
This paper is included in the Proceedings of the
31st USENIX Security Symposium.

August 10–12, 2022 • Boston, MA, USA

978-1-939133-31-1

Open access to the Proceedings of the

31st USENIX Security Symposium is

sponsored by USENIX.

Unleash the Simulacrum: Shifting Browser Realities
for Robust Extension-Fingerprinting Prevention

Soroush Karami, University of Illinois at Chicago; Faezeh Kalantari,

Mehrnoosh Zaeifi, Xavier J. Maso, and Erik Trickel, Arizona State University;

Panagiotis Ilia, University of Illinois at Chicago; Yan Shoshitaishvili and Adam

Doupé, Arizona State University; Jason Polakis, University of Illinois at Chicago

https://www.usenix.org/conference/usenixsecurity22/presentation/karami

Unleash the Simulacrum:

Shifting Browser Realities for Robust Extension-Fingerprinting Prevention

Soroush Karami*†, Faezeh Kalantari*±, Mehrnoosh Zaeifi±,

Xavier J. Maso±, Erik Trickel±, Panagiotis Ilia†, Yan Shoshitaishvili±, Adam Doupé±, and Jason Polakis†

†University of Illinois at Chicago, {skaram5, pilia, polakis}@uic.edu
±Arizona State University, {faezeh.kalantari, mzaeifi, xmaso, erik.trickel, yans, doupe}@asu.edu

*Joint first authors.

Abstract
Online tracking has garnered significant attention due to the

privacy risk it poses to users. Among the various approaches,

techniques that identify which extensions are installed in a

browser can be used for fingerprinting browsers and tracking

users, but also for inferring personal and sensitive user data.

While preventing certain fingerprinting techniques is relatively

simple, mitigating behavior-based extension-fingerprinting

poses a significant challenge as it relies on hiding actions that

stem from an extension’s functionality. To that end, we intro-

duce the concept of DOM Reality Shifting, whereby we split the

reality users experience while browsing from the reality that

webpages can observe. To demonstrate our approach we de-

velop Simulacrum, a prototype extension that implements our

defense through a targeted instrumentation of core Web API

interfaces. Despite being conceptually straightforward, our im-

plementation highlights the technical challenges posed by the

complex and often idiosyncratic nature and behavior of web

applications, modern browsers, and the JavaScript language.

We experimentally evaluate our system against a state-of-the-

art DOM-based extension fingerprinting system and find that

Simulacrum readily protects 95.37% of susceptible extensions.

We then identify trivial modifications to extensions that enable

our defense for the majority of the remaining extensions.

To facilitate additional research and protect users from

privacy-invasive behaviors we will open-source our system.

1 Introduction

The modern web has permeated numerous aspects of our

everyday lives and, thus, reshaped how we conduct many

sensitive and critical operations. At the heart of users’ online

experience lie web browsers, mediating a wide range of

sensitive communications and activities. Unfortunately, while

browsers are a portal to limitless potential, their rich set of

features and complex functionality can also enable or facilitate

privacy-invasive behaviors [13, 18, 28, 31, 36, 60]. As a result,

in recent years web tracking has garnered significant attention

from researchers and practitioners alike.

Due to the stateless nature of the HTTP protocol, web track-

ing has traditionally relied on the presence of cookies. However,

with users becoming more privacy-cautious and browsers

continuing to deploy anti-tracking defenses that hinder cookie-

based tracking [22, 62, 67], trackers have also evolved accord-

ingly. In fact, a wide range of techniques have been demon-

strated by researchers or found in the wild; from “supercookies”

and “evercookies” (e.g., using HSTS policies [61], internal

storage [8], or favicons [55]) to DNS-based trickery [10,19,30],

these techniques highlight the feasibility and creativity of

tracking techniques that bypass existing defenses. While

browsers may gradually adapt and prevent such emerging tech-

niques, one of the most alarming modern approaches is that of

browser fingerprinting. Prior research has demonstrated many

browser fingerprinting vectors targeting underlying system and

hardware characteristics [9,12,16,21,23,24,32,33,41–44,65].

Additionally, a more recent line of research has focused on how

installed browser extensions can be used for fingerprinting and

tracking, as each user will install a unique set of browser ex-

tensions. To make matters worse, installed extensions carry se-

mantic information that can be used to infer sensitive user traits

such as religion, sexual orientation, and medical issues [29].

Prior studies have proposed mitigations that target different

aspects of extension fingerprinting, namely preventing

techniques that target Web Accessible Resources (WARs) [50],

stylesheets (CSS) [34], and node attributes [63]. However,

no existing defense can effectively prevent DOM-based

fingerprinting [29], since many extensions intentionally

modify pages in varied and diverse ways and these changes can

be uniquely identifiable. Essentially, the root cause of behavior-

based extension fingerprinting is that any JavaScript running

in the context of the web page can see all the changes and

modifications that the installed extensions make to the page.

In this paper, we address the root cause of this robust fin-

gerprinting technique, by approaching the problem from a

fundamentally different perspective. We propose the notion of

DOM Reality Shifting,wherein we split the reality that a user ex-

periences when browsing a page from the reality that the page

can actually observe. By separating the page’s DOM, the user

USENIX Association 31st USENIX Security Symposium 735

sees the changes that an extension makes to the page, while the

page’s JavaScript cannot see those changes. In more detail, we

create a Parallel DOM in addition to the User DOM, and medi-

ate access such that extensions query, edit and interact with the

User DOM while page JavaScript is limited to interacting with

the Parallel DOM. While DOM Reality Shifting is conceptu-

ally straightforward it is fundamentally effective against DOM-

based behavior fingerprinting, yet correctly implementing it

requires handling a myriad of JavaScript idiosyncrasies, corner-

cases and real-world complexities that can undermine the secu-

rity of such a system or the functionality of web applications.

To demonstrate the feasibility of our approach we develop a pro-

totype extension called Simulacrum that implements DOM Re-

ality Shifting without the need to change the browser, through

a targeted instrumentation of Web API interfaces.

To assess the practicality of our approach we experimentally

evaluate Simulacrum across multiple dimensions. First, we

demonstrate our system’s effectiveness by deploying it against

a state-of-the-art automated DOM-based fingerprinting sys-

tem [29]. Out of 5,793 fingerprintable extensions our system

effectively hides the presence of 95.37% of the extensions. We

then measure the overhead introduced by our defense and find

that it is less than 390ms for half of the websites and ∼895ms

on average. Finally, we manually assess how Simulacrum

affects extensions’ and websites’ functionality and find that

all extensions remain unaffected, while major and minor

breakage occurs in 12% and 10% of sites respectively. To avoid

breakage, our extension’s users can allowlist trusted sites.

In summary, our research contributions are:

• We introduce the concept of DOM Reality Shifting, which

fundamentally addresses the root cause of DOM-based

browser extension fingerprinting. Simulacrum, our

prototype extension, significantly limits extension

fingerprinting without modifying the browser, thus

allowing for immediate and widespread adoption.

• We experimentally evaluate Simulacrum’s defensive and

performance impact, and demonstrate that our system ef-

fectively protects extensions while incurring a negligible

performance overhead and limited website breakage.

• We present guidelines for extension developers that

allow them to eliminate problematic fingerprintable

behaviors without affecting the extension’s functionality.

These guidelines require straightforward changes that

are trivial to implement, and can contribute to completely

eliminating DOM-based fingerprinting.

• To further reproducibility in science, we make the source

code of our system as well as the list of all domains and

extensions used in our experiments available [4].

