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Abstract

Gaussian process ( G P )  regression is a exible, nonparametric approach to regression that
naturally quanties uncertainty. In many applications, the number of responses and covari-
ates are both large, and a goal is to select covariates that are related to the response. For
this setting, we propose a novel, scalable algorithm, coined VG P R ,  which optimizes a pe-
nalized G P  log-likelihood based on the Vecchia G P  approximation, an ordered conditional
approximation from spatial statistics that implies a sparse Cholesky factor of the precision
matrix. We traverse the regularization path from strong to weak penalization, sequentially
adding candidate covariates based on the gradient of the log-likelihood and deselecting irrel-
evant covariates via a new quadratic constrained coordinate descent algorithm. We propose
Vecchia-based mini-batch subsampling, which provides unbiased gradient estimators. The
resulting procedure is scalable to millions of responses and thousands of covariates. Theo-
retical analysis and numerical studies demonstrate the improved scalability and accuracy
relative to existing methods.

Keywords: adaptive bridge penalty; gradient-based variable selection; mini-batch subsampling;
ordered conditional approximation; penalized Gaussian regression

1. Introduction

Gaussian process regression     Many tasks in statistics and machine learning can be
viewed as regression problems, with the goal of inferring the functional relationship between
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a response and a number of covariates. Gaussian processes (GPs)  are an attractive choice for
modeling the regression function (e.g., Rasmussen and Williams, 2006), as they naturally
quantify uncertainty, they can exibly capture nonlinear and nonparametric behavior, they are
interpretable, and much of the resulting inference involves closed-form expressions. We focus
on G P  regression for datasets with a large number of responses, n, and a large number of
covariates, d, under the assumption that only few covariates, d0  d, are useful for
predicting the response. In this setting, our goals are variable selection, model estimation,
and subsequent prediction based on the selected sparse model.

Ex is t i n g  approaches for large n Basic G P  regression scales poorly to large n or d.
Many approaches have been proposed that deal with one or both of these issues. The
challenge with large n is that direct G P  inference requires O(n3) time. Heaton et al. (2019)
and Liu et al. (2020) provide reviews of methods that tackle the large-n problem in spatial
statistics and machine learning, respectively. These methods include fully (e.g., Quin~onero-
Candela and Rasmussen, 2005; Banerjee et al., 2008; Finley et al., 2009) and partially
(e.g., Snelson and Ghahramani, 2007; Sang et al., 2011) independent conditional ( F I C / P I C )
approximations, but these low-rank approaches can have limitations in many settings (e.g.,
Stein, 2014), even when optimizing over pseudo-inputs (Hensman et al., 2015). Other
G P  approximations, such as multi-level P I C  (Katzfuss, 2017; Katzfuss and Gong, 2020),
approximations based on stochastic partial dierential equations (Lindgren et al., 2011),
distributed GPs (Deisenroth and Ng, 2015) or K I S S - G P  (Wilson and Nickisch, 2015), can
struggle with high input dimension d.

T h e  Vecchia approximation A  highly promising approach to scaling G P  inference to
large n may be the Vecchia approximation (Vecchia, 1988), which has become very popular in
spatial statistics (e.g., Stein et al., 2004; Datta et al., 2016; Guinness, 2018; Katzfuss and
Guinness, 2021; Katzfuss et al., 2020), but which has not received much attention in
machine learning. This approach can be viewed as an ordered conditional approximation, in
which the joint density of the G P  response is approximated as a product of univariate
conditional distributions. The resulting approximation can be highly accurate even with
small conditioning sets. Katzfuss et al. (2022) proposed a scaled Vecchia approximation that
further improves the accuracy of the Vecchia approximation and used it for G P  emulation of
expensive computer experiments in d =  O(10) dimensions. A  more detailed review of
Vecchia approximations will be provided in Section 2.2.

Ex is t i n g  approaches for large d There has also been extensive work on scaling GPs
to moderate or high input dimension d. Moderate d can be handled by variable selection
using automatic relevance determination ( A R D )  kernel functions (Neal, 1996) and Bayesian
model selection (Dearmon and Smith, 2016; Posch et al., 2021). However, for larger d (say d
100), these methods are not suciently scalable due to computation and convergence issues
caused by the high dimensionality of the parameter space. For such high dimen-sions,
existing approaches include penalized G P  regression (e.g., Y i  et al., 2011), manifold G P
regression (e.g., Calandra et al., 2016), and hierarchical diagonal sampling (HDS; e.g., Chen
et al., 2012). However, both penalized G P  and manifold G P  regressions consider all
covariates simultaneously, leading to O(d) optimization parameters, which may negatively
impact model inference in three aspects, namely convergence to local optima, over-tting,
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and computational ineciency. Furthermore, Y i  et al. (2011) and Calandra et al. (2016)
optimized the exact G P  likelihood, not scalable with respect to n, while HDS assumes that
responses are sampled where needed, mainly addressing Bayesian optimization instead of
G P  regression.

Large numbers of responses and covariates Several methods have been proposed to
handle large n and d by approximating the G P  using F I C  and transforming and reducing the
dimension of the input domain, such as randomly-projected additive GPs (Delbridge et al.,
2020), deep kernel learning (Wilson et al., 2016), and dimension reduction with pseudo-
inputs (Snelson and Ghahramani, 2006). These approaches mainly achieve dimension re-
duction rather than variable selection. To  our knowledge, none of the existing approaches is
suitable for our goal of simultaneous variable selection and G P  regression for large n and large
d.

T h e  V G P R  algorithm Here we propose the V G P R  algorithm, for Vecchia G P  Regree-
sion, which is highly scalable in n and d. Specically, to handle large n, we extend the scaled
Vecchia G P  approximation (Katzfuss et al., 2022) and propose Vecchia-based mini-batch
subsampling, which provides unbiased gradient estimators. To  achieve variable selection
for large d, we consider a penalized Vecchia-GP loglikelihood, and we traverse the regu-
larization path from strong to weak penalization, sequentially adding candidate covariates
based on the gradient of the log-likelihood and deselecting irrelevant covariates through a
new quadratic constrained coordinate descent algorithm (QCCD).  Q C C D  builds a quadratic
approximation of the objective function at each iteration and applies constrained coordinate
descent to nd the constrained quadratic optimum. Compared with existing G P  regression
methods such as Y i  et al. (2011) and Katzfuss et al. (2022), traversing the regularization
path with warm starts eectively avoids local optima while Q C C D  can reach boundary val-ues,
achieving covariate deselection without articial thresholding. We provide theoretical and
numerical evidence for our gradient-based variable selection. The dominant complexity of
V G P R  depends linearly on the batch size and quadratically on the number of selected
covariates (as opposed to the total number of responses or covariates).

Outl ine In Section 2, we briey review A R D  kernels and the scaled Vecchia approxima-
tion. Section 3 introduces our new V G P R  algorithm that involves the Q C C D  subroutine,
the choice of the penalty function, the selection of covariates based on the gradient, and a
mini-batch sampling technique specic to the Vecchia approximation. In Section 4, we
compare V G P R  with state-of-the-art G P  regressions in terms of posterior inference and
variable selection based on simulated G P  datasets. Section 5 provides a comparison with
methods commonly used in machine learning for variable selection and prediction based on
real datasets, including an example with n =  106 and d =  103. Section 6 concludes the
paper. The code for replicating the numerical results in this paper are published at
https://github.com/katzfuss- group/Vecchia_GPR_var_select.
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2. Review

2.1 G P  regression and A R D  kernels

We consider the standard G P  regression model (e.g., Rasmussen and Williams, 2006):

yi =  f ( x i )  +  i ; i  =  1; : : : ; n;

where yi is the i-th response observed at the d-dimensional covariate vector x i  2  X
Rd , f ( )   G P (0; K )  is a G P  with zero mean and a positive-denite covariance or kernel

function K  : X   X  !  R,  and f i   N (0; 2)g are independent noise terms. Then,
the vector of responses, y  =  y1; : : : ; yn 

> ,  at input values x1; : : : ; xn follows an n-variate
Gaussian distribution, Nn (0; ), with covariance matrix  =  K ( x i ; x j )  i;j =1;:::;n +  2 In ; whose
(i; j )-th entry describes the covariance between responses yi and yj as a function of their
corresponding covariate vectors x i  and x j .  Throughout, we assume a centered response
vector y  and a zero mean structure; if desired, a (non-zero) linear mean structure
can be proled out during maximum likelihood estimation (Guinness, 2021).

