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Abstract

This paper continues the study initiated in Davey (Arch Ration Mech Anal 228:159-196,
2018), where a high-dimensional limiting technique was developed and used to prove certain
parabolic theorems from their elliptic counterparts. In this article, we extend these ideas to the
variable-coefficient setting. This generalized technique is demonstrated through new proofs
of three important theorems for variable-coefficient heat operators, one of which establishes
a result that is, to the best of our knowledge, also new. Specifically, we give new proofs of
L? — L? Carleman estimates and the monotonicity of Almgren-type frequency functions,
and we prove a new monotonicity of Alt—Caffarelli-Friedman-type functions. The proofs in
this article rely only on their related elliptic theorems and a limiting argument. That is, each
parabolic theorem is proved by taking a high-dimensional limit of a related elliptic result.

Mathematics Subject Classification 35J15 - 35K10
1 Introduction

In this paper, we explore the connections between the elliptic and parabolic theory of partial
differential equations, generalizing the work done by the first-named author for constant-
coefficient equations in [18]. Specifically, we generalize the ideas from [18] and establish
a technique that can be used to prove variable-coefficient parabolic theorems from their
appropriate elliptic counterparts. The key idea is that certain parabolic estimates may be
obtained by taking high-dimensional limits of their corresponding elliptic results. We obtain
information about solutions to div(AVu) + d;u = 0 on the parabolic side by analyzing
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the behavior of solutions to non-homogeneous equations of the form div(k Vv) = «£ on
the elliptic side. Here, A has a specific structure, v and « are defined in terms of u and
A (see Lemmas 2.1 and 2.2), respectively, and ¢ depends on both # and A. Rewriting our
elliptic equation as «~'div(k Vv) = £, we notice that the associated operator is a special
type of Witten Laplacian, or weighted Laplacian (see 2.4 in [34], and also [14, 15, 28,
34, 41-44]). From this perspective, the ideas in this article show how to obtain results for
variable-coefficient parabolic operators from those for the Witten Laplacian.

Perelman first considered parabolic theory as a high-dimensional limit of elliptic theory in
[47]. This general principle was discussed in the blog of Tao [52], modified in the coursenotes
of Sverak [51], then developed and applied in [18]. In our setting, we follow the ideas from
[18]; namely, we use classical probabilistic formulae, essentially going back to Wiener [54],
with a slight modification used by Sverak in [51]. However, to account for the presence of
variable-coefficients, we have modified (and complicated) the change of variables formula
from [18]. Once the general framework has been established, we demonstrate the utility of
this technique by establishing three new proofs of theorems regarding variable-coefficient
parabolic equations. In comparison to the results of [18] for constant-coefficient equations,
the techniques here are substantially modified to account for the variable-coefficients.

At the heart of the high-dimensional limiting process is a sequence of maps Fy ,, : RIxn
R? x R, which take high-dimensional space points y € R?*" on the elliptic side to space—
time points (x, #) € R x Ry on the parabolic side. These maps can be viewed from three
perspectives. First, they naturally arise through certain random walk processes. Second, we
can use the chain rule to see how these maps connect elliptic and parabolic operators. That is,
suppose we are given some parabolic function u = u (x, t) defined on R? x R and we define
Un = vp(y) on R by v, (y) = u (F4,,(y)). A computation involving only the chain rules
shows that if div (AVu) 4 0,u = 0, then div(x, Vv,) = k, £,,, where k,, and £,, are defined in
terms of u and A. In other words, the maps Fy , provide a way of constructing a sequence of
“elliptic" functions from a given “parabolic" function. Finally, we can see the power of these
maps through their pushforward measures. In the constant-coefficient case, the pushforward
by Fy , of the Lebesgue measure weighted with the fundamental solution of the Laplacian is a
space—time Lebesgue measure that is weighted by a function that approximates the Gaussian.
That is, the pushforward connects the elliptic and parabolic fundamental solutions. In our
variable-coefficient setting, we do not have explicit descriptions of the fundamental solutions,
so this connection is not as precise, but it mimics the constant-coefficient behavior.

Once we have the transformation maps, our general technique is as follows: Given a
parabolic function u, we use Fy , to construct a sequence of functions {v,}. We apply an
elliptic result to each of the v, functions, and then use the pushforward relationships to
reinterpret this result in terms of u. After a limiting process, we arrive at a result for the
original parabolic function u.

Our first new proof is of an L2 — L? Carleman estimate for parabolic operators of the
form div(AV) + 0,. For elliptic operators, the original Carleman estimates are attributed to
Carleman [13], with subsequent advances by Cordes [16], Aronszajn [5] and Aronszajn et al
[6]. Significant contributions to the theory of elliptic Carleman estimates with applications to
strong unique continuation include the work of Jerison and Kenig [37], Sogge [50], Koch and
Tataru [38], and the references therein. When A = I, the parabolic Carleman estimate was
proved by Escauriaza in [21]; see also [24-26, 46, 53] for (variable-coefficient) generaliza-
tions that followed. The article [39] of Koch and Tataru provides a nice overview of parabolic
Carleman estimates, and the results therein apply to very general parabolic operators.

Our second novel proof shows that Almgren-type frequency functions [1] associated
with parabolic operators of type div(AV) + 9; are monotonically non-decreasing. In the
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variable-coefficient elliptic setting, Almgren-type monotonicity formulas have been used
to establish unique continuation results, see [29, 30]. When A = I, monotonicity of the
parabolic frequency function was originally proved by Poon in [49] and used to establish
strong unique continuation results for caloric functions. Since then, the frequency function
approach has been used extensively in the study of parabolic unique continuation problems;
see for example [12, 22, 23, 40, 55].

Both the Carleman estimates and the monotonicity of the Almgren-type frequency func-
tions, motivated by their elliptic counterparts, allowed the authors of [21, 49] (for example)
to use the established techniques for elliptic theory to prove strong unique continuation for
solutions to the heat equation. Since then, a wealth of unique continuation results for variable-
coefficient heat operators have been established using both Carleman estimates and frequency
functions. Recently, Carleman techniques have been used to establish space-like quantitative
uniqueness of solutions to variable-coefficient parabolic equations that are averaged in time
[56] and at a particular time-slice [7].

Almgren-type monotonicity formulas have also been used extensively in the context of
free boundary problems to obtain regularity of solutions and of the free boundary. In the case
of the parabolic constant-coefficient Signorini problem, a truncated version of Almgren’s
monotonicity formula was proved in [17], leading to the optimal regularity of solutions
and analysis of the free boundary. Elliptic variable-coefficient Almgren-type monotonicity
formulas have also been widely used to study numerous free boundary problems; see for
example [8, 20, 31-33, 35, 36]. We refer the reader to [48] for a beautiful introduction to the
use of Almgren-type monotonicity formulas in free boundary problems.

Our third new proof establishes a result that is, to the best of our knowledge, also new. In
other words, our technique leads to an original parabolic result: We prove an Alt—Caffarelli—
Friedman-type (ACF-type) monotonicity formula for variable-coefficient heat operators. The
groundbreaking work of Alt, Caffarelli, and Friedman in [2] introduced the use of one such
monotonicity formula to study two-phase free boundary elliptic problems. Another version
of this formula was proved in [9] by Caffarelli and extended by Caffarelli and Kenig in [10]
to establish the regularity of solutions to parabolic equations and their singular perturbations.
Later on, Caffarelli, Jerison, and Kenig [11] considered non-homogeneous elliptic equations
in which the right-hand side of the equation need not vanish at the free boundary. Their
main result is not a monotonicity result per se, but rather a clever uniform bound on the
monotonicity functional, which is just as useful as monotonicity itself. Later on, Matevosyan
and Petrosyan [45] further extended that result, proving an almost monotonicity estimate for
non-homogeneous elliptic and parabolic operators with variable coefficients. We refer the
interested reader to [4, 48] for an introduction to the use of the ACF monotonicity formula;
[48] deals with the elliptic setting, while [4] addresses both the parabolic and elliptic settings.
In the context of almost minimizers of variable-coefficient Bernoulli-type functionals, ACF-
type monotonicity formulas have also been used to study the free boundary, see for example
[19].

Given that our transformation maps relate solutions to homogeneous parabolic equa-
tions to a sequence of solutions to non-homogeneous elliptic equations, our proofs of the
monotonicity results have added complexity. More specifically, given that each v, solves an
elliptic equations with a right-hand side, we require elliptic monotonicity results that apply
to solutions to non-homogeneous equations. Therefore, the first step in each parabolic mono-
tonicity proof is to establish the related underlying variable-coefficient elliptic result with a
right-hand side. These new elliptic results, which appear at the beginning of Sects.5 and 6,
may be of independent interest. We point out that these elliptic estimates generalize both the
constant-coefficient and the homogeneous results.
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The monotonicity of frequency functions is often proved by showing that the derivative
of the frequency function has a fixed sign. In our proofs of the monotonicity of variable-
coefficient Almgren-type and ACF-type frequency functions, we show that each parabolic
frequency function may be described as a pointwise limit of a sequence of elliptic frequency
functions. While we know that each such elliptic frequency function is differentiable and
almost monotonic, that is not sufficient to guarantee the differentiability of the corresponding
parabolic frequency function. Therefore, our proofs rely on a more delicate analysis that
allows us to conclude directly that our parabolic frequency functions are monotonic. These
ideas are described at the ends of the proofs of Theorems 5.3 and 6.4.

We work with time-independent variable-coefficient operators for which the coefficient
matrix has a specific structure. That is, we consider symmetric matrices of the form A =
GGT, where G is the Jacobian of some invertible map g : RY — R?. Clearly, there are
bounded, elliptic coefficient matrices A whose structure is not of this form. However, if
A = I, then A is associated to the identity map g(z) = z with Jacobian G = I, showing that
this structural condition on A is a reasonable generalization to constant-coefficient operators.
In subsequent work, we will explore operators with even more general coefficient matrices.

The article is organized as follows. In Sects.2 and 3, we develop the framework that
connects the elliptic and parabolic theory. That is, we introduce and examine the maps Fy , :
R?*" s RY x R, that take points in the high-dimensional (elliptic) space to space—time
(parabolic) points. Section 2 takes the perspective of random walks to introduce these maps,
then uses the chain rule to explore how these maps relate elliptic and parabolic operators.
Section 3 examines these maps from a measure theoretic perspective. In particular, we present
the pushforward computations and describe how the integrals on the elliptic side are related
to those on the parabolic side. These two sections contain a collection of calculations and
statements that will be referred to throughout the article.

The L2 — L2 variable-coefficient parabolic Carleman estimate is proved in Sect.4. The
Almgren-type frequency function theorem for variable-coefficient heat operators is presented
in Sect. 5. Finally, Sect. 6 contains the monotonicity result for Alt—Caffarelli-Friendman-type
energies associated with variable-coefficient heat operators.

2 Elliptic-to-parabolic transformations

In this section, we construct the transformations that connect so-called parabolic functions
u = u(x,1t)definedon R? x (0, T) to a sequence of elliptic functions v, = v, (y) defined in
R¥*" for all n € N. More specifically, for each n € N, we construct a mapping of the form

Fgn:RP" 5 RYX R,

y = (x,1)

that takes element y in (high-dimensional) space RI*" o elements (x, ) in space—time
RY x R4. Given a function u = u(x, t) defined on a space-time domain, i.e. a subset
of RY x Ry, we use Fy , to define a function v, = v,(y) on the space Rdxn by setting
vp(y) = u(Fg,,(y)). As we show below via the chain rule, if u is a solution to a backward
parabolic equation, then each v, is a solution to some non-homogeneous elliptic equation.
This observation explains why we think of u as a parabolic function and of each v, as an
elliptic function. Moreover, as n becomes large, the function v,, behaves (heuristically) more
and more like a solution to a homogeneous elliptic equation. As such, the transformation
Fy , becomes more useful to our purposes as n — oo, thereby illuminating why the notion
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of a high-dimensional limit is relevant here. From another perspective, when we use Fy , to
pushforward measures on spheres and balls in R?*", we produce measures in space—time
that are weighted by approximations to generalized Gaussians. This perspective is explored
in the next section, Sect. 3.

We can think of the transformations Fy ,, : R?*" — R? xR, in a number of ways. On one
hand, as we show in this section, these maps are constructed so that each v,, solves an elliptic
equation whenever u solves a parabolic equation. This viewpoint is purely computational
as these relationships are illuminated by the chain rule. This perspective is perhaps the
most (easily) checkable, but it is somewhat mysterious. Random walks are the underlying
mechanism in defining these mappings, so we begin with that perspective.