2 Background and Threat Model

Browser fingerprinting relies on extracting unique attributes

of the user’s browser and device. Among those, the list

of installed browser extensions can be coupled with other

information to build reliable fingerprints. Browser extension

fingerprinting is indeed a real-world threat, as LinkedIn was

found trying to detect 38 different extensions [47].

Extensions rely heavily on the JavaScript language

and customize web pages by modifying the page’s DOM.

An invasive web page can observe this behavior (i.e., the

modifications made to the page’s DOM) and use it to construct

a set of behavior-based fingerprints (i.e., signatures). When a

user visits the page, the invasive page can use the fingerprints

and the changes made to determine the extensions the user

has installed. Since the extension modifies the page’s DOM,

effectively hiding the extension’s behavior from the page

without breaking the page’s functionality is a challenging

problem that prior defenses failed to truly address [29].

Threat model. We assume the attacker controls a specially

crafted web page or iframe that implements DOM-based

fingerprinting to uncover the extensions installed in the user’s

browser. In a nutshell, DOM-based fingerprinting relies on

JavaScript that leverages the Web API [38] for direct read

and write access to the DOM; by observing and interacting

with it, the attacker can deduce which extensions are installed

based on how the extensions modify the DOM. We note that

social engineering attacks that trick the user into divulging

which extensions they have installed (e.g., following a similar

strategy to [66]) and side-channel attacks (e.g., timing-based)

are considered out of scope for our defense.

Browser extensions. Users install extensions in their

browsers to expand the browser’s functionality and improve

their browsing experience [17]. Extensions offer such features

via a bundle consisting of HTML, CSS, JavaScript code, and

a configuration file called the manifest.

Security model. To reduce the threat of malicious pages

compromising browser extensions [45, 56], browsers employ

privilege separation for extensions. Specifically, extensions’

background scripts have powerful privileges but do

not have access to the DOM, and extensions use content

scripts to access the DOM, which lack the extension’s full

capabilities. Although content scripts have full access to

the DOM, they do not run in the website scripts’ execution

environment. That is, neither website scripts nor content

scripts are able to directly access one another because each

runs in its own isolated world, while sharing the same DOM.

DOM-based fingerprinting. Due to the sharing of the DOM

across the isolated worlds, invasive pages can construct DOM-

based fingerprints by observing the extension’s modifications

to the page’s DOM [59]. Prior work [29] has demonstrated

how an attacker can automatically construct an extension’s

fingerprint by capturing the extension’s DOM modifications

that alter specific fields (e.g., username, password), DOM

elements (e.g., images), or text keywords. Then, when a

victim visits a specially crafted web page that contains a

comprehensive set of elements and features, the fingerprinting

framework can compare the DOM modifications to the

previously captured fingerprints to identify the extension.

736 31st USENIX Security Symposium USENIX Association

JavaScript uses prototypes to share properties (values

and functions) and define hierarchical relationships between

objects. Prototype-based languages do not use classes to

generalize the characteristics of a set of objects. Instead,

any object can share its properties with others as part of its

prototype chain [37].

Prototypal inheritance. Effectively, the prototype chain de-

scribes the inheritance hierarchy of an object, and is used when

code tries to access an object’s attribute. During execution,

JavaScript looks for the attribute within the object itself, and

returns the attribute if found. Otherwise it recursively searches

the prototype chain until it finds (and returns) the attribute or

reaches the end of the chain (and returns undefined).

Function overriding. JavaScript can dynamically update

properties of existing objects. Programmers leverage this

behavior to wrap existing functionalities and customize their

behavior. Additionally, JavaScript can override the getter

and setter functions of a prototype’s properties to customize

prototype modifications themselves. In the Appendix we

provide code detailing how Simulacrum overrides prototype

values and functions, including getters and setters.

3 DOM Reality Shifting with Simulacrum

We present Simulacrum, a novel countermeasure against DOM-

based extension fingerprinting. Here, we provide an overview

of our design and the techniques employed by our system for

hiding the presence of extensions from malicious or invasive

webpages. The core strategy behind our defense is to create a

split reality between what a user experiences when browsing a

page and what the page can actually observe. Specifically, Sim-

ulacrum hides the artifacts created by extensions modifying the

DOM by creating an alternate reality for the page that does not

include any of the DOM modifications of installed extensions.

The user’s reality includes not only the page but also all DOM

modifications performed by extensions, thus offering users the

same browsing experience with enhanced privacy protections.

DOM reality shifting. Simulacrum places the webpage

JavaScript in a parallel reality that does not contain extensions’

DOM fingerprints by creating a simulacrum of the User DOM

that omits the extensions’ DOM-fingerprints, the Parallel

DOM, and routing all the webpage’s DOM requests to the

Parallel DOM. To isolate the altered reality, Simulacrum

prevents the webpage from accessing the User DOM, the

browser-created DOM that the user sees and that contains

all the modifications made by the webpage and the user’s

extensions. In addition, Simulacrum maintains the webpage’s

altered reality by mediating all access to and ensuring

consistency between the two DOMs.

Modification mirroring. Simulacrum replicates changes

between the User and Parallel DOMs depending on the origin

of the request. For modifications originating from the website

or user input, Simulacrum replicates the modifications in the

Parallel DOM. However, Simulacrum limits modifications

made by an extension to the User DOM.

Query routing. Simulacrum automatically routes queries

to either the User or Parallel DOMs depending on the query’s

origin. When an extension requests access to the DOM, it

automatically accesses the User DOM. However, when the

webpage accesses the DOM, our system seamlessly routes

the request to the Parallel DOM. As a result, the website is

unable to detect DOM-fingerprints left behind by extensions

because in the website’s DOM reality the extension’s changes

simply do not exist and, thus, no fingerprintable artifacts are

left behind by the extensions’ functionality.

Interception. Simulacrum controls all requests and per-

forms the necessary replication functionality by wrapping the

DOM interface with an intelligent router. We achieve this by

being the first script to execute and overriding the appropriate

DOM interfaces before the website’s JavaScript executes.

4 System Implementation

This section covers Simulacrum’s implementation details and

the technical challenges that it addresses to effectively achieve

DOM Reality Shifting. Here, we use the following notation: e

refers to a JavaScript object of type (i.e., respecting the inter-

face) Element, and n refers to a JavaScript object of type Node.

4.1 Primitives

Creating the Parallel DOM. To preserve compatibility, the

Parallel DOM created and maintained by Simulacrum must

include every aspect of the User DOM except for the DOM

modifications introduced by the user’s extensions. Simulacrum

instantiates the Parallel DOM by cloning the User DOM after

it receives the DOMContentLoaded, which is triggered by the

browser after it finishes loading and parsing the page’s HTML

and without waiting for the stylesheets, images, and subframes

to load. Simulacrum maintains the Parallel DOM throughout

the page’s life cycle by continually (1) ensuring the Parallel

DOM’s consistency with the User DOM and (2) preventing the

propagation of extension-driven changes to the Parallel DOM.

Equivalent elements. Propagating DOM modifications

between the User and Parallel DOMs requires a method for

accurately mapping equivalent elements across them. We

create this mapping using id attributes, which are unique

within a Document [14]. That is, for an element with an id

value of "node_id" in the User DOM, Simulacrum calls

parallelDOM.getElementById("node_id") to access the

equivalent element in the Parallel DOM. When DOM elements

lack an id attribute, we assign them a unique random value

before creating the Parallel DOM. In addition, we handle

elements created after the Parallel DOM is instantiated. To

handle this, Simulacrum wraps functions that create new

DOM elements (e.g., document.createElement()) with

logic that assigns them a unique id.

