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Abstract

Al assistance continues to help advance applica-
tions in education, from language learning to in-
telligent tutoring systems, yet current methods for
providing students feedback are still quite lim-
ited. Most automatic feedback systems either
provide binary correctness feedback, which may
not help a student understand how to improve, or
require hand-coding feedback templates, which
may not generalize to new domains. This can
be particularly challenging for physical control
tasks, where the rich diversity in student behavior
and specialized domains make it challenging to
leverage general-purpose assistive tools for pro-
viding feedback. We design and build ,a
model trained to generate language corrections
for physical control tasks, such as learning to ride
a bike. takes in as input a pair of student
and expert trajectories, and then generates natural
language corrections to help the student improve.
We collect and train over data from three
diverse physical control tasks (drawing, steering,
and joint movement). Through both automatic
and human evaluations, we show that can
(i) generate valid feedback for novel student tra-
jectories, (ii) outperform baselines on domains
with novel control dynamics, and (iii) improve
student learning in an interactive drawing task.

1. Introduction

In our daily lives, we need to learn a variety of physical
control tasks (e.g. driving a car or athletic sports) that bene-
fit from receiving feedback of different modalities, such as
visual demonstrations or haptic guidance. One of the most
general forms of corrective feedback, however, is natural
language — a person learning how to ride a bike can easily
understand what “make a sharper left turn” means, even
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if they are unfamiliar with the specific control dynamics
of the task. While recent works have focused on learning
control policies that incorporate natural language feedback
from users (Broad et al., 2017; Cui et al., 2023; Sharma
et al., 2022), few have considered the reverse direction of
automatically generating language corrections to provide to
human users. Such corrections can be useful for enhancing
human-Al interaction in decision making contexts (Lai &
Tan, 2019), improving interactive data collection (Gandhi
etal., 2022; Gopalan et al., 2022), and more generally teach-
ing humans how to perform physical control tasks such as
for rehabilitation, flying an aircraft, or operating surgical
robots. (Hayws et al., 2009; Maciejasz et al., 2014; Srivas-
tava et al., 2022; Yu et al., 2022; Schrum et al., 2022).

How do humans typically provide natural language feed-
back? Consider a parent who is teaching their child how
to ride a bike. One form of corrective feedback they may
provide are general, vague utterances (e.g. “that was okay,
try again’) that provide positive or negative reinforcement,
but may not be very informative on how to improve. On the
other extreme, the parent may provide precise feedback (e.g.
“wider grip on the handle-bars”) that clearly conveys how
the child should adjust their behavior, but requires access to
domain-specific information such as referring to handle bars,
which is only applicable to the setting of teaching how to
ride a bike. This results in a trade-off between helpfulness,
or the ability to provide sufficient information to help a stu-
dent improve, of corrections and their generality, or ability
to be understood and conveyed across different settings.

In fact, existing works on automatic feedback generation in
domains such as programming and language learning reflect
this trade-off (Settles et al., 2020; Liu et al., 2022). Some
systems provide simple binary feedback (e.g. whether a
program ran successfully), which may not be very helpful
to the student, while others require hand-coded, templates
(e.g. grammar checking) that lack generality. Due to the
rich diversity of physical control tasks and variation in ways
a student might under-perform, we seek to strike a balance
by learning to generate helpful comparative corrections (e.g.
“brake sooner”) that can also generalize to novel trajectories
within the same control space. To achieve this, we choose
to leverage the expressive capabilities of language models
(LMs), driven by the key insight that LMs may encode phys-
ical conceptual spaces that are isomorphic across the variety
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of environments, states, and action spaces that exist across
different physical control tasks (Patel & Pavlick, 2022).

Concretely, we design and build I a model trained
to generate corrections in natural language based on three
physical control tasks of drawing, driving a car in simula-
tion, and dancing. These three tasks exhibit different control
spaces such as the 2D x-y position on a surface, steering
and acceleration, and skeleton joint motion, which in turn
require to develop a general understanding of physi-
cal concepts. At test time, takes in as input a pair of
student and expert trajectories, and generates a correction in
natural language to help the student better match the expert’s
performance. Specifically, consists of a trainable
trajectory encoder that learns to map student and expert
trajectories to prompts that can be used as inputs to a frozen
LM to generate feedback with, thus keeping the more gen-
eral representations of language encoded by the LM fixed.
Through both automatic and human evaluations, we show
that can (i) generate valid feedback for novel student
trajectories, (ii) outperform baselines on domains with novel
control dynamics, and (iii) improve student learning in an
interactive drawing task. Thus, in addition to introducing
the task of generating natural language feedback to humans
for physical control tasks, our contributions include:

1. A dataset of 2k crowdsourced corrections collected
across (student, expert) trajectories from a diverse set
of control tasks (drawing, steering, and joint motion).

2. , our model trained to generate corrective feed-
back in natural language for these three tasks.

3. A comprehensive evaluation of the ability of
to generalize to novel student trajectories and domains
that share the same control space.

4. Two human subject user studies assessing both pref-
erence and the helpfulness of generated feedback in
helping users improve drawing.

