 dσ(y).

Therefore, for a.e. r ,

φ′ (r) = − 4 + ϒ1 + ϒ2

r5+ϒ1+ϒ2

(ˆ
Br

κ1 |∇v1|2 |y|2+ϒ1−N dy

)(ˆ
Br

κ2 |∇v2|2 |y|2+ϒ2−N dy

)

+ r2−N

r4+ϒ2

(ˆ
Sr

κ1 |∇v1|2 dσ(y)

)(ˆ
Br

κ2 |∇v2|2 |y|2+ϒ2−N dy

)

+ r2−N

r4+ϒ1

(ˆ
Br

κ1 |∇v1|2 |y|2+ϒ1−N dy

)(ˆ
Sr

κ2 |∇v2|2 dσ(y)

)
.

(39)

We want to estimate this derivative.
Throughout this part of the proof, we suppress subscripts for i = 1, 2 on all functions and

exponents. That is, in place of vi , κi , �i , ϒi , we write v, κ , �, and ϒ . Since div(κ∇v) ≥ κ �

in BR , then�v ≥ l, where we define l := − (
�− + ∇ log κ · ∇v

)
. Define vm and lm to be the

mollifications of v and l, respectively, at scale m−1. Let Ar ,ε = Br\Bε for some ε ∈ (0, r).
Integration by parts shows that

r1+ϒ−N
ˆ
Sr

κ |vm |2 dσ

=
ˆ
Sr

κ |vm |2 |y|ϒ−N y · n̂ dσ(y)

=
ˆ
Ar,ε

div
(
κ |vm |2 |y|ϒ−N y

)
dy +

ˆ
Sε

κ |vm |2 |y|ϒ−N y · n̂ dσ(y)
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=
ˆ
Ar,ε

(ϒκ + ∇κ · y) |vm |2 |y|ϒ−N dy + 2
ˆ
Ar,ε

κ vm∇vm · y |y|ϒ−N dy

+ ε1+ϒ−N
ˆ
Sε

κ |vm |2 dσ(y).

Moreover,

r1+ϒ−N
ˆ
Sr

κ vm∇vm · y dσ(y) =
ˆ
Sr

κ vm |y|2+ϒ−N ∇vm · n̂ dσ(y)

=
ˆ
Ar ,ε

div
(
κ∇vm vm |y|2+ϒ−N

)
dy +

ˆ
Sε

κ vm |y|2+ϒ−N ∇vm · n̂ dσ(y)

=
ˆ
Ar ,ε

κ |∇vm |2 |y|2+ϒ−N dy +
ˆ
Ar ,ε

κ

[
�vm + ∇κ

κ
· ∇vm

]
vm |y|2+ϒ−N dy

+ (2 + ϒ − N )

ˆ
Ar ,ε

κ vm∇vm · y |y|ϒ−N dy + ε2+ϒ−N
ˆ
Sε

κ vm∇vm · n̂ dσ(y).

Since �vm ≥ lm = − (
�−)

m − (∇ log κ · ∇v)m and ϒ + ∇ log κ · y ≥ 0 in BR , then

N − ϒ − 2

2
r1+ϒ−N

ˆ
Sr

κ |vm |2 dσ(y) + r1+ϒ−N
ˆ
Sr

κ vm∇vm · y dσ(y)

≥
ˆ
Ar,ε

κ |∇vm |2 |y|2+ϒ−N dy

−
ˆ
Ar,ε

κ
[(

�−)
m + (∇ log κ · ∇v)m − ∇ log κ · ∇vm

]
vm |y|2+ϒ−N dy

+ N − ϒ − 2

2

ˆ
Ar,ε

(ϒ + ∇ log κ · y) κ |vm |2 |y|ϒ−N dy + Iε

≥
ˆ
Ar,ε

κ |∇vm |2 |y|2+ϒ−N dy −
ˆ
Ar,ε

κ
(
�−)

m vm |y|2+ϒ−N dy

−
ˆ
Ar,ε

κ
∣∣(∇ log κ · ∇v)m − ∇ log κ · ∇vm

∣∣ vm |y|2+ϒ−N dy + Iε,

where

Iε = N − ϒ − 2

2
ε1+ϒ−N

ˆ
Sε

κ |vm |2 dσ(y) + ε2+ϒ−N
ˆ
Sε

κ vm∇vm · n̂ dσ(y).

By rearrangement, that Ar ,ε ⊂ Br and ϒ ≥ 0, it follows that
ˆ
Ar,ε

κ |∇vm |2 |y|2+ϒ−N dy ≤ N − 2

2
r1+ϒ−N

ˆ
Sr

κ |vm |2 dσ(y)

+ r1+ϒ−N
ˆ
Sr

κ vm∇vm · y dσ(y)

+
ˆ
Br

κ
(
�−)

m vm |y|2+ϒ−N dy

+
ˆ
Br

κ
∣∣(∇ log κ · ∇v)m − ∇ log κ · ∇vm

∣∣ vm |y|2+ϒ−N dy − Iε.
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Since ∇vm is bounded and ϒ ≥ 0, then Iε → 0 as ε → 0. In particular, the right-hand side
of the previous inequality is bounded independent of ε. Accordingly, we may take ε → 0,
eliminate Iε on the right-hand side, and replace Ar ,ε with Br on the left.

Now we integrate with respect to r , r0 < r < r0 + δ, divide through by δ, then take
m → ∞ to get

 r0+δ

r0

ˆ
Br

κ |∇v|2 |y|2+ϒ−N dy dr ≤ N − 2

2

 r0+δ

r0
r1+ϒ−N

ˆ
Sr

κ |v|2 dσ(y) dr

+
 r0+δ

r0
r1+ϒ−N

ˆ
Sr

κ v∇v · y dσ(y) dr

+
 r0+δ

r0

ˆ
Br

κ �−v |y|2+ϒ−N dy dr .

By taking δ → 0, it follows that for a.e. r0 > 0
ˆ
Br0

κ |∇v|2 |y|2+ϒ−N dy ≤ N − 2

2
r1+ϒ−N
0

ˆ
Sr0

κ |v|2 dσ(y)

+ r1+ϒ−N
0

ˆ
Sr0

κ v∇v · y dσ(y) +
ˆ
Br0

κ �−v |y|2+ϒ−N dy.

After reintroducing the subscripts, we see that for a.e. r > 0,

ˆ
Br

κi |∇vi |2 |y|2+ϒi−N dy−
ˆ
Br

κi �
−
i vi |y|2+ϒi−N dy ≤ N − 2

2
r1+ϒi−N

ˆ
Sr

κi |vi |2 dσ(y)

+ r1+ϒi−N
ˆ
Sr

κi vi∇vi · y dσ(y). (40)

By rescaling, we may assume that r = 1.
Let ∇θw denote the gradient of function w on SN−1, the unit sphere. Let �i denote the

support of vi on SN−1 for i = 1, 2. By assumption, the measures of �1 and �2 are non-zero.
For i = 1, 2, define

1

αi
= inf

{´
�i

|∇θw|2´
�i

w2
: w ∈ H1,2

0 (�i )

}

.