An automatic relevance determination ( A R D )  kernel (Neal, 1996) is an anisotropic kernel
that assigns each covariate a separate parameter, controlling its impact in the covariance
structure. Specically, we assign a separate relevance (i.e., inverse range) parameter r l   0 to
each input dimension l:

K ( x i ; x j )  =  K ( q r (x i ; x j ) ) ; q r (x i ; x j )2  =  
P

l = 1  r2 (xi; l  xj;l )2 ; (1)

where the superscript r  emphasizes the dependence of the distance q on the relevances r  =
(r1; : : : ; rd)>. Note that r l  =  0 is equivalent to deselecting the l-th covariate. In (1), K  can be
any isotropic kernel that is valid in Rd ; for our numerical results, we used a Matern
covariance kernel with smoothness 2:5 as recommended in Chapter 4 of Rasmussen and
Williams (2006):

K ( q )  =  2(1 +  q +  q2=3) exp ( q) ; (2)

where 2 is the variance parameter. Our model depends on unknown parameters  =
(2; r2; 2), whose inference is usually achieved by maximum likelihood estimation (MLE).  We
denote by r2 the element-wise square of r; we use the squared relevance (SR)  as the op-
timization parameters for the purpose of variable selection, which is explained in Section 3.
Computing the exact G P  density, p(y) =  Nn (yj0; ), requires O(n3) time and O(n2)
memory, often becoming infeasible for n >  10;000.

2.2 Review of scaled Vecchia

We use the (scaled) Vecchia approximation to tackle G P  regressions with large n (e.g., n
>  104), because it can achieve higher approximation accuracy while having the same linear
complexity compared with other state-of-the-art G P  approximations. The original
Vecchia approximation (Vecchia, 1988) starts from the conditional representation of the
density function, p(y) = n p(yi jy1:(i 1)), and truncates the conditioning sets to sets
c(i) with a maximum of m  n elements:

p̂ (y) =  
Q

i = 1  p(yi jyc(i) ) =  Nn (0; ): (3)

4



^

^
d

~r

r ~

~

^~ ~

~̂ ~r

Vecch ia  G P  regression and va r i a b l e  select ion

The Vecchia approximation has several attractive properties. It partitions the n-dimensional
G P  density into n computationally independent univariate conditional densities, and hence
results in n parallel computations each requiring only O(m3) time, where even small m  n
can achieve high accuracy due to the screening eect (Stein, 2011). As indicated by (3),
the approximation also implies a joint Gaussian distribution, whose inverse Cholesky factor
1=2 is sparse with fewer than nm nonzero entries (e.g., Katzfuss and Guinness, 2021).
Furthermore, Vecchia approximation produces the smallest K L  divergence from p(y)
subject to certain sparsity constraints on  1=2 (Scha•fer et al., 2021a) and can achieve -accurate
approximations with m =  O(log (n)) for certain Matern-type kernels up to edge eects
(Scha•fer et al., 2021a).

The accuracy of Vecchia approximations depends on the ordering of y  and the choice of
fc(i)g; the scaled Vecchia approximation in Katzfuss et al. (2022) takes varying relevances of
the covariates into account. Specically, the scaled Vecchia approximation uses the
maximum-minimum distance ordering (MM) and the nearest-neighbor conditioning (NN)
based on the scaled distances q r (x i ; x j )  between yi and yj . MM is a sequential ordering
that selects each response to maximize the minimum distance toward previous responses in
the ordering, and NN chooses the min(i  1; m) nearest responses of yi among fy1; : : : ; yi 1g as
yc(i) . MM and NN can be obtained in quasilinear time in n (Scha•fer et al., 2021b,a). We
use p̂  (y )  to represent the scaled Vecchia likelihood evaluated at  with MM and NN
computed based on q~, where r  does not necessarily have to take on the same values as the r
indicated by .

Another attractive property of the Vecchia approximation is that many existing G P
approximations, including F I C  and P IC ,  can be viewed as its special cases corresponding to
particular choices of the ordering and conditioning (Katzfuss and Guinness, 2021); how-ever,
the scaled MM and NN choices in scaled Vecchia can be much more accurate. To
demonstrate this, we used a numerical experiment to compare F I C ,  F I T C  (with optimized
pseudo-inputs), P IC ,  Vecchia (with MM and NN based on q1), and scaled Vecchia approx-
imations in terms of their K L  divergence from an exact multivariate Gaussian distribution
(see details in Appendix A). Figure 1 shows the results for the comparison with n =  5;000, d
=  10, 2 =  1, r  =  (10; 5; 2; 1; 0:5; 0; : : : ; 0)>, 2 =  0, averaged over ten repetitions. While Vecchia
without scaling outperformed F I C ,  F I T C ,  and P IC ,  the scaled Vecchia approach, which will
be used in our proposed methods below, resulted in additional improvements of several
orders of magnitude.

The construction of the conditioning sets c(i) in the scaled Vecchia approximation can
be also applied to posterior prediction to achieve an O(m3) complexity at each unknown
location. Specically, the m nearest in-sample neighbors of an unknown location based on
q r is dened as its conditioning set, based on which the conditional mean and variance is
computed. Fast computation of the joint posterior predictive distribution at a large set of
test inputs is also possible (Katzfuss et al., 2020).

2.3 Gradient  and Fisher information

The (penalized) negative log-likelihood, hr () =   ‘ r ( )  +  w() is typically used as the
objective function for parameter inference in G P  regression, where here ‘ r ( )  =  log p̂ (y )  is
the log-likelihood under the scaled Vecchia approximation and w() is a penalty func-
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Figure 1: Approximation accuracy (in terms of K L  divergence from the true G P  density) versus conditioning-
set size, for ve G P  approximations, namely F I C ,  F I T C ,  P I C ,  Vecchia and Scaled Vecchia (SVecchia)

tion whose magnitude increases with . Under the Vecchia approximation, not only the log-
likelihood but also its rst- and second-order information can be computed in parallel and at
linear complexity in n. Specically, ‘ r ( )  can be decomposed into the sum of n
computationally independent terms:

hr () =   ‘ r ( )  +  w() =  
X  

log p(yf i g [ c ( i ) )  log p(yc( i ) )
 
+  w(): (4)

i = 1

Based on this expression involving a sum of (log) Gaussian densities, it is straightforward to
compute the gradient g r  and the Fisher information matrix (FIM)  H ~  of ‘ r () .  Notice that
H ~  can be used as a surrogate of the Hessian matrix. The computations of g~ and H ~  are
O(nm3d) and O(nm2d2), respectively, based on the closed-form formula for multivariate
normal gradient and FIM; refer to Guinness (2021) and the R  package ‘GpGp’ (Guinness,
2018) for the computation details.

The availability of the second-order information under the Vecchia approximation ben-
ets the convergence rate of parameter inference. Along this direction, a state-of-the-art
method is the Fisher scoring algorithm proposed in Guinness (2021) that substitutes the
Hessian matrix in the natural gradient descent with FIM to achieve a quadratic convergence
rate:

( + 1 )  =  ( )  H r ( )   1 
g

( )  
; (5)

where the superscript denotes the parameter estimates at the -th iteration. However, it is not
ideal for constrained optimization. Specically, Fisher scoring uses variable transforma-tion
(e.g., logarithm) to enforce positivity constraints, and so it is typically impossible for
optimization parameters to reach boundary values (i.e., zero), which is crucial for variable
deselection. We introduce a new second-order optimization algorithm that addresses this
limitation in Section 3.5.

3. Scalable G P  Regression and Variable Selection
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3.1 Overview of V G P R

Algorithm 1 contains a high-level overview of our V G P R  algorithm for scalable variable
selection and model estimation in G P  regression, with subsequent sections providing de-
tails and theoretical and numerical support. V G P R  traverses the regularization path of the
penalized log-likelihood from strong to weak penalization until a stopping criterion based on
an out-of-sample (OOS) score is reached (Section 3.2). For a given penalization level,
V G P R  conducts a forward-backward-selection procedure (Section 3.3), which iteratively
adds covariates to a candidate set based on the gradient with respect to the squared rele-
vances (Section 3.4) and deselects covariates through Q C C D  optimization (Section 3.5). We
introduce an iterative adaptive bridge penalty (Section 3.6) and provide further speed-ups
via an unbiased mini-batch subsampling method (Section 3.7), resulting in a computational
complexity that is essentially independent from n and d (Section 3.8).

Algor i thm 1: V G P R
Input:  ‘r (); w(); 0 ; k

1: Initialize  with r  set to 0 +  and r r; 0, 
2: while OOS score improves do
3: (; ) forward-backward(‘~(); w(); ; ; k) |  see Alg. 2 4:

Reduce
5: end while

3.2 Traversing the regularization path

V G P R  traverses the regularization path of the penalized log-likelihood, hr (), from strong to
weak penalization (i.e., large to small )  until a stopping criterion based on an out-of-sample
(OOS) score is reached. We recommend starting with a penalty strength of 0 =  n, which is
typically sucient to imply a completely sparse model without any covariates selected.
(Otherwise, we simply increase  exponentially until a fully sparse model is ob-tained.) The
regularization path is constructed over a decreasing series of , for example, a geometric series
with a common ratio of 1=2. V G P R  stops when an out-of-sample (OOS) score such as mean-
squared error fails to show obvious improvement.