USENIX Association 31st USENIX Security Symposium 737

Simulacrum implements a function, getEquivalent(e),

to return the element equivalent to e from the other DOM.

First, the function checks whether the provided e originates

from the User DOM or Parallel DOM; if e does not originate

from either (i.e., e is not attached to either DOM), the

function returns e. Next, if the id of e exists in both DOMs,

then the function returns the element with the same id

(i.e., the equivalent element) from the non-originating

DOM. Otherwise, the function returns null. In practice,

websites might use the same ID for multiple elements. If the

getEquivalent() function detects non-unique IDs, it uses

querySelectorAll("[id=’node_id’]") to get the list of

all elements with id=’node_id’. Then, if the element is

the i-th element with node_id in one DOM, the equivalent

will be the i-th element with node_id in the other DOM. For

simplicity, in the remainder of this paper we will only mention

getElementById for finding equivalent elements.

Cloning. The standard JavaScript method for making node

copies, cloneNode(), does not copy custom properties or

the source object’s event listeners. To fix the limitations of

cloneNode(), Simulacrum uses a custom deepClone() func-

tion. After making a clone with cloneNode(), deepClone()

uses Object.keys() to get all the custom properties and

transfer them one by one to the cloned node.

Unfortunately, JavaScript does not provide an API for

accessing the list of all event listeners for each node. The

Element andHTMLElement interfaces provide APIs for setting

and getting event listeners (such as HTMLElement.onclick),

and deepClone() uses these APIs to check for and clone event

listeners on the node. However, JavaScript does not provide

a direct way for accessing the event listeners that are set using

EventTarget.addEventListener(). Simulacrum over-

rides this function to intercept all invocations of it and collect

(and, later, clone) the event listeners that are set for each node.

Referencing original functions. Simulacrum needs access

to the original versions of the functions it overrides to affect

its operations on the DOMs. Before overriding them, we store

the methods and functions of these interfaces in a hash table

(accessible only by the Simulacrum content script).

4.2 DOM-accessing APIs

The DOM API is incredibly complex, comprised of hundreds

of interfaces and thousands of functions. However, we only

need to override APIs that have either read or write access to

the DOM; Simulacrum wraps the original functions with logic

to restrict the webpage’s access to the User DOM.

Read access. Simulacrum wraps functions to ensure that

JavaScript code run by a webpage reads from the Parallel DOM.

For example, Element.querySelector() has read access

to the DOM, and we override it to query the parallel DOM.

Write access. Simulacrum wraps functions with write

access. The write access wrappers apply the necessary DOM

modifications that originate from website scripts to both DOMs

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

D
oc

um
en

t

Ele
m

en
t

N
od

e

H
TM

LE
le
m

en
t

Eve
nt

Tar
ge

t

H
TM

LS
cr

ip
tE

le
m

en
t

H
TM

LI
np

ut
Ele

m
en

t

H
TM

LA
nc

ho
rE

le
m

en
t

H
TM

LI
m

ag
eE

le
m

en
t

w
in
do

w

O
bj
ec

t

H
TM

LO
pt

io
nE

le
m

en
t

D
O
M

Tok
en

Li
st

Eve
nt

D
O
M

R
ec

tR
ea

dO
nl
y

H
TM

LI
Fra

m
eE

le
m

en
t

H
TM

LT
ex

tA
re

aE
le
m

en
t

H
TM

LL
in
kE

le
m

en
t

M
ut

at
io
nO

bs
er

ve
r

H
TM

LS
el
ec

tE
le
m

en
t

H
TM

LS
ty
le
Ele

m
en

t

H
TM

LM
et

aE
le
m

en
t

H
TM

LF
or

m
Ele

m
en

t
Attr

D
O
M

R
ec

t

D
O
M

Im
pl
em

en
ta

tio
n

In
te

rs
ec

tio
nO

bs
er

ve
r

H
TM

LC
an

va
sE

le
m

en
t

In
te

rs
ec

tio
nO

bs
er

ve
rE

nt
ry

SVG
Ele

m
en

t

W
e

b
s
it
e

s

Figure 1: Most prevalent prototypes across top 10k websites.

and ensure that they are synchronized (i.e., consistent). For ex-

ample, Element.append(<newElement>) has write access

and the wrapper appends <newElement> to both DOMs.

Identifying APIs. While Document,Element andNode are

obvious items to be added to our overriding list, an automated

and systematic approach was necessary for identifying other

commonly used interfaces to read from or write to the DOM.

We developed a Chrome extension, called VisibleJS, that

records all function invocations that occur during the execu-

tion of JavaScript code on a page. VisibleJS overrides all

the functions implemented by JavaScript and logs the func-

tions each time the page’s code invokes them, using the code

shown in Listing 3 (Appendix). For each function invocation,

VisibleJS analyzes the arguments, returned value, and re-

ceiver. If at least one of those is an instance of Node or a DOM-

related object (e.g., DOMTokenList and DOMStringList),

then it records the function as one with access to the DOM.

Inspired by prior approaches on quantifying the prevalence

of browser features [54], we chose to use the 10K most popular

sites (according to the Alexa ranking) to determine commonly

used interfaces. We use Selenium, ChromeDriver, and

VisibleJS to capture the functions used by each site that ac-

cess the DOM. Figure 1 shows the number of websites that use

at least one function of the 30 most popular interfaces. Overall,

our experiment uncovered a total of 135 interfaces (and 1,532

functions) that interacted with the DOM among the top 10K

websites. However, as one might expect, not all interfaces are

equally popular, as more than half (70) of the interfaces are

used by less than 1% of the websites. Balancing the popularity

of the functions and the effort required for manually overriding

each function, we decided to override the 75 most popular

interfaces. In addition, we override all interfaces that inherit

from the Node interface (some of them are not used by the top

10K websites). In total, Simulacrum overrides 156 interfaces.

VisibleJS lead us to certain interesting findings, which

shed light on the intricacies and complexities of the DOM

API’s interfaces. For instance, we found it surprising that

XMLHttpRequest interacts with the DOM. XMLHttpRequest

is a commonly used interface for interacting with servers.

However, XMLHttpRequest’s responseXML argument

returns an object that implements the Document interface and

can then be appended to the DOM.

738 31st USENIX Security Symposium USENIX Association

4.3 Function Overriding

Here, we detail the processes Simulacrum employs for overrid-

ing read and write functions available through the DOM API.

Categorization. We first categorize functions depending on

their type of DOM interactions. Table 5 (Appendix) displays

different function examples for each category with their over-

ridden counterpart. We provide simplified versions of the ac-

tual call invocations throughout the text to improve readability.

Simple getter. This category of functions returns

static information about the DOM. For example,

document.getElementsByTagName('div') returns all the

div elements of the DOM, and e.hasAttribute('src')

returns true if the object e has a src attribute. Sim-

ulacrum overrides these functions so they return the

result of their execution on the parallel DOM. Ac-

cordingly, it replaces the examples given above with

parallelDOM.getElementsByTagName('div') and

parallelDOM.getElementById(e.id).hasAttribute('src').

Active getter. This category of functions cannot be executed

on the Parallel DOM. For example, e.scrollTop returns the

number of pixels that the element’s content is scrolled verti-

cally. However, since the Parallel DOM is not visible to users,

this value will always be zero for any element tested. As such,

for this type of function we first check if e has an equivalent

in the Parallel DOM (thus ensuring that it was not the product

of an extension), and then run this function on the User DOM

to obtain the appropriate value that should be returned.