Observe that for any βi ∈ (0, 1),

1 − β2
i

αi

ˆ
S1

|vi |2 dσ(y) ≤ (
1 − β2

i

)ˆ
S1

|∇θ vi |2 dσ(y)

and

2βi√
αi

ˆ
S1

|vi | |∇vi · y| dσ(y) ≤ 2

(
β2
i

αi

ˆ
S1

|vi |2 dσ(y)

) 1
2 (ˆ

S1
(∇vi · y)2 dσ(y)

) 1
2

≤ β2
i

αi

ˆ
S1

|vi |2 dσ(y) +
ˆ
S1

|∇rvi |2 dσ(y)

≤
ˆ
S1

[
β2
i |∇θ vi |2 + |∇rvi |2

]
dσ(y).
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If we set

1 − β2
i

αi
= βi (N − 2)√

αi
(41)

for i = 1, 2, then by combining (40) with the last two inequalities and using that λ ≤ κi (y) ≤
	, we haveˆ

B1
κi |∇vi |2 |y|2+ϒi−N dy −

ˆ
B1

κi �
−
i vi |y|2+ϒi−N dy ≤ N − 2

2

ˆ
S1

κi |vi |2 dσ(y)

+
ˆ
S1

κi vi∇vi · y dσ(y)

≤ 	(N − 2)

2

ˆ
S1

|vi |2 dσ(y) + 	

ˆ
S1

|vi | |∇vi · y| dσ(y)

≤ 	
√

αi

2βi

ˆ
S1

|∇vi |2 dσ(y)

≤ 	
√

αi

2λβi

ˆ
S1

κi |∇vi |2 dσ(y).

Substituting these inequalities into (39) with r = 1 gives

φ′ (1) ≥ − (4 + ϒ1 + ϒ2)

(ˆ
B1

κ1 |∇v1|2 |y|2+ϒ1−N dy

)(ˆ
B1

κ2 |∇v2|2 |y|2+ϒ2−N dy

)

+ 2λβ1

	
√

α1

(ˆ
B1

κ1 |∇v1|2 |y|2+ϒ1−N dy −
ˆ
B1

κ1 �−
1 v1 |y|2+ϒ1−N dy

)(ˆ
B1

κ2 |∇v2|2 |y|2+ϒ2−N dy

)

+ 2λβ2

	
√

α2

(ˆ
B1

κ1 |∇v1|2 |y|2+ϒ1−N dy

)(ˆ
B1

κ2 |∇v2|2 |y|2+ϒ2−N dy −
ˆ
B1

κ2 �−
2 v2 |y|2+ϒ2−N dy

)

=
(
2λ

	

[
β1√
α1

+ β2√
α2

]
− 4 − ϒ1 − ϒ2

)(ˆ
B1

κ1 |∇v1|2 |y|2+ϒ1−N dy

)(ˆ
B1

κ2 |∇v2|2 |y|2+ϒ2−N dy

)

− 2λβ1

	
√

α1

(ˆ
B1

κ1 �−
1 v1 |y|2+ϒ1−N dy

)(ˆ
B1

κ2 |∇v2|2 |y|2+ϒ2−N dy

)

− 2λβ2

	
√

α2

(ˆ
B1

κ1 |∇v1|2 |y|2+ϒ1−N dy

)(ˆ
B1

κ2 �−
2 v2 |y|2+ϒ2−N dy

)
.

The relation (41) is satisfied when

βi√
αi

= 1

2

{[
(N − 2)2 + 4

αi

] 1
2 − (N − 2)

}

.

If we define γi > 0 so that γi (γi + N − 2) = 1
αi

then βi√
αi

= γi for i = 1, 2.

As a function that acts on subsets of SN−1, γ was studied in [27] and it was shown that

γ (E) ≥ ψ
( |E |

|SN−1|
)
, where ψ is the decreasing, convex function defined by

ψ (s) =
{ 1

2 log
( 1
4s

) + 3
2 if s < 1

4
2 (1 − s) if 1

4 < s < 1.

We use the notation γi = γ (�i ) for i = 1, 2. With si = |�i ||SN−1| , it follows from convexity

that

γ1 + γ2 ≥ ψ (s1) + ψ (s2) ≥ 2ψ

(
s1 + s2

2

)
≥ 2ψ

(
1

2

)
= 2.
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Moreover, since each vi ∈ H1,2
0 (�i ), then

γi = N − 2

2

{[
1 + 4

αi (N − 2)2

] 1
2 − 1

}

≤ N − 2

2

2

αi (N − 2)2

= 1

αi (N − 2)
≤ 1

N − 2

´
�i

|∇θ vi |2´
�i

|vi |2

≤ 1

N − 2

´
S1

|∇vi |2´
S1

|vi |2
≤ 	

λ (N − 2)

´
S1

κi |∇vi |2´
S1

κi |vi |2
.

Therefore,

φ′ (1) ≥ −
[
4

(
	 − λ

	

)
+ ϒ1 + ϒ2

]
φ (1)

− 2

(N − 2)

(ˆ
B1

κ1 �−
1 v1 |y|2+ϒ1−N dy

)(ˆ
B1

κ2 |∇v2|2 |y|2+ϒ2−N dy

) ´
S1

κ1 |∇v1|2´
S1

κ1 |v1|2

− 2

(N − 2)

(ˆ
B1

κ1 |∇v1|2 |y|2+ϒ1−N dy

)(ˆ
B1

κ2 �−
2 v2 |y|2+ϒ2−N dy

) ´
S1

κ2 |∇v2|2´
S1

κ2 |v2|2
.

For values of r �= 1, define vi,r (y) = r−1vi (ry) for i = 1, 2 and κi,r (y) = κi (ry), so
that for 0 < s, r ≤ 1,

φ
(
s; v1,r , v2,r , κ1,r , κ2,r

) = 1

s4+ϒ1+ϒ2

(ˆ
Bs

∣∣∇v1,r
∣∣2 |y|2+ϒ1−N κ1,r dy

)(ˆ
Bs

∣∣∇v2,r
∣∣2 |y|2+ϒ2−N κ2,r dy

)

= 1

(sr)4+ϒ1+ϒ2

(ˆ
Brs

|∇v1|2 |y|2+ϒ1−N κ1 dy

)(ˆ
Brs

|∇v2|2 |y|2+ϒ2−N κ2 dy

)

= φ (rs; v1, v2, κ1, κ2) .

Thus,

φ′ (s; v1,r , v2,r , κ1,r , κ2,r
) = d

ds
φ
(
s; v1,r , v2,r , κ1,r , κ2,r

)

= d

ds
φ (rs; v1, v2, κ1, κ2) = rφ′ (rs; v1, v2, κ1, κ2)

and taking s = 1 gives

φ′(1; v1,r , v2,r , κ1,r , κ2,r ) = rφ′(r; v1, v2, κ1, κ2).