Figure 2 illustrates the regularization path computed by V G P R  using n =  104 responses
and d =  103 covariates under the bridge penalty (see Section 3.6). The covariance kernels
used for dataset simulation in Sections 3 and 4 are the Matern covariance kernel dened by (2)
and parameterized by:

2 =  1; 2 =  0:052; [r2; r2; r2; r2; r2] =  [102; 52; 22; 12; 0:52]; r l  =  0 if l >  5; (6)

unless specied otherwise. The covariates are generated either independently from the Latin
hypercube or dependently from a multivariate normal distribution with a constant correla-
tion of 0:9 and normalized to have a standard deviation of one. Our Vecchia approximation
uses a maximum conditioning set size of m =  100. A  quarter of the responses were set
aside to compute the OOS RM S E  based on which, the stopping condition was dened as that
the OOS R M S E  improves less than 1% after any new covariate is selected. The OOS
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(a) Independent covariates (b) Dependent covariates

Figure 2: Regularization path computed by V G P R  using simulated independent or dependent covariates.
The relevance parameters of the true covariates are color-coded, and their true values are marked by hor-
izontal colored dashed lines. The fake covariates, whose true relevance parameters are zero, are colored in
grey. The vertical red dotted lines mark the optimal model indicated by the stopping condition.

sample size of n=4 and the 1% OOS score threshold are used throughout this paper and are
generally recommended as default values.

In Figure 2, the true covariates and their relevance parameters were correctly selected
and well estimated, respectively. Al l  fake covariates, except for one when using independent
covariates, were ltered out, highlighting the ecacy of V G P R  in variable selection even given
a large pool of highly correlated covariates. Moreover, the number of optimization
parameters was always kept at O(d0) until the stopping condition was reached. Also due to
the small number of optimization parameters, V G P R  completed the model estimation
within minutes.

3.3 Forward-backward selection

To  keep the \active" set of covariates small when running optimization, V G P R  keeps a
candidate set of covariates   f1; 2; : : : ; dg representing the covariates currently selected.
Assuming model sparsity, the size of  can be kept much smaller than d. Given a current ,
standard forward selection would t O(d) models with covariates  [ l  for each l 2= , but this
procedure is prohibitively expensive for large d.

Instead, we propose a forward-backward-selection algorithm, provided in Algorithm 2,
to nd the optimal model under each . The algorithm iteratively performs a forward step
and a backward step. The forward step adds to  a small number k of \promising" covariates
corresponding to the k largest entries in the squared-relevance gradient (SR-gradient), given
by the derivatives of ‘ ( )  =  log p(y) with respect to each r2 with l 2= , evaluated at the
current estimates of the relevances (i.e., r l  =  0 for l 2= ). For example, we set k =  3 in
Figure 2. We provide numerical and theoretical support for the forward step in Section
3.4. After the forward step, we run a backward step on the new  via our Q C C D  algorithm
(see Section 3.5), which nds the new parameter estimates using a warm start based on the
previous estimates and potentially deselects covariates by returning estimates of zero for
some SRs. The forward-backward procedure for a given  value stops (and V G P R  moves
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Algor i thm 2: Forward-backward selection
Input:  ‘r (); w(); ; ; k

1: while OOS score improves do

2: S mini-batch subsampling; gr 2
@ ‘~ (

2
jS )

3: Dene  as the indices of the k largest coecients in gr2 [ ] 4:
, initialize r[], r r

5: hr     () ‘~ () +  w(), QCCD(hr      ; ; 0) |  see Alg. 3 6:
Remove covariates with zero relevance from

7: end while
8: return  and

on to a smaller )  based on the same stopping criterion as in Algorithm 1, using the OOS
score.

We now provide more notational details on Algorithm 2. We use square brackets for
indexing, with negative indices corresponding to dropped elements. The parts in blue font (in
all algorithms) provide the mini-batching modications to be discussed in Section 3.7. MM
and NN are implicitly updated at each occurrence of r r, which improves the
accuracy of the scaled Vecchia approximation ‘ r () .  In Line 5, we use the  subscript to
indicate the parameter vector, the log-likelihood function, and the objective function dened
over the subset of covariates in , as opposed to all covariates, which reduces the number of
parameters involved in QCCD.  Notice that  is viewed as a subvector of  and the assignment
to the former indicates changes to the latter as well, which implies warm starts and avoids
local optima.

3.4 Numerical and theoretical support for gradient-based covariate selection

The SR-gradient can be used to order the covariates’ relevance levels in the A R D  model.
Specically, assuming that the SRs of the covariates in  are xed at their correct values,

the derivatives of ‘ ( )  =  log p(y) with respect to the remaining SRs evaluated at zero can be
used to rank the unselected covariates in C .

We illustrate this idea using an example of selecting d0 =  5 true covariates from d =  103

total covariates, shown in Figure 3, with 2 and 2 are xed at their true values. It is evident
that true covariates (with r2 >  0) have bigger coecients in the SR-gradient. In fact, the
magnitudes of the coecients reect the magnitudes of fr 2  g. This conclusion is valid even
assuming strong dependence among covariates or using the gradient under mini-batch
subsampling (see Section 3.7). The full dataset has n =  5;000 responses and the mini-batch
size is n =  128. We used the derivatives under the scaled Vecchia approximation (i.e., ‘ r~())  to
substitute those of ‘(),  indicating sucient accuracy from the scaled Vecchia approximation.

In the remainder of this section, we provide theoretical support for why the SR-gradient
can be used for variable selection. The following notations are used in the theoretical results

9
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1.00
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0.25

0.00

0 1 2 3 4 0 1 2 3 4

d1 (Left: independent | Right: dependent)

1.00

0.75

0.50

0.25

0.00

0 1 2 3 4 0 1 2 3 4

d1 (Left: independent | Right: dependent)

(a) Normalized gradient without mini-batching (b) Normalized gradient with mini-batching

Figure 3: Relative magnitudes of the coecients in the SR-gradient. The number of covariates d =  103,
among which the rst ve are true (i.e., with positive true SRs).  For each d1 =  0; 1; 2; 3; 4, we assume that only
the rst d1 true covariates are selected and their SRs  are correctly estimated. The SRs  of unselected covariates
are zero. The coecients in the gradient are normalized to [0; 1]. The rst ve coecients in the SR-gradient are
marked by colored crosses and the rest by grey dots. Only coecients corresponding to unselected covariates
are plotted to align with goal of variable selection. The red dashed line separates scenarios with independent
and dependent covariates. Notice that some colored crosses are covered by grey dots and that the coecients for
unselected true covariates were typically bigger than those for fake covariate.

and their derivations:

r0
d0
d1
r1
(0; 0); (1; 1) ; 0; 1
; 0; 1

the true relevance vector [r10; r20; : : : ; rd0]
the number of true covariates (i.e., rl0 >  0 if l  d0 rl0 =  0 otherwise)
an integer between 0 and d0, 0 <  d1 <  d0 <  d
[r10; : : : ; rd10; 0; : : : ; 0]>

the true and an arbitrary values for (; )
covariance matrix and its values evaluated at (0; r0; 0) and (1; r1; 1)
correlation matrix and its values evaluated at (1; r0; 0) and (1; r1; 0)

In this section, the expectations are taken with respect to both fx i g i = 1 and fyi gi=1 .

Proposition 1 Assume that K ( x i ; x j )  =  exp( q r (x i ; x j )2 )  and that fxil gi=1;:::;n;l=1;:::;d
have i.i.d. normal or uniform distributions.     When evaluated at (1; r1; 1), E[ @r2 ] >

E [  @‘ ].
l 2

Proposition 1 suggests that under the squared exponential kernel, when an arbitrary number of
SRs are at their true values while the others at zero, the order of the SR-gradient
coecients indicates the relevance order of the covariates. While the condition on r1 in
Proposition 1 is somewhat restrictive, we conjecture that when the gradient is evaluated at
r  no greater than r0 coecient-wise, the above conclusion still holds, which can be readily
shown if we assume E[ @ r

‘ ]   E [ @ r
‘ ], evaluated at (1; r; 1), changes monotonically with each

coecient in r. In general, numerical examples in Sections 3.1, 3.7, and 4 suggest that the
conditions in Proposition 1 can be relaxed and the result still holds.
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Based on Proposition 1, two corollaries addressing the initialization of r  and correlated
fake covariates, respectively, can be derived.