We will release all data, model checkpoints, code, and
user study infrastructure to aid future work at https:
//github.com/Stanford-ILIAD/corgi.

2. Related Works

While recent works have explored generating comparative
descriptions, such as language descriptions of distribution
shifts (Zhong et al., 2022) and relative image captions (Mir-
chandani et al., 2022), we are the first to explore this for
physical control tasks, as well as with an educational focus.

! : The acronym stands for natural language corrections

generation for instruction.

Language in Multimodal Tasks Several works have lever-
aged advances in LMs and multimodal models to improve
human interaction across physical control tasks. For exam-
ple, Google’s SayCan leverages LMs to break down lan-
guage instructions into executable skills, providing users
flexibility in receiving robotic assistance for complex, long-
horizon tasks (Ahn et al., 2022). Others have explored using
language to adjust robot plans with constraints or specify
subgoals (Sharma et al., 2022; Karamcheti et al., 2021; Cui
et al., 2023). Finally, (Tevet et al., 2022) recently introduced
MotionCLIP, a transformer-based auto-encoder that shows
exciting text-to-motion capabilities like adjusting motion
sequences for novel styles (e.g. “run away hysterically”).

Another multimodal task closely related to ours is image
(or video) captioning, where large-scale multimodal mod-
els have achieved state-of-the-art performance on classic
benchmarks such as MSCOCO (Alayrac & et. al., 2022;
Lin et al., 2014). Furthermore, Tsimpoukelli et al. (2021)
achieve strong performance on captioning tasks by only
training a visual encoder to output a prompt for a frozen
LM, motivating our approach for

Language in Education A few works have studied the role
of language descriptions and feedback in educational set-
tings. Chopra et al. (2019) show that language can reduce
time in communicating concepts to a student, Sumers et al.
(2020) find in a cooperative teaching game that language
helps communicate more nuanced concepts than other feed-
back forms like demonstrations, and Ruan et al. (2019)
demonstrate that interactive dialogue-based agents can im-
prove student learning. However, these works largely focus
on understanding the role of language in pedagogical set-
tings, not automatically generating language feedback.

Language in Physical Interaction Datasets Large-scale
datasets of language paired with physical interactions have
enabled further understanding of physical reasoning, as well
as inspired progress on novel interactive control tasks. For
example, Ji (2022) built a rich-annotated dataset of tangram
puzzles to study the abstract visual reasoning capabilities
of multi-modal models, Wong et al. (2022) show how to
leverage annotations in the CLEVR dataset (Johnson et al.,
2017) to improve generalization on spatial relationship tasks
and Lynch & Sermanet (2021) show that “play” data anno-
tations enable strong zero-shot language conditioning for
robotic tasks. To the best of our knowledge, we are the first
to collect corrections over pairwise trajectories, providing
insight into how people reason about physical comparisons.

3. Generating Corrective Feedback

We now formalize generating corrective feedback in an
educational setting, where the goal is to generate corrections
from the set of possible natural language utterances u € U
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The resulting output vectors are stitched together with the embeddings corresponding to vocabulary words “student”, “expert”, and
“correction” in order to create the input prompt sent to the My ¢, from which we then generate a correction.

that are comparative with respect to some expert behavior.
Consider a target physical control task g (e.g. riding a bike),
astudent S (e.g a child learning to ride a bike), and an expert
& (e.g. their parent who can already perform this task). We
can treat g as a standard Markov decision process (MDP)
< S, A, f,R,T > with finite horizon T, reward function
R : S x A — R over state S and action A spaces, and
a deterministic transition function f : S x A — S that
maps a particular state and action pair sy, a; at time step ¢
to a new state s;11. We can then define a trajectory 7 as a
sequence of state and action pairs {s1, a1, ..., ST, ar}, and
can collect trajectories from both the student (7s) and the
expert (7¢). Under this setting, we now formalize the goal
of generating corrective feedback u for the student S.

3.1. Problem Statement

Effective feedback should reduce discrepancies between a
student learner’s current understanding and performance of
a task and that of an expert teacher (Hattie & Timperley,
2007). Therefore, good corrections should not only accu-
rately identify such discrepancies, but also be sufficiently
helpful for the student to improve. We thus assess a correc-
tion u by measuring the degree it reduces the gap between
the student S’s and expert £’s performance on task g.

Concretely, let 7r"§7 , represent the student policy for task g
at time k and 7¢ 4 represent a fixed expert policy for task g.
From these policies, we can collect trajectory rollouts Tg’k
and 7¢, respectively. Furthermore, let £ be a task-dependent
loss function that measures the discrepancy between two

trajectories. A corrective feedback utterance uy provided at

timestep k may result in the student updating their policy
from 7% _ to w5' ", and so the optimal corrective feedback
would be a uy, that minimizes the expression:

min £(r§* (ue), 78) — L(rg",78) M

In other words, our goal is to generate language corrections
u that result in the largest decrease in discrepancy between
the student and the expert. In practice, however, optimizing
directly for the above expression is intractable due to the
lack of strong cognitive models of human learning, i.e., we
do not have an accurate model of how uy, leads to changes
in the student trajectory Tg’k—H. Therefore, instead of op-
timizing for the objective in Eq. (1), we consider whether
it is possible to build a strong generative model in a super-
vised manner from annotated samples of corrective feedback
(12,72, u). In order to best capture the expressiveness of
annotations provided in natural language, we propose lever-
aging the rich encoding of language present in modern day
LMs by casting the problem of generating corrective feed-
back for student S in reference to £ as a controllable text
generation problem. Concretely, our goal is to identify a
method that, given tuples of (72, 7Z,u), allows us to ef-
fectively control (via prompting) a large pretrained LM to
generate corrections w at test time when we only have access
to novel student and expert trajectories (72, 72 ).