Let �i,r denote the support of vi on Sr and set si,r = |�i,r |
r N−1|SN−1| for i = 1, 2. With �i,r (y) =

r�i (ry), we have div(κi,r∇vi,r ) ≥ κi,r�i,r . Applying the derivative estimates above to the
pair v1,r , v2,r then rescaling leads to

φ′ (r) = 1

r
φ′(1; v1,r , v2,r , κ1,r , κ2,r )

≥ −1

r

[
4

(
	 − λ

	

)
+ ϒ1 + ϒ2

]
φ(1; v1,r , v2,r , κ1,r , κ2,r )

− 2

r (N − 2)

(ˆ
B1

κ1,r �−
1,rv1,r |y|2+ϒ1−N dy

)

×
(ˆ

B1
κ2,r

∣
∣∇v2,r

∣
∣2 |y|2+ϒ2−N dy

) ´
S1

κ1,r
∣∣∇v1,r

∣∣2

´
S1

κ1,r
∣∣v1,r

∣∣2
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− 2

r (N − 2)

(ˆ
B1

κ1,r
∣∣∇v1,r

∣∣2 |y|2+ϒ1−N dy

)(ˆ
B1

κ2,r �−
2,rv2,r |y|2+ϒ2−N dy

)

×
´
S1

κ2,r
∣
∣∇v2,r

∣
∣2

´
S1

κ2,r
∣
∣v2,r

∣
∣2

≥ −1

r

[
4

(
	 − λ

	

)
+ ϒ1 + ϒ2

]
φ (r; v)

− 2

r3+ϒ1+ϒ2 (N − 2)

(ˆ
Br

κ1 �−
1 v1 |y|2+ϒ1−N dy

)(ˆ
Br

κ2 |∇v2|2 |y|2+ϒ2−N dy

) ´
Sr

κ1 |∇v1|2´
Sr

κ1 |v1|2

− 2

r3+ϒ1+ϒ2 (N − 2)

(ˆ
Br

κ1 |∇v1|2 |y|2+ϒ1−N dy

)(ˆ
Br

κ2 �−
2 v2 |y|2+ϒ2−N dy

) ´
Sr

κ2 |∇v2|2´
Sr

κ2 |v2|2
.

That is, with μ = 4
(

	−λ
	

) + ϒ1 + ϒ2, the conclusion described by (38) follows. ��
In what follows, we introduce our new parabolic ACF-type result for variable-coefficient

operators. We prove this result using only Corollary 6.2 and the tools and ideas that have
been developed so far in this paper. As in the previous section, we first discuss the kinds of
solutions that we work with.

Let u : Rd × (0, T ) → R have moderate h-growth at infinity, as described in Definition
3.8. For every t ∈ (0, T ), assume first that u is sufficiently regular to define the functionals
D (t; u, h) and T (t; u, h) from (16) as well as

J−(t) = J−(t; u, h) =
ˆ
Rd

J−(x, t) |u (x, t)| exp
(

−|h(x)|2
4t

)

dx,

where J (x, t) = J (x, t; u, h) is as defined in (25) and all derivatives are interpreted
in the weak sense. Then we say that such a function u belongs to the function class
C
(
R
d × (0, T ) , h

)
if u has moderate h-growth at infinity (so is consequently continuous),

and for every t0 ∈ (0, T ), there exists ε ∈ (0, t0) so that

D ∈ L∞ [t0 − ε, t0] , T ∈ L∞ [t0 − ε, t0] (42)

and

J− ∈ L1
(
[0, t0] , t

− d
2 dt

)
. (43)

This is the class of functions that we consider in our result. As before, this may not be the
weakest setting in which our proof holds.

Theorem 6.4 For each i = 1, 2, we make the following assumptions: Let tr
(Hi 〈∇zGi (hi ), hi 〉) ∈ L∞(Rd), where hi , Hi , and Gi are described by (4), (2), and

(5). Define ϒi := ‖tr(Hi 〈∇Gi (hi ), hi 〉‖L∞(Rd) and set Ai = H−1
i

(
H−1
i

)T : R
d →

R
d×d . Let ui ∈ C

(
R
d × (0, T ) , hi

)
be a non-negative function with ui (0, 0) = 0 and

div (Ai∇ui ) + ∂t ui ≥ 0 in R
d × (0, T ) in the sense of distributions. Assume also that

u1u2 ≡ 0. For every t ∈ (0, T ), define �(t) = �(t; u1, u2, h1, h2) as

�(t) = 1

t2

(ˆ t

0

ˆ
Rd

( s
t

)ϒ1
2 〈A1∇u1,∇u1〉e− |h1(x)|2

4s dx ds

)

×
(ˆ t

0

ˆ
Rd

( s
t

)ϒ2
2 〈A2∇u2,∇u2〉e− |h2(x)|2

4s dx ds

)

.
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Set �̃ (t) = t
μ
2 �(t), where μ = 4

(
	−λ
	

) + ϒ1 + ϒ2 with λ−1 = maxi=1,2 {‖det Hi‖L∞}
and 	 = maxi=1,2

{∥∥
∥det H−1

i

∥
∥
∥
L∞

}
. Then �̃ (t) is monotonically non-decreasing in t.

Proof Recall that Bn
T ⊂ R

d×n is given by (15). For each i = 1, 2, let κi,n be as defined in
Lemma 2.1. By definition, λ ≤ κi,n ≤ 	 for every n ∈ N. As

∥
∥∇y log κi,n · y∥∥

L∞
(
B√

2dT

) ≤ ‖tr(Hi 〈∇Gi (hi ), hi 〉)‖L∞(Rd) = ϒi ,

then ∇y log κi,n · y ∈ L∞ (
BT
n

)
. Define each ϒi,n := ϒi to be independent of n.

Let u1, u2 be as in the statement of the theorem. For each i = 1, 2 and n ∈ N≥N , define
vi,n : Bn

T ⊂ R
d×n → R so that

vi,n (y) = ui
(
Fd,n (y)

)
.

Since each ui has moderate hi -growth at infinity, then by Lemma 3.9, vi,n ∈ C0
(
Bn
T

) ∩
W 1,2

(
Bn
T , κi,n dy

)
. Moreover, each vi,n is non-negative and v1,nv2,n ≡ 0. Assuming without

loss of generality that g(0) = 0, we obtain vi,n (0) = ui (0, 0) = 0.
An application of Lemma 2.2 shows that

div(κi,n∇vi,n)

κi,n
= n

{
div(Ai∇ui ) + ∂ui

∂t
+ 1

dn

[
2
〈
Ai∇∂t ui , H

T
i hi

〉

+∂ui
∂t

tr(Hi 〈∇zGi (hi ), hi 〉) + 2t
∂2ui
∂t2

]}

≥ 1

d

[

2
〈
Ai∇∂t ui , H

T
i hi

〉
+ ∂ui

∂t
tr(Hi 〈∇zGi (hi ), hi 〉) + 2t

∂2ui
∂t2

]

=: Ji (x, t),

where Ji = J (ui ) is defined in (25) and does not depend on n. For every n, define �i,n :
Bn
T → R so that

�i,n (y) = Ji
(
Fd,n (y)

)

and then

div
(
κi,n∇vi,n

) ≥ κi,n�i,n .

Since each ui ∈ C
(
R
d × (0, T ) , hi

)
, then (43) in combination with Corollary 3.7 shows

that �−
i,nvi,n is integrable with respect to κn dy in each Bn

t . In other words, each �−
i,n is

integrable with respect to κi,nvi,n |y|2+ϒi−dn dy on each Bn
t .