Corol lary 2 Assume that K ( x i ; x j )  =  exp( q r (x i ; x j )2 )  and that fxil gi=1;:::;n;l=1;:::;d have
i.i.d. normal or uniform distributions. When evaluated at r  !  0:

E[ @rl1 
]  E [ @rl2 

] for 0 <  l1  d0 and d0 <  l2  d:

Corol lary 3 Assume that K ( x i ; x j )  =  exp( q r (x i ; x j )2 )  and that fxil gi=1;:::;n;l=1;:::;d have
i.i.d. normal distributions. Let x d + 1  be a new covariate constructed as 1 xl 1  +  2 xl 2  with d1
<  l1  d0 <  l2  d, 2 >  0, and 1 +  2 =  1. When evaluated at (1; r1; 1):

E [  @‘ ] >  E [  @‘     ]:
l 1 d + 1

Noticing that  =   can be closely approximated by r  !  0, Corollary 2 indicates that SRs
should be initialized to small magnitudes but big enough to avoid numerical singu-larity
(e.g., 10 8), which is denoted by 0 +  in Algorithm 1. Corollary 3 suggests that the order of
the SR-gradient coecients can distinguish fake covariates that are correlated with true
covariates. Theoretical support for the previous proposition becomes more challeng-ing
under general covariance kernels, due to the lack of the separability property and the
straight-forward derivative formula. Proposition 4 aims to reach the same conclusion for
general A R D  kernels but uses a rst-order approximation of 0.

Proposition 4 Assume that fxil gi=1;:::;n;l=1;:::;d have i.i.d. distributions and that fr l 0 g l
=
d 1

+
1

are small enough s.t. 0 can be closely approximated by the rst-order Taylor expansion of  at r1:

0  1 + l = d 1 + 1  
@ 

r = r 1  
rl0:

When evaluated at (1; r1; 1):

E[ @rl1 
] >  E[ @rl2 

] for d1 <  l1  d0 and d0 <  l2  d:

The rst-order approximation typically holds when rl0 !  0; l =  d1 +  1; : : : ; d0 while on
the other hand, the expectation of the derivative of r2 evaluated at r  =  0 is intuitively
positively correlated with r (i.e., E [  @‘ ] %  r  ). The two aspects collectively support

that the order of the gradient coecients
r
is indicative for the order of relevance levels of

the covariates under general A R D  covariance kernels.

3.5 Quadratic  constrained coordinate descent

We introduce our quadratic constrained coordinate descent (QCCD)  algorithm in the con-
text of minimizing a general objective function h(), whose gradient and (positive-denite)
negative FIM, denoted by g  and H ,  respectively, can be computed. Q C C D  is described in
Algorithm 3 with the assumption that parameter constraints are given by their lower bounds b,
but broader constraints on  can be similarly accommodated. 0 denotes the initial pa-
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Algor i thm 3: Quadratic constrained coordinate descent (QCCD)
Input:  h(); 0; b 1:

0, 1
2: while Not Converged do
3: S mini-batch subsampling, g r h (  j S ), H E [ r 2 h (  j S )]
4: C C D CCD( ; g ; H; b)  |  see Alg. 4
5: argmax2(0;1]Armijo() >  c, N E W  +  ( C C D  )
6: if stationarity is detected then
7: =2 8:
end if
9: N E W

10: end while
11: return

rameter values. Intuitively, Q C C D  iterates between building a quadratic approximation at
the current ,

h(N E W ) =  h() +  g > ( N E W  )  +  
2

( N E W  ) > H ( N E W  ); (7)

and nding the minimum of h(N E W )  subject to the constraints on  using constrained
coordinate descent (CCD) ,  described in Algorithm 4.

Algor i thm 4: Constrained coordinate descent ( C C D )
Input:  ; g; H; b

1: d g  H
2: while Not Converged do
3: for i  in 1 : length() do
4: [i] max ( d[i] H[ i ;  i]  [ i])=H[i; i]; b[i] 5:
end for
6: end while
7: return

The C C D  algorithm cyclically considers each parameter of  in a constrained univariate
quadratic optimization, where the minimum is analytically available and can be equal to
the boundary value. The minimum returned by C C D  is subsequently used in a line search
subject to the Armijo condition that compares the ratio:

( C C D )   g
h() h((1 )  +  C C D )

with a threshold c to achieve ‘sucient decrease’ of the objective function (i.e., to avoid un-
reasonably large steps) and N E W  is guaranteed to exist subject to mild regularity conditions
(Kressner, 2015). Q C C D  is similar to the cyclical coordinate descent algorithm (Friedman et
al., 2010) in terms of building a quadratic approximation and using coordinate descent

12
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(a) Fisher scoring with d =  20 covariates
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(b) Q C C D  with d =  20 covariates
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0 5 10 15 0 5 10 15
iter                                                                                             iter

(c) Fisher scoring with d =  100 covariates (d) Q C C D  with d =  100 covariates

Figure 4: Convergence of Fisher scoring and Q C C D  algorithms. y-axis is the relevance on the pseudo-log
scale. The true covariates, with relevance r l  >  0, are color-coded with their true values marked by the
colored dashed lines. The fake covariates, with relevance r l  =  0, are colored in grey.

but has two improvements, namely, the Armijo line search condition and the incorporation
of parameter constraints.

Q C C D  has the same theoretical convergence rate as Fisher scoring because both nd the
minimum of the same quadratic approximation, but the former’s ability to reach boundary
values makes covariate deselection (i.e., r l  being optimized to zero) more straight-forward.
Figure 4 compares the performance of Fisher scoring and Q C C D  when d is relatively small
(i.e., d  100). Covariates were independently generated at n =  104 locations and a bridge
penalty with  =  32 was used in the objective function, which will be further discussed in
Section 3.6. The relevance vector r  used for MM and NN was updated together with the
updates of . The parameter estimates from Q C C D  were closer to the truth than those from
Fisher scoring. Further, Q C C D  was able to deselect all fake covariates, achieving r l  =  0 for
all l >  5, while Fisher scoring was unable to deselect any covariate without setting a
truncation level. The ability to automatically deselect covariates becomes increasingly
important when addressing G P  regressions with larger numbers of covariates.
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3.6 Br idg e  penalty and its extension

The desired properties of the penalty function for G P  regression can be dierent from those
for linear regression. Y i  et al. (2011) compared several penalties in G P  regression that
include Lasso, SCAD,  and bridge penalties, concluding that the bridge penalty has overall
the best performance. This agrees with our analysis that unlike linear regression, G P
regression automatically avoids improperly large magnitudes of r. Therefore, a penalty
function that becomes at more quickly as the parameter magnitude increases is more
suitable for G P  regression, leading to higher model sparsity and smaller estimation bias.

However, one issue with the bridge penalty is that its derivative is innite at zero, and
so it is impossible to escape this local optimum for any parameter that reaches zero during
optimization. This is especially problematic for the mini-batching procedure to be
introduced later, where zero can be reached erroneously due to a \bad" batch. Hence, we
adopt an iterative adaptive bridge penalty that amounts to a combination of the classic
bridge penalty and the iterative adaptive technique in Ziel (2016) and Sun et al. (2010):

w() =  
X

( c ; l  +  r l  ); (8)
l = 1

where  is the iteration number during optimization and c;l is the sum of the parameter
r2 over the previous  iterations. In addition to allowing parameters to escape zero values, this
adaptive bridge penalty also has the advantage that bigger r l  tends to have bigger c;l,
hence weaker penalty and smaller bias. Notice that  =  0 corresponds to the classic bridge
penalty used in Sections 3.1 and 3.5 and that when computing H~ ,  we ignore the second-
order information of the penalty function to guarantee the non-negative deniteness of the
FIM, which is equivalent to applying a linear approximation to w(x).

In this paper, we x  at 0:25 and select  based on how likely the relevance parameters of
the true covariates are to reach zero during optimization; see Section 3.9 for a more
detailed analysis.

3.7 Mini-batching for Vecchia approximation

Although the Vecchia approximation has reduced the complexity of model estimation to be
linear in n, we aim to further improve the computation eciency of V G P R  through mini-
batch subsampling that has created considerable success in stochastic gradient descent. In
this section, we propose a subsampling method specic to the Vecchia approximation that
reduces the complexity to be linear in the batch size n and leads to unbiased estimating
equations. Specically, we propose to sample the summands of the scaled Vecchia log-
likelihood ‘ r ( ) :

‘ r ( )  =
X

log p(yi jyc(i) ); (9)
i2S f1;:::;ng

with equal probability and without replacement. Here, S  is the mini-batch index set of size
n and we use ‘ r ( )  and hr () to denote the counterparts of ‘ r ( )  and hr () under mini-batch
subsampling.
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This mini-batch subsampling can be applied to covariate selection and parameter esti-
mation through slight modications to Algorithms 2 and 3, respectively, as indicated by
their blue underscored components. To  avoid oscillation around the optimum, which is a
common issue for mini-batch subsampling, we apply the technique introduced in Chee and
Toulis (2018) to our Q C C D  algorithm for the detection of stationarity as indicated in Lines
6 to 8 of Algorithm 3. Specically, the detection depends on the running sum of the inner
product of successive stochastic gradients, and the learning rate  is halved upon detection of
convergence; refer to Algorithm 1 of Chee and Toulis (2018) for more details.

One advantage of this mini-batch subsampling based on the Vecchia approximation is
having unbiased gradient estimators:

! !

