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Abstract
We present local distributed, stochastic algorithms for alignment in self-organizing particle systems
(SOPS) on two-dimensional lattices, where particles occupy unique sites on the lattice, and particles
can make spatial moves to neighboring sites if they are unoccupied. Such models are abstractions
of programmable matter, composed of individual computational particles with limited memory,
strictly local communication abilities, and modest computational capabilities. We consider oriented
particle systems, where particles are assigned a vector pointing in one of q directions, and each
particle can compute the angle between its direction and the direction of any neighboring particle,
although without knowledge of global orientation with respect to a fixed underlying coordinate
system. Particles move stochastically, with each particle able to either modify its direction or
make a local spatial move along a lattice edge during a move. We consider two settings: (a) where
particle configurations must remain simply connected at all times and (b) where spatial moves are
unconstrained and configurations can disconnect.

Our algorithms are inspired by the Potts model and its planar oriented variant known as the
planar Potts model or clock model from statistical physics. We prove that for any q ≥ 2, by adjusting
a single parameter, these self-organizing particle systems can be made to collectively align along a
single dominant direction (analogous to a solid or ordered state) or remain non-aligned, in which
case the fraction of particles oriented along any direction is nearly equal (analogous to a gaseous
or disordered state). In the connected SOPS setting, we allow for two distinct parameters, one
controlling the ferromagnetic attraction between neighboring particles (regardless of orientation) and
the other controlling the preference of neighboring particles to align. We show that with appropriate
settings of the input parameters, we can achieve compression and expansion, controlling how tightly
gathered the particles are, as well as alignment or nonalignment, producing a single dominant
orientation or not. While alignment is known for the Potts and clock models at sufficiently low
temperatures, our proof in the SOPS setting are significantly more challenging because the particles
make spatial moves, not all sites are occupied, and the total number of particles is fixed.
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1 Introduction

Autonomous, locally interacting agents can collectively organize to accomplish a variety of
complex tasks such as foraging for food, building large-scale structures, and transporting
objects many times heavier than their weight, as is routinely observed in the living world, in
swarms of ants, flocks of birds, and schools of fish [34, 39, 38, 33]. A key component of these
diverse self-organized behaviors is achieving consensus in large collectives of autonomous
agents with only local interactions. The problem of achieving alignment in collectives of
directed agents is an important example of such a consensus problem, and is a fundamental
aspect of flocking: large scale collective motion in swarms of motile agents [34, 37, 28, 41, 38, 1].
While flocking has been studied extensively [18, 28, 36, 1] with few rigorous results, the more
basic problem of alignment has received considerably less attention.

Here, we study alignment in self-organizing particle systems (SOPS) – a collection of
simple, active computational particles that individually execute local distributed algorithms.
We consider oriented particle systems on a two-dimensional lattice, where particles are
oriented in one of q directions (with no global compass), for q ≥ 2, and at most one particle
occupies each lattice site. Particles perform moves independently and concurrently by making
spatial moves to neighboring empty sites or reorient themselves in new directions with the
goal of reaching nearly global alignment.

We consider a stochastic approach, used previously in [7, 8] to achieve compression, where
connected sets of homogeneous particles self-organize to gather together tightly, separation
in heterogeneous particle systems, where all of the particles compress, but also gather most
tightly with other particles of the same type [5, 6], and aggregation of homogeneous particles
that are not required to be connected, where most particles accumulate in a small, compact
neighborhood [21]. In all of these, phase changes were used to characterize desirable behaviors
at stationarity, with high probability. Following a similar approach, we begin by defining an
energy function that assigns the highest weight (or lowest energy) to preferable configurations,
and design a Markov chain whose long term behavior favors these low energy configurations
using transition probabilities given by the Metropolis-Hastings algorithm [25, 15]. We
ensure that the transition probabilities of the Markov chain can be computed locally and
asynchronously, allowing them to be easily translated to a fully local, distributed algorithm
that each particle can run independently. The collective behavior of this distributed algorithm
is thus described by the long term behavior of the Markov chain.

1.1 Related work
The alignment problems we study can be viewed as finite, unsaturated variants of the
ferromagnetic Potts model from statistical physics [40], and a related model known as the
clock or planar Potts model [40, 29]. In the Potts model, vertices of a graph G are assigned
one of q possible “spins,” represented here as orientations, and neighboring sites prefer to
agree. Let J > 0 be a parameter related to inverse temperature and let δ(X,Y ) = 1 if X = Y

and 0 otherwise. Then the probability of a standard Potts configuration σ is given as

π(σ) = exp
(

− J
∑
x∼y

δ(σ(x), σ(y))
)
/Z,

where the sum is taken over all nearest neighbors in G and Z is the normalizing constant or
partition function. In the unsaturated setting studied here, spins are identified with particles,
not sites, and particles can make spatial moves to unoccupied sites in addition to updating
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their spins. We present alignment algorithms for two natural variants: (a) the connected
setting, where particles are constrained to be simply connected in the lattice, and (b) the
general setting, where particles occupy any distinct lattice sites regardless of connectivity.

Recent work on a closely related site-diluted Potts model [40, 9] also allows a non-zero
fraction of lattice sites to be unoccupied, but the number of particles is not fixed, so particles
can appear and disappear, in addition to making spatial moves. Chayes et al. [9] beautifully
demonstrate the presence of ordered (aligned and occupied) and disordered (non-aligned and
vacant) phases, along with novel “staggered” phases in this model. However, our constraint
fixing the number of particles, which is necessary in SOPS models in programmable matter,
makes our system fundamentally different from the site-diluted Potts model akin to the
difference between the fixed magnetization Ising model, which has a fixed number of + spins,
and the Ising model in the presence of a magnetic field, where the number of + spins can vary.
Notably, the coexistence of phases that characterize the aligned and compressed behaviors
we are seeking will not occur unless we fix the magnetization (or numbers of particles) as
these configurations are exponentially unlikely in the site-diluted model and thus do not
inherit any of its properties.

Since particles can make spatial moves, the boundary between the particle occupied sites
and the unoccupied sites can assume arbitrary shapes, which makes achieving alignment more
challenging than achieving compression. Consider the configurations shown in Figure 1(a),(b),
where the particles can be oriented along one of two possible directions (q = 2) shown by
black and grey circles, with a total of n particles. While the number of unaligned pairs of
adjacent particles is O(

√
n) for the configuration in Figure 1(a), it can be as low as O(1)

for the configuration shown in Figure 1(b), owing to the bottleneck shaped part of the
configuration boundary, making it likely that the regions on either side of it will be aligned
along different directions. Hence, achieving alignment requires suppressing the likelihood of
such bottlenecks in the boundary of the particle configuration.