Lety = (y1,1, V125 ooy Vlns oo vs Yd,1s Yd.20 - -+ s yd,,,) € R?*" denote the variables that
play the role of the “random steps" in our random walk. For some ¢ > 0, assume that y
satisfies

d n
2dt ="y (1)

i=1 j=1

In this setting, we do not fix the step size but simply assume that y is uniformly distributed
over the sphere of radius +/2dt. Define

Zi=yi1+tyi2+-+yia fori=1,....4d 2
sothatz = (z1,...,24) € R4, In the notation from [18], we define fan: Rdxn 5 R4 g0
that

2= fan(y)- (3)
Now let
g:RY > RY

be an invertible function with inverse function
h:RY— RY.
Set x = g(z) € R? so that
xi=gi(z) fori=1,....d (4)
and then since z = h(x) we have
zi=hj(x) fori=1,...,d.

For the moment, assume that g is sufficiently regular for the computations below to hold in
a weak sense. When further regularity is needed, we specify it.

The Jacobian of g = (g1, ..., gq¢) is a d x d invertible matrix function whose inverse
matrix is the Jacobian of h = (hy, ..., hg). Let G and H denote the Jacobian matrices of g
and h, respectively. That is,

S T g1 ohy 9y ohy
9z1 dzo T 0za ax| dxp T dxg
g g g2 Ohy Oy dhy
0z1 dzz T 0za 0x1 oxy "7 Oxg
G)=| . Y, Hxo = | | ) - 5
924 984 984 dhy  dhg dhyg
971 dzp "t 0zg axy dxp T dxg
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Let y(z) = det G(z) and n(x) = det H(x). From (5), we obtain
I =G()H(x) = G(z)H(g(z)) = G(h(x))H (x)
I =Hx)G(z) = Hx)G(h(x)) = H(g(2))G(2)
L=y @nx) =yh)nx) = y@)n(g(2)).

Now we collect some observations that follow from the Chain Rule. For the first lemma,
we describe how these determinants and their derivatives transform through the map go fy .

Lemma 2.1 (Determinant Chain Rule Lemma) For y(z) = det G(z) and n(x) = det H (x)
as above, define k, : R¥" — R to satisfy

1

1
n = n = = = . 6
kn(y) =y (fan(y)) =y (@) 1@ 1 (Ui ) 6)
Then
R (Geten 2 ) = (# 0 5 o)
Yi.j az; az;
y - Vylogk, =1r(H(g(2)) (VG(2), 2)) = tr (H(x) (V.G (h(x)), h(x))) .
Proof Since 3 — = 5.i, then an application of Jacobi’s formula shows that
Yi,j
gl _ 2Ner@ _ (c—‘@—aG(Z) ) —u <H (8 BG(Z)). ™
Yi,j 0z; az; 0z
We then get

n

d dlogk,(y) d dlogy(2)
yeVylogiy =) Y yi " =) si———— = (Vlogy(2),2)

i=1 j=1 0yi.j i=1 0zi

=tr[H(g(2)) (VG (2), 2)].

The next set of observations shows how the derivatives of some parabolic function u :
R? x (0, T) — R can be related to those of its associated elliptic functions v, : B vaar C

R4>*" _s R, That is, given a parabolic function # = u(x, t), we define the elliptic functions
Up = Un(y) = M(Fd,n(y))’ where

Iy
Fan(y)=(x,1) = ((g o fa.n) (), >4 ) (@)
The following set of results justifies why we refer to u as parabolic and each v, as elliptic.

Lemma 2.2 (Solution Chain Rule Lemma) Givenu : RY x 0,T) - R, definev,, : Bm C
R4 5 R 1o satisfy

vn(y) = u (Fan(y)).

Define B = B(z) to be ad x d matrix function with entries

d

bre=V:8k- Vgt = Z
i=1

dgk 0ge
dz; 0z
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That is, B = GGT. We then set A(x) = B (h(x)) = B(z) so that A = H™! (H’I)T. Then

v, < 8g> u yi |

ol T d
ou T u
Y Vv = (Vatt, G@)2) + 205 = (A Vau, HTho) 4205

n ’G(z)Tqu

<
<

<
=

I

TR e T e S
dor |V PRR T

n {A Q) Vaut, Viu) + 3% [(A(x)vxu, H(x)Th(x)> + %‘] .

Moreover, with ik, as in (6),

div, (/c,,(y)Vyvn) ) ou 2 ou _r
XY | divy (AVy — |+ {Av,—, Hh
() "[”“ ”)+ar]+d[< o >
du tr(H(V.G(h),h))  9%u
= > +1t a7 | ©)

where the expression on the right depends on x and t.

The proof of this result relies on the chain rule and can be found in “Appendix A”. When
u is a solution to a variable-coefficient backwards heat equation, we immediately reach the
following consequence.

Corollary 2.3 (Chain Rule Corollary) Ifu : R? x Ry — R is a solution to div, (AVu) +
9u = 0 and we define v, : R — R 1o satisfy

Un(y) =u (Fd,l’l(y))a

then

divy (k0 (V) Vyva) = kn(3)€n (¥),

where

2 Ju 10u ou
t, = =~ |(AV,—, HTh)+ = —tr (H (V,G(h), h)) — tdiv, [ AV, — ) |.
d[< at >+23t r(H {V:G(). b)) v < a:)}

In summary, we have constructed a sequence of maps Fy ,, given in (8), that serve as the
connection between the elliptic and parabolic settings. The following table describes these
relationships and the notation that we use to describe our elliptic and parabolic settings. Note
that Fy , is the connection between the elliptic column and the parabolic column.

|Elliptic Parabolic
Space high-dimensional space space—time
Elements |y € R4*" (x,1) e RY x Ry
Functions|v,, = v, (y) u=u(x,t)

PDEs divy (ky Vyvy) = kn £y divy (AVeu) +u =0

Going forward, we write Vu to indicate V, u, unless explicitly indicated otherwise. Similarly,
we write Vv, to indicate V,v,, unless explicitly indicated otherwise. That is, u is understood
to be a function of x and ¢, while v, is a function of y, and all derivatives are interpreted
appropriately.
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The results above will be used extensively when we prove our parabolic theorems.
Therefore, we work with variable-coefficient operators for which the coefficient matrix has
the specific structure that is described by the previous two results. That is, we consider
A(x) = B(z) where B = GG” and G is the Jacobian of some invertible map g : R? — R?.
Clearly, there are bounded, elliptic coefficient matrices A whose structure is not of this
form. However, if A = I, then A is associated to the identity map g(z) = z with Jaco-
bian G = I, showing that this structural condition on A is a reasonable generalization to
constant-coefficient operators.

Before concluding this section, we examine some examples of non-trivial coefficient
matrices that satisfy our structural condition. For simplicity, we assume that d = 1.

Given a bounded, elliptic function A < C(x) < A, we construct a function g such that
the corresponding function A(x) coincides with C(x). Recall that

A@) = GG (h(x)) = [¢'(h(x)]*.
For C(x) = A(x) to hold, we need v/C(x) = g’(h(x)). Since g = h~' and h = g~ !, then

Tgy — 1
g (h(x)) = o’ , so we need to solve i’ (x) = =

1 247
JCx)  1+x2

2
Example 2.4 Let C(x) = (;ﬁﬁ) . Notice that } < C(x) < 1 and
that

2 4 x2

/ «/C(x 1+ x2

If we want 4(0) = 0, then define h(x) = x + arctan(x) and take g(z) = h~!(z).

dx = x + arctan(x) + c.

Example 2.5 Let C(x) = 2 + sin(x) and notice that 1 < C(x) < 3. We define

h(x) = ;dx—_—zFCT_ZX‘ )
) V2Fsinlx) V3 3

where F(x|m) is the elliptic integral of the first kind with parameter m = k2. Again, we
define g(z) = h~1(2).

3 Integral relationships

In what follows, we examine how integrals of functions ¢ (x, ) defined in space—time R¥ x Ry
can be related to integrals of ¢ (Fy ,(y)) in high-dimensional space R4 We start from a
probabilistic viewpoint. That is if y € RY*" is uniformly distributed over a fixed sphere, we
seek to determine the probability distribution of x € R?, where (x,1) = Fyn(y). As we
show below, understanding this probability distribution on the parabolic side reduces to a
pushforward computation which we carry out explicitly. We then collect the consequences
that will be used in our elliptic-to-parabolic proofs.
Let S} denote the sphere of radius /2dt in R9*" That is,

Sh = {yeRdX” |y|2=2dt}. (10)

Let o, , denote the canonical surface measure on this sphere S;'. We make the assumption
that the vectors y = (y1,1, Y125 ---» Yd, 1> ---» Yd.n) € RI*" gre uniformly distributed over
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S;' with respect to o, dtnil. Set Mii,n to be the normalized surface measure on the sphere S}';
that is,

1 1
dn—1 Jdn—l N

t
Ragn =" a1
" |Sdn—1 |(2dt) >

Our goal is to find the probability distribution of x in the limit as n — oo, where x = g(z) =

8(fan(y)) and z = f4n(y)is as in (3).
We first define an intermediate measure on z € RY for each fixed 7 via the pushforward
as w(’i’n = fd,n#uﬁi’”. This is the pushforward from [18] and it is shown there that

dol, =
T san1| 2dny #

|Sdn717d| (1 |Z|2

- ‘Sdn—l‘ (Zdnt)%  2dnt

| gdn=1-d| (1 B4+

dn—g=2
dzy...d
Ydnt ) XxB, (2)dz1 2d

n—2 =
) X8, (2) dz,

where we have introduced the notation
Bp = {z € R? |z < 2dnt} (11

for the ball of radius +/2dnt in R.
The probability distribution of x is the push-forward of Mtd, by go fan:

Vi = (80 fan)#(y ,)-

This implies, in particular, that for all ¢ € Co(R%),

/R oG vy, () = /S 0@ (fan M)ty , ().
Now observe that

Vi = (80 fan)#uy, = g (fantuly,) = ghol .

Since g : RY — R? is invertible, computing the pushforward here is the same as carrying
out a change of variables. By definition, we have that

dn—d—2
|Sdn—1—d| |Z|2 5
——— [ e @)1 - —— X8, (2)dz
|Sd"*1’ (de«)jl /Rd 2dnt B
=/ w(g(z))dw,;,nz/ @ (x)dvl,.
R4 R4

Since dx = y(z)dz, n(g(z))y(z) = 1, and z = h(g(z)), then

dn—d—2
lzI*\ °
/Rd p@EN|1- 2dnt XB,, (2) dz
dn—d—2
22\ °
= /Rd @)1 - dnt 1 (8 () xB, ) v (2 dz
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40 Page 10 0f 47 B. Davey, M.S. V. Garcia

dn—d—2
@\ *
— 1 - h d .
/Rdw(x)n(x)< Sdnt XBy (h(x)) dx
It follows that v;,n = n(x) K; ,(h(x)) dx, where we introduce
dn—d—2
’Sdn_l_d’ |X|2 2
Kt,n(x) = Kn(x’ 1) = 4 1— XBm(x)~ (12)
|Sdnfl | (2dnt)? 2dnt
As shown in [18, Lemma 6],
) 1\? x|
Ki(x)=K(x,t):= lim K;,(x)=-—) exp|———], (13)
n—00 4t 4t

where the limit is pointwise. A much stronger version of convergence holds for this sequence,
stated as follows.

Lemma 3.1 (Uniform convergence of {K,}) Given any ty > 0, the sequence {K,(x,1)};2
converges uniformly to K (x, t) in R? x {t > 1o}.

The proof of this result can be found in “Appendix A”. In fact, the arguments there, in
combination the proof of [18, Lemma 1], show that there exists C; so that for every n € N
and every (x,1) € R? x Ry,

Kin(x) = CaKi(x). (14)

This bound will be used in many of our subsequent arguments.

One might wonder how our transformed heat kernel relates to the standard one. The
following lemma, proved in “Appendix A”, shows that K (h(x), t) is not a solution to the
associated homogeneous variable-coefficient heat equation.

Lemma 3.2 (Kernel solution) Withug (x,t) = K (h(x), t), it holds that

1 & 2 ahe
div (AV —0 = —— h —h; 0.
iV (AVug) — dux ZI,%::] 8zjazg( (N g -hjuk #

Summarizing our pushforward computations, we have established the following result:
Lemma3.3 (cf. Lemma 2 and Lemma 3 in [18]) Let S}, K; , and K; be as given in (10),

(12) and (13), respectively. If ¢ : R — R is integrable with respect to K, (h(x)) dx, then
for everyn € N, ¢ is integrable with respect to K; , (h(x)) dx and it holds that

£ a0 (g0 fan D)oy = [ ka0 (80 fun ) di

* 1 Sl
= / @ (x) Ky p (h(x)) dx,
Rd
where K, is as defined in (6).