E [ r ‘ ~ ( ) ]  =  r E [ log p(yi jyc( i ) ) i2S ] =  r
n

log p(yi jyc(i) ) =  
n
r ‘~ ( ) ;

i = 1 i = 1
(10)

which is generally not the case for other mini-batch subsampling methods used in G P
regression such as Chen et al. (2020). In (10), the expectation is taken with respect to S
f1; : : : ; ng. The unbiased property of the mini-batch subsampling is relative to r ‘ r ( )  as
opposed to r ‘ ( ) ;  however, optimizing the Vecchia log-likelihood generally leads to the
correct values for :

Proposition 5 Assuming that y  is a realization of a Gaussian process with zero mean and
a covariance structure parameterized by  =  0 and that ‘ r ( )  is its Vecchia-type log-likelihood,
the true parameter value  =  0 maximizes the expectation of ‘~ () with respect to y: 0 2
argmaxE[‘~()].

Corol lary 6 r ‘ r ( )  =  0 are unbiased estimating equations assuming that ‘ r ( )  is rst-
order dierentiable.

The proof of Proposition 5 is in the Appendix, based on which the proof of Corollary 6 is
straight-forward. Stein et al. (2004) showed that the Vecchia approximation of the restricted
log-likelihood leads to unbiased estimating equations; here, we provide a stronger result for
the Vecchia approximation of the log-likelihood.

We numerically compared our subsampling strategy to two other strategies in terms
of the bias and the variance of their gradient estimators. Comparison method I  selects
n responses from f(y i )g i = 1  with equal probability and without replacement, and then the
scaled Vecchia approximation for the G P  dened over f(y i )g i 2 S  is used for computing the SR-
gradient. Comparison method I I  is similar to what we proposed in (9), sampling the
summands of ‘ r ( )  but with probabilities proportional to i  1=d and without replacement,
which compensates the O(i 1=d) decrease of minj 2c(i)  kx i  x j k  (e.g., Katzfuss and Scha•fer,
2021) into consideration and balances the presences of short-range and long-range distances.
Figure 5 compares the three mini-batch subsampling methods using a G P  dened over n
=  104 locations in R2  whose true parameters  are (2; r1; r2; 2) =  (1; 1; 0:5; 0:052) and assumed
known. The numbers of mini-batches averaged over are 5;000 if the batch size is smaller
than 500 and 500 otherwise. Our proposed sampling method had the smallest empirical
absolute bias and RMSE,  highlighting its advantage as the SR-gradient estimator.
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(a) Absolute bias and R M S E  of @ ‘ r ( )  
1 (b) Absolute bias and R M S E  of @ ‘ r ( )  

2

Figure 5: Absolute bias (solid) and R M S E  (dashed) of the SR-gradient estimators of the three mini-batch
subsampling methods. Red, green, and blue represent our proposed mini-batch subsampling of (9), compar-
ison method I  and comparison method I I,  respectively.

Comparison method I, as a most intuitive mini-batch subsampling method, leads to a poor
gradient estimator because the responses not selected in S  are ignored, losing signicant
amount of information compared with the other two methods. While it is desirable to reduce
the dependence within each mini-batch, the smaller bias and variance of our proposed
method over Comparison method I I  suggests nding sampling probabilities that lead to
smaller variance is non-trivial and may lead to nonzero bias.

Figure 6 shows regularization paths in the same setting as in Figure 2, except using
mini-batch subsampling with a batch size of 128 and increasing  in the penalty function from
zero to two. The choice of batch size poses a trade-o between computation eciency and
variability of the gradient estimator, which may depend on the training dataset and
computation capacity; in general, larger batches improve the convergence stability but
increase the computational cost. A  discussion on the choice of  is provided in Section 3.9. The
estimated models indicated by the red dashed lines were almost the same as those in Figure
2 while the computation time was reduced by more than 90%. When considering the overall
sparsity patterns in Figures 2 and 6, the combination of mini-batch subsampling and the
iterative adaptive bridge penalty leads to a stronger capacity of deselecting fake covariates,
because dierent mini-batches tend to select the same set of true covariates
but dierent sets of fake covariates, inducing bigger variance on the gradient estimators of the
fake covariates while c     in (8) is smaller for the fake covariates, indicating stronger
penalization.

3.8 Complexity  analysis

In this section, we analyze the computation gains from using the Vecchia approximation,
the V G P R  algorithm introduced in Algorithm 1, and the mini-batching technique from Sec-
tion 3.7. The Vecchia approximation reduces the complexity of computing the log-likelihood
and its gradient from O(n3) and O(n3d) to O(nm3) and O(ndm3), respectively; refer to
Guinness (2021) for the gradient computation under the Vecchia approximation. Based
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(a) Independent covariates (b) Dependent covariates

Figure 6: Regularization path computed by V G P R  with mini-batch subsampling, using independent or
dependent covariates. The relevance parameters of the true covariates are color-coded, and their true values
are marked by horizontal colored dashed lines. The fake covariates, whose true relevance parameters are
zero, are colored in grey. The vertical red dotted lines mark the optimal model indicated by the stopping
condition.

on the intermediate results from the gradient computation, the FIM of the Vecchia log-
likelihood needs only O(nd2m2) additional operations. The V G P R  algorithm reduces the
number of covariates involved in optimization, reducing the d in aforementioned complex-
ities to jj, with jj  d0  d. Finally, the mini-batching technique further reduces the O(n)
complexities to O(n), leading to O(nm3), O(nd0m3), and O(nd2m2) complexities for computing
the objective function, its gradient, and FIM, respectively. The SR-gradient of all d
covariates is needed in Algorithm 2 to select k new covariates at the cost of O(ndm3), but its
computation frequency is negligible compared with the number of gradient compu-tations
needed by Q C C D  and it is typically a minor component in the overall computation cost.

For very large n, it is also possible to reduce the cost of MM and NN by replacing them
by random ordering and the index-based-on-inverted-le ( I V F )  method (implemented in the
Faiss library of Johnson et al., 2017), respectively. The cost of NN could be further reduced
by computing the m nearest neighbors on-the-y only for the responses in the mini-batch
S .

G P  prediction also benets signicantly from the techniques introduced in Section 3. The
nearest neighbors of each test point can be computed much faster in d0 dimensions than
in d dimensions, based on which posterior inference at each test point can be achieved in
O(m3 +  d0m2) time using the scaled Vecchia approximation, assuming that the number of
selected covariates is O(d0).

3.9 Sensit iv i ty  to tuning parameters

The V G P R  algorithm includes several tuning parameters that are considered xed when
running the algorithm. We provide some guidance here. Larger values of the conditioning set
size m lead to more accurate approximation of the exact G P  and we choose m =  100 based
on Katzfuss et al. (2022) and for computational feasibility. The Armijo constant c in
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Algorithm 3 heuristically prevents ‘overly large’ steps; we choose c =  10 4 as recommended
in Chapter 3 of Wright et al. (1999) and used in the GpGp R  package Guinness (2021). The

learning rate parameter  in Algorithm 4 reduces oscillation around an optimum, hence
promoting convergence; we use the same initialization (i.e.,  =  1) and scaling (i.e., by 1=2)
for  as in Chee and Toulis (2018), where this oscillation-reduction technique was proposed.

The number of new covariates selected each iteration (k) and the penalty parameters
 and  in (8) are unique to our proposed V G P R  algorithm and iterative adaptive bridge
penalty, and hence they have not been discussed in the existing literature. Here, we pro-
vide some recommendations and a sensitivity analysis on them; see Appendix B  for more
details. Larger k leads to higher optimization eciency but also the risk of local optima; we
recommend a value between 3 and 5. Bigger  corresponds to weaker numerical singularity at
rl  =  0. We recommend  >  0 when mini-batch subsampling is applied and a large  (e.g.,
10 or 15) when the G P  with A R D  kernels is likely a misspecied model. Smaller  causes
higher dierence in the penalty derivatives at small and large rl . Y i  et al. (2011) used  =
0:01, whereas we recommend a choice between 0:1 and 0:25 for a smoother objec-tive
function. Based on Appendix B, we conclude that the V G P R  algorithm is overall not
sensitive to the choice of k, , and .

4. Simulation Study

4.1 Simulation setup

We compared the V G P R  algorithm proposed in Algorithm 1 with methods commonly used in
machine learning for variable selection or G P  model estimation, namely Lasso regression
(Tibshirani, 1996), the sparse additive model (SAM; Ravikumar et al., 2009), regression
trees (Tree; Loh, 2011), penalized G P  regression ( P G P R  Y i  et al., 2011), kernel interpola-
tion for scalable structured Gaussian processes (K ISS ;  Wilson and Nickisch, 2015), Vecchia
Fisher scoring (Fisher; Guinness, 2021), and GPs with forward selection (FWD). We used
the scaled Vecchia approximation in Fisher and FWD but the exact G P  log-likelihood in
P G P R  to respect the original algorithm of Y i  et al. (2011). For ‘Tree’ and ‘Lasso’, the de-
fault setups from the ‘glmnet’ R  package (Friedman et al., 2010) and the ‘sklearn’ Python
module (Pedregosa et al., 2011) were used, respectively. K I S S  generally has high scalability in
n but low scalability in d. Based on the GPyTorch Gardner et al. (2018) implemen-tation,
when d >  5, the kernel function needed to assume an additive structure to be
computationally feasible, for which A R D  kernels are yet available, hence we only consider
K I S S  as a state-of-the-art competitor for prediction at unknown locations. We generated d
independent or dependent covariates at (n +  5000) locations and simulated (n +  5000) G P
responses. 5;000 responses were set aside as the testing dataset used to evaluate the four
methods’ performances. We considered n 2  f500; 5;000; 25;000g, d 2  f100; 1;000g, and
independent versus dependent covariates, for a total of 12 simulation scenarios. Methods
were compared from three aspects, namely posterior prediction as measured by the RM S E
based on the test dataset, misclassication ratios as measured by false positive and false
negative ratios, and computation times.