While the concept of an interfacial free energy can be used to constrain the shape of the
boundary of a dilute system of homogeneous particles i.e., when q = 1, as in [26, 17, 2, 30],
because particle occupied sites and vacant sites are akin to distinct coexisting phases of the
system. However, the same ideas do not readily generalize to the case when q ≥ 2. Instead,
we show build on the notion of compression introduced in [7, 8], and use isoperimetric
inequalities to show that for sufficiently compressed configurations, bottlenecks such as the
one shown in Figure 1(b) are precluded with high probability.

1.2 Results
We present the first rigorous local distributed algorithms for achieving both low perimeter
boundaries and alignment, for any number of orientations q ≥ 2, in both connected and
general settings. Informally, we say a particle system is aligned if a significant percentage of
the particles have the same orientation.

In the connected SOPS setting, we define an energy function that encourages compression
of the entire configuration and also defines a ferromagnetic interaction between particles’
orientations, inspired by the clock and Potts models. These two contributions are controlled
by two independent parameters λ and γ. In this setting, we show that given any α > 1,
for any λ > 1 and γ > 29.3(q − 1) such that λγ > 7α/(α−1), the algorithms achieve α-
compression with high probability. Furthermore, when γ satisfies additional constraints given
in Theorem 11, we show that the compressed configurations are very likely to be aligned.
Next, we show that setting λ large and γ small will generate compressed configurations

APPROX/RANDOM 2022
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(a) A configuration without bottlenecks. (b) A configuration with a bottleneck.

Figure 1 Configurations with two dominant orientations (black vs. gray circles); large interfaces
as in (a) are unlikely for large γ, whereas small interfaces as in (b) are likely for any finite γ.

with an equitable balance of orientations (Theorem 18), while setting λ small will generate
configurations that are expanded, nearly maximizing their perimeters, allowing the SOPS to
explore space, potentially to forage for resources, for example (see Theorem 19).

For both the Potts and clock models in the connected setting, the proofs rely on the
cluster expansion [23, 14, 20] from statistical physics, introducing a new so-called polymer
model inspired by the relationship between flows and the Potts model [13]. Informally, the
cluster expansion allows us to obtain upper and lower bounds on the so-called “polymer
partition function” in terms of the volume and surface contributions, as in [5, 6, 14], to prove
that our algorithms achieve compression (or aggregation), with high probability. Moreover,
using isoperimetric inequalities, we prove the absence of bottlenecks in sufficiently highly
compressed configurations, which is necessary to get the system to globally align. Finally,
we use the bridging techniques first proposed in [27] and later adapted in [5, 6], to expand
the information theoretic arguments in [5, 6] to prove that for sufficiently compressed
configurations, our algorithms achieve alignment with high probability. Conversely, we show
that our algorithms can achieve expansion and/or non-alignment (with all directions nearly
equitably balanced), with the same algorithm by adjusting only two global parameters.

In the general SOPS setting, with no connectivity constraints, we present an algorithm
based on a single parameter coupling both compression and ferromagnetism simultaneously.
When this parameter is sufficiently large, we achieve aggregation and alignment, while when
it is small we achieve expansion and a balance among the orientations (Theorem 21). We
believe these parameters can be independently controlled in the general (disconnected) setting,
but the proofs seemingly become significantly more challenging and coupling them into one
parameter seems sufficient for most applications in programmable matter and swarm robotics.
Because configurations tend to be highly disconnected, proofs in the general setting require
additional technology to account for many small clusters that can be distributed throughout
the lattice. Here we generalize the bridging techniques to account for more complex contours
that form an interconnected network to show that the contour lengths of the bridging system
can be made arbitrarily close to their minimum possible length and, as a result, alignment
occurs with high probability. We note that our algorithms for alignment in both settings
work for all q ≥ 2; separation (where the sizes of the color classes are fixed) has only been
shown for q = 2, although the methods should also generalize to more colors [6].
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2 Preliminaries

Our model of programmable matter is based on the amoebot model, introduced in [11] and
described in detail in [10], which has served as the basis for previous stochastic algorithms
for SOPS [8, 7, 6, 5]. In the amoebot model, particles occupy the nodes of a graph with
each node occupied by at most one particle. When executing a spatial move, a particle
expands into an adjacent unoccupied node, temporarily occupying both nodes and then
contracts to the new node. Each particle stores whether it is expanded or contracted and
can read whether its neighbors are expanded or contracted. No particle has access to global
information such as system size or a shared co-ordinate system or compass.

We extend the amoebot model to model heterogeneous particles, where each particle has
one of q orientations, akin to the variant introduced in [6, 5]. Each particle, when activated,
chooses either a spatial move as in the original amoebot model, or an “orientation move”
that updates its direction, each equal probability. The system performs these atomic actions,
following the ASYNC model of computation from distributed computing [22]. It has been
shown in this model that for any concurrent asynchronous execution of atomic actions, there
exists a sequential ordering of actions with the same end state provided that all conflicts
arising in the concurrent asynchronous execution are resolved. We assume that conflicts due
to multiple particles expanding into an unoccupied node are resolved arbitrarily so that only
one particle expands into the unoccupied node, allowing us to consider only one particle to
be active at any given time.

2.1 The Potts and clock models
In our models, each configuration is an assignment of n particles to distinct vertices of a finite
triangular lattice G∆ of N > n vertices with the toroidal topology. In addition, each particle
is also assigned an orientation from {0, 1, . . . , q − 1}. We assume G∆ to inhabit a

√
N ×

√
N

square region with periodic boundary conditions. Each vertex (x, y) of G∆ has six outgoing
edges, to the vertices (x+ 1, y), (x, y + 1), (x+ 1, y + 1), (x− 1, y), (x, y − 1), (x− 1, y − 1),
where addition and subtraction is taken modulo

√
N − 1. Moreover, in this setup, the set

of particles in our configurations must always be connected and hole-free. Given such a
configuration, we define its boundary P to be the minimal closed walk over occupied sites
of G∆ that encloses all of the occupied sites in the configuration. The perimeter p(σ) of a
configuration σ is then defined to be the length of this closed walk.

We consider the following Potts Hamiltonian, on G∆, a variant of the site-diluted Potts
model [9]:

HPotts(σ) = −J
∑
⟨i,j⟩

ninj δ(θi, θj) − κ
∑
⟨i,j⟩

ninj ,

where the sum is over all pairs of adjacent sites: ⟨i, j⟩ i.e., sites connected by a single lattice
edge in G∆, ni ∈ {0, 1} indicates whether site i is occupied or not, θi indicates the orientation
of the particle on site i, and J, κ are positive constants. We only consider configurations σ
in Ω, i.e., where the total number of particles is equal to n, and the particle-occupied sites
form a connected, hole-free region.