Remark 3.4 Going forward, we often use the notation do or do (y) in place of da(f,n_l.
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It is also helpful to interpret the measures v;’n as time slices of a space—time object, which
comes from the projection of some global measure in the space y € R?*" onto the space—
time. To do so, we project a measure /14, on R?*" to the space-time R? x R, by the map
F4., as given in (8). With m denoting Lebesgue measure, define

d

Hd.n = |Sdn—1||y|dn—2m'

The “slices” of the measure ug , by the spheres S’ project by Fy , onto the measures vg’l w
that is,

(o9} oo
Fan#iian = / (g o fan)#(uy,)dt = / vl adt.
0 0
Let B denote the open ball in R**" for which § B, = S, i.e.
B,”:{yeRdX” |y|2<2dt}. (15)

Integrating the equality from Lemma 3.3 leads to the following result. 455

Lemma 3.5 (cf. Lemma 4 in [18]) Let B}, K, and K be as given in (15), (12) and (13),
respectively. If ¢ : R? x (0, T) — R is integrable with respect to K (h(x)) dx dt, then for
everyn € N, ¢ is integrable with respect to K,, (h(x)) dx dt and for everyt € (0, T), it holds
that

1 —dan !
M/B )6 (Fan OV P dy = [ [ 6659 Ky o), 9 dx s,

where K, is as defined in (6). In fact, if T = oo, then
1

d !Sdnfl | Rdxn

Lemmas 3.3 and 3.5 will be used many times in our proofs below. Lemma 3.3 transforms
a k,-weighted integral over a sphere in R4*" to a K|  n-weighted integral at a particular slice
in space-time. Similarly, Lemma 3.5 transforms a weighted integral over a ball in R?*"
to a K; ,-weighted integral in space—time. Of note, the elliptic weight in Lemma 3.5 is «,
times the fundamental solutions of the Laplacian, while by (13), the parabolic weight is an
approximation to a transformed heat kernel. As dimension-limiting arguments will be crucial
to our proofs below, we need to understand what happens when n — oo. By (13) and 14 in
combination with the Dominated Convergence Theorem, the parabolic integrals in both of
these lemmas converge to K (h(x), t)-weighted integrals.

For the remainder of this section, we introduce some definitions and draw some conclu-
sions based on Lemmas 3.3 and 3.5.

Definition 3.6 (Weighted L' spaces) Given ¢ : R? x (0,T) — Rand & : RY — R? as in
Sect.2, define P (-; ¢, h) : (0,T) — R as

) (Fan ) ly 2" dy = /0 /R $@.5) Ky (h(2), ) dx ds.

2
P(t; P, h) =/ |p(x, 1)] exp (_|h(x)|> dx.
R4 4t

We say that P (-; ¢, h) € L ([0, t],s—%ds) if

r |h(x)]?
/s / ¢ (x, s)exp | —
0 Rd 4s

IR

)dxds < 0.
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With this definition and Lemma 3.5, we reach the following result.
Corollary 3.7 (Weighed integrability on the elliptic side) Let¢ : R x (0, T) — R, h : R? —
R? and assume that P (-; ¢, h) € L ([O, t], s_%ds). For each yr, : B} C R 5 R
defined by ¥, (y) = ¢ (Fd,,,(y)), Yy is integrable with respect to k,(y) dy in B} for every

n>2.

Proof An application of Lemma 3.5 shows that

/nKn(y) V(W dy = /B" 10 (¥) | (Fan ()] 1912 Iy1P~4" dy

Bt t
4 dn—2
=d |s| / / 16 (x. )| 2ds)“T" K, (h(x), 5) dxds
0 JR4

dn

t
sd\sd"”]ed/ /d 16 (x. )| 2ds)“T" K ((h(x)., s) dxds
0 JR

dn
2dt) T Cq|S—1] i
< d‘d L[ 495 myds,
2t (4m)2 0

where we have applied (14) and that dn > 2d > d. O

Now we introduce some function classes for parabolic and elliptic functions that will be
used below.

Definition 3.8 (Moderate /-growth at infinity) Let u : R? x (0, T) — R be a continuous
function with locally integrable weak first order derivatives. With  : RY — R as in Sect.2

and A= H™! (H_I)T, define

2
ﬂ{(t)zﬂ{(t;u,h):/ (e, D exp (_Ih(x)l )dx
R4 4t

DD _/ ( |h(x)|2>
) =D(t;u,h) = (A(x)Vu(x,t), Vu(x,t))exp | — dx (16)
R4

4t
2 2
exp (— o)l ) dx.
4t

We say that such a function u has moderate h-growth at infinity it H, D, and T belong to
L' (10,71, ¢ %ar).

‘J'(t):‘J'(t;u,h):/ ‘a—u(x,t)
R4 ot

Definition (x-weighted Sobolev space) For Bg C RY, we say that a function v : Bg — R
belongs to L? (Bg, k() dy), the space of k-weighted p-integrable functions, if

/ k() lv()IP dy < oco.

Br

Moreover, if both v and Vv € L2 (Bg, « (y) dy), then we say that v belongs to the k-weighted
Sobolev space and write v € W2 (Bg, k() dy).

Now we may connect these two function classes.
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Lemma 3.9 (Function class relationship) Ifu : R? x (0, T) — R has moderate h-growth
at infinity, then for v, : B} C R4*" — R defined by v, (y) = u (Fd,n(y)) and Kk, defined by
(6), it holds that v, € W2 (B;l, Kn (y)dy), whenever n > 2.

Proof An application of Lemma 3.5 shows that

/ k) oI dy = /B ka0 [ (Fan ) 112 1y P dy
T

BT
T dn—2
=d‘S"”—1‘/ / lu(x, ) 2ds) T Ky (h(x), s) dxds

(2d) 2 ed|Sdn l’
B 2 (4m)% 0

Uf (s)ds,

where we have applied (14). Since u has moderate i-growth at infinity, then

2 QdT)% ¢4 |sdn=1)|
“n(y) lon (7 dy = a [Ra8 4\ < o00.
By 2T (47)% L ([O,T],t m)

For the gradient term, we use Lemma 3.5 in combination with Lemma 2.2 to get

| ) 1vu 0P dy

T

T
:dn‘Sd"_l‘/ / (AVu, Vu) 2ds) ™ K, (h(x), s) dxds
Rd
Sd” 1‘/ / 2s< ) 2ds)“T K, (h(x). s) dxds
]Rd
‘Sd” 1‘/ / "' Yu, h>(2ds) K, (h(x), s) dxds
]Rd
§2dn Sd"_l‘/ / (AVu, Vu) 2ds) ™ K, (h(x), s) dxds
0 R4

T 2 2
dn—1 [ ()]
+2‘S }/0 /Rds<1 2dns ) <3A ) 2ds)’

where the last step uses Cauchy—Schwarz. Since |/ (x) |2 < 2dns on the support of K, (h(x)),
then

,8)dxds,

| )90 0P dy

T
dn—1
(2d)z eanS |</ in dz@(s)dHi/
(471)2 0

)

(ZdT) % @un | sdn=1 2T
‘, | 1D e Nt T d < 00,
T (47)2 L ([O,T],t Mz) dn L ([o,T],t m)
where we have again used that # has moderate #-growth at infinity. O
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4 Carleman estimates

Carleman estimates have played a significant role in the development of the theory of unique
continuation for both elliptic and parabolic equations. The original idea (used in the elliptic
setting) is attributed to Carleman [13], with subsequent work accomplished by Cordes [16],
Aronszajn [5] and Aronszajn et al [6]. Since then, a wealth of results have been produced for
both elliptic and parabolic operators; see for example [21, 24-26, 37-39, 46, 50, 53]. Addi-
tional applications of Carleman estimates include geometry, inverse problems, and control
theory.

The following elliptic Carleman estimate is the L?> — L2 case of Theorem 1 from [3]. The
original theorem was used to establish unique continuation properties of functions that satisty
partial differential inequalities of the form |Av| < V] |v|, for v € lemq (), VelLp (),
where w > %, and Q c RY is open and connected.

Proposition 4.1 ([3], Theorem 1) Forany t € R and all v € Wy'> (RN\ {0}), the following
inequality holds

@ N) |1y v] 2y < 191772 A0|| 2wy (17)
where
. N N
c(t,N) =€é%f20 (E +€+1_2> <E+E_T)"

Remark 4.2 In order for this theorem to be meaningful, we choose T € R so that 7 — % ¢ Z>p.

Remark 4.3 Other versions of this theorem hold with more general norms. More specifically,
[3, Theorem 1] establishes that forany 1 < ¢ <2 < p < ooand u = 2 — N

w
1 1

” Iyl™* v”Ll’(RN) < ” |)’|7T+M AU“ La(RN) -
However, since the condition that ;& > 0 is equivalent to N < 127%‘;, we must have that p
and g are both very close to 2 for large N. In particular, when N — oo, p,q — 2. Since
we use the high-dimensional limit of this elliptic Carleman estimate to establish its parabolic
counterpart, this explains why we restrict to the L> — L? Carleman estimate.

The following parabolic Carleman estimate is a variable-coefficient L?> — L? version of
Theorem 1 from [21], and it resembles [24, Theorem 4]. For a much more general result, we
refer the reader to [39, Theorem 3]. The original theorem was used to prove strong unique
continuation of solutions to the heat equation. As such, this version could be used to establish
unique continuation results for solutions to variable-coefficient heat equations.

Theorem 4.4 (c.f. [21], Theorem 1) For H is as in (5) and n = det H, assume that
(H_I)T Vlogn € L™ (Rd) and div [H_l (H_l)T Vlog 77] € L™ (Rd). Letd > 1 and
take o € R so that 2o — % — 3 € (0, 00) \Z. Define ¢ := dist (Za — % -1, Zzo) and for
some & € (0, 1), set

a1
To=evT—3 HZdiv [ (1) Viogn] + |(H")" Viogn|

Lo (R
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Then there is a constant C, depending only on e and 8, such that for every u e
C5° (R x (0, To) \ {(0, 0)}), it holds that

To 12
g hl
/ / lu(x, 0>t @ dxdt
0 Rd

fo ~ 2,202, D2
< C (&,9) |div (AVu) + o;u|”t e~ & dxdt,
0 R4

where h is some invertible function and A = H™! (H_l)T.

We show that Theorem 4.4 follows from the elliptic result, Proposition 4.1, Lemma 3.5,
and the results of Sect.2. More specifically, given u, we define a sequence of functions {v,}
and we then apply Proposition 4.1 to each one. Applications of Lemma 3.5 allow us to
transform the integral inequalities for v, into integral inequalities for u. By taking a limit of
this sequence of inequalities and using (13), we arrive at our conclusion.

Proof Letu € C3° (RY x (0, To) \ {(0, 0)}). For every n € N, let v, : R¥*" — R satisfy
vn (v) = u (Fan (),
where Fy , is as defined in (8). Note that each v, is compactly supported in B;EO = B sa7;-

With y (2) = 15, define i, : R — R to satisfy

1
) = e an )

For o € RsothatZa—%—?a € (0,00)\Z, set 7, = 20l+dn_2ﬁ- Since Tn_dTn =
20— 4 —1€(2,00)\Z thent, — 4 ¢ Zs.

Since
. VKn VKVI . VKn
A =d \% = A -V d
(Vicpun) = div (ﬁn vy + NS vn) VK, Avy, + N v, + div (2«/@) Un
| B . —1/2
= 75 div (k, Vv,) — div (K,,V (Kn l/ )) Un,

then for § > 0 as given,

2

’

2 .
|A (\/Env,,)|2 < Csky, |:i div (Kann):I + @ [div (KnV (K,;l/z))]z |ﬁnvn
Kn Kn

where Cs = 1+ 8 1and¢s = 1 + 8. An application of Theorem 4.1 with v = ﬁn v, and
T = 1, shows that

2 _
C(tn,dn)2/ |V vn|” 1y1 2™ dy
By,

< / A (VEpun) [Py 725+ dy
By

1 2 (18)
< CS/ Kn |:F div (Knvvn)] |y|72rn+4 dy

T n

2
Iyl ~12 2,
+C5/ |: le(KnV(IC” /)) ’ﬁnvn‘ ly| =2 dy.
7o LV kn
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40 Page 16 0f 47 B. Davey, M.S. V. Garcia

Since u € C{° (Rd x (0, To) \ {(O, 0)}), then |u|? (ZdI)%_l_f" satisfies the hypotheses of
Lemma 3.5 and it follows that

2
/B Vi o 11727 ay
To

= [ o o P11y

BT0

= / Kn(y)
Bn

To

, (19)
|y[? dn—2—27, | 2—dn
u gOfd,n(y),g Iyl "yl dy

To "
:d’sd"*l‘/ / u (x, )2 2dn) 31" K, (h(x). 1) dx dt.
0 R4

2
Because |div (AVu) + 8 + 2 [(AVE, HTh)+ L 3t (H (V.G ), ) + 154 ]|

(2dt) % +1-7 150 satisfies the hypotheses of Lemma 3.5, then another application of Lemma
3.5 shows that