As another example, document.activeElement returns

the element in the DOM that currently has focus. Since the

Parallel DOM is not visible, its elements cannot have focus.

Thus, we run this function on the User DOM and return the

equivalent element on the Parallel DOM. If the element that

is currently focused was created by an extension, we return its

first ancestor not added by an extension (i.e., its first ancestor

that has an equivalent in the Parallel DOM).

Simple setter. Functions in this category modify the

structure of the DOM or a node’s attribute. To replicate such

DOM modifications, we run the function on both the function

receiver and the equivalent of the receiver. For instance,

when a webpage’s script invokes e.innerHTML = "text",

the wrapper checks that the id exists in the Parallel DOM.

If it does exist, then the wrapper sets the innerHTML of e

and its equivalent object. For example, if the Parallel DOM

owns e, then the wrapper runs e.innerHTML = "text" and

document.getElementById(e.id).innerHTML="text".

Active setter. Functions in this category do not directly

modify the DOM. As such, we simply direct these to the

User DOM. For example, e.requestFullscreen() results

in the element being displayed in full-screen mode. The

wrapper for this function first checks the element’s owner

document. If the owner document is the Parallel DOM, we find

its equivalent element in the User DOM and run this function

on it. Otherwise, we simply execute the function.

Forwarding arguments. It is important to note that any of

the functions in the mentioned categories might have argu-

ments. Almost all arguments can simply be passed to the corre-

sponding functions. However, if an argument is a DOM object

(an object of type Node, Element, etc.), the wrapper might

need to invoke the function with the equivalent of arguments.

For instance, parentNode.insertBefore(newNode,

refNode) inserts the newNode before the refNode, which

is a child of parentNode. In this case, Simulacrum uses the

overriding strategy used for the simple setter category. That

is, it runs this function two times, once for parentNode and

once for its equivalent one. Unlike the simple setter category,

the insertBefore function receives two DOM objects as

arguments and, as a result, the wrapper locates and passes the ar-

guments equivalentNewNode and the equivalentRefNode.

While the wrapper uses getEquivalent(refNode) to find

the equivalent version of refNode, the newNode does not have

an equivalent node because it is not connected to a DOM yet.

Thus, the wrapper creates a deepClone() of newNode and

uses that for equivalentNewNode.

Interfaces of the DOM API. The DOM API is structured

around different Interfaces effectively grouping JavaScript

objects with common state and behavior together. Note that

all objects in JavaScript are instances of the Object class,

which is on the top of the prototype chain. For the interested

reader, Figure 6 (Appendix) shows a partial representation of

the DOM API with some of its interfaces.

Node interface. Every node of the DOM tree is rep-

resented by an object of type Node, which also includes

any interfaces inheriting from it (notably Attr, Document,

Element [14]). The Node interface describes properties (e.g.,

nodeName, parentNode) and methods (e.g., cloneNode(),

normalize()) that are shared amongst all DOM objects [14].

We wrapped 14 properties and 15 methods in Node’s prototype.

Document interface. This interface represents the result of

parsing the page, and grants access to the DOM. It describes

the common properties (e.g., title, bgColor) and methods

(e.g., querySelector(), createElement()) for any kind of

document [14]. We note that this interface exposes properties

for setting event handlers (e.g., onclick,) [14]; these are in

the active setter category, and we set these event listeners in the

User DOM. In practice, the User DOM fires the events because

the Parallel DOM is in the background. During the execution

of callback functions from event handlers, as with any other

JavaScript function, Simulacrum applies modifications to both

the DOMs. The Document interface also allows the creation

of specific DOM objects [14]. In particular, Simulacrum needs

to wrap the createElement(), createElementNS(), and

createDocumentFragment() methods to forcefully assign

a value to the id attribute of new elements created through

this interface (see §4.1). Finally, createTreeWalker()

and createNodeIterator() instantiate objects that help

JavaScript perform DOM traversal [14]; Simulacrum uses

the simple getter strategy to prevent them from reading

USENIX Association 31st USENIX Security Symposium 739

the User DOM. More specifically, Simulacrum’s wrapper

for document.createTreeWalker(root) converts it to

parallelDOM.createTreeWalker(equivalentRoot).

This limits the webpage’s access to the Parallel DOM. In the

end, we override 264 properties and 40 methods.

Element interface. All elements in the DOM inherit a set of

methods and properties common to all types of elements from

Element. As shown in Figure 6, each element object derives

from either HTMLElement or SVGElement. Both of them

count several descendant interfaces: 72 for HTMLElement,

and 71 for SVGElement [14]. HTMLElement serves as the base

interface for HTML elements. Some elements directly derive

from this interface, while others implement this interface

using another interface that inherits it. For example, <footer>

elements directly implement HTMLElement, while <video>

elements implement HTMLVideoElement, which inherits

from HTMLMediaElement, which inherits from HTMLElement.

Additionally, all the SVG elements of the SVG language

inherit the SVGElement interface. Simulacrum wraps all

the methods and properties of the Element interface and its

descendants with an appropriate overriding strategy. To that

end, we manually analyzed all 1,532 methods and properties,

so as to choose the correct overriding strategy for each case.

Observer interfaces. The Web APIs provide different ob-

servers allowing JavaScript executed in the browser to observe,

be notified, and react (using callback functions) to updates in

the state of DOM objects. Simulacrum needs to override three

observers: ResizeObserver, IntersectionObserver and

MutationObserver [14, 15, 68]. Listing 4 (Appendix) gives

examples that demonstrate the three observers.

ResizeObserver interface. Objects of this interface monitor

changes to the size of elements (size may change for various

reasons, such as changes in the size of the browser window).

The ResizeObserver’s constructor receives a callback

function. Each time the size of an observed element changes,

the browser notifies the observer by executing the provided

callback function. The observe method starts the observation

of the specified element and identifies the target of interest.

We use the active setter strategy for overriding the observe

function. That is, Simulacrum prevents a webpage from

observing an element that does not exist in the Parallel DOM.

IntersectionObserver interface. This interface provides

the ability to observe changes in the intersection of a

target element with another object called the root. The

IntersectionObserver’s constructor receives a callback

and an optional configuration variable which, when provided,

defines the root. The root descends from a specific target

or the viewport. If the constructor does not include the

configuration argument, the observer assigns the viewport

as the root. Simulacrum wraps two functions: first, the

IntersectionObserver’s constructor to configure a proper

root for its object. To do so, the wrapper checks that the config-

uration argument contains a root and that it exists in the Parallel

DOM. If so, it uses userDOM.getElementById(root.id)

to replace the root with the one from the User DOM. Second,

we wrap the observe function using the active setter strategy,

which prevents pages from using this API to detect extensions.

MutationObserver interface. This interface allows

scripts to observe changes made to the DOM. The

MutationObserver’s constructor receives the callback

function. The observe method receives the target node and

the observer configuration. The configuration determines the

types of DOM changes the observer will react to. For example,

by passing a configuration with childList: true and

subtree: true, the observer triggers the callback for DOM

modifications that change the list of children attached to the tar-

get node or the nodes in its subtree. The list of children changes

through the addition or removal of nodes. The observe

wrapper uses a slightly more complicated version of the active

setter strategy. The MutationObserver invokes the callback

when it observes modifications to the target node and the target

node’s descendants. For instance, if the target is the <html> ele-

ment, the observer receives notifications for new elements that

the browser appends to any location in the page. Subsequently,

the wrapper adds functionality to avoid invoking the callback

when an extension mutates the DOM. To that end, Simulacrum

overrides MutationObserver’s constructor to modify the

incoming callback. The callback modifications cause it to skip

DOM mutations originating from an extension and only invoke

the original callback for those DOM changes that originate

from the webpage’s scripts. Listing 5 in the appendix shows the

wrapper code. The wrapper replaces the original callback with

newCallback. The argument[0] for newCallback is an ar-

ray of mutation records observed by the MutationObserver.