The probability of a configuration πPotts(σ) is given by the Boltzmann distribution:

πPotts(σ) = e−βHPotts(σ)/ZPotts, where ZPotts =
∑
σ′∈ Ω

e−βHPotts(σ′) ,

where β denotes the inverse temperature. Setting parameters λ = exp(βκ), and γ = exp(βJ),
the above probability distribution can be expressed as:

APPROX/RANDOM 2022
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πPotts(σ) = wPotts(σ)
ZPotts

, wPotts(σ) = (λ γ)−p(σ)γ−h(σ) , Zclock =
∑
σ′∈ Ω

wPotts(σ′), (1)

where h(σ) is the number of heterogeneous edges in σ, i.e., edges connecting particles
with different orientations, and p(σ) is its perimeter, as defined earlier. Here πPotts is the
stationary distribution for our Markov chain algorithm based on the ferromagnetic Potts
model interactions.

Similarly, we consider the following clock model Hamiltonian on G∆:

Hclock(σ) = −J
∑
⟨i,j⟩

ninj cos(2π(θi − θj)/q) − κ
∑
⟨i,j⟩

ninj .

The probability of a configuration πclock(σ) is given by the Boltzmann distribution as before,
and can be expressed in terms of the parameters λ, γ as:

πclock(σ) = wclock(σ)
Zclock

, wclock(σ) = (λ γ)−p(σ)
∏
⟨i,j⟩

γ−dij , Zclock =
∑
σ′∈ Ω

wclock(σ′), (2)

where λ > 0, γ > 0 (as before), dij := 1 − cos(2π(θi − θj)/q), and the product is over all pairs
of adjacent occupied sites. Here πclock will be the stationary distribution for our Markov
chain algorithm based on the clock model.

For each of the above models, we will refer to w(σ) (wPotts or wclock) as the weight of a
configuration. The stationary probability distribution π (πPotts or πclock) is thus simply the
weight function w normalized by the partition function Z (ZPotts or Zclock).

2.2 Cluster expansions and bridging
Our proofs build on several tools from statistical physics and combinatorics, so we begin by
introducing two key methods. The cluster expansion is one of the oldest tools in statistical
physics [23, 24, 14], and has led to the development of the Pirogov-Sinai theory [31, 32], playing
an important role in recent advances in efficient sampling and counting algorithms [16, 19, 3].
The cluster expansion expresses the logarithm of a polymer partition function as a sum over
polymer clusters.

Let L be a finite set of polymers {ξi}, where each polymer ξi has weight w(ξi). We also
define “compatibility” between polymers - each pair of polymers ξ, ξ′ is either compatible
(ξ ∼ ξ′) or incompatible (ξ ≁ ξ′). The polymer partition function is then given by:

Ξ =
∑
τ∈ΩL

∏
ξ∈τ

w(ξ) ,

where ΩL is the set of all collections of pairwise compatible polymers in L. The cluster
expansion expresses the logarithm of the polymer partition function in terms of clusters, where
a cluster X is an ordered multiset of polymers {ξ1, . . . , ξk} such that their incompatibility
graph H(X) is connected, where the incompatibility graph is constructed by representing
each polymer by a vertex and connecting two vertices if the corresponding polymers are
incompatible. The cluster expansion gives:

log Ξ =
∑
X∈C

Ψ(X) , where Ψ(X) := 1
|X|!

 ∑
G⊆HX

(−1)|E(G)|

  ∏
ξ∈X

w(ξ)

 ,
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where the sum is taken over connected, spanning subgraphs G and C is the set of all clusters.
A sufficient condition for the convergence of the cluster expansion was given by Kotecký
and Preiss [20]. We will prove this condition in Lemma 7 and use the cluster expansion to
separate the volume and surface contributions to the partition function, as done in [14, 6].

Bridging is a combinatorial technique used to show that large contours are uncommon,
while allowing for the possibility of many small contours corresponding to “defects”. It was
first introduced in [27] and later adapted in [6]. We note that a constant fraction of defects
will be unavoidable - an example of this is in the Ising model and Potts models, where a
constant fraction of the vertices will not follow the majority color even at stationarity. Each
configuration corresponds to a set of contours - informally, a bridge system comprises of a
set of bridges, which are edges on the dual graph on the lattice that connect contours to the
boundary of the lattice. Contours that are connected this way are called bridged contours,
while the remaining contours are unbridged.

Bridge systems are defined so that the total length of the bridges is at most a constant
fraction of the total length of the bridged contours, which allows us to bound the number of
bridge systems with total bridged contour length ℓ by Cℓ for some constant C. Consequently,
a Peierls argument can be used to show that the gain in energy (probability weight) by
the removal of the bridged contours is greater than the loss in entropy by the removal of
these contours. Explicit constructions of bridge systems are shown in [6] and in our proof of
alignment for disconnected SOPS (see Appendix A).

3 Compression and Alignment in Connected SOPS

Starting with any simply connected set of particles, we define a local Markov chain aiming
to simultaneously compresses the configuration and align all but a small fraction of their
orientations. On each iteration, a particle is activated uniformly at random using a Poisson
clock. When activated, a particle chooses to attempt a spatial move or a reorientation
move with a equal probability. Informally, spatial moves consist of the particle moving
to a randomly chosen neighboring site, provided that site is unoccupied and the particle
configuration remains simply connected, while a reorientation move allows the particle to
change its orientation to point in a new direction. While it is surprising that a property such
as connectivity can be determined locally, a set of local moves were defined in Cannon et al. [8]
that prevent the configuration from disconnecting or forming holes and yet the chain remains
ergodic on the infinite lattice, so all valid configurations can still be reached. This ergodicity
result carries over to our setting as the we use a lattice that while finite, is sufficiently
large that self-intersections via wraparound are not possible. Using the Metropolis-Hastings
algorithm [25], once a move is determined to be valid, it is implemented with probability
min{1, π(σ′)/π(σ)}, where π is the desired stationary distribution.

More precisely, consider a spatial move from a location ℓ to an empty adjacent location ℓ′.
Let the sets of lattice sites adjacent to the locations ℓ and ℓ′ be N(ℓ) and N(ℓ′) respectively.
Furthermore, let N(ℓ ∪ ℓ′) denote N(ℓ) ∪N(ℓ′) \ {ℓ, ℓ′}, and S := N(ℓ) ∩N(ℓ′) denote the
set of sites adjacent to both ℓ and ℓ′ so that |S| ∈ {0, 1, 2}.

▶ Definition 1. A move from ℓ to ℓ′ is valid if ℓ′ is unoccupied, the number of particle-occupied
sites in N(ℓ) is less than 5, and either of the following two properties are satisfied:

Property 1: |S| ≥ 1 and every particle-occupied site in N(ℓ ∪ ℓ′) is connected to a
particle-occupied site in S through N(ℓ ∪ ℓ′).

Property 2: |S| = 0, ℓ and ℓ′ each have at least one neighbor, and all particle-occupied
sites in N(ℓ) \ {ℓ′} are connected by paths within this set, and all occupied sites in N(ℓ′) \ {ℓ}
are connected by paths within this set.

APPROX/RANDOM 2022
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Note that in Section 4, we will consider almost the same algorithm in the general SOPS
setting where there are no connectivity restrictions, so there all spatial moves from an
occupied site to an adjacent unoccupied site are valid.