‘PGPR ’  and ‘VGPR ’  use penalty functions, for which we chose the classic bridge penalty
and the iterative adaptive bridge penalty as in Section 3.7, respectively, to compute their
regularization paths. Methods involving solution paths, including ‘VGPR ’ ,  needed an OOS
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score in their stopping conditions, for which a quarter or 5;000, whichever is smaller, of the
training dataset was set aside and only used in computing the OOS RMSE.  Similar to
Sections 3.2 and 3.7, all stopping conditions were dened as producing less than 1%
improvement of OOS RM S E  after the selection of any new covariate. The OOS RM S E  was
also used to choose the best model in each iteration of forward selection. Fisher scoring
does not require a stopping condition based on an OOS score and hence used the whole
training dataset for parameter estimation.

Because Fisher scoring and the conjugate gradient used in Y i  et al. (2011) are uncon-
strained optimization algorithms that rely on variable transformations, their parameters,
including r, cannot reach exact zeros. We set a cut-o threshold of 10 7, the same as in Y i  et
al. (2011), below which the corresponding covariate was viewed as deselected. The initial
values for 2, frl gd      , and 2, when needed, were 0:25, 0:1, and 10 4, respectively, while for
P G P R ,  ten random initial values, as recommended in Y i  et al. (2011), were used for the
optimization at each . The maximum numbers of iterations were 100 for P G P R ,  Fisher, and
FWD, while 200 for VG P R ,  as the latter used mini-batch subsampling with n =  128  n. The
computation times were measured on an Intel Xeon E5-2680 v4 CPU using 56 cores and
capped at a 10-hour limit for each G P  replicate.

4.2 Simulation results

The comparison results are shown in Figure 7. The RMSEs of ‘Fisher’, ‘FWD’, ‘PGPR ’ ,  and
‘VGPR ’ ,  when computationally feasible, were similar for d =  100 but diverged for d =  1;000,
indicating convergence to local optima when the number of optimization parameters was
high. Specically, both ‘PGPR ’  and ‘Fisher’ involve O(d) parameters in optimization, while
‘FWD’  and ‘VGPR ’  sequentially increase the number of parameters based on warm starts,
which achieved signicantly better result for reaching the global optimum. While ‘FWD’
provided slightly more accurate predictions than ‘VGPR ’  for n =  500, it quickly became
computationally infeasible as n or d increased. In contrast, ‘VGPR ’  had a better trade-o
between data eciency and computation scalability. ‘Lasso’, ‘SAM’, and ‘Tree’ were less
suitable for the simulated multivariate normal datasets due to model misspecication. While
‘KISS ’  is a GP-based model, its idea of nding a (large) common set of pseudo-inputs for all
locations became impractical when d is moderately large. In terms of ‘FPos’, which measures
the proportion of fake covariates among the selected, ‘VGPR ’  outperformed all other
methods, achieving zero ‘FPos’ ratios when n  5;000. This highlights the capabil-ity of
‘VGPR ’  for deselecting fake covariates, hence the advantages of using Q C C D  over
conjugate gradient and Fisher scoring for simultaneous variable selection and parameter
estimation. The false negative ratios were almost constantly zero for all methods, and are
hence not shown. Although slightly slower than the compared machine-learning mod-els,
‘VGPR ’  tremendously outperformed the other GP-based methods, becoming the only
feasible GP-based method when n =  25;000 and d =  1;000 under the 10-hour limit.

5. Application Study

We performed a comparison on several real datasets and data produced by a physical model.
Specically, we compared the methods from Section 4 that are computationally feasible at n
=  25;000 and d =  1;000, namely ‘Lasso’, ‘Tree’, ‘VGPR ’ ,  and ‘SAM’. For these examples,
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Figure 7: Comparison of eight methods for variable selection and/or G P  regression, in terms of RMSE,  false
positive rates (FPos),  and computation time in minutes. The results were averaged over ve replicates. When d
=  100, ‘Fisher’, ‘FWD’, ‘PGPR ’ ,  and ‘VG P R ’  had close R M S E  scores when available. The computation
times of ‘Lasso’, ‘SAM’, and ‘Tree’ are similar, all faster than ‘VGPR ’ .

our assumed model, G P  with A R D  covariance kernels, is likely to be misspecied and
furthermore, true covariates may not exist in the given covariate pool, and so we used the
iterative adaptive bridge penalty with  bigger than those in Sections 3 and 4 to select the
most predictive covariates.

The rst dataset was generated from the Piston function (e.g., Surjanovic and Bingham,
2013), which is a (deterministic) physical model with d0 =  7 true covariates; a total of d =
103 covariates were simulated at n =  106 locations. While the underlying model is not a
GP,  the true covariates were included in the covariate pool, and we chose  =  5. The second
dataset was the \relative location of C T  slices on axial axis" (Slice) from the UCI  Machine
Learning Repository (Dua and Gra, 2017) that has n =  53;500 images and d =  386
features. The images belong to 74 individuals, among which a quarter were selected as the
testing dataset. The third dataset was the \physicochemical properties of protein tertiary
structure" ( C A S P )  dataset also from the UCI  Repository with n =  45;730 responses and d
=  9 features. A  fourth dataset was the temperature (Temp) data used in Garnett et al.
(2013) that contains 7;117 training samples and 3;558 testing samples, each with d =  106
features. For the last three datasets, we set  =  15 to compensate for model misspecication
and the potential lack of true covariates, and supplemented with
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(103   d) articial covariates such that a total of 103 covariates were used to compare the
three methods’ capability of variable selection. Similar to previous experiments, we
generated either uncorrelated or correlated covariates but here, the latter was constructed as
random linear combinations of original covariates plus independent Gaussian noise. Both the
responses y  and the covariates x i  were standardized to have zero mean and unit variance.

Although the set of true covariates was unknown, misclassication ratios, specically the
false positive ratio, could still be estimated based on the number of included articial
covariates. On the other hand, the number of selected covariates is also an important indica-
tor for the quality of variable selection that directly relates to over-tting and computation
eciency. Table 1 summarizes the three metrics of the four methods under the previously
mentioned datasets. The ‘Piston’ and the ‘CASP ’  datasets had too few original covariates

Dataset
Piston-I

Piston-D

Slice

Slice-I

Slice-D

Method RM S E nSel FPos
V G P R             0.00           7         0%
Lasso               0.17           7         0%
SAM                 NA       NA         NA
Tree                 0.92           6       17%
V G P R             0.00           7         0%
Lasso               0.17           7         0%
SAM                 NA       NA         NA
Tree                 0.71       147       95%
V G P R             0.38         64
Lasso 0.44 359
SAM 0.50 118
Tree 0.44 334
V G P R 0.32 49 18%
Lasso 0.44       792 59%
SAM 0.50       118         0%
Tree 0.51       294 31%
V G P R 0.31 50 12%
Lasso 0.43       696 54%
SAM 0.49       142 20%
Tree 0.41       908 64%

Dataset
CASP- I

C A S P - D

Temp

Temp-I

Temp-D

Method RM S E nSel FPos
V G P R             0.78           3         0%
Lasso               0.85       177       96%
SAM               0.84           6         0%
Tree                 0.92           6       17%
V G P R             0.75         10       60%
Lasso               0.85       221       96%
SAM               0.84           6         0%
Tree                 0.92           6       33%
V G P R             0.29           6
Lasso 0.28 84
SAM 0.29 40
Tree 0.32 26
V G P R 0.29 8 0%
Lasso 0.29       122       79%
SAM 0.29         36 8%
Tree 0.40         47       49%
V G P R 0.29 9 0%
Lasso 0.29         92       70%
SAM 0.29         36       22%
Tree 0.39         46       46%

Table 1: Performance comparison of Lasso linear regression (Lasso), sparse additive model (SAM), regression
tree (Tree), and V G P R .  ‘Slice’, ‘Piston’, ‘CASP ’ ,  and ‘Temp’ are dataset names. ‘I’ and ‘D’ indicates being
supplemented by uncorrelated and correlated articial covariates, respectively. ‘RMSE ’  measures the R M S E
based on the testing dataset. ‘nSelect’ is the number of selected covariates. ‘FPos’ is short for false positive
ratio.