The wrapper uses the filterMutations() function to filter

out the mutations caused by an extension. If any mutations

remain, the wrapper invokes the original callback with the

remaining webpage-only mutations.

The filterMutations() function operates based on

the attributes of each mutation’s record. For example,

if an extension appends a new <p> element to the User

DOM, mutation.type will be "childList", the value of

mutation.target will be the reference to the parent of the

<p> element (i.e., the element that it has been appended to)

and mutation.addedNodes refers to the <p> element. The

filterMutations() function then checks the Parallel DOM

for its equivalent of <p> and mutation.target. In this exam-

ple, since<p> is injected by an extension and is not a child of the

Parallel DOM’s version of mutation.target, the function

filters out the current mutation from the mutation array.

In another example, if one of the webpage’s script modifies

the src attribute of an element, the mutation.type

will be "attributes", the mutation.target will be a ref-

erence to the element, and the attributeName will be

"src". Based on mutation.type, the filterMutations()

investigates the attributes by comparing the src attribute of

the element with the src of its equivalent from the

non-originating DOM. In this case, it does not filter out the

740 31st USENIX Security Symposium USENIX Association

current mutation out of the mutation array because the src

value from both DOMs are equal. Thus, the wrapper invokes

the original callback with the remaining mutations.

Other interfaces. We use an element’s id to find equiv-

alents in the two DOMs. Objects that do not implement the

Element interface and lack an id require a different approach;

the key observation for these objects is that they are connected

to an element. Thus, to find their equivalent we leverage the

element they are connected to. E.g., element.classList

returns an object that implements the DOMTokenList

interface, which has functions like add() for modifying

the object. When the page calls tokenList.add("name"),

we also call equivalentTokenList.add("name") to

propagate this to the other DOM. Since tokenList does

not implement Element, we use element to find the

equivalent, and equivalentElement.classList to set

equivalentTokenList. Accessing the connected element

differs for different non-element objects. Some non-element

objects implement properties, for example ownerElement,

parentElement, or parentNode, which provide direct

access to the connected element. However, other objects

do not provide a direct mechanism for accessing their

connected element (e.g., DOMTokenList). For indirect cases,

Simulacrum automatically adds an owner element property

to these objects the first time they are called. For example,

element.classList.add("name") modifies the object

that is returned by element.classList. Indeed, the call

results in two API calls: 1) element.classList returns

a DOMTokenList, 2) tokenList.add("name") adds the

string to the list. In the wrapper function of classList, the

wrapper sets element as the owner element of the returned

DOMTokenList object. Therefore, in the add() function,

Simulacrum can get the owner element, which it can then use

to find the owner of non-element’s equivalent.

It is important to emphasize that knowing the owner

element is not sufficient for finding the equivalent object. In

addition to the owner element, Simulacrum needs to know the

function that was called for getting this object. For example,

the Element.classList, HTMLLinkElement.relList, and

HTMLIframeElement.sandbox properties return an object

that implements the DOMTokenList. After finding the equiv-

alent owner element, we need to run the proper function to

get the equivalent non-element object. To do this, the wrapper

function stores the API call for accessing the object, which the

wrapper later uses to get the equivalent non-element object.

4.4 Additional Security Precautions

During our design and development process we accounted for

potential attacks against Simulacrum and incorporated appro-

priate defenses to prevent circumvention of our protections.

IIFE. As mentioned in §4.1, Simulacrum stores the original

version of all the interfaces in a hash table. If attackers are able

to access the original interfaces, they can replace the overrid-

den functions with the original ones and access the User DOM.

To prevent this attack, Simulacrum leverages Immediately-

invoked Function Expressions (IIFE) for isolating functions

and variables. That is, we encapsulate our system in an anony-

mous function that the JavaScript environment executes imme-

diately. In essence, this allows us to define our logic within an-

other function while the inner functions have access to the vari-

ables in the outer function’s scope. Using this approach Sim-

ulacrum has access to the global scope of the webpage but pre-

vents the webpage’s JavaScript code to access objects like the

hash table of original interfaces that are used by Simulacrum.

Position-based attacks. Simulacrum executes active getter

functions on the User DOM. While they cannot be executed

on elements injected by extensions, they can be used to get the

position of other elements. Since injected elements can affect

other elements’ position, attackers could potentially identify

installed extensions by observing changes in the positions

of elements. To prevent this, Simulacrum adds <div> and

 elements with random sizes at different locations

throughout the User DOM. Since these do not exist in the

Parallel DOM they are not visible to the websites’ scripts and,

thus, attackers cannot infer whether changes to the positions of

elements occur due to injections by extensions or the random

noise introduced by our system. It is important to note that

these noise elements do not really impact the user’s browsing

experience as they simply introduce empty spaces around

other elements (see Figure 8 in the Appendix).

While adding noise prevents attacks against extensions that

inject elements, this might not work for extensions that remove

elements. If an extension removes an element from the User

DOM, the element will not be removed from the Parallel DOM;

however, from the changes in the location of other elements an

attacker might be able to infer that extension’s presence. There

are two categories of extensions that remove elements from

websites. The first category is extensions that block scripts

which are responsible for creating elements (e.g., ad-blockers).

The second category includes extensions that explicitly

remove elements which are already connected to the DOM.

While Simulacrum cannot observe the behavior of the first

category, the behavior of the second category is DOM-based

and can be detected by Simulacrum. To that end, when an

element is removed by an extension, Simulacrum replaces the

removed element with another element of the same size; this

prevents changes to the location of other elements. We have

experimentally found that such extensions are very rare (only

59 fingerprintable extensions from §5 remove an element). As

such, Simulacrum only activates this defensive mechanism

against element removal when the user has one of these 59

extensions installed; in our prototype, this is done through a

hard-coded list but can easily be enforced based on a list that

is fetched from a server (similarly to EasyList [2]).

Order of execution. If the attacker’s code executes before

Simulacrum, they can access the original interfaces. To

prevent this, Simulacrum injects its script into the webpage’s

USENIX Association 31st USENIX Security Symposium 741

head

html

bodyhead

script div input

Simulacrum	

run_at:	document_start

script

Content	

Script

DOMContentLoaded

Other	extension		

run_at:	document_start

Content	

Script

html

bodyhead

script div input

html

bodyhead

script div input

Parallel	DOMUser	DOM

ti
m
e

Figure 2: Different stages in a webpage’s lifecycle.

execution context prior to DOM construction and before

the browser executes any other script. Simulacrum achieves

execution priority by setting run_at: "document_start"

in the extension’s manifest, which causes the browser to

execute the extension’s content scripts at the beginning of

DOM construction and before any of the webpage’s scripts.