It is important to note that the ratio between the probabilities π(σ′)/π(σ) that arises from
the Metropolis-Hastings algorithm can be calculated by an activated particle using only local
information - the positions and orientations of particles in its immediate neighborhood, as
well as those in the neighborhood of the destination site if the particle is moving. Specifically,
changes in perimeter in connected SOPS can be computed locally as shown in [8, 7].

We now proceed to show that when s λ and γ are sufficiently large, the alignment
algorithm will cause the system to compress to form a low-perimeter configurations with
high probability. Moreover, in both the Potts and clock model settings, in any configuration
with sufficiently low-perimeter, one of the q orientations will dominate with high probability.

We note that we did not attempt to give rigorous bounds on the rates of convergence
for our Markov chains. We expect that convergence will be fast when the parameters λ and
γ are small and the system evolves to a disordered (gaseous) state, but the connectivity
constraint makes proving this challenging. In contrast, we expect convergence to equilibrium
will be slow in the ordered (solid) state when λ is large, but we conjecture that desirable
compressed and aligned states will be reached quickly, long before the system is very close to
stationarity.

3.1 Compression in Connected SOPS
We denote the set of possible configurations in this paradigm by Ω. Recall that N represents
the number of sites of the lattice G∆. To ensure that the proof of ergodicity from [7] carries
over to our setting, we use a sufficiently large value of N , namely N ≥ (n+ 1)2, although we
expect the results to hold for smaller N .

▶ Definition 2 (Compression). A simply connected configuration σ of n particles on a lattice is
said to be α-compressed if its perimeter is at most α · pmin(n), where pmin(n) is the minimum
possible perimeter of a configuration of n particles.

The main result of this section is the following theorem.

▶ Theorem 3. Given any α > 1, if constants λ > 1 and γ > 29.3 (q−1) satisfy λ γ > 7α/(α−1)

and n is sufficiently large, then the probability a configuration drawn from the stationary
distribution πPotts is not α-compressed is exponentially small.

Let P denote the boundary of some configuration σ in our configuration space Ω. As σ
is connected, hole-free, and contains a finite (n) number of particles, P is a single closed
walk on G∆ and the perimeter of the configuration, p(σ), is equal to |P|, the total length
of walk P. If we restrict our particle configurations to be connected and hole-free, there is
a one-to-one correspondence between the possible sets of occupied sites and the possible
boundaries P. Let ΩP denote the set of configurations in Ω with boundary P, and let
ΛP ⊆ G∆ be the induced subgraph of the triangular lattice G∆ by the particle-occupied
vertices for any configuration in ΩP . A configuration in ΩP thus corresponds to a mapping
of the vertices of ΛP to the orientations {0, . . . , q − 1}.

We consider the subset of configurations Ω0
P ⊆ ΩP where all particles on the boundary P

have the same color 0. We will later analyze the weight of configurations in Ω0
P using a

polymer model and the cluster expansion. We would first like to obtain an upper bound
on w(ΩP), the total weight of configurations in ΩP , in terms of w(Ω0

P), the total weight of
configurations in Ω0

P .
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Figure 2 Particle configuration in Ω0
P , and its corresponding polymer configuration in ΩL

P (with
two polymers).

▶ Lemma 4. For γ > 3q, we have

w(ΩP) < w(Ω0
P) · q 2|P| γ

γ − 3q .

The proof is a generalized version of that in [6], by defining maps from ΩP → Ω0
P such

that all vertices on boundary P are of orientation 0. We will use the cluster expansion to
analyze the total weight w(ΩP) :=

∑
σ∈ΩP

w(σ) of the configurations in ΩP . Since the cluster
expansion can only be applied to polymer partition functions, we begin by representing the
configurations of ΩP with a polymer model.

The Polymer Model. We say two edges of G∆ are adjacent if they share a common vertex.
A polymer ξ in L is defined to be a labeling ξ : E(G∆) → {0, 1, . . . , q− 1} of the edges of G∆
such that the set E(ξ), defined to be the edges of G∆ with a non-zero label in ξ, is non-empty
and connected under the above notion of adjacency. The labeling must also be consistent, as
defined below.

▶ Definition 5 (Consistent Labeling). We fix a canonical direction for each edge in G∆. This
direction can be arbitrarily defined, so for simplicity we say that the edge is oriented toward
the vertex with the larger x, followed by y coordinate, where the coordinate axes are oriented
such that the x coordinate increases from left to right and the y coordinate increases from
top to bottom.

We define labels ξ : E(G∆) → {0, 1, . . . , q− 1}. These edge labels represent “flows” in our
defined canonical direction, modulo q. In other words, when summing up the total flow along
a walk on G∆, for each edge e on the walk, we add the label ξ(e) to the sum if the walk is in
the canonical direction of the edge, and q − ξ(e) if the walk is in the opposite direction. We
call an assignment of labels consistent if every closed walk on G∆ has a total flow summing
to 0 modulo q.

Consider a fixed boundary P as defined above, corresponding to some configuration in Ω.
For a polymer ξ, denote by V (ξ) the set of vertices incident to an edge with a non-zero label
in ξ. We say a polymer ξ is within P if V (ξ) ⊆ ΛP . As described earlier, the set ΩL

P of
polymer configurations corresponding to P is the set of all subsets of L of pairwise compatible
polymers within P . The weight w(τ) of a configuration τ ∈ ΩL

P is the product of the weights
of its constituent polymers.

Two polymers ξ1, ξ2 are incompatible if there are edges e1 ∈ E(ξ1) and e2 ∈ E(ξ2) such
that e1 and e2 are adjacent. The weight of a polymer ξ is defined as w(ξ) := γ−|E(ξ)|, in the
Potts model, and w(ξ) :=

∏
e∈E(ξ) γ

cos( 2π
q ξ(e))−1 in the clock model.

▶ Lemma 6. There is a bijection ϕ between Ω0
P and ΩL

P with the property that for any
σ ∈ Ω0

P , we have w(σ) = (λγ)−p(σ)w(ϕ(σ)).
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The map ϕ simply encodes the orientations of particles in a configuration σ ∈ Ω0
P as

differences between orientations on the edges of G∆. This is illustrated in Figure 2. The full
version of the paper gives a full description of this mapping and a proof that it is indeed a
bijection. From Lemma 6, we have

w(Ω0
P) =

∑
σ∈Ω0

P

(λγ)−|P|
w(ϕ(σ)) =

∑
τ∈ΩL

P

(λγ)−|P|
w(τ) = (λγ)−|P| ΞP ,

where ΞP is the partition function for the set of polymer configurations ΩL
P :

ΞP :=
∑
τ∈ΩL

P

w(τ) =
∑
τ∈ΩL

P

∏
ξ∈τ

w(γ).