to be used for comparing variable selection, and so corresponding results are not listed. The
‘SAM’ method exceeded our memory capacity (128 G B )  when n =  106 using the ‘Piston’
dataset, and so the results are not available. The optimization setups for ‘VGPR ’  were the
same as in Section 4, except for the change of  and that k was increased from 3 to 5 to
further improve computation eciency.
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‘VGPR ’  outperformed the other three methods in almost all three aspects (same as in
Section 4), especially in terms of the number of selected covariates and the false positive
ratios, highlighting the strength of using the iterative adaptive bridge penalty and Q C C D  for
covariate deselection. For the ‘Piston’ dataset, our G P  properly captured its non-linear and
continuous features, hence predicting with signicantly higher accuracy. ‘VGPR ’  had a
relatively high false positive ratio when the ‘CASP-D ’  dataset was used but considering that
there were only nine original covariates, the ‘FPos’ was already high with few fake
covariates selected. Besides, the fake covariates in this case were correlated with the original
covariates, potentially improving posterior inference as reected by the lower RM S E  of
‘VGPR ’ .  ‘Lasso’ and ‘SAM’ had comparable RM S E  to ‘VGPR ’  in modeling the ‘Temp’
dataset but its number of selected covariates and ‘FPos’ were signicantly higher. The
complexity of ‘VGPR ’  is tremendously reduced by the Vecchia approximation, gradient-
based covariate selection, and mini-batch subsampling, to achieve a computation time of
less than forty minutes for a dataset with n =  106 and d =  103, for which ‘Lasso’ and ‘Tree’
used sixteen and eight minutes, respectively. Despite being slower, ‘VGPR ’  is arguably as
scalable as the other two methods (and much more so than existing G P  regression methods)
based on the complexity analysis in Section 3.8.

6. Conclusions

We provide a highly scalable method, coined VG P R ,  for variable selection and model esti-
mation in G P  regression, suitable for datasets with large numbers of responses n and covari-
ates d. A R D  covariance kernels naturally combine variable selection and model estimation,
while a (scaled) Vecchia approximation provides fast and highly parallel computation of
the loglikelihood, its gradient and its FIM. We introduced a forward-backward-selection
algorithm that iteratively adds predictive covariates to a candidate set  based on the gra-
dient and removes irrelevant covariates from the candidate set using an ecient Q C C D
algorithm. We provided theoretical support for the gradient-based covariate-candidate se-
lection. To  further speed up our method for even larger n, we introduced a mini-batch
subsampling method specic to Vecchia-type approximations that has unbiased gradient
estimators whose expectations are shown to be zero at the true parameter values. The
resulting procedure requires only O(njj2 +  nd) time, where n is the mini-batch size, and hence
the computational complexity is essentially independent of n. To  compensate for the
sampling variance of the stochastic gradient estimators under mini-batch subsampling, we
also introduced an iterative adaptive bridge penalty.

In our simulation study, V G P R  was substantially faster and selected fewer (almost zero)
false covariates than other state-of-the-art G P  regression methods that can be adapted for
variable selection. When using real datasets, V G P R  was robust enough to select only a
small number of the most predictive covariates, maintaining the lowest misclassication
ratios and the best predictive power among standard methods for regression with variable
selection. V G P R  is able to handle n =  106 responses with d =  103 features within 40
minutes on a standard scientic workstation. Due to its exibility and accurate results, we
consider V G P R  to be a suitable candidate for a default benchmark method for nonlinear
regression and variable selection on large datasets.
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One possible extension of the results in this paper is variable selection and model esti-
mation for generalized G P  models, such as logistic or probit GPs for classication problems. For
example, Cao et al. (2022) derived the marginal and posterior predictive probabilities of the
probit GP.  A  second idea is to examine if the gradient of the objective function or similarly
simple criteria can be used to select new covariates for other regression models, hence
achieving a forward selection procedure that tremendously benets the optimization.
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A .  Implementation of F I C ,  F I T C ,  and P I C
F I C  selects the rst m locations in MM as the inducing inputs. F I T C  selects the same locations as the initial
values of the m inducing inputs, which is then optimized using the ‘GPow’ Python package, whose result is
used as the nal inducing inputs of F I T C .  P I C  selects the rst m=2 locations in MM as inducing inputs and
divides the responses into disjoint subsets of size m=2. P I C  considers the subsets of responses conditionally
independent given the inducing inputs as opposed to that responses are conditionally independent, which is
assumed by F I C  and F I T C .  In other words, P I C  considers also local correlation.

Among the ve G P  approximations, namely, F I C ,  F I T C ,  P I C ,  Vecchia and scaled Vecchia, F I C  typically
has the lowest cost per likelihood estimation, requiring only O(nm2 ) operations because the conditioning
sets remain the same for all responses. P I C  has higher computation cost than F I C  but its complexity stays
at the same level. Given the inducing inputs, F I T C  is as ecient as F I C  but the inducing inputs of F I T C
require an optimization with O(md) parameters, which could become the dominant complexity. Vecchia
and scaled Vecchia approximations have a complexity of O(nm3 ) for likelihood estimation, which although
higher than F I C  and P I C ,  is still linear with n and has a highly parallel implementation. Furthermore, the
grouping technique introduced in Guinness (2018) can reduce the previous complexity to between O(nm2 )
and O(nm3 ) and is already implemented in the ‘GpGp’ R  package.

B .  Sensitivity Analysis
We generated d =  100 dependent covariates at 104 locations, half of which were used for training and the
other half were used to compute the R M S E  score. The sensitivity was assessed in terms of R M S E  score and
number of fake covariates selected. From Figure 8, we conclude that our proposed V G P R  algorithm is largely
robust across dierent values of k, , and  within the recommended intervals.

C .  Proofs

Proof [Partial proof of Proposition 1] Ignoring the constant term in ‘:

‘  =       
2

y >      1 y    
2 

log jj

@
‘

 
=  y >      1

l ; 1
     1 y    tr(     1

l ;1 ); l

( ; r ; ) = ( 1 ; r 1 ; 1 )

where =  @ =   2   D  , D  is an n  n matrix whose (i; j )-th coecient is
l       ( ; r ; ) = ( 1 ; r 1 ; 1 )

( x i l    x j l )  , and  is the Hadamard product. Because fx i l g i = 1 ; : : : ; n ; l = 1 ; : : : ; d  have i.i.d. distributions and
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Figure 8: Sensitivity of the V G P R  algorithm with respect to the number of new covariates selected at each
iteration (k), and the penalty parameters (; ) dened in (8).

r l 1 1  =  r l 2 1 ,  we have:

E [tr(     1
l 1 ; 1 )]  =  E [tr(     1 (  2

1  D l 1  ))] =  E [tr(     1 (  2
1  D l 2  ))] =  E [tr(1 

1
l2 ;1 )]:
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Therefore, we only need to compare E [ y >
1  

1
l 1 ; 1 1  

1 y]  and E [ y >
1  

1
l 2 ; 1 1  

1 y]. First consider f x i g i = 1  as xed and
take expectation with respect to y:

E y [ y >      1
l ; 1

     1 y]  =  tr(     1
l ; 1

     1
0 ):

0 can be also written as:
0 1  d

0 =  2
1  exp @ (r l 0    r l 1 ) D l A  +  0 I n  =  0 1   exp( r l 1 0 D l 1  +  C )  +  0  I n ;

l = d 1 + 1

where C  =       
P

l = f d 1 + 1 ; : : : ; d 0 g n l 1  
r l 0 D l .  Hence, we can re-write E y [ y >      1

l ; 1
     1 y]:

E y [ y >      1
l ; 1

     1 y]  =  tr      1 (  2
1  D l )      1 (2

1   exp( r 2  
0 D l      +  C )  +  2 I n )

 
=  tr      1 (  2

1  D l )      1 (2
1

exp( r l 1 0 D l 1  +  C ) )
 
+  c ;

where c     =  2tr(     1 (  2
1  D l )      1 )  and E X [ c  ] remains the same for l  =  l1  and l =  l2  because

fx i l g i = 1 ; : : : ; n ; l = 1 ; : : : ; d  have i.i.d. distributions. We can also remove the 2 and 2 from the equation above with c
=  0 1 :

E y [ y >      1
l ; 1 1  

1 y]  =  ctr 1 
1 (  1  D l ) 1  

1 (1   exp( r l 1 0 D l 1  +  C ) )
 
+  c : (11)

Since 1 
1 (  1   D l ) 1  

1  and 1  exp( r l 1 0 D l 1  +  C )  are symmetric, we have:

E y [ y       l ; 1      y ]  =  chvec      (  1  D l ) ; vec 1  exp( r l  0 D l      +  C )  i  +  c =
ch(1 