In this way, we guarantee that the webpage cannot recover the

originals of the functions that we override by preemptively

executing before Simulacrum’s content scripts

However, when more than one extension sets run_at:

"document_start", the execution order is decided by the

browser, based on the order of their installation time: the

extension that was installed first will be executed before

later-installed ones [46]. To ensure its prioritization, Simu-

lacrum leverages the reordering technique proposed by Picazo-

Sanchez et al. [46]. This approach uses the management permis-

sion to change the order of extensions in the execution pipeline

by disabling and re-enabling them, resulting in these extensions

being treated as if they had been installed after Simulacrum.

Figure 2 shows the different stages of loading a website

when Simulacrum is present. The content script of Simulacrum

runs at document_start. At this point, the browser has not

started to parse the HTML page or construct the DOM. Sim-

ulacrum’s content script creates a head element and appends

its script to it. This script overrides the interfaces mentioned

previously and then removes the head element from the

page to prevent any conflict with the website’s head element.

Simulacrum reorders the execution pipeline of content scripts

and will be the first script that executes in the webpage.

Moving to the next area of the diagram in Figure 2, the browser

starts to construct the DOM. Right after constructing the

DOM, it fires the DOMContentLoaded and Simulacrum clones

the DOM to generate the Parallel DOM. From this point

forward, extensions’ fingerprints remain on the User DOM and

they will not be accessible by website scripts. Simulacrum’s

event listeners also fire before the webpage’s and the other

extensions. JavaScript orders the firing of event handlers based

on when the listener was set. That is, even if multiple scripts

set a listener for the DOMContentLoaded event, the browser

invokes the Simulacrum’s callback first (creating the Parallel

DOM) because it is the first script that set a listener for the

DOMContentLoaded event. In addition, JavaScript executes as

a single thread; therefore, Simulacrum’s event handler blocks

other events from firing until Simulacrum’s event handler

completes (i.e., there is no race condition).

iframes. Simulacrum uses the "all_frames": true man-

ifest file setting to inject its content scripts into all iframes

so that it can protect against fingerprinting by code running

in these iframes. However, due to browser implementation

subtleties, iframes with a blank or undefined src attribute

are not covered by the all_frames setting. Thus, an attacker

can append <iframe id="ifrm"></iframe> to the DOM,

retrieve the original version of getElementById through the

ifrm.contentWindow.Document.prototype.getElementById

lookup chain, and bypass Simulacrum. To inject Simulacrum’s

content scripts into such iframes (as well as iframes with

src attributes of javascript:* or about:*), Simulacrum

includes "match_about_blank": true in its manifest. This

setting successfully injects the content scripts into all iframes.

Interestingly, this bypass vector has been overlooked by some

previously proposed countermeasures (e.g., [34]).

Another iframe-related circumvention can occur when

fingerprinting code running in the parent page of an iframe

exploits a race condition between the time points when an

iframe is created and when Simulacrum’s scripts override its

DOM. The resulting attack is identical to the previously-stated

lookup chain, depending on quick access to the original

elements. Though this was reported in 2017 [52], it was

never fixed, and popular privacy extensions (e.g., Privacy

Badger [3]) are vulnerable to this attack. We prevent this attack

by blocking all accesses to the iframe’s contentWindow and

contentDocument from the parent page before Simulacrum

has wrapped the iframe’s functions. To that end, the wrappers

of contentWindow and contentDocument check Simu-

lacrum’s execution state inside the iframe; if it has completed,

they return the function’s result or undefined otherwise.

Overriding prototypes. The overriding approach

from [49] would allow attackers to delete functions and revert

them to the original function pointers. To prevent this and

protect objects the authors used Object.freeze after the

virtual machine layering process. In Simulacrum, as shown in

Listing 1 (Appendix), we override prototypes and not objects.

Our approach has two advantages; first, deleting functions will

not revert them to the original ones. Second, since functions

are not frozen, Simulacrum allows websites and extensions

to wrap functions (i.e., they can add another layer on top of

ours) which allows them to maintain their functionality.

5 Experimental Evaluation

Here we present a comprehensive evaluation that explores

multiple dimensions of Simulacrum’s performance.

742 31st USENIX Security Symposium USENIX Association

Simulacrum’s effectiveness. As our main goal is to

mitigate browser extension fingerprinting that leverages

DOM-based modifications, we need a robust and accurate

fingerprinting system to evaluate our approach. To that end, we

leverage the code and dataset of Carnus [29], as it is the only

proposed system that automatically generates unique signa-

tures that identify extensions based on their DOM interactions.

While Carnus has modules for different types of extension tech-

niques (e.g., detecting Web Accessible Resources) we focus on

the DOM-based module. To account for the dynamic nature of

extension behavior and to improve robustness, Carnus requires

at least 90% of a fingerprint to match the DOM modifications

to infer that an extension is installed. In their experiments,

Karami et al. [29] reported 5,793 extensions being detected

by Carnus based on their DOM-based fingerprints. To test the

effectiveness of our proposed countermeasure, we replicate

that experiment using the exact dataset of extensions. We use

Selenium to open a fresh browser installed with Simulacrum.

We then, using each of the 5,793 extensions installed, direct

our browser to the website running Carnus’ honeypage that

will attempt to detect the extension. We find that Simulacrum

is highly effective as it successfully prevents Carnus from

detecting 5,553 (95.86%) of the extensions. In comparison,

CloakX [63] could only protect up to 751 (12.96%) of these

extensions [29] by randomizing a subset of node attributes.

Partial fingerprints. We further explore the effect of our

defense and investigate extensions that Carnus is not able

to detect, and find that certain extensions manage to inject

a subset of their fingerprints in the Parallel DOM. This can

occur due to various behaviors which we analyze over the

following paragraphs, and Carnus does not detect them as it is

not able to reach the 90% threshold required for identifying the

extensions. Nonetheless we further assess the robustness of

our defense by training Carnus on these partial fingerprints to

examine whether it is able to identify any of these extensions.

To find extensions that partially inject fingerprints into the

Parallel DOM, we modify Carnus to calculate the percentage

of fingerprints that are injected into the Parallel DOM. This

allowed us to identify 37 extensions with partial fingerprints.

Our analysis reveals that the partial fingerprints of 28

extensions are unique enough within the entire collection of

extensions fingerprints to identify those extensions. Therefore,

a total of 268 extensions remain fingerprintable against

Simulacrum, which amounts to only 4.63% of the extensions.

Next we further explore the underlying reasons that lead to

extensions not being protected by Simulacrum.

Document_start. We conducted an experiment on the 268

fingerprintable extensions to identify those that modify the

DOM before the DOMContentLoaded event, which results

in their fingerprints being included in the Parallel DOM.

To that end, we installed each extension separately and

visited the honeypage, taking a snapshot of the DOM at the

DOMContentLoaded event, which we compared to the unmod-

ified DOM. We find that 245 (4.22% overall) extensions make

modifications before DOMContentLoaded as they are config-

ured to run their content scripts at document_start, and alter

the DOM before the construction of the Parallel DOM.

Next we evaluated the necessity of running the content script

at document_start for extensions that modify the DOM be-

fore the DOMContentLoaded event. To that end, we randomly

chose 20 extensions (that are in English and have at least 1k

users) out of the 240 extensions, and modified the run_at

attribute value in their manifest file from document_start

to document_idle. We found that 19 extensions maintained

their functionality despite our modification. Only one exten-

sion did not fully operate after the modification, which we

believe was due to improper design patterns. Specifically, the

developer of this extension implemented a non-critical logic

at DOMContentLoadedEvent’s event handler and because we

inject the code at document_idle, it does not work properly.