Let �i,n,t = supp vi,n ∩ Snt . For each t , the measure of supp ui (·, t) vanishes if and only
if the measure of �i,n,t vanishes for every n. We assume first that for every t , the measures
of supp u1 (·, t) and supp u2 (·, t) are non-vanishing. Therefore, for every i , n and t , �i,n,t

has non-zero measure. Thus, we may apply Corollary 6.2 to each pair v1,n , v2,n on any ball
Bn
t for t ∈ (0, T ).
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Define�n (t) = 4

(n|Sdn−1|)2 φ
(√

2dt; v1,n, v2,n, κ1,n, κ2,n

)
, whereφ(r) is given inCorol-

lary 6.2. By Lemmas 2.2 and 3.5

ˆ
Bn
t

κi,n(y)
∣
∣∇vi,n(y)

∣
∣2 |y|2+ϒi−dn dy

= dn
∣
∣
∣Sdn−1

∣
∣
∣
ˆ t

0

ˆ
Rd

(2ds)
ϒi
2 〈Ai∇ui ,∇ui 〉 Kn(hi (x), s)dxds

+ 2
∣
∣
∣Sdn−1

∣
∣
∣
ˆ t

0

ˆ
Rd

(2ds)
ϒi
2

∂ui
∂s

[〈
Ai∇ui , H

T
i hi

〉
+ s

∂ui
∂s

]
Kn(hi (x), s)dxds.

(44)

Therefore,

�n (t) = 4
(
n
∣∣Sdn−1

∣∣)2
1

(2dt)2+
ϒ1+ϒ2

2

(ˆ
Bn
t

κ1,n(y)
∣∣∇v1,n (y)

∣∣2 |y|2+ϒ1−dn dy

)(ˆ
Bn
t

κ2,n(y)
∣∣∇v2,n (y)

∣∣2 |y|2+ϒ2−dn dy

)

= 1

t2

ˆ t

0

ˆ
Rd

( s
t

) ϒ1
2
[
〈A1 ∇u1, ∇u1〉 + 2

nd

∂u1
∂s

(〈
A1 ∇u1, H

T
1 h1

〉
+ s

∂u1
∂s

)]
Kn(h1(x), s) dxds

×
ˆ t

0

ˆ
Rd

( s
t

) ϒ2
2
[
〈A2 ∇u2,∇u2〉 + 2

nd

∂u2
∂s

(〈
A2 ∇u2, H

T
2 h2

〉
+ s

∂u2
∂s

)]
Kn(h2(x), s) dxds.

It follows from (13), (14) and the Dominated Convergence Theorem that

lim
n→∞ �n (t) = 1

t2
∏

i=1,2

(ˆ t

0

ˆ
Rd

( s
t

)ϒi
2 〈Ai ∇ui ,∇ui 〉 K (hi (x), s) dxds

)

= �(t) .

Set μ = 4
(

	−λ
	

) + ϒ1 + ϒ2. If we then define

�̃n(t) = 4 (2d)−
μ
2

(
n
∣∣Sdn−1

∣∣)2
φ̃
(√

2dt
)

= 4 (2d)−
μ
2

(
n
∣∣Sdn−1

∣∣)2
(2dt)

μ
2 φ

(√
2dt

)
,

then by analogous arguments, we see that

lim
n→∞ �̃n (t) = �̃ (t) := t

μ
2 �(t) . (45)

Moreover, an application of the chain rule shows that

d

dt
�̃n(t) = 4 (2d)−

μ
2

(
n
∣∣Sdn−1

∣∣)2
φ̃′ (√2dt

)√ d

2t
= 2 (2d)

1−μ
2

(
n
∣∣Sdn−1

∣∣)2
1√
t
φ̃′ (√2dt

)
.

By Corollary 6.2,
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φ̃′ (√2dt
)

≥ −2

(´
Bt
n
κ1,n �−

1,nv1,n |y|2+ϒ1−dn dy
) (´

Bt
n
κ2,n

∣∣∇v2,n
∣∣2 |y|2+ϒ2−dn dy

) (ffl
Stn

κ1,n
∣∣∇v1,n

∣∣2 dσ
)

(dn − 2) (2dt)
3
2 −2

(
	−λ
	

) (ffl
Stn

κ1,n
∣∣v1,n

∣∣2 dσ
)

− 2

(´
Bt
n
κ1,n

∣∣∇v1,n
∣∣2 |y|2+ϒ1−dn dy

) (´
Bt
n
κ2,n �−

2,nv2 |y|2+ϒ2−dn dy
) (ffl

Stn
κ2,n

∣∣∇v2,n
∣∣2 dσ

)

(dn − 2) (2dt)
3
2 −2

(
	−λ
	

) (ffl
Stn

κ2,n
∣∣v2,n

∣∣2 dσ
) .

Using the functionals that were introduced in 33 and 16, applications of Lemma 3.3 show
that

 
Stn

κi,n(y)
∣
∣vi,n(y)

∣
∣2 dσ(y) =

ˆ
Rd

|ui (x, t)|2 Kt,n (hi (x)) dx

=
∣
∣Sdn−1−d

∣
∣

∣
∣Sdn−1

∣
∣ (2dnt)

d
2

ˆ
Rd

|ui (x, t)|2
(

1 − |hi (x)|2
2dnt

) dn−d−2
2

χBnt (hi (x))dx

=
∣
∣Sdn−1−d

∣
∣

∣∣Sdn−1
∣∣ (2dnt)

d
2

Hn (t; ui , κi )

and

 
Stn

κi,n(y)
∣∣∇vi,n(y)

∣∣2 dσ(y)

= n
ˆ
Rd

[
〈Ai∇ui ,∇ui 〉 + 2

dn

∂ui
∂t

(〈
Ai∇ui , H

T
i hi

〉
+ t

∂ui
∂t

)]
Kt,n (hi (x)) dx

≤ 2n
ˆ
Rd

〈Ai∇ui ,∇ui 〉 Kt,n (hi (x)) dx + 2t

d

ˆ
Rd

(

1 + |hi |2
2dnt

) ∣∣∣∣
∂ui
∂t

∣∣∣∣

2

Kt,n (hi (x)) dx

≤ 2nCd

(4π t)
d
2

(ˆ
Rd

〈Ai∇ui ,∇ui 〉 e− |hi (x)|2
4t dx + 2t

dn

ˆ
Rd

∣∣∣∣
∂ui
∂t

∣∣∣∣

2

e− |hi (x)|2
4t dx

)

= 2nCd

(4π t)
d
2

[
D (t; ui , κi ) + 2t

dn
T (t; ui , κi )

]
,

where we applied Lemma 2.2, Cauchy–Schwarz, then estimate (14). If we define

Sn (t; u, κ) = D (t; u, κ) + 2t

dn
T (t; u, κ) ,

then we similarly deduce from (44) that

ˆ
Bn
t

κi,n(y)
∣∣∇vi,n(y)

∣∣2 |y|2+ϒi−dn dy ≤ (2d)
ϒi
2 +1 Cdn

∣∣Sdn−1
∣∣

(4π)
d
2

ˆ t

0
s

ϒi−d
2 Sn (s; ui , κi ) ds.