1 1 2
ﬁ/ kp | — div (K, Vu,) | |yl 2f"+4dy
|[Sn=t] Ty L

1 1 : _ _
= 5o /B e () [K— dw(xnwn)] |y 42720 |y 27 dy
T n

§2dn2/T0/

d
< > 1 du 0°u
AV— Hh —i—f—tr(H(V G(h). ) +155

/T0 /Rd 29

x (2d1) 31" K, (h(x), 1) dx dt,

B (20)
T g (h(x), ) dx dt

2 2

where we have used (9) from Lemma 2.2 and the triangle inequality to reach the last line.

i 2 n
Finally, because [Zd nt W] lu|? (2dt) g1z, satisfies the hypotheses of Lemma 3.5,
we see that

/n ['ﬂidw( V(xn‘”))Tlﬁnvnlzlylzf" dy
| Vi

—d(sd" 1‘/ / [  div ( Avf)} i (. D) @dt) 3 =1 K, (h(x), 1) dx dt
Rd

: T
< dn? ‘sd"*I‘ M / O/ lu (x, )2 dn) 315 K, (h(x), 1) dx dt,
\/ﬁ Loo(Rd) 0 R4
(21)
since (9) with v, = «,, 12 gives
|)’|2 . —1/2 divy (A(x)Vxﬁ(x))
divy (k, (V) Vy (kK (y) = 2dnt .
k() (er )9y (n )75) V()
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A computation shows that
div(avym) v [HTH(HT)T 7V logn]
N 2
dlv[ (H’I)TVIOgn]+%‘(H’1)TV10gn2

’

)
which belongs to L (R?) by assumption. Substituting (19), (20), and (21) into (18) and
simplifying shows that

2 fo 2 g,
c (t,,dn) lu (x,t)|"t2 K, (h(x),t)dxdt
Jo R4

T
< 2Cs (2dn)? / ’ /
Jo JRY (22)

~To n
+32C,;/ /, Avg‘;, Th>+ 3% (H (V.G (h), h))+t } 13T K (h(x), 1) dx di
0 d

dn

12K, (h(x), 1) dx dt

div (AVu) + u ?
iv u) + —
at

,TO : n
+ (dne)? (1 — 52)/ / i (x, )21 3 71" K, (h(x), 1) dx dt,
0 Rd

div (AV /1)

=¢e/1—=6to
N

L (R4)

where we have used the definition of ¢s and that 47

reach the last line. Observe that

. dn dn—d—2 dn dn—d—2
c(rn,dn)zﬂel%fzo [7+£+<2a+f)—2] [7+£—<2a+f)”
. d d
= inf dn —24+0+ 20— = —1 —20——=—1 > dne,
[EZEO 2 2

since we assumed that 2o — % — 3 > 0. Returning to (22), the last term on the right may be
absorbed into the left to get

To
/ / i (x, )2 1272 K,, (h(x), 1) dx di

=26 (Ts) //

Tt
) /0/ AV?;;,HT +§(T”r(H(V G(h), h))+tm2] 197202k, (h(x), 1) dx dt,

du
div (AVu) + - 137292k (h(x), 1) dx di

2C
2 (dna&

with 2a = 1, — ‘maﬁ We now take the limit as  — 00. An application of Lemma 3.1
shows that

To h 2
/ / lu (x, 1)]> 17> exp <—| @l )dxdt
0 ]Rd 4t
81448 [T 7 ein h(x)[?
= a2 ), / rEexp | mg ) dd

as required. O

div (AVu) + u
1\ u —_—
at
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5 Almgren monotonicity formula

In this section, we show that the Almgren-type frequency function associated with the
parabolic operator div(AV) + 9d; is monotonically non-decreasing. When A = I, a cor-
responding result goes back to Poon [49]. In that paper, the monotonicity was key in the
proof of unique continuation results for caloric functions. A version of this result was later
proved in the context of the parabolic, constant-coefficient Signorini problem in [17], where
the authors used the monotonicity to establish the optimal regularity of solutions and study
the free boundary.

To establish our parabolic result through the high-dimensional limiting technique, we
require a similar result for solutions to non-homogeneous variable-coefficient elliptic equa-
tions. Many similar results for the homogenous setting have been previously established. For
example, Almgren-type monotonicity formulas for variable-coefficient operators have also
been extensively used to study a wide variety of free boundary problems, as in [8, 20, 31-33,
35, 36]. The following result is crucial to our upcoming parabolic proof, but it may also be
of independent interest.

Proposition 5.1 For some R > 0, let B C RN . Assume that for k : Bg — R it holds that
Vilogk -y € L® (BR). Let v € W12 (Bg, kdy) be a weak solution to div (k Vv) = k€ in
Bg, where { is integrable with respect to both k v and kVv - y on each B, forr € (0, R).
For every r € (0, R), assuming that each v|yp, is non-trivial, define

H(r) = H(r; v,x)=/ K () lv(* do (y)

3B,

D<r>=D(r;v,K>=/ () Vo) dy

B,
rD(r; v, k)
H(r;v, k)’

Set L(r) = r2YL(r), where T > Viogk - yllpoo(py)- Then for allr € (0, R), it holds that

L(r)y=L(r;v,x) =

') = 2027 (fB,KEvdy) (faB,KvVv-ydo(y)) (fBrKZVv.ydy)
r) = 2r B

(faB, i [v)? dU(y))2 (faB, K [v)? da(y))

Remark 5.2 Notice that if v is a solution to the homogeneous equation div (k Vv) = 0 in
Bg,i.e. £ = 0, then L (r) is non-decreasing in r. Moreover, if x = 1, we recover the non-
homogenous elliptic result from [18, Corollary 1], which is the non-homogeneous version of
Poon’s result [49]. In particular, we recover the expected monotonicity formula for solutions
to elliptic equations.

Proof Observe first that since
H(r)=/ x(y>|v<y)|2do(y)=rN”/ K (ro) l(ro)Fdo(¢),
9B, 9B
then

H'(r) = Nf_lH(rHZrN*l/ K (re) v(rH)Vo(re) - ¢do (¢)
JdB

+ N1 /33 Vi (r¢) - ¢ w(ro) > do (§)
[eR)
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N —1 A A2
=—Hr)+2 kvVv-n+ Vi -n |v|]7,
r 9B, 9B,

where 7 indicates the outer unit normal. Moreover, integration by parts and the equation for
v shows that

D(r) =/ K|VU|2=/ %diV[KV(UZ)]—diV(KVU)U=/ KvVU-ﬁ—/ klv.
r r JB, r
(23)

Now differentiating and integrating by parts shows that
/ div (/( |Vv|2 y)

D/( _ 2 _1 2 A l
r) = Kk |Vu|© = k|Vu|y-n =
9B, 7 J3B, rJp
1

_N 2, 2 2 2
= K |Vu|© + kVv-Dvy+ Vi - y|Vu|
r JB, r N r JB,

N 2
= — K|VU|2—7/ /(|Vv|2
r B, r B,

2 . 2 2, 1 2
—= [ dvVo)Vo-y+ = [ «(Vu-p) 4= | Vi-y|Vo
r JB, r< JaB, r JB,

N-—2
= D(r)+2/ K(Vv~ﬁ)2+/ wl|vv|2_z/ AR
9B, B, r B,

r

N =

Therefore, by putting it all together, we see that

H)?L'(r) = D)HG) + rD' ()HG) — rDr)H' (r)
= D(r)H(r)

+[(N—2)D(r)+2r/ K(Vv~ﬁ)2+r/ VK~X|VU|2—2I‘/ K(VU-X]HO’)
dBy By r By r

— D(r) |:(N—1)H(r)+2r/ /chv-ﬁ-i-r/ VK~ﬁ\v\2]

r By

ol e e e e )] )
_2,</BBrvav.ﬁ_/l;rKev) (/S'Brww.;,>

() (] e )

()~ () )]
[0, 2e) (], o) ] o)
() o) (o) (o)

An application of Cauchy—Schwartz shows that

(o) = () (L 7o)
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while with T > [[VIog« - yll Lo (p,), We get that

Uy emer) (L, =) (], =) (], )

It follows that

<2YD(r) H(r).

L) > 27 rD(r) ) (fBrKZv) (faB,"vVU'y) ) (fBr,cgvv.y)

rw (JQB,K|”F)2 (ngrxlvP)

or rather,
27
(rZTL(r))/ =Tl () + —rTL()
r

(fBer)<faBrKvVv-y) (fBrKEVv-y>

(faB,"|v|2)2 (Syg, € 10P%)

2727

[m}

Now we use Lemma 3.3 in combination with Proposition 5.1 to establish its parabolic
counterpart. Before stating the result, we discuss the kinds of solutions that we work with.

Letu : RY x (0, T) — R have moderate i-growth at infinity, as described in Definition
3.8. Forevery t € (0, T'), assume first that u is sufficiently regular to define the functionals

2
exp (— |h(4xt)| ) dx

@) = It u, h) = / (e, 1) ’(Aw, HTh> 421 du
R

2

3() = 9t u, h) =/ 17 (e, )] |t (x, 1)] exp (— (0] )dx 24)

Rd 4l
2

K(t) = K(t: u, h) :/ 1T (x, )] ‘<AVu,HTh>+2t duu| exp (—'h(x” )dx,

Rd 4t
where
B . 1 ou o\ ou 9%u
I = I ) = 5 [2<Av5, H h> + St (H (V.G (), ) + 2tﬁ]

(25)

and all derivatives are interpreted in the weak sense. Then we say that such a function u
belongs to the function class 2L (]Rd x (0, T), h) if u has moderate i-growth at infinity (so
is consequently continuous), and for every #y € (0, T'), there exists ¢ € (0, ¢) so that

Je L™ty — &, to] (26)
and there exists p > 1 so that
d d
gerr(10.0], 0 %dr), KeLr((0.10].173dr). @7)

This is the class of functions that we consider in our result. We remark that this may not be
the weakest set of conditions under which our proof holds, but it is far less restrictive than
assuming that our solutions are smooth and compactly supported, for example.
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Theorem 5.3 Assume that tr (H (V,G (h), h)) € L®(R?), where h, H, and G are described

by (4), (2), and (5). Define A = H=' (H™1)" : RY — R4 and letu € A (RY x (0, T), h)

be a non-trivial solution to div (AVu) + d;u = 0inR? x (0, T). For everyt € (0, T), define
ho)1?

H () = H (¢t u, h) = / luCe, 0> e % dx
R

D(t):D(t;u,h):/ (A)Vulr. 1), Var, ) e~ 242 dx
R4

tD(t;u, h)
H(t;u,h)’

Set © (1) = tTL (1), where Y > ||tr (H (V.G (h), )|l oo (ray- Then L (t) is monotonically
non-decreasing in t.

L@)y=L(tu,h) =

Proof We first check that with «,, and v, defined through the transformation maps Fy ,, the
hypothesis of Lemma 5.1 are satisfied. Recall that B}. C R4*" is given by (15). Let i, be as
in Lemma 2.1, which shows that

IV logky - )’”LW(B;") < |lo(H (VZG(h)vh))”LOC(Rd) < Q.

In particular, Vlogk, - y € L°°(B7) for each n.
Letu € A (R? x (0,T), h) be a non-trivial solution to div (AVu) + du = 0 in RY x
(0, T). For every n € Nx», let v, : Bf. — R satisty

Un (y) =u (Fd,n (y)) .

Since u has moderate h-growth at infinity, then Lemma 3.9 shows that each v, belongs to
W2 (Bf, k() dy).
An application of Corollary 2.3 shows that

div (kn (y) V) = J (x, 1),
Kn(y)

where J is defined in (25) and does not depend on n. For every n, define £, : B} — R so
that

by () = J (Fan ()
and then
div (k, V) = k,l,.
Since u € A(RY x (0, T), h), then (27) implies that for every t € (0, T), J belongs to
L! ([0, t], s_%ds). Corollary 3.7 then shows that ¢, v, is integrable with respect to k,, dy in

each B;'. Similarly, because X belongs to L! ([O, t],s~ g ds), then Lemma 2.2 and Corollary

3.7 show that £, Vv, - y is integrable with respect to «,, dy in each B;'. Rephrased, this means
that ¢, is integrable with respect to both «, v, and x,, Vv, - y on each B;'.

By backward uniqueness of heat equations, (as in [46], for example), u (-, #) is a non-trivial
function of x foreach t € (0, T).