3.2. Trajectory Encoding

To use trajectory samples (72,77) to construct an input
prompt that can help steer an LM to generate good correc-
tions u, we first need the ability to represent trajectories
of a physical task as a sequence of text tokens. Recall
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that a trajectory 7 is a sequence of state and action pairs
{s1,a1,...,sr,ar} which, when concatenated can be rep-
resented as a set of 7' vectors of numerical values with
dimension d, := [S] + [A]. Meanwhile, a typical LM
(Mang,¢) consists of a word embedding layer (MWiang,¢) that
maps text tokens from a fixed vocabulary to embeddings
of a given dimension d.. We therefore learn a trajectory
encoder model My, ¢ that can map any (1" x dg)-dimension
trajectory 79 to a set of n vectors of dimension d., where
n is a hyperparameter. We can then represent 77 and 7 as
a sequence of “token embeddings” vs 1...V5 n, Ve 1-.-Ve n
that, as shown in Figure 1, form the input prompt to the LM
which we will use to conditionally generate correction .

3.3. Controllable Text Generation

consists of a trainable encoder My, ¢ that learns to
represent any arbitrary trajectory 7 as a sequence of continu-
ous embeddings such that, when embeddings corresponding
to both the student and expert trajectories are included as
part of a prompt, the underlying frozen, pre-trained LM
(Mang,¢) Will generate appropriate corrections. We choose
to keep the LM frozen in order to aid the adaptability of

to new kinds of student behavior and domains where
there may be changes in language not captured by our data.

We learn the same trajectory encoder (Mg, 9), consisting
of a 3-layer feed-forward neural network that outputs n
vectors with the same dimension as the target LM (e.g. 768
for GPT-2), for both student S and expert £ trajectories.
We train our model over tuples of corrections paired with
student and expert trajectories (7, g, u); by constructing
input prompt sequences using M ¢ as shown in Figure 1.
During training, we calculate the language modeling loss,
where the loss of single sample g; is:

[’(Zﬁ(qi) = - lt(i‘l longang,d)(qn |Qi<t)
However, we only use £,(g;) to update weights 6 of the
trajectory encoder My 0, keeping the weights of My
frozen. At test time, we use the same format (omitting
which is unknown) to construct the input prompt provided
to the frozen LM from which we generate corrections.

3.4. Annotating Corrections & Data Augmentation

In order to train , we need to collect data of cor-
rections for paired trajectories. Because our goal is for

to generalize well to novel trajectories and domains,
we are primarily interested in shorter, general corrections
that do not refer to specific aspects of the expert’s trajec-
tory or domain-specific objects. Concretely, we ask an-
notators to provide brief samples of corrective feedback
u® u® . ul™ for a particular 72, 7¢ trajectory pair for
task g in free-form text, encouraging annotators to identify
which of the potentially several different ways for the stu-

Algorithm 1 Train
1: Input: dataset D of (u, 72, 7¢) tuples with size |D|
2: Input: frozen LM M, ¢ with token embedding layer
Wiang, ¢ and instruction-tuned LM M/ 14 4
Input: number of epochs n. , learning rate A
Initialize trajectory encoder M, 0
// data augmentation
Set dataset D’ < D
for sample i = 1 to |D’| do
Set prompt p; < “You are a teacher providing” +
“feedback to a student learning a control task.”  +
“List 3 short paraphrases of the feedback” + u;
9:  Set paraphrases u; |, uj 5, U} 3 = M'iang 4 (pi)
10:  D'.append((u; 1,74 ,7¢))
11:  D'.append((u; 5,75 ,7¢))
12: D'.append((uj 3,74 ,7¢.))
13: end for
14: // training
15: for epoch m =1 to n. do
16:  Shuffle dataset D’
17:  for sample i = 1 to |D’| do
18: Set prompt ¢; +— Wiang,s (Student) +
Mtraj,e ('ﬁ%) + Wlang,gﬁ (expert) + Mtraj,@ (7_57) +
Wiang, ¢ (correction:) + Wiang,¢ (i)

A

19: Setloss L(ui, 78, 72) < Ly(g;) LM loss
20: Update 0 < 0 + AV L(u;, 74, 72.)

21:  end for

22: end for

dent to improve they believe is most optimal to describe. We
can then use tuples (72, 7Z, u(¥)) to construct input prompts
to train . Further details on crowdsourcing results of
for our annotation procedure are described in Section 4.2 .