Finally, Lemma 3.5 and (14) show that
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ˆ
Bt
n

κi,n�
−
i,nvi,n |y|2+ϒi−nd dy

= d
∣
∣
∣Sdn−1

∣
∣
∣
ˆ t

0

ˆ
Rd

(2ds)
ϒi
2 J−

i (x, s) ui (x, s) Kn(hi (x), s)dxds

≤ d (2d)
ϒi
2 Cd

∣
∣Sdn−1

∣
∣

(4π)
d
2

ˆ t

0

ˆ
Rd

s
ϒi−d

2 J−
i (x, s) ui (x, s) e

− |hi (x)|2
4s dxds

= d (2d)
ϒi
2 Cd

∣
∣Sdn−1

∣
∣

(4π)
d
2

ˆ t

0
s

ϒi−d
2 J− (s; ui , κi ) ds.

Then with αd,n as defined in (51), we get

φ̃′ (√2dt
)

≥ −2t
− 3

2+2
(

	−λ
	

)
C3
d (2d)

1+μ
2

(
n
∣
∣Sdn−1

∣
∣)2

(dn − 2) (4π)d αd,n

Sn (t; u1, κ1)
Hn (t; u1, κ1)

×
(ˆ t

0
s

ϒ1−d
2 J− (s; u1, κ1) ds

)(ˆ t

0
s

ϒ2−d
2 Sn (s; u2, κ2) ds

)

− 2t
− 3

2+2
(

	−λ
	

)
C3
d (2d)

1+μ
2

(
n
∣∣Sdn−1

∣∣)2

(dn − 2) (4π)d αd,n

Sn (t; u2, κ2)
Hn (t; u2, κ2)

×
(ˆ t

0
s

ϒ2−d
2 J− (s; u2, κ2) ds

)(ˆ t

0
s

ϒ1−d
2 Sn (s; u1, κ1) ds

)
.

Using (52) then shows that

d

dt
�̃n(t) = 2 (2d)

1−μ
2

(
n
∣∣Sdn−1

∣∣)2
1√
t
φ̃′ (√2dt

)

≥ − 8C3
d t

− 2λ
	

n
(
1 − 2

dn

)
(4π)d αd

Sn (t; u1, κ1)
Hn (t; u1, κ1)

(ˆ t

0
s

ϒ1−d
2 J− (s; u1, κ1) ds

)(ˆ t

0
s

ϒ2−d
2 Sn (s; u2, κ2) ds

)

− 8C3
d t

− 2λ
	

n
(
1 − 2

dn

)
(4π)d αd

Sn (t; u2, κ2)
Hn (t; u2, κ2)

(ˆ t

0
s

ϒ2−d
2 J− (s; u2, κ2) ds

)(ˆ t

0
s

ϒ1−d
2 Sn (s; u1, κ1) ds

)

=: F̃n(t),

As in the proof of Theorem 5.3, to show that �̃ is monotone non-decreasing, it suffices to
show that given any t0 ∈ (0, T ], there exists δ ∈ (0, t0) so that F̃n converges uniformly to 0
on [t0 − δ, t0].

We first consider the terms in the denominator of F̃n . For brevity, we set H(i)
n (t) =

Hn (t; ui , κi ). By repeating the arguments from (34) through (35), we deduce that there
exists Ni ∈ N and δi ∈ (0, t0) so that whenever n ≥ Ni and t ∈ [t0 − δi , t0], it holds that

H(i)
n (t) ≥ Hie

− dNi ln 2
2 .

Assumption (43) shows that

ˆ t

0
s

ϒi−d
2 J− (s; ui , κi ) ds ≤ t

ϒi
2
∥∥J− (·; ui , κi )

∥∥
L1

(
[0,t],s−

d
2 ds

) .
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Similarly, since ui ∈ C
(
R
d × (0, T ) , hi

)
implies that ui has moderate hi -growth at infinity,

then both D (·; ui , hi ) and T (·; ui , hi ) belong to weighted L1 [0, t] and then
ˆ t

0
s

ϒi−d
2 Sn (s; ui , κi ) ds

≤ t
ϒi
2

⎛

⎝‖D (·; ui , κi )‖
L1

(
[0,t],s−

d
2 ds

) + 2t

dn
‖T (·; ui , κi )‖

L1

(
[0,t],s−

d
2 ds

)

⎞

⎠ .

Set δ = min
{
δ1, δ2,

t0
2

}
, N = max {N1, N2}, and H = min {H1, H2}, then observe that

whenever t ∈ [t0 − δ, t0] and n ≥ N ,

F̃n(t) ≥ −9C3
de

dN ln 2
2 t

μ
2 −2

nH (4π)d αd

∥
∥J− (·; u1, κ1)

∥
∥
L1

(
[0,t],s−

d
2 ds

) Sn (t; u1, κ1)

×
⎡

⎣‖D (·; u2, κ2)‖
L1

(
[0,t],s−

d
2 ds

) + 2t

dn
‖T (·; u2, κ2)‖

L1

(
[0,t],s−

d
2 ds

)

⎤

⎦

− 9C3
de

dN ln 2
2 t

μ
2 −2

nH (4π)d αd

∥∥J− (·; u2, κ2)
∥∥
L1

(
[0,t],s−

d
2 ds

) Sn (t; u2, κ2)

×
⎡

⎣‖D (·; u1, κ1)‖
L1

(
[0,t],s−

d
2 ds

) + 2t

dn
‖T (·; u1, κ1)‖

L1

(
[0,t],s−

d
2 ds

)

⎤

⎦ .

Assuming that δ ≤ ε, where ε is from assumption (42), and using that t ∈
[
t0
2

, t0

]
, it follows

that

inf
t∈[t0−δ,t0]

F̃n(t) ≥ − 36C3
de

dN ln 2
2 t

μ
2 −2
0

nH (4π)d αd

∥∥J− (·; u1, κ1)
∥∥
L1

(
[0,t0],t

− d
2 dt

)

×
⎡

⎣‖D (·; u2, κ2)‖
L1

(
[0,t0],t

− d
2 dt

) + 2t0
dn

‖T (·; u2, κ2)‖
L1

(
[0,t0],t

− d
2 dt

)

⎤

⎦

×
[
‖D (·; u1, κ1)‖L∞[t0−δ,t0] + 2t0

dn
‖T (·; u1, κ1)‖L∞[t0−δ,t0]

]

− 36C3
de

dN ln 2
2 t

μ
2 −2
0

nH (4π)d αd

∥
∥T− (·; u2, κ2)

∥
∥(

[0,t],t−
d
2 dt

)

⎡

⎣‖D (·; u1, κ1)‖(
[0,t0],t

− d
2 dt

) + 2t0
dn

‖T (·; u1, κ1)‖(
[0,t0],t

− d
2 dt

)

⎤

⎦

×
[
‖D (·; u2, κ2)‖L∞[t0−δ,t0] + 2t0

dn
‖T (·; u2, κ2)‖L∞[t0−δ,t0]

]
.