The Potts Model. From now, our analysis will be specific to the Potts model. The clock
model will be discussed in Section 3.1. The following Lemmas and proofs are slight variations
of those used in [6].

▶ Lemma 7. For any polymer ξ ∈ L, whenever γ > 29.3(q − 1), we have for c = 0.0001,∑
ξ′∈L
ξ′≁ξ

w(ξ′) exp(c|V (ξ′)|) ≤ c|V (ξ)|,

where V (ξ′) denotes the set of vertices in the polymer ξ′, and |V (ξ′)| denotes the number of
vertices in ξ′.

The proof is on the lines of that in [6]. The key part of this proof is the use of an upper
bound ν(m, q) ≤ (6e(q − 1))m/2 from [4], where ν(m, q) represents the number of polymers
with m edges containing some fixed vertex v ∈ V (G∆).

Lemma 7 has an important consequence in addition to guaranteeing the convergence
of the cluster expansion, as stated in the original paper of Kotecký and Preiss [20], and
rephrased in [19]. Consider the function Ψ(X) defined earlier for any cluster X. An additional
consequence [20, 19] of Lemma 7 is that Ψ(X) will satisfy the following inequality∑

X∈X
X≁ξ

|Ψ(X)| ≤ c|V (ξ)|. (3)

for any polymer ξ, where X is the set of all clusters of polymers, and a cluster X ≁ ξ if there
exists a polymer ξ′ ∈ X such that ξ′ ≁ ξ. The support of a cluster X is denoted by X̄ and is
given by X̄ =

⋃
ξ∈X V (ξ).

Consider an arbitrary vertex v ∈ G∆, and let ξv be the smallest polymer consisting of six
edges of equal weight attached to v. From Equation (3), we have:∑

X∈X
X≁ξv

|Ψ(X)| ≤ c|V (ξv)| = 7c ⇒
∑
X∈X
v ∈X̄

|Ψ(X)| ≤
∑
X∈X
X≁ξv

|Ψ(X)| ≤ 7c. (4)

▶ Lemma 8. If for any polymer ξ ∈ L, there exists a constant c such that∑
ξ′∈L
ξ′≁ξ

w(ξ′) exp(c|V (ξ′)|) ≤ c|V (ξ)|,

then for any connected region ΛP with boundary P, the partition function ΞP satisfies

ψ|ΛP | − 7c|∂Λ| ≤ ln ΞP ≤ ψ|ΛP | + 7c|∂Λ|.
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The proof follows on the lines of the proof of a similar Lemma in [6], and section 5.7.1
of [14]. Using Lemma 8, and noting that |∂ΛP | ≤ p(σ) ∀σ ∈ ΩP and |ΛP | = n, we get:

nψ − 7c p(σ) ≤ ln ΞP ≤ nψ + 7c p(σ) (5)

Note that the partition function ZPotts is greater than the contribution from particle
configurations in Ω0

P where the length of the boundary is the smallest attainable perimeter
|P| = pmin:

ZPotts ≥ w(Ω0
P) = (λ γ)−pmin ΞP ≥ (λ γ)−pmin enψ−7cpmin . (6)

Given α > 1, let Sα be all configurations that are not α-compressed. We will prove
that the probability of the set Sα in the stationary distribution is exponentially small for
sufficiently large λ, γ:

▶ Lemma 9. Given any α > 1, when constants λ > 1, c = 0.0001, and γ > 29.3 (q − 1)
satisfy

λ γ > (4 + 2
√

2))
α

α−1
(
e7c) α+1

α−1 (7)

and n is sufficiently large, then the probability that a configuration drawn from the stationary
distribution πPotts is not α-compressed is exponentially small, πPotts(Sα) < ζ

√
n.

Note that Equation (7) is satisfied if λ γ > 7α/(α−1), proving Theorem 3. The proof of the
Lemma requires using Lemma 4, Lemma 8 and Equation (6), and an upper bound on the
number of self-avoiding walks of a given length on the triangular lattice from [12, 8].

The Clock Model. The proof of compression for the clock-model-inspired algorithm follows
along the same lines as the proof for the Potts-model-inspired algorithm. The set of allowed
particle configurations is the same as before, so the set of configurations in Ω0

P is in a
one-to-one correspondence with compatible collections of polymers with the same polymer
model as above, albeit with the weight of a polymers redefined as wclock(ξ) =

∏
e∈ξ γ

−de ,
where de = 1 − cos(2πℓ(e)/q), and ℓ(e) ∈ {1, 2, . . . , q− 1} is the label associated with an edge
e ∈ ξ. This changes the prefactor in Lemma 4, replacing γ with γ− cos(2π/q), and requiring
γ− cos(2π/q) > 3q. The polymer partition function becomes

ΞP =
∑

L′⊆LP
compatible

∏
ξ∈L′

wclock(ξ).

Since the maximum weight of an edge in a polymer is now γ−(1−cos(2π/q)), instead of γ−1, the
condition for Lemma 7 to hold becomes γ1−cos(2π/q) > 29.3(q − 1). Lemmas 8 and Theorem
3 follow without modification except for the modified condition: γ1−cos(2π/q) > 29.3(q − 1)
in Theorem 3.

3.2 Alignment in Compressed Configurations
▶ Definition 10 (Alignment). We say a configuration of n particles with q orientations is
δ-aligned if there exists an orientation θ ∈ {0, 1, . . . , q − 1}, such that the number of particles
of orientation θ is at least (1 − δ)n.

Our main result is the following theorem:

APPROX/RANDOM 2022
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▶ Theorem 11. Denote by πPotts,P the stationary distribution πPotts conditioned on the
boundary of the configuration being P. For any η where 1/2 < η < 1, there exists a constant
α∗ = α∗(η, q) > 1, such that for all α where 1 < α < α∗, there exists a sufficiently large
γ∗ = γ∗(η, q, α, α∗) where as long as γ > γ∗ and P is α-compressed, the probability that a
configuration drawn from πPotts,P is not (1 − η)-aligned is exponentially small.

In particular, possible values of α∗ and γ∗ are:

α∗(η, q) = min
{√

η +
√

1 − η,
√
q−1 +

√
1 − q−1

}
γ∗(η, q, α, α∗) =

(
3

2α
α∗−α · 4

3
4 + α∗−1

2δ∗(η,q)(α∗−α)

)q−1
where δ∗(η, q) := min{1 − η, q−1}.

For any particle configuration, let 2πθp/q, be the most popular orientation, or the
orientation possessed by the greatest number of particles, where θp ∈ {0, 1, . . . , (q − 1)}, and
let ρp be the fraction of particles with orientation θp. Note that 1/q ≤ ρp ≤ 1, and ρp ≥ η

for a (1 − η)-aligned configuration.
The dual lattice, G9, to the triangular lattice G∆ is obtained by creating a dual vertex

in the center of each triangle in G∆, and joining these dual vertices with edges if their
corresponding triangular faces share an edge. Each edge e∆ of G∆ corresponds with the
edge e9 of G9 that crosses it. This corresponding edge e9 separates the two endpoints of e∆
in G∆. A contour refers to a self-avoiding walk on the edges of the dual lattice G9. The
length of a contour refers to the number of edges in the contour.