However, we observe that when human annotators provide
corrective feedback in natural language, there exists greater
variance in the language style of the provided corrections
than the particular discrepancies they refer to. In order
to enable to better capture this rich style diversity
efficiently, we leverage more powerful, “instruction tuned”
language models (e.g. OpenAl’s text-davinci-003)
for data augmentation. As described in Algorithm 1, for
each annotation »(¥ in our original dataset, we construct
an input prompt describing a teaching setting and directly
asking for paraphrases of u(*), which, when sent as input
to a large instruction-tuned LM results in an augmented set
of utterances {u'l(i), u;(i), ug(i)} which are used for training.
The prompt and example paraphrases are shown below:

annotator correction:
turner slightly later (u)
input prompt:
You are a teacher providing feedback to a student learning a
control task. List 3 short paraphrases of the feedback “furner
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slightly later”
text-davinci-003 output:
1. Make your turn a bit later. (u])
2. Delay your turn a bit (u5)
3. Wait a moment before turning (u3)

The above example shows that paraphrases returned from
the text-davinci-003 LM retain the particular dis-
crepancy of the correction while modifying its style, lan-
guage, and correcting for typos and grammatical errors.
As we will show next (Table 1), training over aug-
mented data improves performance across all control tasks.

4. Experimental Results

We now present our three tasks and experimental results.
Details of user studies (including IRB approval) and training
of , which is built on a 124M parameter model of
the GPT-2 family (Wolf et al., 2019b), are in the Appendix.

4.1. Environments & Datasets

We study three physical control tasks that span common
primitives: drawing (x-y control), steering (acceleration and
heading angle control), and human body movement (joint
control). For each environment, we also create in-domain
(ID) and an out-of-domain (OOD) splits that share the same
control space, but require different dynamics.’

DRAWING: The student’s goal is to learn how to draw char-
acters from different alphabet scripts. We select 10 charac-
ters from 5 scripts (ID: Arabic, Burmese, & Japanese, OOD:
Futurama & Bengali) from the Omniglot dataset (Lake et al.,
2015). We select 1 trajectory per character as the expert
trajectory and randomly sample 5 student trajectories, split
between train/test sets. Each trajectory is a sequence of 2D
actions along x-y coordinates.

STEERING: The student’s goal is to learn how to park a
vehicle in a target parking spot. We modify the Parking
environment from Leurent (2018) by changing the steering
sensitivity and min/max speed for 3 vehicle types (ID: Car &
Plane, OOD: Bike). For each vehicle type, we design a hand-
coded expert policy, and then collect 20 student trajectories
including perturbations of the expert policy and half-trained
RL agents (details in Appendix A.3). Trajectories are split
between train/test sets, and consist of 2D actions controlling
acceleration and heading angle and 6D states corresponding
to vehicle position, velocity, and heading.

MOVEMENT: The student’s goal is to learn how to perform
a full-body movement activity. We select activities from
the BABEL dataset (Punnakkal et al., 2021) of 3D human

*While we aimed to pick OOD splits that were semantically
far (e.g. Futurama is a synthetic language), it is still possible there
may be smaller “sub-skills” shared between ID-OOD splits.

motion (ID: Walk, Jump, & Throw, OOD: Wave, Jumping
Jacks). For each activity we select 1 trajectory as the Expert,
and sample 15 student trajectories, which are then split be-
tween train/test sets. We represent trajectories with learned
video-text representations from X-CLIP (Ma et al., 2022),
treating the output as a trajectory sequence of 1D states.

Example student trajectories for each environment are
shown in Figure 2. We pad trajectories to a fixed dimension
of 10 and length of 600 as input to . Further details
on expert trajectory selection, as well as the assumption of
a single expert behavior, are in Appendix A.2.

4.2. Crowdsourcing Details

We recruit crowdworkers on Prolific’ to annotate paired
student/expert trajectories with corrections. We instruct
crowdworkers to not refer to expert demonstrations in their
annotations. Crowdsourced corrections demonstrate a va-
riety of ways people express feedback, such as rich shape
descriptions (e.g. “go towards making an infinity shape
rather than a venn diagram”), encouragement (e.g. “more
vertical but good effort” ), and action ordering (e.g. “after
second bend draw towards left not down”. We collect 2,023
corrections, and provide further details in Appendix A 4.

4.3. Automatic Evaluation

Our first evaluation goal is to measure the degree

assigns high likelihood to examples of good corrections,
which can be useful for tasks such as automatically evaluat-
ing feedback provided by instructors. In Table 1, we report
the average perplexity (i.e. the exponentiated loss) across
ground truth corrections for novel student trajectories un-
seen during training, and for both ID and OOD splits of each
task. We compare results across the following ablations:

* Permute Correction: Instead of conditionally gener-
ating a correction, we draw a random corrections from
the same distribution as the ground-truth corrections —
if a task has low variance across the types of feedback
needed (e.g. all students need to “improve posture” in
MOVEMENT), we should observe no difference.