In particular, this shows that F̃n converges uniformly to 0, as required.
We have shown that the proof is complete under the assumption that the measures of

supp u1 (·, t) and supp u2 (·, t) are non-vanishing for every t .
Now assume that there exists some values of t such that the measure of supp u1(·, t)

or the measure of supp u2(·, t) vanishes. Let τ be the largest such t-value. Without loss of
generality, we may assume that |supp u1(·, τ )| = 0. Since �1,n,τ = supp v1,n ∩ Snτ , it follows
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that |�1,n,τ | = 0 for every n as well. Therefore, for every n, div
(
κ1,n∇v1,n

) ≥ κ1,n�1,n in
D1,n,τ := supp v1,n ∩ Bn

τ with v1,n = 0 along ∂D1,n,τ . By the arguments used to reach
estimate (40) applied to v1,n on D1,n,τ , we see thatˆ

D1,n,τ

κ1,n |∇v1,n |2|y|2+ϒ1−dndy ≤ −
ˆ
D1,n,τ

κ1,n�1,nv1,n |y|2+ϒ1−dndy

so that ˆ
Bn

τ

κ1,n |∇v1,n |2|y|2+ϒ1−dndy ≤ −
ˆ
Bn

τ

κ1,n�1,nv1,n |y|2+ϒ1−dndy.

As shown above,

(2d)−
ϒ1
2

dn
∣
∣Sdn−1

∣
∣

ˆ
Bn

τ

κ1,n |∇v1,n |2|y|2+ϒ1−dndy

=
ˆ t

0

ˆ
Rd

s
ϒ1
2

[
〈A1∇u1,∇u1〉 + 2

dn

∂u1
∂s

(〈
A1∇u1, H

T
1 h1

〉
+ s

∂u1
∂s

)]
Kn(h1(x), s)dxds

and

(2d)−
ϒ1
2

dn
∣∣Sdn−1

∣∣

ˆ
Bn

τ

κ1,n�1,nv1,n |y|2+ϒ1−dndy

= 1

n

ˆ t

0

ˆ
Rd

s
ϒ1
2 J−

1 (x, s) u1 (x, s) Kn(h1(x), s)dxds

from which it follows that for every n ∈ N,ˆ t

0

ˆ
Rd

s
ϒ1
2 〈A1∇u1,∇u1〉 Kn(h1(x), s)dxds

=
ˆ t

0

ˆ
Rd

s
ϒ1
2

[
〈A1∇u1,∇u1〉 + 2

dn

∂u1
∂s

(〈
A1∇u1, H

T
1 h1

〉
+ s

∂u1
∂s

)]
Kn(h1(x), s)dxds

− 2

dn

ˆ t

0

ˆ
Rd

s
ϒ1
2

∂u1
∂s

(〈
A1∇u1, H

T
1 h1

〉
+ s

∂u1
∂s

)
Kn(h1(x), s)dxds

≤ 1

n

ˆ t

0

ˆ
Rd

s
ϒ1
2

[
−J−

1 (x, s) u1 (x, s) − 2

d

∂u1
∂s

(〈
A1∇u1, H

T
1 h1

〉
+ s

∂u1
∂s

)]
Kn(h1(x), s)dxds

≤ − 2

dn

ˆ t

0

ˆ
Rd

s
ϒ1
2

[
d

2
J1(x, s) u1 (x, s) + ∂u1

∂s

(〈
A1∇u1, H

T
1 h1

〉
+ s

∂u1
∂s

)]
Kn(h1(x), s)dxds,

since u1 ≥ 0. With J as given in (25), we see that

d

2
J1(x, s) u1 (x, s) + ∂u1

∂s

(〈
A1∇u1, H

T
1 h1

〉
+ s

∂u1
∂s

)

=
[〈

A1∇ ∂u1
∂s

, HT
1 h1

〉
+ 1

2

∂u1
∂s

tr (H1 〈∇zG1(h1), h1〉) + s
∂2u1
∂s2

]
u1 (x, s)

+ ∂u1
∂s

[〈
A1∇u1, H

T
1 h1

〉
+ s

∂u1
∂s

]

=
〈
A1∇w1, H

T
1 h1

〉
+ s

∂w1

∂s
+ w1

2
tr (H1 〈∇zG1(h1), h1〉) ,

where we have introduced the notation w1 = u1
∂u1
∂s . Therefore,ˆ t

0

ˆ
Rd

s
ϒ1
2 〈A1∇u1,∇u1〉 Kn(h1(x), s)dxds
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≤ −2Cd

dn

ˆ t

0

ˆ
Rd

s
ϒ1
2

[〈
A1∇w1, H

T
1 h1

〉
+ s

∂w1

∂s
+ w1

2
tr (H1 〈∇zG1(h1), h1〉)

]
K (h1(x), s)dxds.

In particular,
ˆ t

0

ˆ
Rd

s
ϒ1
2 〈A1∇u1,∇u1〉 Kn(h1(x), s)dxds

≤ − lim
n→∞

2Cd

dn

ˆ t

0

ˆ
Rd

s
ϒ1
2

[〈
A1∇w1, H

T
1 h1

〉
+ s

∂w1

∂s
+ w1

2
tr (H1 〈∇zG1(h1), h1〉)

]
K (h1(x), s)dxds = 0.

Then �(t) = 0 for every t ≤ τ showing that �(t) is monotonically non-decreasing on
(0, τ ]. Since |�1,n,t | �= 0 and |�2,n,t | �= 0 for every n and every t > τ , then by the arguments
from the first case,�(t, u) is monotonically non-decreasing whenever t > τ , completing the
proof. ��
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Appendix A: Computational and technical proofs

Within this appendix, we have collected the proofs that are either purely computational or
technical in nature. We begin with the proof of Lemma 2.2, which describes a collection of
relationships between elliptic functions vn : B√

2dT ⊂ R
d×n → R and parabolic functions

u : Rd × (0, T ) → R that are related through the transformation Fd,n . That is, Lemma 2.2
describes the relationships between derivatives of u and vn whenever vn(y) = u

(
Fd,n(y)

) =
u(x, t). The proof of this result relies on the chain rule.

Proof of Lemma 2.2 Since
∂zk
∂ yi, j

= δk,i , then

∂vn

∂ yi, j
= ∂u

∂x1

∂g1
∂zi

+ · · · + ∂u

∂xd

∂gd
∂zi

+ ∂u

∂t

yi, j
d

=
〈
∇xu,

∂g

∂zi

〉
+ ∂u

∂t

yi, j
d

,

where
∂g

∂zi
is the i th column of the Jacobian matrix G. Then we have

y · ∇yvn =
d∑

i=1

n∑

j=1

yi, j

[
d∑

k=1

∂u

∂xk

∂gk
∂zi

+ ∂u

∂t

yi, j
d

]

=
d∑

i,k=1

∂u

∂xk

∂gk
∂zi

zi + ∂u

∂t

d∑

i=1

n∑

j=1

y2i, j
d

= 〈∇xu,G(z)z〉 + 2t
∂u

∂t
=
〈
A(x)∇xu, H(x)T h(x)

〉
+ 2t

∂u

∂t
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and

∣
∣∇yvn

∣
∣2 =

d∑

i=1

n∑

j=1

(
∂vn

∂ yi, j

)2

=
d∑

i=1

n∑

j=1

[
d∑

k=1

∂u

∂xk

∂gk
∂zi

+ ∂u

∂t

yi, j
d

][
d∑

�=1

∂u

∂x�

∂g�

∂zi
+ ∂u

∂t

yi, j
d

]

= n
d∑

i,k,�=1

(
∂u

∂xk

∂gk
∂zi

)(
∂u

∂x�

∂g�

∂zi

)
+ 2

d

∂u

∂t

d∑

i,k=1

(
∂u

∂xk

∂gk
∂zi

)
zi +

(
∂u

∂t

)2 d∑

i=1

n∑

j=1

( yi, j
d

)2

= n
∣∣
∣G(z)T∇x u

∣∣
∣
2 + 2

d

∂u

∂t

[
〈∇x u,G(z) z〉 + t

∂u

∂t

]
.