In this setting, we distinguish between the boundary contour and the internal boundary
contour of a region R ⊆ V (ΛP). The boundary contour refers to the set of edges on the dual
lattice G9 corresponding to edges between sites in R and sites not in R, while the internal
boundary contour includes edges only from E(ΛP) rather than all of E(G9). We make use
of the following geometric result, which we show in the full version of the paper:

▶ Lemma 12. For a connected hole-free α-compressed configuration with n particles, a
particle-occupied region R containing κn particles has an internal boundary contour bdint(R)
of length at least ν

√
n(

√
κ+

√
1 − κ− α) for any ν < 2

√
3 for sufficiently large n.

For the rest of this section, we assign particles the color c1 if they are of orientation θp, and
the color c2 otherwise. This lets us directly apply the bridging construction from [6].

▶ Lemma 13 ([6], Lemma 7.3). Fix δ ∈ (0, 1/2). For each particle configuration σ ∈ ΩP ,
there exists a function Rδ : ΩP → 2ΩP giving a region Rδ(σ) such that all particles on the
boundary of Rδ(σ) have the color c1, all particles on the boundary of its complement R̄δ(σ)
have the color c2, Rδ(σ) contains at most δ fraction of particles with the color c2, and R̄δ(σ)
contains at most δ fraction of particles with the color c1.

We use the bridging construction from [6] to define the region Rδ(σ) in Lemma 13.

▶ Lemma 14. For any particle configuration σ ∈ ΩP with total number of particles n and ρp
fraction of particles of color c1, given any δ > 0, the region Rδ(σ) defined in Lemma 13 is such
that the number of particles in Rδ(σ), nRδ

satisfies: (ρp− δ)n/(1− δ) ≤ nRδ
≤ (ρpn)/(1− δ).

The proof of Lemma 14 follows from noting that the particles in Rδ(σ) and R̄δ(σ) are
predominantly of the colors c1 and c2 respectively, with an error fraction bounded by δ, and
enforcing that the total number of particles with the color c1 is ρp n.
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▶ Lemma 15. For a connected hole-free α-compressed configuration σ ∈ ΩP that is not
(1 − η)-aligned for some η < 1, given any δ where 0 < δ < min{q−1, 1 − η}, the internal
boundary contour length |bdint(Rδ)| of the region Rδ(σ) defined in Lemma 13 obeys the lower
bound |bdint(Rδ)| ≥ ν

√
n(αc(δ, η, q) − α) for any ν < 2

√
3 and n sufficiently large, where

αc(δ, η, q) := min
{√

q−1 − δ

1 − δ
+

√
1 − q−1

1 − δ
,

√
η

1 − δ
+

√
1 − (η + δ)

1 − δ

}
.

Lemma 15 is a direct consequence of Lemmas 14 and 12. Given an α-compressed
boundary P, let SηP ⊆ ΩP be the set of α-compressed configurations with boundary P that
are not (1 − η)-aligned for some η < 1. For each configuration σ ∈ SηP , let R̄δ(σ) be the
complement of the region Rδ(σ) defined in Lemma 13.

Let P int
R̄δ

denote the walk on the edges of G∆, each of whose endpoints is a particle in
R̄δ(σ) that is connected by an edge in G∆ to a particle in Rδ(σ). Let Θint

R̄δ
denote the

set of orientations of particles that are incident to an edge in P int
R̄δ

, where the orientation
of a particle appears as many times as the number of edges connecting that particle to a
particle in Rδ(σ). Note that |Θint

R̄δ
| = |bdint(R̄δ)|. Let the orientation which appears the

most number of times in the set Θint
R̄δ

be 2πθ̄p/q, where θ̄p ∈ {0, 1, . . . , q − 1}. We consider a
map fη : SηP → ΩP which applies a cyclic shift to the orientations of all particles in R̄δ(σ),
so that under fη, a particle orientation θ is mapped to (θ + (θp − θ̄p)) (mod q). Note that
this transformation maps the orientation θ̄p to θp.

▶ Lemma 16 ([6]). For a configuration τ ∈ Im(fη(SηP)), the number of preimages σ ∈ SηP
for which |bdint(Rδ(σ))| = ℓ, where Rδ(σ) is defined in Lemma 14, is at most q 3|P|4 1+3δ

4δ ℓ.

The proof follows from Lemma 7.6 in [6] and by noting that once the internal boundary
contour of Rδ(σ) is known, one of q cyclic shifts in R̄δ(σ) recovers σ, given τ .

In this section so far, our results were valid for both the Potts and the clock models.
We now consider specifically the case of the Potts model with stationary distribution πPotts.
Using the definition of fη, we find the following.

▶ Lemma 17. For a configuration σ ∈ SηP , let region Rδ(σ) be defined as in Lemma 13 with
|bdint| = ℓ. For the new configuration fη(σ) under the map fη, the ratio w(σ)/w(f(σ)) is at
most (1/γ)ℓ/(q−1).

The proof of Theorem 11 follows from an information theoretic argument similar to that
in [6], by showing that the minimum gain in the weight of a configuration under the map
fη outweighs the maximum number of preimages of the map, and using Lemma 15 to get a
lower bound on the gain under fη. A key component is ensuring that it is possible to choose
the parameter 0 < δ < q−1, so that the conditions on α and γ described in the theorem
statement can be simultaneously satisfied.

The Clock Model. Lemma 17 and Theorem 11 hold for the clock model with stationary
distribution πclock, with γ replaced by γ1−cos(2π/q) in both. The proofs follow on similar lines
as for the Potts model.

3.3 Non-Alignment and Expansion in Connected SOPS
An interesting artifact of the alignment algorithm is that when λ, γ are small, the opposite
properties are achieved, namely nonalignment and expansion. We outline the main results.

APPROX/RANDOM 2022
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Non-alignment in compressed configurations. For ϵ > 0, we say a configuration is ϵ-non-
aligned if the fraction of particles of each orientation is within an ϵ-neighborhood of q−1. Let
SϵP denote the set of configurations which have perimeter P and are not ϵ-non-aligned, and
let Sϵ be the set of configurations that are not ϵ-non-aligned. Our main result is as follows:

▶ Theorem 18. When γ > 0 satisfies:

γ3 <

(
1 − ϵ

q

q − 1

) q−1
q −ϵ

(1 + ϵ q)
1
q +ϵ = 1 + ϵ2q2

q − 1 +O(ϵ3) ,

the probability that a configuration sampled from the stationary distribution of the Markov
chain algorithm πPotts is not ϵ-non-aligned is exponentially small, for sufficiently large n.