* Permute Student: We simulate the setting where
provides corrective feedback for a different
student trajectory. This measures the degree
may have only fitted to the fixed expert trajectory — it
should assign higher (worse) perplexity when the stu-
dent trajectory is randomized, showing the ability to
tailor corrective feedback to individual students. For
fair comparison, we sample student trajectories from
the eval set to maintain the same overall distribution.

. w/o Pretraining : We ablate the effect of pre-

*https://www.prolific.co/
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Figure 2. Example student trajectories, reference corrections from annotators, and corrections generated by CORGI for novel trajectories
for all three control tasks. Generated corrections in italics are completely unseen during training, for any trajectory.

Table 1. Perplexity on held-out test sets (lower is better) across three control tasks. CORGI achieves lower perplexity in comparison to
baselines across all tasks, and both pre-training and data augmentation components improve performance. Although there exists a gap
between in-domain (ID) and out-of-domain (OOD) performance, CORGTI still outperforms ablations even in OOD settings.

ABLATION DRAWING STEERING MOVEMENT
1D 0OOD ID (0]0))) ID (0]0))]
PERMUTE CORRECTION 31038 249+1.1 844185 194 £ 2.4 47 +2.3 123+ 7.4
PERMUTE STUDENT 153 £5.6 256+5.9 96 + 8.9 218 £ 3.1 35+0.28 111449
CORGI 145 +1.5 246+2.5 51+5.9 194 +£2.3 33+0.22 109 +3.1
Ww/0 DATA AUG. 1624+6.3 2514+29 54+1.8 635+24.3 36 £2.3 159 £ 6.7
W/0 PRETRAINING (GPT-2) 959+62 80872 302+ 32 848 £ 88 376 + 37 823 £ 53
W/0 PRETRAINING (LSTM) 215+1.2 584412 197+14 271+1.1 221 +£1.3 252+1.1

training by (i) using the same GPT-2 architecture, but
without pre-trained weights, and (ii) using a 3-layer
LSTM with pre-trained embedding layer.

e CORGI w/o Data Augmentation: We train CORGI
on the original, smaller dataset consisting purely of
human annotations, without any paraphrases from our
automatic data augmentation procedure.

As Table | shows, CORGT outperforms both permutation
ablations, suggesting that the model does take into account
specific student trajectories, rather than just learning general
task language. As expected, no pre-training decreases per-
formance, due to the lack of strong language representations.
Furthermore, data augmentation results in an improvement
across all tasks for both ID and OOD settings. Although
the gap between ID and OOD is high, we note that even in
OOD settings CORGT generally outperforms ablations.

Thus, our second automatic evaluation focuses on the qual-
ity of generated samples from CORGI. Under a fixed set of
decoding parameters (nucleus sampling (Holtzman et al.,
2020), temperature = (0.5), we measure the average similar-
ity between generated and ground-truth corrections across
each (75, 7¢); in our test set. However, as Figure 2 shows,
annotations for a sample may have high variance due to
identifying different discrepencies. We therefore use a re-
weighted version of BERTScore that accounts for intrinsic
variance between ground-truth captions, originally proposed
for image captioning (Yi et al., 2020). In addition to the
pre-training and data augmentation ablations, we compare
the average similarity across generated samples from three
alternative methods with CORGI:

¢ Random: We select a random human annotation from
the same domain as the input trajectories, allowing us



Generating Language Corrections for Teaching Physical Control Tasks

Table 2. Similarity scores on held-out test sets (higher is better) based on an improved BERTScore to account for ground truth variance

from (Yi et al., 2020). Across all tasks,

outperforms both randomly sampling ID feedback and a nearest neighbors baselines.

METHOD DRAWING STEERING MOVEMENT

ID (0]0))] 1D (0]0))] 1D 00D

RANDOM 0.204+0.03 0.21+£0.04 0.19+£0.04 0.224+0.03 0.234+0.06 0.18+0.03
NEAREST NEIGHBORS 0.28 £0.03 0.224+0.03 0.28+0.05 0.16£0.04 0.31+0.05 0.19+£0.05
PERMUTE STUDENT 0.224+0.03 0.234+0.04 0.144+0.03 0.26+0.01 0.14+0.03 0.15+0.03
0.3 +0.01 0.34 £0.03 0.32+0.08 0.31 £0.02 0.39+0.03 0.24 +0.03

W/0 PRETRAINING (GPT-2) 0.114+0.02 0.18+£0.03 0.104+0.03 0.12+0.03 0.114+0.03 0.11 +0.02
W/0 PRETRAINING (LSTM) 0.154+0.03 0.17£0.03 0.124+0.04 0.13+£0.03 0.154+0.03 0.18 +0.02
W/0 DATA AUG. 0.32+0.04 026+£0.04 026£0.03 0.274£0.02 0.194+0.05 0.23+0.02

to measure the degree ’s performance is due to
just using vocabulary appropriate for the domain.

Nearest Neighbors: For a given student trajectory in
our test data, we use our trajectory encoder Mg ¢ to
find the nearest neighbor student trajectory seen dur-
ing training (using the mean squared error in encoder
output). We then randomly sample from the set of
ground-truth annotations provided for this student.