Now we look at the second-order derivatives. Since κn(y)
∂vn

∂ yi, j
=

d∑

k=1

∂u

∂xk
γ (z)

∂gk
∂zi

+
∂u

∂t
γ (z)

yi, j
d

, then

∂

∂ yi, j

(
κn(y)

∂vn

∂ yi, j

)
= ∂

∂ yi, j

(
d∑

k=1

∂u

∂xk
γ (z)

∂gk
∂zi

)

+ ∂

∂ yi, j

(
∂u

∂t
γ (z)

yi, j
d

)

=
d∑

k,�=1

∂2u

∂x�∂xk
γ

∂gk
∂zi

∂g�

∂zi
+ 2

d∑

k=1

∂2u

∂t∂xk
γ

∂gk
∂zi

yi j
d

+
d∑

k=1

∂u

∂xk

∂γ

∂zi

∂gk
∂zi

+
d∑

k=1

∂u

∂xk
γ

∂2gk
∂z2i

+ ∂2u

∂t2
γ
( yi, j

d

)2 + ∂u

∂t

∂γ

∂zi

yi, j
d

+ ∂u

∂t
γ
1

d
,

from which it follows that

1

κn(y)

∂

∂ yi, j

(
κn(y)

∂vn

∂ yi, j

)
=
〈
D2
xu

∂g

∂zi
,

∂g

∂zi

〉
+
〈

∇xu,
∂ log γ

∂zi

∂g

∂zi
+ ∂2g

∂z2i

〉

+ 1

d

∂u

∂t

+ 2

〈
∇x

(
∂u

∂t

)
,

∂g

∂zi

yi, j
d

〉
+ ∂ log γ

∂zi

∂u

∂t

yi, j
d

+ ∂2u

∂t2

( yi, j
d

)2
.

(46)

Because B(z) = G(z)GT (z) = A(x), then

d∑

i=1

〈
D2
xu

∂g

∂zi
,

∂g

∂zi

〉
=

d∑

i,k,�=1

∂2u

∂xk∂x�

∂gk
∂zi

∂g�

∂zi
=

d∑

k,�=1

bk,�(z)
∂2u

∂xk∂x�

=
d∑

k,�=1

ak,�(x)
∂2u

∂xk∂x�

.

(47)
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Since ak,�(x) =
d∑

i=1

∂gk
∂zi

(h(x))
∂g�

∂zi
(h(x)), then

∂ak,�
∂xk

=
d∑

i=1

∂

∂xk

(
∂gk
∂zi

(h(x))

)
∂g�

∂zi
(h(x)) +

d∑

i=1

∂gk
∂zi

(h(x))
∂

∂xk

(
∂g�

∂zi
(h(x))

)

=
d∑

i,m=1

∂2gk (z)

∂zi∂zm

∂g� (z)

∂zi

∂hm
∂xk

(g(z)) +
d∑

i,m=1

∂2g� (z)

∂zi∂zm

∂hm
∂xk

(g(z))
∂gk (z)

∂zi
.

(48)

Summing (48) over k, substituting (7) and using that
∑d

k=1
∂hm
∂xk

∂gk
∂zi

= δm,i since HG = I ,
shows that

d∑

k=1

∂ak,�
∂xk

=
d∑

i,m,k=1

∂hm
∂xk

(g(z))
∂2gk (z)

∂zi∂zm

∂g� (z)

∂zi
+

d∑

i,m,k=1

∂2g� (z)

∂zi∂zm

∂hm
∂xk

(g(z))
∂gk (z)

∂zi

=
d∑

i=1

∂ log γ (z)

∂zi

∂g� (z)

∂zi
+

d∑

i=1

∂2g� (z)

∂z2i
. (49)

Therefore,

divx (A∇xu) =
d∑

k=1

∂

∂xk

(
d∑

�=1

ak,�
∂u

∂x�

)

=
d∑

k,�=1

ak,�
∂2u

∂x�∂xk
+

d∑

�=1

(
d∑

k=1

∂ak,�
∂xk

)
∂u

∂x�

=
d∑

i=1

〈
D2
xu

∂g

∂zi
,

∂g

∂zi

〉
+
〈

∇xu,
∂ log γ

∂zi

∂g

∂zi
+ ∂2g

∂z2i

〉

, (50)

where we have used (47) and (49). Summing (46) over i and j and substituting (50) then
shows that

1

κn(y)
divy

(
κn(y)∇yvn

)

= 1

κn(y)

d∑

i=1

n∑

j=1

∂

∂ yi, j

(
κn(y)

∂vn

∂ yi, j

)

=
n∑

j=1

d∑

i=1

[〈
D2
xu

∂g

∂zi
,

∂g

∂zi

〉
+
〈

∇xu,
∂ log γ

∂zi

∂g

∂zi
+ ∂2g

∂z2i

〉

+ 1

d

∂u

∂t

]

+
d∑

i=1

n∑

j=1

[
2

〈
∇x

(
∂u

∂t

)
,

∂g

∂zi

yi, j
d

〉
+ ∂ log γ

∂zi

∂u

∂t

yi, j
d

+ ∂2u

∂t2

( yi, j
d

)2]

=
n∑

j=1

[
divx (A∇xu) + ∂u

∂t

]
+ 2

d

d∑

i,k=1

∂2u

∂xk∂t

∂gk
∂zi

(z)zi

+ 1

d

∂u

∂t

d∑

i=1

∂ log γ

∂zi
(z)zi + 2t

d

∂2u

∂t2

= n

{
divx (A∇xu) + ∂u

∂t
+ 1

dn

[
2

〈
∇x

∂u

∂t
,G(z)z

〉
+ ∂u

∂t
〈∇ log γ (z), z〉 + 2t

∂2u

∂t2

]}
,
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and the result follows from changing the last set of terms to depend on x . ��
Here we prove Lemma 3.1 regarding the uniform convergence of our sequence of approx-

imations to the Gaussian.

Proof of Lemma 3.1 Let

αd,n = |Sdn−1−d |
|Sdn−1|

(
2π

dn

) d
2 =

(
2π

dn

) d
2 2π

dn−d
2

�
( dn−d

2

)
�
( dn

2

)

2π
dn
2

=
(

2

dn

) d
2 �

( dn
2

)

�
( dn

2 − d
2

) . (51)

If d
2 ∈ Z, then

�

(
dn

2

)
=
(
dn

2
− 1

)(
dn

2
− 2

)
. . .

(
dn

2
− d

2

)
�

(
dn

2
− d

2

)

=
(
dn

2

) d
2
(
1 − 2

dn

)(
1 − 4

dn

)
. . .

(
1 − d

dn

)
�

(
dn

2
− d

2

)

and we see that

αd,n =
d
2∏

j=1

(
1 − 2 j

dn

)
.