The proof follows from Stirling’s approximation [35] for the number of configurations that
are not ϵ-non-aligned, and using rough lower and upper bounds on the weight of configurations
in ΩP . The result also holds for the clock model with γ replaced with γ2.

Expansion in Connected SOPS. We define the notion of expansion, on the lines of [8], as
follows. We say a configuration σ is β-expanded when its perimeter p(σ) is greater than
β pmax, where 0 < β < 1. Consider the set of configurations Sβ that are not β-expanded.
Our main result is:

▶ Theorem 19. For constants λ, γ > 0, c1 = 2.17, c2 = 2 +
√

2 such that λ γ5/2 < c1, and
for any β such that:

0 < β <
log c1 − log λ− 5

2 log γ
log c2 − log λ− log γ ,

the probability that a configuration drawn from the stationary distribution π is not β-expanded
is exponentially small.

We can get rough upper and lower bounds for the weight of configurations in ΩP by estimating
the number of ways of getting a fixed perimeter using the bounds in [12, 8].

The same theorem holds for the clock model, with γ5/2 replaced by γ4 in the theorem
statement, and the proof follows on similar lines.

4 Aggregation and Alignment in General SOPS

In general SOPS, occupying any selection of n out of the N possible sites of G∆ is a valid
configuration. Hence, we apply the same Metropolis-Hastings Markov chain as the connected
SOPS model, with the exception that any move into an unoccupied location is considered
valid regardless of connectivity effects. In this disconnected setting, particles exist on a
lattice region with toroidal boundary conditions. We assume the particles occupy a constant
fraction ρ of the lattice. Specifically, we define a ρ ∈ (0, 1

3 ) so that n = ρN . The set of
possible configurations is denoted Ω̃ρN .

Similar to before, boundary contour bd(R) of a region R ⊆ V (G∆) refers to the set of
dual edges on G9 corresponding to edges between sites in R and V (G∆) \R. The boundary
length of R is |bd(R)|. Let bdmin(k) denote the minimum boundary length of a region of k
sites in V (G∆). We restrict ρ to be less than 1

3 as cases with so many particles (filled sites)
that minimum boundary length configurations wrap around the torus G∆ is not instructive
for our purposes (a precise explanation for this restriction is in the full version of the paper).
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We show that in this general SOPS model, both alignment and aggregation can be achieved
with high probability using only local movements. Alignment is defined in Section 3.2, and
aggregation is defined as follows:

▶ Definition 20 (Aggregation). For α > 1, δ > 0 we say a configuration of n particles is
α, δ-aggregated if there exists a region R such that
1. The number of empty sites within R is at most δ|R|.
2. The number of particles outside of R is at most δ(N − |R|)
3. The boundary length of R is at most α · bdmin(n).

Note that changes in the perimeter of the configuration cannot be locally computed if
the set of particles is disconnected. So instead, we make use of the boundary contour length
to define our Hamiltonian. More precisely, we consider the following Potts Hamiltonian,
another variant of the site-diluted Potts Hamiltonian [9], on G∆:

H̃Potts(σ) = −J
∑
⟨i,j⟩

[
ninj

(
δθi,θj

− 1
)

+ (ni(nj − 1) + nj(ni − 1))
]
,

where the sum is over all pairs of adjacent sites: ⟨i, j⟩ i.e., sites connected by a single lattice
edge in G∆, ni ∈ {0, 1} indicates whether site i is occupied or not, θi indicates the orientation
of the particle on site i, and J is a positive constant. We only consider configurations σ in
Ω̃ρN i.e., where the total number of particles is equal to n.

The probability of a configuration π̃Potts(σ) is given by the Boltzmann distribution which
can be expressed in terms of the parameter λ = exp(βJ) as:

π̃Potts(σ) = w̃Potts(σ)
Z̃Potts

, w̃Potts(σ) = λ−a(σ)−h(σ) , Z̃Potts =
∑

σ′∈Ω̃ρN

w̃Potts(σ′) (8)

where λ > 0, h(σ) is the number of heterogeneous edges in the configuration σ, and a(σ) is
the number of edges between occupied and unoccupied sites in G∆.

We prove the following theorem that establishes aggregation and alignment for appropriate
settings of the parameters.

▶ Theorem 21. Fix ρ < 1
3 and assume that there will always be exactly ρN filled sites on

the lattice. For any δ > 0 and α > 1, there exists a λ0 = λ0(q, ρ, α, δ) such that for all
λ > λ0, with probability 1 − ζ

√
N for some constant ζ = ζ(q, ρ, α, δ, λ) < 1, there exists a

region R ⊆ V (G∆), where
1. There is an orientation θ ∈ {0, 1, . . . , q−1} where the number of filled sites with orientation

θ in R is at least (1 − δ)|R|.
2. The number of filled sites not in R is at most δ(N − |R|)
3. The boundary length of R is at most α · bdmin(ρN).
Due to space limitations, we relegate the main details of the proofs to Appendix A.
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A Details for Aggregation and Alignment in General SOPS

In the general SOPS setting, we can treat the problem as a q + 1-state Potts model on G∆
with q + 1 orientations {−1, 0, 1, . . . , q − 1} in which the number of sites assigned −1 is fixed
to be exactly (1 − ρ)N , where N = |V (G∆)|. In other words, sites of the lattice are no longer
filled or unfilled, but are instead assigned one of q + 1 orientations with the special spin
−1 assigned to unoccupied lattice sites. We refer to any edge between particles of differing
orientations as “heterogeneous edges,” including those assigned the special orientation −1.

We again use a Peierls argument to show that for suffiently large λ, the configuration
will compress and one of the q orientations will dominate, with high probability. This proof
is an adaptation of the bridging argument used for separation in [5, 6] and thus follows their
arguments very closely. The following sections build up to a proof of Theorem 21.

We observe that the result of Theorem 21 will imply both alignment and aggregation
(for some values of α and δ) as given in Definitions 10 and 20. The key component of our
proof is the construction of a δ-bridge system (δ ∈ (0, 1) is a positive constant) for each
configuration in Ω̃ρN . Recall that a bridge system is a connected network of the long contours
of a configuration σ, that is used to “remove” long contours in the Peierls argument to show
that they are unlikely. It will also be used to define the region R required for Theorem 21.

Let Ewrap be the set of edges on G9 corresponding to the edges on G∆ that wrap around
the torus. Thus |Ewrap| = 2

√
N − 1. In a setting with more than three possible orientations,

regions of differing orientations are divided up by networks of contours rather than closed
walks separating two different orientations. We call these contour networks complex contours.
Formally, a complex contour refers to a connected subgraph of G9 of minimum degree at
least 2. For a given configuration σ ∈ Ω̃ρN , the set of edges C on G9 corresponding to its
heterogeneous edges will be a union of complex contours. The complex contours of σ thus
refers to the edge sets of connected components of the subgraph induced by C in G9.