Since v, |pp, = u ( %) is non-trivial for each r € (0, A/ 2dT>, then all of the assump-
tions from Proposition 5.1 hold. Therefore, we may apply Proposition 5.1 to each v, on any
ball of radius +/2dt fort < T.
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First we compute the frequency function associated to v, on the ball of radius ~/2dz. By
Lemma 3.3,

# (V2 v ) = [ ) o )P dor ()

1

dn—1

= Qdt)3

‘Sdn—l ‘ /d lu e, D2 Ky (h(x))dx.  (28)
R

Lemmas 2.2 and 3.3 imply that

Qdr)~ T o .
s s kn ()n () (v - Vuu () do (y)
(29)
- / [<Aw, HTh> + 2t8tu] (X, 1) Ky (h (X)) dx,
Rd
while Lemma 3.5 implies that
1 - —dan
}Sf“|/ ien (M)l (9) v () |72 [y P74 dy
K (30)

13
=d// T(x, ) (x, 5) 2ds) ™5 K, (h (x), s) dx ds.
0 JRA

Using the expression (23) along with (29) and (30), we see that

! D (\/27%, Un,s K,,) = (ZdI)% /

E 9 (Vi HTR) -+ 21000 ) (6, 1) Ko ( (0 dx

t
—d// T(x, s)u (x, 5) 2ds) T K, (h (x), s)dx ds.
0 JRd

We remark that since u € 2 (]Rd x (0, T)), then Lemmas 3.3 and 3.5 guarantee that the
integrals in (28), (29), and (30) are all well-defined. Therefore,

V2D (V241 v, k)
2H (m, v,,,/cn)

1
La(t) = 5L (V2dt; vn. k) =

_ Jpau G0 [[AVu, HTR) 4 200iu]) Ko (h (0)) dx = d [ fpa J (6, $)u (x,5) (;)% Ky (h(x),5)dxds
- 2 fga | Ce, OF Ky (h (x)) dx

_ Jgau (e n) [(AVu, HTh) + 23,u] K, 5 (h(x))dx

B 2 fpa lu Ge, D)1 Ky (h(x))dx

dn—d—2

: A
dfo[ Jra J (6, 5)u (3, 5) (% - ‘hz(d‘,,),l ) ’ XB,, (h(x))dx ds

dn—d—

d—2
N
2 fpa e 0P (1= B2 2 g, (h(x))dx

Thus,

Jga u (e, 0) [(AVu, HT h) + 2t0,u] K, (h (x)) dx
2 [ lu (x, 01> Ky (h (x)) dx

)

lim L,(t) =
n— 00
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where we use lim K, ,(x) = K;(x) from (13), the bound (14), and that
n—00

dn—d—2

2 2 dn—d—2
lim (s—'h(x)'> X, ()| = lim (1) T =0

n—00 t 2dnt t

for every s € (0, ¢) along with the Dominated Convergence Theorem.
Since d;u = —div(AVu) and V (K; o h) = —%HTh K (h), then

1
> /Rd w(x. ) [(Aw, HTh> + 2t8tu] K, (h (x)) dx
= —t /d u(x,t)[(AVu, VK; (h(x))) +div (AVu) K; (h(x))]dx
R
- —t/ u (x, 1) div [AVu K, (h(x))] dx =z/ (AVu, Vi) K, (h(x)) dx
R4 R4

and we deduce that
lim L,(t) =L (t;u,h). (31)
n—00
Define Zn (1) =t L, (¢) for some Y, > |V log k, - y”Loc(B;l_). Lemma 2.1 shows that
IV Tog ks - ¥ll gy < lltr (H (V-G (k). m)ll e ey =2 Y.
so we may choose Y, = T for all n € N. Observe that

N 1
Lot = tTL,,(r) - ftTL («/261:; U, K,,)

Qdn" L (@; Vn, K,,) _ !

202d)T

S E (V2 o)

where L is as given in Proposition 5.1. An application of the chain rule shows that

d ~ ~ V2d
—Ly(t) = L' (V2dt; vy, ken ) ——.
TR 22d)" ( o ) 2/t

By Proposition 5.1, it follows that

d Z > 4T d (fsr" Kn Uny'vvn) (fgrn Kn L Un) fBrn kntny -V,
E n(l) _t E 5 B — f P |v |2
(IS;’ Kn [vnl ) sp

By Lemmas 2.2 and 3.5

. Vu, dn=2 |, 12—dn
d[si- 1|/ Kn () €n (3) (v - Vo ) [YI77 [y[7 dy

:// J(x,s)[(AVu,HTh>+2sasu](2ds)nT_ K, (h(x).s) dx ds.
0 JR4

Therefore, substituting this along with the expressions from (28), (29) and (30) into the
previous inequality shows that

dn—=2
)T fpa I 9 [[AVa, HT R + 25 05u] K 000, ) v s

d ~ T-1
— Ly (t) > —dt
™" 2 foa I .02 Kp g (h (x)) dx
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1 (.fmd w(x, 0 [(Aw, HTh>+2z Bru] Kin (h (x)) dx) ([O (%) [Rd TG, )u (x, 8) K (h (x) s)dxds)
+dr

2 (fga e e K 1 ) )

Estimate (14) along with (51) and (52) show that

d ~ dCgr T—1 rsy 252 CuI@®) [t s\ L2 =
dthz—Wn([)[/o (;) Kepds+ s | (;) (s)ds | = Fu(t).

(32)

where J, J, and KX are defined in (24) and we have introduced

dn—d—2

h)1F\ 2
'“”) X5, (hW()dx.  (33)

2dnt

Fu (1) = Hy (t5u, h) ::/ |u(x»t)|2 (1_
R4

To show that £ is monotone non-decreasing, it suffices to show that given any 7 € (0, T'],
there exists 8 e (0, tp) so that F converges uniformly to 0 on [f9 — §, #p]. Indeed, since
L (t) > F (1), then for any ¢ € [fo — 8, to], it holds that

1
Ly(to) — Ly(t) > / " B (s)ds.
t

By definition and (31), Z,, ®) =tTL,() converges pointwise to Z(z) =tYL(s: u, h), from
which it follows that

L(to) — L) = lim [L,(to) — Ly(1)] = lim / Fy(s)ds.
n—oo n—00 t
Assuming the local uniform convergence of I?n toOon [ty — &, to] D [¢, to], we see that

0 10 ~
lim F,(s)ds = / lim Fy,(s)ds =0
t n—o0

n—o0 t

and we may conclude that E([()) — E(t) > 0, as desired.
It remains to justify the local uniform convergence of F, to 0, as described above. Let
to € (0, T] and recall that since u is non-trivial, then backward uniqueness ensures that

/ lu (x, t())|2 dx > 0 so that L (#y) is well-defined.
R4

‘We first consider the terms in the denominator of I::n, defined as H,, (¢) above. Observe
that for any n € N, we have from (33) that

N
j{n ([) Z/ |L£ (X,[)|2 1— |h(-x)| dx
{Ih(x)1?<dnt} 2dnt

In2 |h(x)[?
- [ e, exp (2O g
{Ih()<dnt) 2t

where have used a Taylor expansion to show that if |4 (x) |2 < dnt, then

(34)

5 dn—Zd—Z
h
tog | (1= 1100
2dnt
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2
__dn—d=2h@P || 1@ 1 R@E
B dn 4t 2\ 2dnt 3\ 2dnt

|h(x)|? 1/1 1 /1)\? ~ In2[hx)?
Z—4t|:1+2<2)+3(2) +...:|——2t.

Set K, = {x :|h(x)] < m} and note that each K,, is compact, the sets are nested, and

RY = UmeN K. Thus, for any positive real number 2 H < / lu (x, to)|2 dx, there exists
]Rtl
M € N so that

3
/ W (t0)2 dx = 2 H.
K 2

Fix some v < min {%, 7 — 1}. Since u is continuous and Ky x [t} — ., 11 + 1] is compact,
then there exists § € (0, ] so that whenever x € Ky and |t — #p| < §, it holds that

lu(x, 1) — u(x, to)] i
ulx,t) —u(x,rn)l < Kl

In particular, if ¢ € [fg — §, to], then

/ |u<x,z)|2dxz/ |u(x,ro>|2dx—/ (e, 1) — u (x, 1) 2 dx = H.
Ky Ky Km

If N € N is large enough so that dN (9 — ) = M?, then {|h(x)|* <dN (to — &)} D Ku.
It follows that for any n > N and any ¢ € [f9 — &, fo], we have from (34) that

In2 |h(x)]? n
%, (r)z/ e e, )P exp [ — 2O dxze‘dNZIZ/ e G, D) dx
{Ih(o)P<dNt} 2t K (33)

_dNIn2
>He 2 >0.

In particular, we have a uniform lower bound on all }{,, () forn > N and all 7 € [ty — §, fo].
Since u € A (R? x (0, T), h), then there exists p > 1 so that (27) holds. Returning to
the expression (32), an application of Holder’s inequality shows that

ros dn2—2 tos dn+2d—2 s _%
[ )T awas= 1) () Famas
t dn+d—2% %
5|:/0 (;) o lds} ||8”Lﬂ<[0,z].s*%ds>

-1

p—1 1 pldn+d—2) p
=t T 20°D dt Il _d
0 LP([O,Z],s 2ds>

p—1

2
2t(p—1) 3
|:n(dp+d”,,_2):| I ”LV([O,;],f%ds) ’

In particular,

L5y 0\
s [(2) zJ(s)dsscp,d(—) 11 ,4 (36)
tefto—8,t0] JO N n LP([O,t],x st)
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and an identical argument holds with X in place of J. Assuming that § < & from (26)
(which holds by possibly redefining §), we put (26), (35) and (36) together in (32) to see that
whenevern > N,

T-1 anvmo

. ~ Cua. pt, e 2
inf  F(n) > 20—
telto—4,10] 2adHnl—E

dNIn2
Cge

2
X + —J _ .
l ”LP([o,mJ,f%dt) i 191 oo (129 -8, 701 ”3”“00,%]’[7%[1[)

The required version of uniform convergence follows from this bound and completes the
proof. O

6 Alt-Caffarelli-Friedman monotonicity formula

In the groundbreaking work of Alt—Caffarelli-Friedman [2], the authors study two-phase
elliptic free boundary problems. The monotonicity formula described in Proposition 6.1,
which we refer to as ACEF, is a crucial tool in their work since it is used to establish Lipschitz
continuity of minimizers, and study the regularity of the free boundary.

Proposition 6.1 ([2], Lemma 5.1) For some R > 0, let Bx C RY. Let vy, vy be two non-
negative functions that belong to CY (Bgr) N W2 (Bg). Assume that Avy > 0 and Avy > 0
in the sense of distributions, vivy = 0 and vy (0) = v2 (0) = 0. Then for all r < R,

1
¢<r;v>=r—4(/3 |Vv1<y)|2|y|2‘Ndy> (/B |w2<y>|2|y|2—Ndy) (37)

is monotonically non-decreasing in r.

Different versions of this formula were proved in [9] by Caffarelli, and by Caffarelli and
Kenig in [10] to show the regularity of solutions to parabolic equations. Caffarelli, Jerison,
and Kenig in [11] further extended these ideas, proving a powerful uniform bound on the
monotonicity functional, instead of a monotonicity result. Later on, Matevosyan and Pet-
rosyan [45] proved another such uniform bound for non-homogeneous elliptic and parabolic
operators with variable-coefficients. ACF-type monotonicity formulas have also been used to
study almost minimizers of variable-coefficient Bernoulli-type functionals, see for example
[19].

In this section, we prove a parabolic version of theorem 6.1, given below in Theorem 6.4.
To the best of our knowledge, this result is also new.

As in the previous section, to employ the high-dimensional limiting technique to prove
this parabolic result, we first need a version of it for solutions to non-homogeneous variable-
coefficient elliptic equations. As similar results for homogeneous variable-coefficient elliptic
equations have found numerous applications, this monotonicity result could be interesting in
its own right. Once we have the suitable elliptic result in hand, we employ techniques similar
to those in the previous section to establish our parabolic ACF result.

Corollary 6.2 For some R > 0, let B C RN, For each i = 1,2, we make the Sfollowing
assumptions: Let k; : Bg — Ry be bounded, elliptic, and regular in the sense that 0 <
A<ki <A <ooinBgandVlogk; -y € L°*(Bg). Define Y; > ||V logk; ’y”Loo(BR).
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Let v; € CO(Br) N W'2 (Bg, ki dy) be a non-negative function for which v; (0) = 0, and
div(k; Vv;) > ki £; in Bg in the sense of distributions, where £, is integrable with respect to
Ki Vi |y|2'”i_1v dy on each B, C Bg. Assume further that for everyr < R, I'; , := suppv; N
Sy 1= suppv; N 3 B, has non-zero measure. Finally, assume that N > max {Y, Y2} + 2 and
that vivy = 0. Then for all r < R, we define ¢ (r) = ¢ (r; vy, v2, k1, k2) as

1
OO = v (/B 1 (y>|Vv1(y)|2|y|2+Tl‘Ndy) (/B Kz(y)|sz(y)|2|y|2”2"vdy> :

If we set a(r) =rt¢ (r), where u = 4 (%) + Y| + Y3, then it holds that

i~ 2 F) (e o PN ay) ([ k19022 T2V ) (f e 1V o)
IR :
dr (N—-2) («[Sr K1 |vi ‘2 dﬂ) (38)
2 RE) 3 (Jy w0 Vo PPN ) (w2 €302 272N ) ([, 2 1V0ai do)
(N=-2) (fsr K2|U2|2d0)

Remark 6.3 Notice that the main difference between our ¢ (r) and the one defined in (37) is
the introduction of Y and Y, which depend on Vi and Vk», respectively, appearing in
the powers on |y|. In fact, if we set x; = 1, we recover a monotonicity formula very similar
to [18, Corollary 2], which generalizes Proposition 6.1 to the non-homogeneous setting. If
each ¢; = 0, the right-hand side of (38) vanishes and we reach a true monotonicity result.