Permute Student: We select a correction from the
same domain and expert as the input trajectories, but a
random student. Note this method is distinct from the
Permute Student method in the previous section.

Table 2 shows that outperforms both methods across
all tasks, for both ID and OOD settings. As expected, re-
moving pre-training results in samples with lower similarity
scores than Random, and we observe that without using a
pre-trained LM, the model can only generate domain spe-
cific verbs (e.g. “make” or “move”). Interestingly, we
observe that for this metric, there is less of a gap between
ID and OOD - in fact, for DRAWING, generated samples
from are more similar to ground truth annotations
for OOD characters. As shown in Figure 2, for both ID
and OOD we observe that indeed often generates
corrections that are similar to the ground-truth annotations.

Error Analysis
In practice, however, neither automatic evaluation metric we
report fully captures the complexities of evaluating correc-
tions. For example, the types of sequences assigns
high (worse) perplexity to include metaphorical utterances
and noise (e.g. “the shape at the top should be larger, march-
ing the hook shape”) and domain-specific language (e.g.
“go forward gear not reverse’’). Meanwhile, the improved
BERTScore method from Yi et al. (2020) assigns a score
of 0.0 to examples such as (reference: well done, perfect!,
: you nailed it!), where the expressed meanings are
equivalent, but use very different language. This motivates
the need for human evaluation, which we focus on next.

4.4. Human Preference Evaluation

We first choose to assess the degree human evaluators prefer

over randomly chosen utterances from the same
domain. Specifically, we measure preference as the rate at
which human evaluators prefer the correction that is gener-
ated by when provided two other randomly selected
corrections from the same domain. We then compare this
rate with three other conditions that replace

* Random: We calculate the rate at which human eval-
uators pick a correction randomly selected from the
training data within the same domain. Since the other
options are also randomly sampled, as the number of
samples increase, this should converge to 33%.

¢ Nearest Neighbors: Already described in section 4.3,
we randomly sample a ground-truth correction pro-
vided to the nearest neighbor student.

* Ground Truth: We calculate the rate at which human
evaluators pick a corrections sampled from the set of
ground-truth annotations for the target trajectory.

Users are shown a pair of student and expert trajectories
(e.g. videos of human movement for MOVEMENT) and
asked to pick one of the three corrections in response to the
instruction “Which feedback do you think is most helpful to
provide to the student?”. We collect preference data from 15
users per condition for each of our three tasks, randomizing
the order in which each correction is provided. We recruit
crowdworkers on Prolific, and provide further details in
Appendix A.5. Due to cost, we limit ourselves to only novel
in-domain (ID) trajectories for each of our control tasks.

Figure 3 shows that across all three control tasks, users
were significantly more likely to prefer corrections from

than our Random control. Furthermore, correc-
tions generated with the Nearest Neighbors method are
only comparable to those of for the MOVEMENT
task, highlighting the ability of to generalize to stu-
dent trajectories unseen during training. Surprisingly, in the
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DRAWING (ID

Figure 3. Across all three tasks, users are more likely to prefer feedback generated from
from a random control and nearest neighbors baseline. For STEERING, feedback from

over random corrections than feedback
also outperforms ground truth corrections,

which may be due to the high variance human annotations. Asterisk (*) marks statistically significant difference (p < 0.05) from

STEERING task, we observe that significantly out-
performs Ground Truth. One potential hypothesis is that
preferences capture important aspects of corrections beyond
accuracy, including clarity, constructiveness, and tone. Gen-
erated samples from are often concise and formal,
while human corrections exhibit more variety. For example,
the most common human annotation that evaluators did not
select in the STEERING task was “right hand down, route
south”, which may be less clear than the generated sample
for the same comparison ( “glide gracefully to the left”). Fi-
nally, we provide pair-wise comparison results on feedback
from when directly compared with Ground Truth
and Nearest Neighbors feedback in Appendix A.5.

4.5. Learning from Feedback

Our final human evaluation directly measures the degree

helps reduce the discrepancy between student S and
expert £ performance in the DRAWING task. We design a
teaching interface, shown in Appendix A.6, where users are
given three chances to draw a provided stimulus and match
a hidden expert trajectory 7¢. The only information users
receive are corrections corresponding to their trajectory 7s,
and a numerical score calculated with the mean squared
error between 75 and expert trajectory 7. We then measure
the change in student error between the first and third trial.

We assign 20 users to a control group where corrections are
randomly sampled from data within the same domain, 20
users to a control group where no corrections are provided,
and 20 users to the experiment group, who receive corrective
feedback from . While users who received random
feedback (-0.17 £ 1.16) and no feedback (-0.20 + 1.01)
both on average decreased in performance, users provided
feedback from actually improved with an average
score difference of 1.84 £ 0.7. A larger sample size may
be needed to observe a stronger effect (we observe p < 0.1
using a Welch’s t-test with multiple hypothesis correction,
verifying normality assumption and medium effect size of
Cohen’s d = 0.52). However, we provide further results

showing that feedback from also outperforms a
baseline with only visual feedback, and covers a diverse set
of topics such as size (“make it all a bit bigger”) and edge
straightness, in the Appendix.