We now define a bridge system (B, I,Θ) where the set I represents the complex contours
in the bridge system, B represents the bridges used to connect these complex contours, and
Θ is a mapping that assigns an orientation to each of the components formed after removing
the edges of G∆ corresponding to the edges in I.
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▶ Definition 22 (Bridge Systems). Fix δ > 0. Consider a tuple (B, I,Θ), where B and I

are subsets of E(G9) and Θ : V (G∆) → {−1, 0, 1, . . . , q − 1} is a function assigning each
vertex an orientation or the value −1 (which we will use to represent vacant sites). We say
(B, I,Θ) is a δ-bridge system if:
1. The subgraph induced in G9 by I has no vertex of degree less than 2. Practically, I

represents a union of complex contours that subdivides G∆ into regions.
2. The subgraph induced in G9 by B ∪ I ∪ Ewrap is connected and has no vertex of degree

less than 2.
3. B ∩ I = ∅ and |B| ≤ 1−δ

2δ |I|
4. For any two neighboring sites u, v ∈ G∆, Θ(u) = Θ(v) if and only if the dual edge

corresponding to {u, v} is not in I.

Consider a set of edges I, that is a union of the edge sets of complex contours. Let σ be
a configuration in Ω̃ρN . We say a complex contour C of σ is bridged (by I) if C ⊆ I. We say
a site v is bridged (by I) if there is a path over G∆ using only sites of the same orientation
(including −1) in σ as v to a site incident to an edge in I. Consider a region R ⊆ V (G∆)
that is connected as an induced subgraph of G∆. We call R a bridged region if bd(R) ⊆ I

and a minimal bridged region if there is no bridged region R′ where R′ ⊆ R. Notably, the
edge set I partitions V (G∆) into minimal bridged regions.

▶ Definition 23 (Bridge System for a Configuration). Fix δ > 0 and a configuration σ ∈ Ω̃ρN .
We say a tuple (B, I,Θ) is a δ-bridge system for a configuration σ If
1. Each minimal bridged region R by (B, I,Θ) contains at most δ|R| unbridged particles.
2. No complex contour C of σ meets any edge in B ∪ I ∪Ewrap. Formally, the edge-induced

subgraphs G∆[C] and G∆[B ∪ I ∪ Ewrap] do not share any vertices.
3. For each minimal bridged region R, Θ(v) must have the same value for every site v ∈ R

and this value Θ(v) must correspond to the orientation in σ of some bridged particle in R.

▶ Definition 24 (Orientation of a Minimal Bridged Region). Given a δ-bridge system (B, I,Θ)
for a configuration σ ∈ Ω̃ρN . We can associate with each minimal bridged region R of I an
orientation yR ∈ {−1, 0, 1, . . . , q − 1}.

To determine yR, we denote by R∗ the set of sites v ∈ R with a path over G∆ using only
sites of the same orientation in σ as v to a site incident to an edge in bd(R). We note that
bd(R) ⊆ I and the edges B ∪ I ∪Ewrap connect the components of bd(R) in G9. This implies
that every vertex in R∗ must have the same orientation in σ, as any contour C between
regions of differing orientations in R∗ must intersect B ∪ I ∪ Ewrap, implying that C also
must be included in the set I, allowing us to subdivide R, contradicting its minimality. The
orientation yR of R is thus defined to be the common orientation of the sites of R∗.

Thus, for each minimal bridged region R with orientation yR, we must have Θ(v) = yR for
all v ∈ R. The proofs of the Lemmas will be given in the long version of the paper.

Our next step is to associate with each σ ∈ Ω̃ρN a δ-bridge system.

▶ Lemma 25. For each σ ∈ Ω̃ρN and δ ∈ (0, 1), we can construct a δ-bridge system
Bδ(σ) = (Bδ(σ), Iδ(σ),Θδ(σ)).

Without reference to any specific configuration in Ω̃ρN , we use the connectedness require-
ment of bridge systems to compute an upper bound on the number of bridge systems that is
exponential on |I|. This is important as the Peierls argument “removes” the heterogeneous
edges in I, which gives an improvement in weight of a similar order of growth.
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▶ Lemma 26. The number of δ-bridge systems (B, I,Θ) where |I| = ℓ is at most 7 · 62
√
N−1 ·

(3(q + 1)) 1+δ
2δ ℓ.

Assuming δ ∈ (0, ρ), we define Ω̃ρNℓ := {σ ∈ Ω̃ρN : |Iδ(σ)| = ℓ}, where Iδ(σ) is comes
from the δ-bridge system constructed for σ. Also, let Ω̃≤δN be the the set of configurations
over G∆ where at least (1 − δ)N sites have orientation −1 (this corresponds to empty sites
in our model). Note that Ω̃≤δN ̸⊆ Ω̃ρN . For the Peierls argument, we define two functions,
f1
ℓ : Ω̃ρNℓ → Ω̃≤δN and f2 : Ω̃≤δN → Ω̃ρN . The function f1

ℓ is used to erase the heterogeneous
edges in I, creating a configuration of significantly higher weight, though not one with ρN

particles. To fix this, a second function, f2 is used to restore the number of particles back to
ρN . This way, f2 ◦ f1

ℓ maps each σ in Ω̃ρNℓ to a valid configuration with exactly ρN filled
sites. The definitions of f1

ℓ and f2 are given in the full version of the paper.
As the bridge system with just a polynomial amount of additional information can be

used to reconstruct σ from f2 ◦ f1
ℓ , our upper bound on the number of bridge systems can

be used to upper bound |(f2 ◦ f1
ℓ )−1(τ)| for any τ in the image of f2 ◦ f1

ℓ . This allows us to
prove the following Lemma:

▶ Lemma 27. Fix ρ < 1
3 , any α > 1, δ ∈ (0,min{ρ, 1− 1

α2 }) and λ > λ0(q, ρ, α, δ) sufficiently
large, where:

λ0(q, ρ, α, δ) :=
(

(3(q + 1))α
1+δ
2δ 36

1
4
√

3ρ

) 1
α− 1√

1−δ .

Denote by Ω̃ρN≥α·bdmin(ρN) the set of configurations σ where |Iδ(σ)| ≥ α · bdmin(ρN), where
bdmin(k) is the minimum possible boundary length of a region of k ∈ N particles. Then
there exists a constant ζ = ζ(q, ρ, α, δ, λ) < 1 such that π̃Potts(Ω̃ρN≥α·bdmin(ρN)) < ζ

√
N for all

sufficiently large values of N .

As the bridge system with just a polynomial amount of additional information can be used
to reconstruct σ from f2 ◦ f1

ℓ , our upper bound on the number of bridge systems can be used
to upper bound |(f2 ◦ f1

ℓ )−1(τ)| for any τ in the image of f2 ◦ f1
ℓ . This allows us to prove

the following Lemma:
The use of Lemma 27 along with some results on the minimum possible boundary lengths

of regions of k particles allows us to show that there will exist a low perimeter region
dominated by a single color, allowing us to prove Theorem 21.
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