Proof Observe that for a.e. r,

d o L
;/ i 1V [y PTN dy = 247 N/ i 1V P do (3).
B,

r

Therefore, for a.e. r,

4471+ - -
o 0 == TR ([ PP ) ([ i9el PV dy
B, B,
r=N 2 210124 T2—N
+m</ 1 1Vl da(y)) (/ 2 [Vun? [y 412 dy) (39)
s, B,

2—N
.
t oA (/ et [V [y PN dy) (/ 2 |sz|2do<y>) :
B, ;

We want to estimate this derivative.

Throughout this part of the proof, we suppress subscripts fori = 1, 2 on all functions and
exponents. That is, in place of v;, «;, €;, Y;, we write v, «, £, and Y. Since div(kVv) > k £
in Bg, then Av > [, where we define l := — (¢~ + Vlogk - Vv). Define v,, and [, to be the
mollifications of v and /, respectively, at scale m~L. Let Ay ¢ = B\B; for some ¢ € (0,r).
Integration by parts shows that

rH'Y_N/ I(|Um|2d0
Sy
=/ o P 1y TN y - ido(y)
Sy

=/ aiv (x lunl? |y|T*Ny)dy+/ clomP YTV y - Ado (y)
Are

&
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=/ (TK+W-y)lvm|2|y|*—Ndy+2/ U Vo -y Iy TN dy
Aryg Ar,f

+81+Y_N/ lclvml2 do(y).

Moreover,

"H_T_N/ Kvm Vg - ydo(y) = /S K Um |y|2+T_N Vuy, -ndo(y)

r

= / div (Kva Um |y|2+T_N) dy +/ K U |y|2+T_N Vo -ndo(y)
Are s

£

- Vi _
=/ K|va|2|y|2+T Ndy+/ K[Avm-a-T.vvm] Um |y|2+T Ndy

r.e r.e

+<2+T—N>/ xvvam-y|y|T—Ndy+82+T—N/ i Om Vo - A do(y).
Ar,s

Since Avy, > 1, = — (K_)m — (Vlogk - Vv),, and T + Vlogk - y > 0in Bg, then

N-T- 2r1+T—N
2

> / € [Vom P [T dy
Ar.E

/K|vm|2 da(y>+r1”—N/ < ow Vo - ydo (y)
S, ;

_/ k[(¢7),, + (Viogk - Vv),, — Viogk - Vuy, | vm TN gy
Are

N-T-2
2

> / €IV 1y TN dy - / € (€7, um YT dy
Ar e Are

/ (T + Viogk - y) & v |* [y[" N dy + I
Are

—/ K ‘(Vlog/c -Vv),, — Vlogk - va| U |y|2+Y_N dy + I,
Ar,s
where

_ N_T_281+T—N

I, = 5 /K|vm|2 da(y)+ez”"v/ K UV - A do ().
5. S

By rearrangement, that A, . C B, and Y > 0, it follows that

_ N -2 _
/ € AVun P PN gy < T2 N/ € loml? do(y)
Ar.s r
+r1+T7N/ KV Vg, - ydo (y)
+/ Kk (€7), vm PPN dy
B,

+/ K‘(Vlog/c~Vv)m—V10g/c'va‘vm |y|2+T_Ndy—Ig.
B,
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Since Vv, is bounded and Y > 0, then I, — 0 as ¢ — 0. In particular, the right-hand side
of the previous inequality is bounded independent of €. Accordingly, we may take ¢ — 0,
eliminate /. on the right-hand side, and replace A, ; with B, on the left.

Now we integrate with respect to r, rp < r < ro + 8, divide through by §, then take
m — o0 to get

ro+48 N =2 ro+34
][ / K IVvl2 |y|2+T_N dydr < 5 ][ rH'Y_N/ K |v|2 do(y)dr
1o B, i Sy

0

ro+36
+][ pl+T=N / kvVv-ydo(y)dr

ro Sy
ro+34
+][ / Kkl v |y|2+T7N dydr.
ro r

By taking § — 0, it follows that for a.e. ro > 0

_ N -2 _
/ VP Iy PN dy < ——=r*T N/ « Jf? do ()

By Sro

+ ré'”_N/ kvVv-ydo(y) +/ K vy N dy.
N

0 Bry

After reintroducing the subscripts, we see that for a.e. r > 0,

. _ o N -2 .
/ i |V uil? [y Ndy—/ i € us [yPHTN dy < S N/ i luil? do(y)
B, B,

"

+ rl+T"_N/ ki v;Vu; - ydo (). (40)

By rescaling, we may assume that r = 1.

Let Vyw denote the gradient of function w on S¥~!, the unit sphere. Let T'; denote the
support of v; on S¥ =1 fori = 1, 2. By assumption, the measures of I'; and I'; are non-zero.
Fori =1, 2, define

I
— = inf
Q;

Ir, IVowl? -
——— we H, ().
fr- w2 0
Observe that for any g; € (0, 1),

1—p?

o

/Ivilzda(y)i(l—ﬁ?)/ Vou P do ()
N S1

and

1
26; 2 : :
P il IVv; - yldo (y) §2<ﬂl/ |Ui|2d0(y)> </ (Vv; 'y)sz(y))z
v o S1 o N Si

B?
s—/ |v,-|2do(y)+/ IV, ;1> do (y)
o Js, S

s/ [£2 Voui? + 19w 2] do (7).
M
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If we set
-8  Bi(N=2)
Q; NG
fori = 1, 2, then by combining (40) with the last two inequalities and using that A < k; (y) <

A, we have
. _ o N -2
/ i [Vuil? [y]+ Ndy—/ G Cu y PN dy < /xi|v,-|2 do(y)
B B N

(41)

+/ ki v;Vv; - ydo(y)
N

A(N—-2)
f/ v | da(y>+A/ il [Vv; - y] do(y)
S1 S1

AJa.
<AV G0 dey)
28 Js,
A .
AV SR do ),
2081 Js,

Substituting these inequalities into (39) with r = 1 gives
¢ ()= — @+ +T2) (/ i [V [ [y =N dy) (/ 2 [Vop|? [y dy)
J By By

2081 _ _ _ _
+ (/ Ky [V 2 [y Ndy—/ k1 € vy [y Ndy) (/ K2 Vool |y T2 Ndy)
A\/al By By B

2 _ _
2 (/ i Vo 2 [y 0N dy) (/ K2 |Voal* [y P2~V dy —/ K2 €3 vy [P0 Ndy)
Aoy \Jp, B By
20 [ B B2 :| ) (/ 20 24 T1-N ' 2 242 —N
= (R e ([ amuP Y ay) ([ aivel bRV ay
<A |:ﬁ1 NG By B
2181 / - 24701 =N / 2,2+ 2—N
- oy [y N ay v 2Ny
Aa, < N ey £y v [yl Y N K2 [Vl [yl y
2082 (/ 2| 1240 —N ) (/ - 24+12—N )
— k1 [Vor]© |yl =%d k2 €5 v |y| 27Ndy ).
A\/az 5 1 1y y /s, 2 y y
The relation (41) is satisfied when
1
) 1 472
pi _1 H(N—2)2+] —(N—Z)}.
O 2 o

If we define y; > Osothaty; (y; + N —2) = ai’ then % =y fori =1,2.
SN—I

As a function that acts on subsets of , ¥ was studied in [27] and it was shown that

y(E) > (%), where / is the decreasing, convex function defined by

1 1 3 1
v = 2loe(@)+ ifs <3
2(1 =) ify <s<l1.
We use the notation y; = y (I';) fori = 1,2. With s; = i S'};’J, E it follows from convexity

that

S|+ 82 1
V1+V22w(S1)+W(S2)221/f<T> ZZlﬂ(E) =2.
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Moreover, since each v; € HOI’2 (Ty), then

N2 [1+ 4 } donv—2 2
=Ty @ (N —2)2 T2 o (N-2)?

O B I\ 1

@ (N-2) " N-2 [, [v; |2
1 [ IVuil? __ A Js, i IVi?
TN=2 gl TAN=2) [kl

ol

Therefore,

, A—X
¢ (1)2—[4<T>+T1+T2]¢(1)

2 - - B fq k1 1V 2
- (/ Ky €y vp |y)P Ndy) (/ K2 Vo | [y T2 Ndy)s‘iz
(N —=2) \/s, B s, w1 lvil

2 - - B s, k2 [V |?
— ( / k1 Vo [? [y2H Ndy) ( / K2 €5 vy [yPT2 Ndy) .
(N - 2) B B fSl K2 ‘Uzl

For values of r # 1, define v; , (y) = r~ 1 (ry) fori = 1,2 and kir(y) = ki(ry), so
that forO < s, r <1,

1 2 240 =N 2 124 T2—N
¢ (S; ULr, U2,rvKl.r»K2.r) = ST, (/ ‘Vv1¢,| [yl 0 ki dy |VU2.r| [yl o k2 dy
By By

1 2 24T =N 2 (424 T2=N
_W(/B Vol TN ey ) (1P R

= ¢ (rs; v1, v2,K1,k2) .

Thus,

¢/ (S; Ul,rs V2,r, Kl,r» K2,r) = ¢ (S; Ul,r, V2,rs K1,r» K2,r)

ds
= $¢ (rs; vi,v2, K1, k2) =@’ (rs; vi, v2, K1, K2)
and taking s = 1 gives
@' (L3 vip, V2, K1 ru K2,r) = 1@ (55 V1, V2, K1, K2).

LetI'; , denote the support of v; on S, and set s; , = r,\,|r|’75’,\|,71| fori =1,2. With¥¢; , (y) =

r{; (ry), we have div(k; Vv; ) > «; €; . Applying the derivative estimates above to the
pair vy, vz, then rescaling leads to

1
¢ (r) = ;qb’(l; Vi V2, K1y K2,r)

1 A—A
Z—; 4 X + Y1+ Vo | ¢ v, V20, K1y K2,r)

) .
- - o X ,2+T17Nd
(N —2) <Al K1,r €y, VLr [yl y
|2

. \Y%
x (/ o [Voa [P Iy dy) M
" fsl Kl,r |v1,,|
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2 2 24T —-N - 247N
— 2 ([ o, Py ay / kar 65 var [yPrN dy
r(N—-2) </Bl Vo] B

fSl K2.r |VU2,r|2

Js, w2 o2

1 A -
z = |:4 <7) +71+ Tz} ¢ (r;v)
r A

g 2

2 / - 247 =N 2 2 Te—N Js k1 Vvl
e [ o PN ay k2 Voo [y PN ay ) S
PN (N —2) ( 5 , [s w v

) : s, 12 [Vual?
I Vo 12 [v2+N1=N g / o HM=Ngy ) = =
TR (D) (/Br k1 [Vur |~ |yl y N k2 €5 vz |yl y fs, 2 (02l

That is, with u = 4 ( ) + Y1 + Y2, the conclusion described by (38) follows. O

In what follows, we introduce our new parabolic ACF-type result for variable-coefficient
operators. We prove this result using only Corollary 6.2 and the tools and ideas that have
been developed so far in this paper. As in the previous section, we first discuss the kinds of
solutions that we work with.

Letu : R x (0, T) — R have moderate h-growth at infinity, as described in Definition
3.8. For every t € (0, T'), assume first that u is sufficiently regular to define the functionals
D (t; u, h) and T (¢; u, h) from (16) as well as

2
3_(t)=3_(t;u,h):/ (e 1)l (2. )] exp (_Ih(x)l )dx’
Rd 4t

where J(x,t) = J(x,t;u,h) is as defined in (25) and all derivatives are interpreted
in the weak sense. Then we say that such a function u belongs to the function class
¢ (Rd x (0, T), h) if u has moderate h-growth at infinity (so is consequently continuous),
and for every o € (0, T), there exists € € (0, #p) so that

DeLl®[ty—e,ty], TeL®[ty—-e, 1] 42)
and

g- el ([o, o], f%dr) . 43)

This is the class of functions that we consider in our result. As before, this may not be the
weakest setting in which our proof holds.