Stirling’s formula shows that

�(z) =
√
2π

z

( z
e

)z (
1 + O

(
1

z

))

so we see that

αd,n =
(

2

nd

) d
2

√
2π
dn
2

(
dn
2
e

) dn
2 (

1 + O
( 2
dn

))

√
2π

dn
2 − d

2

(
dn
2 − d

2
e

) dn
2 − d

2 (
1 + O

(
2

dn−d

))

=
[
e

(
1 − 1

n

)n]− d
2
(
1 − 1

n

) d+1
2
(
1 + O

(
2

dn

))
.

In both cases, it holds that αd,n → 1 as n → ∞. Therefore, there exists αd so that for every
n ∈ N,

αd,n ≤ αd . (52)

To analyze the remaining piece of Kn(x, t), let m = dn
2 , δ = d+2

2 , z = |x |2
4t . Notice that

|x |2 < 2dnt if and only if 0 ≤ z < m, and
(
1 − |x |2

2dnt

) dn−d−2
2 = (

1 − z
m

)m−δ
. Define

fm(z) =
(
1 − z

m

)m−δ

χ{0≤z<m}(z).

We show fm converges uniformly to f (z) = e−zχ{z≥0}(z). First, notice that if z > m, then
| f (z) − fm(z)| = e−z < e−m .
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If 0 ≤ z ≤ m, then

| f (z) − fm(z)| =
∣
∣
∣
∣e

−z −
(
1 − z

m

)m +
(
1 − z

m

)m −
(
1 − z

m

)m−δ
∣
∣
∣
∣

≤
∣
∣
∣e−z −

(
1 − z

m

)m∣∣
∣ +

∣
∣
∣
∣
(
1 − z

m

)m−δ −
(
1 − z

m

)m∣∣
∣
∣ =: (I) + (II).

(53)

We address (I) by showing there exists a constant c such that for all m ≥ 1

max
0<z<m

∣
∣
∣e−z −

(
1 − z

m

)m ∣∣
∣ ≤ c

(logm)2

m
.

Indeed, we have

log
[(

1 − z

m

)m] = m log
(
1 − z

m

)
.

For 0 < z < m, this means that log
(
1 − z

m

) ∈ (0, 1). Since log x < x − 1 for all x > 0,
then

log
[(

1 − z

m

)m] ≤ −z.

Consequently,
(
1 − z

m

)m is smaller than e−z . It remains to obtain an upper bound on

max
0≤z≤m

[
e−z −

(
1 − z

m

)m]
.

Using a Taylor expansion, we have

log (1 − x) = −x − x2

2
+ O(x3).

Thus

log
[(

1 − z

m

)m] = −z − z2

2m
+ O

(
z3

m2

)
,

and
(
1 − z

m

)m = e−ze− z2
2m eO

(
z3/m2)

.

We split the problem into two parts, by bounding

max
0≤z≤α

[
e−z −

(
1 − z

m

)m]

and

max
α≤z≤m

[
e−z −

(
1 − z

m

)m]

for some α to be determined. For the second part, observe that

max
α≤z≤m

[
e−z −

(
1 − z

m

)m] ≤ max
α≤z≤m

e−z = e−α.

As for the first bound, we note that

e−z −
(
1 − z

m

)m = e−z
(
1 − e− z2

2m e
O
(

z3

m2

))
.
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If z2
2m → 0, then z3

m2 → 0 as well and we can bound this term using another Taylor approxi-
mation as

e−z
(
1 − e− z2

2m e
O
(

z3

m2

))
= O

(
z2

m

)
.

By choosing α = logm, we obtain

max
α≤z≤m

[
e−z −

(
1 − z

m

)m] ≤ max
α≤z≤m

e−z = e−α ≤ 1

m

and

max
0≤z≤α

[
e−z −

(
1 − z

m

)m] ≤ O

(
(logm)2

m

)
.

This proves that (I) ≤ c
(logm)2

m
.

To estimate (II), let g(x) = (1 − x)m−δ − (1 − x)m , with 0 ≤ x ≤ 1. Notice that
g(0) = g(1) = 0 and g(x) > 0 for x ∈ (0, 1). Moreover,

g′(x) = −(m − δ)(1 − x)m−δ−1 + m(1 − x)m−1 = (1 − x)m−1−δ
[
m(1 − x)δ − (m − δ)

]
.

Therefore g′(x) ≥ 0 if and only if x ≤ 1 − (
1 − δ

m

)1/δ
. We conclude that g attains its

maximum at x0 = 1 − (
1 − δ

m

)1/δ
, and

g(x0) = δ

m

(
1 − δ

m

)m
δ
−1

.

Consequently, g(x) ∈ [
0, δ

m

]
for all x ∈ [0, 1].

By combining the estimates obtained for (I) and (II) and (53), we conclude that for all
z ≥ 0,

| f (z) − fm(z)| ≤ c
(logm)2

m
+ e−m + δ

m
.

In particular, this shows that fm → f uniformly, and the conclusion of the lemma follows.
��

Finally, we give the computational proof of Lemma 3.2.

Proof of Lemma 3.2 Let uK (x, t) = K (h(x), t) = 1
(4π t)d/2 exp

(
−|h(x)|2

4t

)
. Computations

show that

∂uK

∂t
= − d

2t
uK + |h(x)|2

(2t)2
uK

and

∂uK
∂xi

= − 1

2t

d∑

j=1

∂h j

∂xi
h j uK .

Since ak,i = ∑d
�=1

∂gk
∂z�

(h(x)) ∂gi
∂z�

(h (x)) and ∂gi
∂z�

(h (x))
∂h j
∂xi

(x) = δ�, j , then

d∑

i=1

ak,i
∂uK

∂xi
= − 1

2t

d∑

i, j,�=1

∂gk
∂z�

(h(x))
∂gi
∂z�

(h (x))
∂h j

∂xi
(x)h j (x)uK
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= − 1

2t

d∑

j=1

∂gk
∂z j

(h(x))h j (x)uK .

Therefore

div (A∇uK ) =
d∑

k=1

∂

∂xk

[
d∑

i=1

ak,i
∂uK

∂xi

]

= − 1

2t

d∑

k=1

∂

∂xk

⎡

⎣
d∑

j=1

∂gk
∂z j

(h(x))h j (x)uK

⎤

⎦

= − 1

2t

d∑

j,k=1

∂gk
∂z j

(h(x))h j (x)
∂uK
∂xk

− 1

2t

d∑

j,k=1

(
∂gk
∂z j

(h(x))
∂h j

∂xk
+ ∂2gk

∂z j∂z�
(h(x))

∂h�

∂xk
h j

)
uK

= 1

(2t)2

d∑

j,k,�=1

∂gk
∂z j

(h(x))h j
∂h�

∂xk
h�uK

− 1

2t

d∑

j,k=1

(
∂gk
∂z j

(h(x))
∂h j

∂xk
+ ∂2gk

∂z j∂z�
(h(x))

∂h�

∂xk
h j

)
uK

= |h(x)|2
(2t)2

uK − d

2t
uK − 1

2t

d∑

j,k,�=1

∂2gk
∂z j∂z�

(h(x))
∂h�

∂xk
h j uK

= ∂uK

∂t
− 1

2t

d∑

j,k,�=1

∂2gk
∂z j∂z�

(h(x))
∂h�

∂xk
h j uK ,

as claimed. ��
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