1

 1 
1 )vec( 1  Dl ); vec 1  exp( r l 1 0 D l 1  +  C ) i  +  c

=  ch(1 
1

 1 
1 )diag(vec(1 ))vec( Dl ); diag(vec(1 ))vec(exp( r l 1 0 D l 1  +  C ) ) i  +  c ;

where h; i is the Euclidean inner product,
 is the Kronecker product, and vec() is the vectorization of a matrix that stacks the columns of a matrix on
top of one another. Use M  to denote diag(vec(1 ))(     1

 1  
1 )diag(vec(1 )), which is a positive denite matrix:

E y [ y >      1
l ; 1 1  

1 y]  =  chMvec( Dl ); vec(exp( r l 1 0 D l 1  +  C ) ) i  +  c :

Now consider the expectation with respect to X  and notice that M ,  D l 1  , and C  are mutually independent.
Assuming l =  l1  or l  =  l2 :

EX [hMvec(  Dl ); vec(exp( r l 1  D l 1  +  C ) ) i ]  =  tr E X [vec(  Dl )vec(exp( r l 1  D l 1  +  C ) )  ] E X [ M ]           (12)

To  show (12) is bigger when l =  l1  than when l =  l2 , it remains to show that:
tr

 
C o v X  vec( D l 1  ); vec

 
exp( r l 1  D l 1  +  C ) E X [ M ]

 
>  0:

It suces to show that Cov X [vec(  D l 1  ); vec(exp( r l  D l 1  +  C ) ) ]  is positive semi-denite and has a rank greater
than zero because the trace of the multiplication between one positive denite matrix and one non-zero positive
semi-denite matrix is positive. It is obvious that Cov X [vec(  D l 1  ); vec(exp( r 2  D l 1  +  C ) ) ]  has a rank greater
than zero. Its coecients have three types of values:

C o v X [  d i 1 ; j 1  ; exp( r 2  d i 2 ; j 2  +  c i 2 ; j 2  )] =  C o v X [  d i 1 ; j 1  ; exp( r 2  d i 2 ; j 2  ) ]E X [exp(c i 2 ; j 2  )]

<  0 i 1  =  j 1  or i 2  =  j 2  or jfi1 ; i2 ; j1 ; j2 gj =  4
= a i 1  =  j 1  and f i1 ; j1 g =  f i 2 ; j2 g ;

b      i 1  =  j 1  and i 2  =  j 2  and jfi1 ; i2 ; j1 ; j2 gj =  3

where d i ; j  and c i ; j  denote the (i; j )-th coecients of D l 1  and C ,  respectively, and j j denotes the cardinality of
a set. First, we can take out E X [ e xp(c i 2 ; j 2  )] and have the following:

Cov X [vec(  D l 1  ); vec(exp( r l 1  D l 1  +  C ) ) ]  =  Cov X [vec(  D l 1  ); vec(exp( r l 1  D l 1  ))]  c;
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where c =  E X [ e xp(c i 2 ; j 2  )] for i 2  =  j2 .  Second, notice that the structures of

Cov X [vec(  D l 1  ); vec(exp( r l 1  D l 1  ))] and Cov X [ve c ( D l 1  ); vec(Dl 1  )]

are the same, except for that the latter has dierent values for a and b, denoted by a~ and b, respec-tively.
Since Cov X [ve c ( D l 1  ); vec(Dl 1  )] is positive semi-denite and a and a~ are positive, to show that Cov X [vec(
D l 1  ); vec(exp( r l 1  D l 1  ))] is also positive semi-denite, it is sucient to show that 0  a   a~  .

b cov[(X1   X 2 ) 2 ; ( X 1    X 3 ) 2 ]
a~                    var[(X1   X 2 ) 2 ]
b cov[ ( X 1    X2 )2 ; exp( r 2 ( X 1    X 3 ) 2 ) ]
a cov[ ( X 1    X2 )2 ; exp( r 2 ( X 1    X 2 ) 2 ) ]

(13)

(14)

Without loss of generality, we can assume X 1 ; X 2 ; X 3  
i   :  U (     2 ; 2  )  or X 1 ; X 2 ; X 3  

i   :  N (0; 1), under which a   a~

can be shown numerically as in Figure 9.
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0.100
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(a) (b)

Figure 9: The ratio (14) (solid black) and the threshold (13) (dashed red) under (a) uniform distribution
and (b) normal distribution for X i .

With the accurately computed relationship between (13) and (14), we conclude the proof under the
assumption that fx i l g i = 1 ; : : : ; n ; l = 1 ; : : : ; d  have i.i.d. uniform or normal distributions. For other distributions,
similar numerical procedure can be used to draw the conclusion.

Proof [Proof of Corollary 2] When r  !  0,  !  1n n . We can substitute 1 in the proof of Proposition 1 by a
non-singular covariance matrix arbitrarily close to 1n n , denoted by 1, substitute d1 by 0, and hence

0 1
d

0  2
1  exp @ (r l 0    r l 1 ) D l A  +  0 I n :

l = d 1 + 1

The rest of the proof should remain the same.

Proof [Proof of Corollary 3] Based on (12),
2 3 " #

@‘                                                    @‘
@rl1 ( ; r ; ) = ( 1 ; r 1 ; 1 )

@rd+1 
(;r;)=(

1 ; r 1 ; 1 )

=  cEX [hMvec( D l 1  ); vec(exp( r l 1  D l 1  +  C ) ) i ]    cEX [hMvec( Dd + 1 ); vec(exp( r l 1  D l 1  +  C ) ) i ]
Because fx i l g i = 1 ; : : : ; n ; l = 1 ; : : : ; d  have i.i.d. normal distributions, E X [vec(  D d + 1 ) ]  =  E X [vec(  D l 1  )];

=  c2tr Cov X [vec(  D l 1  ); vec(exp( r l 1  D l 1  +  C ) ) ] E X [ M ]  >  0:
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Proof [Proof of Proposition 4] From the proof of Proposition 1, we know that 
3

E  4  
@rl1 ( ; r ; ) = ( 1 ; r 1 ; 1 )

5    E  4  
@rl2 ( ; r ; ) = ( 1 ; r 1 ; 1 )

5

=  E X [ E y [ y >      1
l 1 ; 1 1  

1 y]]   E X [ E y [ y >      1
l 2 ; 1

     1 y]]:

Based on (11),

E y [ y >      1
l 1 ; 1

     1 y]    E y [ y >      1
l 2 ; 1

     1 y]

=  ctr 1  
1 (  1  D l 1  )1  

1
0        ctr 1 

1 (  1   D l 2  )1  
1

0

=  ctr      1 (  1  ( D l        D l  ) )      1
0

0 0 1 1

ctr @1 
1 (  1  ( D l 1    D l 2  ))1  

1  @1 +  
X  

l ; 1 r l 0
A A

0 0
l = d 1 + 1

1 1

=  ctr @     1 (  1  ( D l 1    D l 2  ) )      1  @1   
X  

r 2  
1   D l

A A ;
l = d 1 + 1

where =  @ =     D  . Noticing that E  [ D        D  ] is a zero matrix, that f D  gd

l       ( ; r ; ) = ( 1 ; r 1 ; 0 )

are mutually independent, and that D l 1      and D l 2      are independent from 1, the expectation of the above
equation with respect to X  is equal to:

i
c E X      tr 1     (  1   ( D l 1    D l 2  ))1  r l 1 0  1  D l 1

=  cr2 
0  E X       tr     (      1

      1 )vec(1  ( D l 1    D l 2  ))vec 1  D l 1  >
h i

=  cr l       tr E X [
      ] C o v X      vec(1  ( D l        D l  )); vec 1  D l
h i

=  cr l 1 0  tr E X [ 1

 1     ] C o v X      vec(1  D l 1  ); vec(1  D l 1  ) >  0;

h i
because E X [ 1  

1

 1  
1 ] is positive-denite and C o v X      vec(1  D l 1  ); vec(1  D l 1  )      is positive semi-denite with a rank greater

than zero.

Proof [Proof of Proposition 5] Here, we take expectations only with respect to y  and consider f x i g i = 1  as
xed. Using the non-negativeness of the K L  divergence, we can show that for a generic random vector w,
whose distribution is parameterized by 0:

Z
E [log p(w; 0 )]   E [log p(w; )] = log 

p(w; ) 
p(w; 0)dw  0 )

E [log p(w; 0 )]  E [log p(w; )];

with which Proposition 5 can be thus proved:

E y [ ‘ r ( ) ]  =  Ey [ log p̂ (y)] =  Ey [ log 
Y  

p(yi jyc ( i ) ) ]  =  E y [
X

l o g  p(yi jyc ( i ) ) ]
i = 1 i = 1

=  
X

E y c ( i )  

h
E y i j y c ( i )  [log p(y i jyc ( i ) ) ]

i
;

i = 1
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where E y  j y [log p(yi jyc ( i ) )]  achieves maximum at  =  0. Therefore, E y [ ‘ ( y ) ]  achieves maximum at  =  0.
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