Theorem 6.4 For each i = 1,2, we make the following assumptions: Let tr

(H; (V.Gi(hi), h;i)) € L®RY), where hi, H;, and G; are described by (4), (2), and
T

(5). Define Y; = |r(H; (VGi(hi). hi)l oo (gay and set A; = H;™' (H;l) SR

R Letu; € € (Rd x (0, T), h; ) be a non-negative function with u; (0,0) = 0 and
div (A;Vui) + du; > 0in R? x (0, T) in the sense of distributions. Assume also that

uiuy = 0. Foreveryt € (0, T), define ® (t) = ® (¢t; uy, us, hy, hy) as

£ Iy )]
o) == // (ArViur, Ve "5 dx ds
t ]Rd
2 _Imw?
// (A2Vuy, Vusr)e™ % dxds|.
]Rd
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Set B (1) = 17 ® (1), where 1 = 4 (252) + Y1 + Y2 with A~ = max;—1  {||det H; || )

and A = max;=12 [ Hdet Hlfl HLOO } Then ® (t) is monotonically non-decreasing in t.

Proof Recall that B} C R?*" is given by (15). For each i = 1, 2, let ki n be as defined in
Lemma 2.1. By definition, A < «; , < A forevery n € N. As

|V, logkin .yHLOC<B\/2(TT) < lw(H; (VGi(hi), hi)ll o (ray = Yi,

then Vylogk; , -y € L™ (BnT). Define each Y; , := Y; to be independent of n.
Let uy, ua be as in the statement of the theorem. For eachi = 1,2 and n € N>y, define
Vit B C R — R so that

Vi (¥) = ui (Fd,n (y)) .

Since each u; has moderate h;-growth at infinity, then by Lemma 3.9, v; , € C 0 (B;) N
w2 (B} ki,n dy). Moreover, each v; , is non-negative and vy ,v2,, = 0. Assuming without
loss of generality that g(0) = 0, we obtain v; , (0) = u; (0,0) = 0.

An application of Lemma 2.2 shows that

divic; »V; u; 1
A n Vin) _ {div(A,-Vul-) + % +— [2<A,~V8[ui, HiThi>
n

Ki.n
+%tr(Hi (V:Gi(hi), h;i)) + 2t82u’} }
ot 912
2

0“u;
a2

1 ou;
>~ |:2<Aivatuiv H i)+ SSHeCH; (V26 hi)) + 21 } =t J;(x,1),

where J; = J(u;) is defined in (25) and does not depend on n. For every n, define ¢; , :
B} — R so that

Cin (V) = Ji (Fan ()
and then
div (Ki,nvvi,n) > Kinlin-

Since each u; € € (Rd x (0,T), h,-), then (43) in combination with Corollary 3.7 shows
that €, v; , is integrable with respect to x, dy in each B['. In other words, each 4, is
integrable with respect to k; ,v; , | y|2+Yf —dn dy on each B;'.

LetI'; ,; = supp v; , N S7'. For each ¢, the measure of supp ; (-, ¢) vanishes if and only
if the measure of I'; ,, ; vanishes for every n. We assume first that for every #, the measures
of supp u; (-, t) and supp u» (-, t) are non-vanishing. Therefore, for every i, n and ¢, I'; , ;
has non-zero measure. Thus, we may apply Corollary 6.2 to each pair v; ,, v2,, on any ball
B} fort € (0, T).
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40 Page340f47 B. Davey, M. S. V. Garcia

Define ®,, (t) = 7 |Sdn | |)2 ¢ («/ 2dt; V1 0, V200 K1,0s Kz,,,), where ¢ (r) is given in Corol-
lary 6.2. By Lemmas 2.2 and 3.5

2 L
/ Kin (D) [ Vo] Iy dy
B}

t Y,
:dn Sd"”‘/ (2ds)? (A;Vu;, Vu;) Kn(hi (x), s)dxds (44)
]Rd

] du;
+2 Sdn l‘/ ) (zds) 2 i [<A Vu“ H h; > 3’?] Kn(h,-(x),s)dxds.
R

Therefore,

2 "
K2, (¥) [Vvz )] [P T2 d,v)

4 1 2024 —dn /
@ ()= 20|V =i g
0= T P (/B 1) [Vors ) Iy ([

1

// ? (A) Vay, Vay) + 2 21 <A Vui, H h>+sa— K (h1 (x), 5) dxds
-2 RA YL v nd s YL B as !

s T 2 s
x VT (A Vug, Vigy + — 22 <A2 Vs, H] h2>+3— Kn(ha(x), s) dxds.
- () nd 9 o

It follows from (13), (14) and the Dominated Convergence Theorem that

'Y'
2

hm D, (t)_— (/ /d AR A-Vui,Vu,-)K(h,-(x),s)dxds>=CI>(t).
i=1,2 R

Set u = 4 (252) 4+ Yy + T>. If we then define

Ba= O g (va) = LDt (vadr),

(n s 5T
then by analogous arguments, we see that
lim @, (1) = ® (1) ;= 17D (1). (45)
n—o0

Moreover, an application of the chain rule shows that

I I—pn
d~  4Qd)7E o [d 2Qd)T 1o oo
a0 = (n‘Sdn—l|)2¢ ( Zd[) 2t (n ] Sn=1])? ﬁ‘p ( 2dt)'

By Corollary 6.2,
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Uy 1 000 P07 ) (J‘Bz an [Vor P00 dy) (s s [Voral do)
(dn —2) 2dn)} ~2(%) (fsf K [vral do)
5 (fB,', Kln ‘Vvl,n{z |}'|2+T17(1" dy) (fB;, K2.n ZE,HUZ |y‘2+Yzid” dy) (fs; K2.n |VU2,n|2 dO’)

(dn —2) an (7 (fs; k2 [v2]* dor)

5’(«/@) >—

Using the functionals that were introduced in 33 and 16, applications of Lemma 3.3 show
that

]ir Kin(y) |vi,n(y)|2 do(y) = /Rd lui (¢, O Ki  (hi (x)) dx

n
dn—d—2

st SR
= ||d/ lu; (x, D* 1= = XB,, (hi (x))dx
‘Sd"_ly Qdnt)? Jr 2dnt

|Sdn—1—d|

=———H, (tu;, ki)
|Sdn=1| (2dnt)?

and

]il Kin () [Vo, [ do ()

n

dn 3t ol

<2 / (A;Vui, Vui) Kp o (hi(x)) d +2t/ 1+|h"|2
= zn " iVUi, VUi t,n (i (X X d Jpa 2dnt

:n/d [(A,-wi,wm 2 dui ((A Vur, H' by )+t8—)}K,n(h () dx
R

31/{,‘ 2

ot

K (hi(x))dx

2nC Ihi o2 2t ou; 2 In; )2
= n dd / (A;Vu;, Vu;)e ™ % dx + — ou; s
(Amt)2 R4 dn Jpa| 8t
2nC
— d |:'D(l ll,,Kl)—‘r— ‘J'(t uz,Kz):|,
(47rt)2

where we applied Lemma 2.2, Cauchy—Schwarz, then estimate (14). If we define
2t
Sn (t5u,6) =D (t;u, k) + ?7(1; u, K,
n

then we similarly deduce from (44) that

X
5 . Qd)=>+! Gdn |dn=1
/ Kin(¥) |[Vvin )] Iy dy < | S, (1 i, k) ds.

B} (47-[) 2
Finally, Lemma 3.5 and (14) show that
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— 24Y;—nd
/ Ki,ne,"nvi,n Iyl ' dy
'

n

' T
—d ‘Sd"_l’/ / Q2ds)? T~ (x, s)u; (x, s) K (hi (x), 5)dxds
0 Jrd '

d2d)7 ¢4 |sin|
= a
4r)z

d@d)¥ eq|si=1|

2 n- Yj—d

= dd /s 797 (ssui, ki) ds.
(4m)? 0

! Yi-d P
sT2J (x, )ui (x,5) e & dxds
0 JRA

Then with oy, as defined in (51), we get

f — C3pa(a) €3 @d) T (n [S) 8, (1w k)
, 5d 5 2+2( A) d n\l, U1, K]
¢ ( t) == (dn —2) @4m) ag, I (15 u1, k1)

L oyy—d L yy—d
X(/ STH’(S;ul,m)dS) (/ STSn(S;uLKZ)ds)
0 0

I+n

2t_%+2(AXk) 3 (2d) (”|5d"71|)2 Sn (5 U2, k2)
(dn —2)(@4m) ag, Ha (1 u2,K2)

I yy—d I oy—d
X (/ s~ 2 J” (s;ug,/cz)ds> </ s 2 8, (s;ul,/q)ds>.
0 0

Using (52) then shows that

e
4e,m=20D> 15 (@)

8@%‘% S, (t:uy, Ty —d L ory—d
d n (t 1, K1) (/ 577 8_(S;u1,/c1)dS) (/ SZTSn(S;uz,Kz)dS)
0

>_
T on(1=E)@m) g F (i ur, k) 0

ged % 8y (13 us, e gt
_ 2d . n (1512, K2) (/ s g (S;uz,Kz)dS> </ sTT8, (S;Ml,Kl)dS>
n (1= 7)) @Gm)ag Ha (G ua, k2) \Jo 0

=: F, (1),

As in the proof of Theorem 5.3, to show that & is monotone non-decreasing, it suffices to
show that given any #y € (0, T'], there exists § € (0, 7o) so that Fn converges uniformly to 0
on [ty — 8, tp]. ]

We first consider the terms in the denominator of fn. For brevity, we set fH,(f)(t) =
H, (t; u;, ki). By repeating the arguments from (34) through (35), we deduce that there
exists V; € N and §; € (0, #y) so that whenever n > N; and t € [ty — §;, tp], it holds that

dN; In2

HD (1) > Hie™ 2

Assumption (43) shows that

Lovj-a Yo
/s T (ssui ki) ds <17 |37 Cruie) | 4\
0 L1<[O,tj,s 2ds>
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Similarly, since u; € € (Rd x (0,T), hi) implies that u; has moderate /;-growth at infinity,
then both D (-; u;, h;) and T (-; u;, h;) belong to weighted L' [0, #] and then

L yi—a
sT2 8, (s;u;, ki)ds
0

i

X 2t

<t2 | IID (s ui, i)l a N\ TG ugs k)l _d
L1<[O,t],x st) dn L1<[O,t],x st)

Set § = min {81, 8, 9}, N = max {N;, N2}, and H = min {H;, H,}, then observe that

whenever t € [f) — §, gl andn > N,

lenZ g_

9@3

F, e
Oz (4n)d

s 2ds

13- ¢ ul,Kl)H ( _d >Sn(l;u1,l<1)

x| 1D (- uz,Kz)H ([0] dds)+f||7( uz,K2)|| ([0 s 2d?>

dN In2 M
e3

||8 (s uz,K2)|| < >Sn(t;u2,K2)

70,’ s
nH (4r)? « [0,¢],s~ 2ds

[0,¢],s 2ds [0,¢],s" 2ds

X ||D(';M1,K1)||Ll< d >+5;||T(-;M1,K1)||Ll< _d >

1
Assuming that § < e, where ¢ is from assumption (42), and using that ¢ € |:§O, to] , it follows

that
B 36@2,61”]1“7 7—2
inf  F,(t) > ———————
it Fn 0 = === el 187 Gunen] | (M,f%w)

D s T R
|:| (5 u2 K2)|| ({01]1 m) || (5 uz Kz)H ([()10]1 7dl>:|

2ty
[HQ( u, Kl)”Lf’Q[[O—(Slo]J'_ H'T( uy, K1)|‘L°°[to—6to]:|

36@3 dN]nZ %—2

el

_d
[0.t],t7 2 dt)

2t
|:|D(~:M1,K1)| g N+ 1T Gu k)l 4
([Om],t 7dt> dn ([O,to].t ’Zdt)

2to
|:||®( uz, k2)ll oo — sl T ||‘T( uz, k2)|l oo sy — Sto]]

In particular, this shows that F, converges uniformly to 0, as required.

We have shown that the proof is complete under the assumption that the measures of
suppu; (-, t) and supp u3 (-, t) are non-vanishing for every ¢.