Injected scripts. While extensions have direct and full

access to the DOM and are able to make all necessary DOM

modifications through their content scripts, developers may

decide to inject a <script> element into the page to make

DOM modifications. To further explore this, we modify the

268 extensions to prevent them from running their content

scripts at document_start. To achieve this, we replaced

document_start with document_idle in the manifest file

and background script. Second, we created another browser

extension to identify <script> elements injected into the

DOM. Third, we installed each modified extension besides

Simulacrum and the new extension for collecting injected

<script> elements and visited the Carnus honeypage; if we

observe any injected <script> element we can conclude that

it was injected by the extension. Finally, we identify if this

injected <script> makes any DOM modifications. Since

the injected <script> will not be transferred to the Parallel

DOM, any modification in the Parallel DOM are the result of

running this <script>. To find these modifications, we simply

compare the Parallel DOM with its clean version. This way we

found 40 (0.69% of the total) extensions that inject a <script>

element into the DOM, and among these 17 extensions make

modifications before the DOMContentLoaded event.

Effectiveness. Table 1 summarizes the Simulacrum’s

effectiveness. Overall, we find that it is highly effective at pro-

tecting extensions from DOM-based fingerprinting as it is able

to protect 95.37% of the extensions that can be fingerprinted

by Carnus. For the remaining 268 extensions that cannot be

protected, we find that the majority is due to extension mod-

ifications being made at document_start. While our system

cannot hide these extensions, we propose straightforward

strategies for addressing the underlying issues in §6.

Simulacrum’s impact. Next, we seek to measure the

extent to which our defense affects the user experience. To that

end we visit the top 1k websites and comparatively measure

the overhead introduced by the presence of our extension,

versus a browser without our extension. We focus on two key

aspects: the page loading time and impact on functionality.

USENIX Association 31st USENIX Security Symposium 743

Table 1: Breakdown statistics for Simulacrum’s effectiveness.

Extensions 5,793 (100%)

Protected 5,525 (95.37%)

Unprotected 268 (4.63%)

Document_start 245 (4.22%)

Script injection 40 (0.69%)

Partial fingerprints 28 (0.48%)

10

20

30

40

50

60

70

80

90

100

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

23.15%A
P

I
C

a
lls

 (
%

)

Website

Figure 3: DOM-interacting APIs calls in the top 10K sites.

Function overriding. JavaScript has a set of functions for

interacting with the DOM; by overriding them, Simulacrum

adds overhead to their execution time. Here we investigate

the top 10k websites to better understand the performance

penalty introduced by our defense. To that end, we first use

our VisibleJS extension to collect all the websites’ API calls.

In this experiment, we just collect the API calls that are

executed after firing the DOMContentLoaded event, since only

they incur Simulacrum’s overhead. To identify which calls

interact with the DOM, we assess the type of the arguments,

receiver, and return values of all API calls. If they are a node

or any other DOM-related object, we consider the API call

to be interacting with the DOM. We exclude API calls that

are used for managing data structures, such as functions that

are implemented by the Set, Array, or Map interfaces. As

an example, while the argument of array.push(node) is a

node, we do not count it as a DOM interaction.

Figure 3 depicts the percentage of API calls that interact

with the DOM in each of the top 10K websites. We find that

for 85% of the sites, Simulacrum does not intercept half of the

JavaScript API calls, while for half of the sites almost 76.85%

of the calls are unaffected. We also plot the 20 most commonly

invoked interfaces in Figure 4. The most common interface

is String, used more than one billion times in the top 10K

websites. Among these interfaces we only override the eight

highlighted interfaces as Simulacrum does not need to modify

the rest. We find that the invocations of String are 2.5x those

of Node and 31x those of Document. Generally, we observe

that the majority of JavaScript API calls do not interact with the

DOM and are thus not affected by Simulacrum. Next, we focus

on more precisely quantifying our performance overhead.

DOM loading time. In this experiment we visit the top 1k

websites with two browser instances, one that has our exten-

10
6

10
7

10
8

10
9

Stri
ng

R
eg

Exp

Ele
m

en
t

Arra
y

N
od

e

O
bj
ec

t

w
in
do

w
Set

D
oc

um
en

t

H
TM

LE
le
m

en
t

N
um

be
r

SVG
Ele

m
en

t
M

ap

H
TM

LC
ol
le
ct
io
n

D
at

e

W
ea

kM
ap

D
at

aV
ie
w

N
od

eL
is
t

Pro
m

is
e

H
TM

LA
nc

ho
rE

le
m

en
t

In
v
o

c
a

ti
o

n
s

Overridden

Figure 4: Interface invocations in the top 10K websites.

Interfaces overridden by Simulacrum are explicitly noted.

sion installed and one without, and compare the time required

for loading the websites’ DOM. To account for uncontrollable

fluctuations in the environment (network latency, OS schedul-

ing, etc.), we average the results for each website over 10 runs.

Overall, we were able to obtain both loading times for 925 out

of the 1k websites that we visited. We observed that for 19 of the

remaining 75 websites the page loaded successfully when vis-

iting with a vanilla browser but did not complete loading when

using a Simulacrum browser. The remaining 56 did not load

successfully when using a vanilla browser but, interestingly,

five of them loaded when visiting with Simulacrum installed.

In Figure 5 we present the difference in DOM loading

times for the 925 websites in both absolute and relative

measurements. We observe that 69% of those websites incur

less than a one second overhead, demonstrating the feasibility

and practicality of our approach. We also measured the delay

imposed by overriding all relevant JavaScript functions, and

the overhead of inserting noise; these amount to an average

of 14.8ms and 31ms respectively.

Regarding DOM loading times, we observe a negative differ-

ence for 63 websites (6.81%) and a positive difference for 862

websites (93.19%). In the case of negative differences, these

websites appear to complete loading faster when we visit them

with a browser that has our extension installed. We found that

half of these websites (33 out of 63) have a “speed-up” lower

than 200 milliseconds, and that only 6 of the websites appear

to surpass one second. While small, such negative differences

can be attributed to network delays. In the case of significant

differences this could be the result of our defense affecting a

website’s functionality or blocking the retrieval of content, ads,

etc., and thus complete loading faster. For the 862 websites

that have a positive difference, where our defense introduces

a delay overhead, we found that this delay is 895 milliseconds

(116% relative) on average; 563 of the websites exhibit more

than 50% relative overhead, with 254 sites between 50%-100%,

194 between 100%-200%, and 115 sites with more than 200%

of overhead, which heavily skews the overall overhead, as

can be seen in Figure 5. More specifically, we observe that the

delay for half of the websites (431 out of 862) is below 390 mil-

liseconds (38% relative) and that only 11.72% (101 out of 862)

observe delays that exceed two seconds (224% relative). When

744 31st USENIX Security Symposium USENIX Association

-4

-2

 0

 2

 4

 6

 8

100 200 300 400 500 600 700 800 900
-400

-200

 0

 200

 400

 600

 800
O

v
e
rh

e
a
d
 (

s
e
c
)

R
e
la

ti
v
e
 O

v
e
rh

e
a
d
 (

%
)

Websites (ordered)

Relative Overhead

Absolute Overhead

Figure 5: DOM loading time difference caused by Simulacrum.

extensions that remove page elements are present, Simulacrum

activates an additional protection for replacing these elements

(see position-based attacks, §4.4), and an additional overhead

of 172 milliseconds is incurred per website on average.