Overall, our results show that can generate correc-
tive feedback for novel student trajectories across a diverse
set of control tasks that not only outperform baselines in
automatic evaluation, but are also preferred by human raters
and help learners improve at a physical control task. One
appealing aspect of is the ability to avoid fine-tuning
the underlying LM. This allows us to retrain the rich and
expressive encoding the LM has learned, enabling several
possible directions for future work that we discuss next.

5. Limitations & Future Directions

As our work is a first step towards building a model capa-
ble of generating natural language corrections for physical
control tasks, there are a few limitations and important di-
rections for future work. First, one important aspect of
corrective feedback is fone: language with positive encour-
agement may lead to different student learning outcomes
than more terse feedback, and future work could consider
adding information about the student (e.g. age, personality)
as an additional control for

Another limitation is that does not generate feed-
back with domain-specific references — future work could
consider integration of corrections from with
domain-specific approaches (Schrum et al., 2022). Addition-
ally, while only provides corrections over the entire
trajectory, many control tasks involve complex sequences of
actions that combine many different sub-tasks, or skills. Fu-
ture work could consider learning how to jointly break down
student trajectories into different sub-components, and then
generating corresponding feedback for each part.

Finally, as described in Appendix A.2, a key assumption of
our work is the need for an expert reference trajectory used
to provide feedback. In practice, there may be many ex-
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pert ways to perform a physical control task, which expert-
specific systems may fail to capture. While can
flexibly take any expert trajectory as input, its performance
is limited by the diversity of expert trajectories it saw during
training, and we believe enabling to generate appro-
priate corrections for a diverse range of expert behaviors in
a data efficient manner is an important next step.

Finally, because can take any student and expert
trajectory as input, potential misuse includes a malicious
agent leveraging repeatedly to generate corrections
that actually guide a student towards harmful behavior (e.g.
physical actions that harm the body). An interesting avenue
for future work is creating a mechanism that can detect
whether an expert trajectory is plausible and safe for a hu-
man to perform under domain-specific constraints.
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A. Appendix

We include information about accessing our dataset, model checkpoints, and user study infrastructure at this link: https:
//github.com/Stanford-ILIAD/corgi.

A.1. Ethics Statement & IRB

The purpose of our work is to help student learners improve performance on control tasks by automatically generating

fluent and accuracy feedback in natural language. However, because physical control tasks can affect user comfort and

health, an important risk of our work is its potential to mislead a person to perform control movements that may be harmful.

Furthermore, a malicious actor can leverage the method behind to train a model that intentionally hurts user

performance. For these reasons, we emphasize the importance of ensuring safety checks when deploying a system based on
and exercising caution in critical application areas.

Human subject studies, including both the human preference and learning performance evaluations, were conducted as part
of a study approved by Stanford University’s Institutional Review Board (protocol # IRB-49406). Participants were asked to
agree to a consent form (like this example), before continuing to the study interface. All participants were crowdworkers
recruited on the Prolific platform.

A.2. Expert Trajectory Assumptions

One important assumption of our work is the need for an expert reference trajectory used to provide feedback. While all
experiments in this work are conducted with a limited range of experts, in reality there exist multiple expert behaviors for a
task (e.g. using the right hand or the left hand) that result in different trajectories. An ideal teaching system would be able
to take as input any arbitrary expert behavior, and provide appropriate corrective feedback for the system. While

has this capability with respect to its API (any arbitrary expert behavior can be sent as input), we chose not to cover an
exhaustive range of expert behavior due to nuance in defining different “optimal” experts: for example, in the DRAWING task,
while drawing the letter “T” bottom-up or top-down might be equally optimal, this may not be true for particular applications
like rehabilitation, where a trained may seek to guide a student towards a specific expert behavior. Furthermore, we believe
one important aspect of good teaching is developing strong priors on the types of mistakes a student might make for a given
task. For example, before even observing a student, a tennis instructor may know that hitting a ball too low is a common
mistake. Training a model over a selected set of expert references, rather than across any possible trajectory as an expert,
can help provide this inductive bias. Nevertheless, we introduce variance in expert trajectories for each task by (i) varying
characters for DRAWING, (ii) perturbations to expert trajectories in STEERING, and (iii) multiple expert demonstrations for
MOVEMENT. Future work could consider training on more varied expert behavior as well as designing a system to identify

which expert behavior to provide as input to , depending on the student’s learning preferences.
A.3. Training Details
The trajectory encoder M,; ¢ part of is trained for 200 epochs on one NVIDIA A40 GPU with a batch size of 64

and learning rate of 0.05, although we observed little sensitivity in performance with respect to learning rate. We split our
training dataset into train and valid splits, and use the latter to perform early stopping. We repeat the same training procedure
for both model ablations (no pre-training and no data-augmentation). The frozen LM we use is the 124M-parameter version
of GPT-2 from Wolf et al. (2019a).