Now assume that there exists some values of ¢ such that the measure of suppuy(-, )
or the measure of suppua (-, ) vanishes. Let t be the largest such ¢-value. Without loss of
generality, we may assume that [supp u (-, )| = 0. Since I'1 , = supp vy, NS}, it follows
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that |T'y .| = O for every n as well. Therefore, for every n, div (k1,,Vv1,n) = &1,2€1,4 in
D1 ¢ = suppvi, N B} with vi, = 0 along Dy, .. By the arguments used to reach
estimate (40) applied to vy , on Dj , ;, we see that

2 24T —d 24T —d
/ Ll Vor a2y P11y < —/ CLnliporaly P4 dy
Dlnr Dl,n.r

so that
2 24Y1—d 24T —d
/ K10l Voral~lyl +th "dy < _/ K1,nl1,001,0Y] +h "dy.
By T

As shown above,

s}
Q)2 _
W ’Klnlvv1n| ‘y|2+T] dndy
Xy 2 0up ou
:/0 /]Rd §2 |:(A1Vu1,Vu1)+E¥ ((A]VM],HI h|>+v¥):| K, (hi(x), s)dxds
and
Qd)~7
2
24+ —dn
_— K1nl1nv d
an |55 Ja Lnl1invinlyl y

I x
= 7/ / sTIJf(x,s)ul (x,s) Ky(h1(x), s)dxds
n.Jo R4
from which it follows that for every n € N,

torr
// 57 (A1 Vur, Vi) K, (h (x), $)dxds
R4

29 du
/ / 57 [A1Vu1 Vup) + — L (<A1Vu1,H1 h1)+s—>:|K (h1(x), s)dxds
RA dn ds as

T

X dug u
“an )y /R,,S2 PR ((A]Vm H1h1>+\a—)K (h1(x), s)dxds

29 u
<7/ /ﬂ;d { (x,s)up (x,5) — d%((ANul,Hl h1>+s8—)] K (h1(x), s)dxds
1 o
< _7/ / : [ s (c,s) + 2 ((Alvul HI )+ )] Kn(h (), s)dxds,
R? as

since u1 > 0. With J as given in (25), we see that

d duy
ShGu s)+a— <A1Vu1,H1 h1>+s87
S

duy 1 du 9uy
= [<A1V v h1>+§ a5 St (Hy (VoG (hy). b)) + 55— g2 | 41 8)

duq

+ (A Vuy. H'h >+ ou
duy ; S dur
95 1 1, 111 95

ow
<A1Vw1, H h1> +sa—1 + —tr (Hy (V;G1(h1). b)),

where we have introduced the notation w; = u %‘—‘YI Therefore,

4 T
/ / s (A1 Vuy, Vuy) Kn(hy (x), s)dxds
0 JRd
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2@ a
< d/ / %+ [ A1V, H h1> sﬂ + —t r (Hy (V-G1(hy), hg)] K (h1(x), s)dxds.
R4
In particular,
/ / (A1Vuy, Vuy) K, (hy(x), s)dxds
R4

2Cs (! T T Jw;  wp

< lim 7/ / 57 (AIle, H h1>+sl— + Pl (Hy (V,G1(hy), b)) | K (h1 (), s)dxds = 0.
n—oo dn Rd as 2

Then ®(¢) = O for every + < 7 showing that ®(¢) is monotonically non-decreasing on

(0, 7]. Since |I'y /| # 0and |2, /| # O for every n and every ¢t > 7, then by the arguments

from the first case, ® (¢, u) is monotonically non-decreasing whenever ¢t > t, completing the

proof. O
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Appendix A: Computational and technical proofs

Within this appendix, we have collected the proofs that are either purely computational or
technical in nature. We begin with the proof of Lemma 2.2, which describes a collection of
relationships between elliptic functions v, : B ;57 C R4*" — R and parabolic functions
u: RY x (0, T) — R that are related through the transformation Fy ,. That is, Lemma 2.2
describes the relationships between derivatives of « and v, whenever v, (y) = u (Fd, n (y)) =
u(x, t). The proof of this result relies on the chain rule.

Proof of Lemma 2.2 Since = &,;, then
Vi, j
v,  du 8g1 n ou Bgd ou yij v ag u yi,
dyi;  0x 0z axq dzi ot d  \ * 9z ar d -’

g . . . .
where 28 is the i"”* column of the Jacobian matrix G. Then we have
Zj

v ou dgx | duyij | - Buagk' & yi%j
r "”_Zzy’f Zaxkaz TR _Zax 3z T

i=1 j=1 ik=1 i=1 j=1

_ u B T Ju
= (V. G(2)2) + 25 = (A(x)qu, H(x) h(x)> o
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and

d n 2 n d d
2 v\ u dgk | Ouyij Ou dgy | Ou yij
=33 ()5 3 el Dy ][5 e dn Sy

d d 2d n
_ Ou dgr) (Du dge))  20u N (0w D) o (0u Yi.j)?
=" <8xk82i> axe azl)”Ldaz, (8xkazi)zl+<8l> ZZ((I)

ikl i,k=1 i=1 j=1
_ Ty uf 4 2% dul
_n)G(Z) V| + o (Ve G@) ) 1
. . . avn Ju 8gk
Now we look at the second-order derivatives. Since «,(y) = —vy@)— +
i, P Xy 0z
y(z )yl - , then
? av 0 [ 98k du_  yij
9 (My) " ) = Z y (@) (— "’)
ayi,j 8Yi,j ayi,j Xy 0z; Yi,j ot d
d d 2 d
9%u gk 08¢ o°u  0gk Yij du dy 0gk
-3 Sy T Sy e
0xgoxy " dz; 0z; otoxy " dz; d 0x 0zZ; 0Z;
k,e=1 k=1 k=1
d
ou g
F s
k=
9%u i.i\2 Jduod i ou 1
+ 2y (yl,j) Ou oy yi,j @,
Jt d at dz; d or’ d

from which it follows that

1 d v d 0 dlo 0 92 1 0u
(my) " )=<D§u—g,—g>+ Vou, 2L ZE L 28y o
kn(y) 3y;, ayi, j dz; 0z dz; 9z 8 dor

ou 0g Yi.j dlo, Z)uy“ 2u /yi i\2
+2<Vx<*> 98 z,j>_’_ gy ou 1’1+7< l,]) )

o) oz d dz; or d 92\ d

(46)
Because B(z) = G(2)GT (z) = A(x), then
d ) J .
g 8g> Ou_ dgi dge
Dzu—, — )= bie(2) )
;< 0z 9z i,l;lzl dxkdxe 9z; 0z klzl ke 0xdxg klzl kiel¥ dxpdxp

47)
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d

0
Since ag ¢(x) = Z agk

i=1 !

) 28 (h(x), then
d0z;

Xd:8<agk ) (h(x ))+Z 08k
3xk — 0Xy

d d
328k (2) 3gz (z) Ohy 3%g¢ (2) dh 8gk (z)
=y v —( ESY oy —( @)

im=1 i,m=1

age
(872, (h(x)))

(43)

Summing (48) over k, substituting (7) and using that ZZ 1 %}ik gif = 0p,i since HG =1,
shows that

d d 2 d
dag,¢ dhm 978k (z) 98¢ (2) 9780 (2) Ohp 8gk (2)
=Z—((>) + ) " (8(2)
P Xk ) X 0z;0zm 0z S~ 0z;0zZ, Oxk Zi
= i,m,k=1 i,m,k=1
d
dlogy(z) dge (2) %8¢ (2)
= + . 49
Z 3z 3z ; 3z} @)
Therefore,
d d d 5 d /d
. d ou 0“u dar ¢\ ou
dive (AViu) = — ( au> = a +y (Z ’ ) —
P 0Xk = 0xy P 0xp0Xk —\o oxr | dxyp
dg 8g> dlogy 9g  9%g
= Du =, =)+ (V,u, —= 4+ —=), 50
§< 9z 0z ! dz; 9z 9z; G0

where we have used (47) and (49). Summing (46) over i and j and substituting (50) then
shows that

peS) divy (kn (y) Vyvy)

n d
ag odg dlogy Bg 9%g 1 du
= D2 —_—, — —‘,— V s +7 _l’_
; Z|:< oz 32i> < S FR dar
" 2
ou g yi,j dlogy du yij  0°u /i j\?
+ 2(V — ), — =)+ — ’
Z~1[<x<3t> dzi d dz; 0t d 3t2(d)

d 2
ou 2 0“u 0gk
E div, (AVy 75 .
=1[ Vx (AVek) + }erlk:l axcdt 9z OF

=

.

10U <9 log Y 2t 3%u

gatizl @ut T
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imations to the Gaussian.

and the result follows from changing the last set of terms to depend on x.

B. Davey, M. S. V. Garcia
Here we prove Lemma 3.1 regarding the uniform convergence of our sequence of approx-
Proof of Lemma 3.1 Let

|Sdn—1—d|
Ad.n =

[m}

2w g . 2
|Sd”*1| dn
If 4 € 7, then

d —
4 dn2 d dn
dn

r(s
dn—d

F(”M):(;)g F(
()=

%)

.51
)

[SIEW

dn _d\n(drn _d
T\ 2 2 2 2
dn\? 2 4 d
=|— 11— — 1——)... (1
2 dn dn
and we see that

2 2 )
s
2j
Qgpn = l_[ (1
Stirling’s formula shows that

so we see that

2m /z
ro=y7(

)T (1+0(52
=] 0= (G

)
In both cases, it holds that «y , — 1 as n — oo. Therefore, there exists oy so that for every

Ogpn < 0q.
To analyze the remaining piece of K, (x, t), let m

_ dn

7.0 =
|x|2 < 2dnt if and only if 0 < z < m, and (1 —

2
|x]

(52)
%, 7= %. Notice that
dnfzde _s
2dm> = (1 — £)"" . Define
z\m—38
@ = (1= =) Koz @):
If(@) = fm@)| =€ <e™
@ Springer

We show f,, converges uniformly to f(z) = e~ x(;>0)(z). First, notice that if z > m, then
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If 0 < z < m, then

1f (@) = fm (@) =

-5
SRR R B ey
m m m
z
m

<ler-(1-2)"]+ ’(1 - i)m_(S ~(1- %)m’ = (1) + ().

m
(53)
We address (I) by showing there exists a constant ¢ such that for all m > 1

1 2
max ‘e_z — (1 — i)m‘ < c( ogm) .
O<z<m m m

e[ (1 2] =1 2).

For 0 < z < m, this means that log (1 — £) € (0, 1). Since logx < x — 1 forall x > 0,
then

l(1-2)") =

Consequently, ( 1— i)m is smaller than e~%. It remains to obtain an upper bound on
m

Z m
max [e_z - (1 — —) ] .
0<z<m m

Using a Taylor expansion, we have

Indeed, we have

)
log(1 —x) = —x — > +O0(x3).

Thus
oe[(1- 2] == 5 o (32).

2
(1 - i)m = e e I O /mY)
m

and

We split the problem into two parts, by bounding

z m
max [efz - (l - —) ]
0<z<«a m

Z m
max [e_Z - (1 - —) ]
a<z<m m

for some « to be determined. For the second part, observe that

_ Z\™m _ _
max [e z—(l——) ]5 max e *=¢e “.
a=<z<m m a=<z=m

and

As for the first bound, we note that
2 zZ
efz — <1 — i)m = €7Z <1 — eiﬁeo(mz)> .
m
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2
4

If 2m — 0, then

mation as

3 . . .
5 — 0 as well and we can bound this term using another Taylor approxi-
m

et <1 - e_Zijeo(ffZ)> =0 (Zz) .
m

By choosing « = log m, we obtain

_ Z\™m _ _ 1
max [e Z—(l——) ]5 max e ‘=e¢ % < —
a<z<m m a<z<m m
and
1 2
max o= (1= £)"] <o (B2,
0<z<« m m
1 2
This proves that (I) < CM.
m

To estimate (II), let g(x) = (1 — x)" % —

(1 —x)™, with 0 < x < 1. Notice that

g(0) = g(1) =0and g(x) > 0 for x € (0, 1). Moreover,

gx)y=—m-81-
Therefore g’(x) > 0 if and only if x < 1 — (1 — %)1/8
maximum at xo = 1 — (1 — %)1/8, and

8
g(xo) = — (1 -
m

Consequently, g(x) € [0, %] for all x € [0, 1].

x)m—é—l +m(1 _x)m—l — (1 _

)" m(1 = x)° — (m - 8)].

. We conclude that g attains its

)

m

)Igl

By combining the estimates obtained for (I) and (II) and (53), we conclude that for all

z>0,

[f@) = fm@@)] =c

lo
(ogm)”
m

2
1)

P m, b
m

In particular, this shows that f;,, — f uniformly, and the conclusion of the lemma follows.

m}

Finally, we give the computational proof of Lemma 3.2.

Proofof Lemma 3.2 Let ug(x,t) = K(h(x),t) =

show that
oug d
Tor 'k
and
Jug . 1
ox; 2t o

Since ax; = >{_; 3 (h(x)) 3 (h (x)) and 35 (h (x))

d
31,{[( 1
ax,‘ __271‘ Z

j =1

3gk

>a
i=1
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dh
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d

1 gk
=——Y 2Eh@)h; .
37 4 azj( (Nhj(x)ug
j=1
Therefore
d d d
. ad 314[( 1 d 3gk
div(AVug) =y — — ==Y = 2K (h(x)h;
iv(AVug) = ™ D ki T D ™ > 2, MOV @k
k=1 i=1 k=1 j=1
1 f 8K (o) () 2K
__ L 98k b (W () SHE
Y 0z; / Xy
Jj.k=1
d 3 g
1 dgk dhy
— 2% (h 4 =
th( (()) +8 (h()) h)
j.k=1
4 s
=7 2 3, & ))h hm
(t) /kK 1
1 98k I’
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d
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as claimed. ]
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