We set the parameter n for M, ¢ to be 20, so the trajectory encoder outputs a set of 20 vectors with dimension 768. My, ¢
is a 3-layer feed-foward neural network, where each layer has an output size of n = 20 x 768.

For the STEERING task, we use trajectories from partially-trained Soft Actor-Critic agents trained for only 100 epochs using
the StableBaselines3 implementation as some of our student trajectories. This leads to a variety of failure modes, which we
human annotators describes.

A 4. Crowdsourcing Language Corrections

For each of our three control tasks, we recruit crowdworkers on Prolific to provide corrective feedback to a student given
pairwise student and expert trajectories, as seen in Figure 4. Each crowdworker provides 10 language corrections, and we
pay then 14 USD per hour. In total, we collect 2,023 corrections.
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replay

expert student

& X

What corrective feedback would you provide the student to help them learn to
match the expert?
(aim for 5 words or less)
[make the top part bigger ]

submit (7/10)

Figure 4. User Interface for Crowdsourcing Corrections for the Drawing task

A.5. Human Preference Evaluation

expert student

£

move towards your left
Which feedback do ygR™ 1= 113 provide the student?
v move faster

‘Submit

Figure 5. User Interface of the Human Preference Evaluation

For each of our three control tasks, we recruit crowdworkers on Prolific to select their preferred feedback to provide to a
student given pairwise student and expert trajectories and a dropdown list of language corrections to pick from, as seen
in Figure 5. Each crowdworker provides 10 preferences, and we pay then 14 USD per hour. In total, we collect 1,800
preference ratings.

Direct Pairwise Comparisons In addition to our main results, we use the same interface to conduct direct pairwise
comparisons from participant preferences between feedback from CORGTI vs. Nearest Neighbors and feedback from
CORGI vs. Ground Truth. We report these results in Table 3, which support the results reported in the main paper:
CORGTI outperforms the Nearest Neighbor baselines significantly for WRITING and STEERING tasks, and even outperforms
Ground Truth annotations for the STEERING task.

A.6. Human Learning Evaluation

We evaluate the degree corrections from CORGT help humans learn for the DRAWING task by recruiting 60 crowdworkers
on Prolific, split evenly between two control groups (random feedback and no feedback) and the experiment group, to try
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Table 3. Users are significantly more likely to prefer over Nearest Neighbors for the WRITING and STEERING tasks, and even
outperforms Ground Truth feedback for the STEERING task. Asterisk (*) marks results that are statistically significant (p < 0.05) with
multiple hypothesis correction, using a binomial test where the null hypothesis is set to equal preference rate.

DOMAIN % CORGI PREFERRED VS. NEAREST NEIGHBORS % CORGI PREFERRED VS. GROUND TRUTH
WRITING 74+4.1" 58 £ 5.6
STEERING 59 +3.7* 60 £ 3.3"
MOVEMENT 54+ 3.1 45+2.5

drawing a target stimulus as seen in Figure 6. Each crowdworker provides three drawing trajectories, and we measure the
difference between the third and first trial in terms of error with respect to the (hidden) expert trajectory. We pay each
crowdworker 14 USD per hour. Example user trajectories can be seen in Figure 7.

Feedback generated from covers a diverse set of topics for participants in our user study. While find that 70% of
corrections focus on size (split evenly between increasing and decreasing size), several participants received feedback about
line sharpness (e.g. 13%) and straightness (10%). Additionally, there was a long tail of corrections that were only generated
once for a student (e.g. “make it stronger”, referring to the drawing line weight). Even for corrections referring to size, there
exists variation in the degree of the correction (e.g. “needs to be a bit larger” vs. “make it smaller”).

Visual Feedback Comparison Finally, we run an additional experiment evaluating providing visual feedback, instead
of language feedback, by providing a visual overlay on the drawing canvas. This naturally makes the task easier for more
stationary environments like drawing. However, observations from a user study conducted don 20 additional crowdworkers
recruited on Prolific show that while indeed participants perform on average around 10.1 points (between 0 and 100) higher
in overall task performance than students receiving language feedback from CORGI, the learning gain (change in error
from expert trajectory) is 0.39 +/- 0.48, which is lower than those provided language feedback from CORGI. This is likely
because learners, when given access to a visual overlay for this task, can immediately start to perform well, while language
identifying specific areas to improve on can be remembered long-term by students.
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Instructions:
1. You have 3 chances to try to draw the character shown to the right on the canvases below.
2. After Trial 1, click the feedback button to get a score and feedback from a hidden expert. {

(Note: The expert has its own preference on how to draw the character that is different
from the image)

3. Use the feedback to modify your attempt for Trial 2, and receive a second round of feedback.

4. After Trial 3, you will receive a final score from the hidden expert. Try to get a high score!

The character you should try to draw.
When ready to start, press the start button!

Start

Figure 6. User Interface of the Human Learning Evaluation

Start Trial #3

2 \JL

Feedback for Tr Feedback for Trial 2:

make it all a bi 2 need to use a ruler
Score for Trial 1: Score for Trial 2:

81.4249232309079% 76.20668159747282%

Figure 7. Example User trajectories with feedback from our model
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