User experience. As the additional JavaScript code and

DOM manipulations might impact the user experience, we

experimentally quantify the impact using Google Light-

house [25]. Lighthouse is an open-source automated tool

for obtaining performance metrics and insights [25], which

provides an overall performance score based on six met-

rics; among those, we are specifically interested in the

time-to-interactive (TTI) metric as it is not affected by

network fluctuations. The TTI metric focuses on the amount of

time it takes for a web page to become fully interactive. To mea-

sure TTI, Lighthouse waits for the page to display useful con-

tent and registers event handlers for most visible page elements.

To evaluate Simulacrum on sites with heavy JavaScript us-

age we refer to BuiltWith [11], which publishes a list of popular

JavaScript technologies across the web. We select five popular

technologies and for each we randomly choose ten out of the

list of top 50 websites. We run the Google Lighthouse perfor-

mance analysis tool against each website, with and without

Simulacrum installed, and visit each website ten times in each

setup. We calculate the average TTI overhead for websites that

loaded and had a positive overhead. As can be seen in Table 2,

in most cases the overhead is less than one second, while the

largest overhead of 2.47 seconds is observed in sites built with

Bootstrap. When taking into consideration the average page

loading times recently reported for popular websites in the

US [27] (with ∼60% and 18% of pages requiring more than

10 and 30 seconds respectively) we argue that the overhead

introduced by our prototype is reasonable given the privacy

enhancements offered by our approach. We believe that this

tradeoff can be significantly improved by leveraging DOM

Reality Shifting for deploying defenses against other classes

of web attacks, which we consider as part of our future work.

Furthermore, we evaluated Simulacrum using the Celtic

Kane [7] open-source benchmark for JavaScript and DOM

speed tests. The results show that Simulacrum does not influ-

ence the duration of most test cases, as shown in Figure 7 in

the Appendix. While the DOM benchmark increases from 8ms

Table 2: Average Time-To-Interactive overhead in seconds.

Technology TTI Overhead

core-js 1.44 (17.5%)

facebook-SDK 0.99 (19.35%)

react 0.65 (16.56%)

bootstrap 2.47 (24.76%)

lodash 0.58 (16.53%)

to 38ms, overall our performance tests indicate that overhead

is negligible or within acceptable ranges when compared to

the loading times and responsiveness of modern websites.

Memory overhead. We crawled the top 1k websites with

and without Simulacrum and measured the heap usage of

JavaScript (usedjsHeapSize/jsHeapSizeLimit) using the

performance.memoryAPI (this experiment does not measure

memory consumption for same-site iframes and workers and

also ignores garbage collection). We visited websites five times

and found an average increase in consumption of only 0.25%.

Website breakage. Next we explore how our anti-

fingerprinting extension impacts the general functionality of

web applications. To evaluate websites’ functionality, we ran-

domly selected 50 websites among the top 100 Alexa list and

interacted with each website by testing common operations

with Simulacrum installed (we provide more details on our

approach in the Appendix). We opted for popular websites

as they tend to offer rich functionality and make heavy use of a

wide range of JavaScript features, and their complexity allows

us to stress test our prototype. We also note that we followed

a continuous testing approach while developing Simulacrum,

which allowed us to identify implementation peculiarities in

websites and JavaScript frameworks/libraries, which allowed

us to refine our code for handling such cases. For instance,

we initially faced some issues in Instagram that were the

result of the shallow JavaScript node cloning API, which in

turn led us to improve our implementation of the deepClone

function. Assigning an id attribute to all page elements was

also challenging for a website such as Spotify; we handled

it by keeping a record of elements that do not require an id

attribute and tuning the corresponding getter functions.

Table 3 details the breakage caused by our system, with

major breakage in 6 sites (12%). Submitting credentials in

the Google and Amazon login pages results in a crash or an

error message. LinkedIn successfully passes authentication

and displays contents of the main page, however navigating

through the website is not smooth and contents might not show

properly. Finally, product details on the main Ebay page are

missing, but we can look up items in the website’s search bar.

We also found 5 websites (10%) with minor issues that do

not drastically impact websites’ core functionality, such as

affecting the page’s appearance or certain menu options being

disabled. While our system does not affect the majority of

websites that we tested, privacy-preserving defenses typically

introduce a trade-off between privacy and functionality.

USENIX Association 31st USENIX Security Symposium 745

Table 3: Breakage in 50 randomly-chosen popular websites.

Breakage Statistics Websites

Major 6 (12%)

Authentication 2 (4%) google.com, amazon.com

Missing Content 2 (4%) linkedin.com, ebay.com

Disabled Actions 2 (4%) twitch.tv, etsy.com

Minor 5 (10%)

Disabled Elements 1 (2%) csdn.net

Appearance 2 (4%) tmall.com, office.com

Other 2 (4%) instagram.com, apple.com

Finally, Simulacrum supports allowlisting websites.

Extension breakage. While our experiments demonstrate

that Simulacrum is highly effective in hiding the presence of

installed extensions, we also need to verify that this protection

does not hinder extensions’ functionality. Therefore, we ran-

domly chose 50 English extensions from the list of protected

extensions to evaluate their functionality. For each extension,

we manually explore the extension to learn its functionality in

a clean Chrome browser, and then extensively re-evaluate its

functionality in the presence of Simulacrum. Our evaluation

shows that all of the extensions work properly and retain their

complete functionality, thus demonstrating that our system can

effectively protect the randomly chosen extensions without

hindering their functionality. We also experimentally verified

that Simulacrum does not interfere with other privacy exten-

sions that wrap APIs, by testing it with Privacy Badger [3],

AdBlock [1] and uBlock [6] across five popular news websites.

6 Discussion, Limitations, and Guidelines

Browser-based defense. While Simulacrum effectively

addresses the root cause of behavior-based fingerprinting,

our experimental evaluation reveals certain corner cases or

uncommon extension behaviors that lend themselves to finger-

printing. However, these idiosyncrasies are not fundamental

to the extension’s actual functionality and may even be the

result of developer oversight. As such, we provide explicit

guidelines for developers that allow them to protect their

extensions from being fingerprinted through minimal changes

that do not affect the extension’s functionality. We hope that

our work inspires browser vendors to consider incorporating

our defensive mechanism as native browser functionality, as

it would allow the browser to address cases that cannot be

handled by our solution due to the inherent limitations of an

extension-based defense, while further reducing overhead. We

note that this is theoretically feasible but might, nevertheless,

require significant effort or changes to a browser’s design.

Extension modification timing. For changes that occur

at document_start, modifications can be postponed to the

DOMContentloaded event without affecting the extensions’

functionality or the user experience in the vast majority of cases.

Unless this is absolutely necessary for functionality, develop-

ers should opt for running at document_idle or wait for the

DOMContentloaded event to be fired prior to making changes.

Injected scripts. We found 40 fingerprintable extensions

injecting scripts that modify the DOM instead of directly

modifying it from their content script. As the modifications

occur from a script being executed in the page’s execution

environment, Simulacrum does not exclude them from the

Parallel DOM. However, this approach does not offer any

additional capabilities, and we urge extension developers to

limit DOM-changing behavior to content scripts.

Breakage. Debugging popular websites and identifying the

root causes of breakage requires significant engineering effort

due to the use of advanced JavaScript libraries, obfuscation,

and code minification. The most common cause of breakage

early on was the shallow clone problem (see §4.1), which in-

troduced inconsistencies between the Parallel and User DOM.

Since Simulacrum is a research prototype that highlights the

efficacy of DOM Reality Shifting for preventing DOM-based

extension fingerprinting, we believe that our system’s effects

on JavaScript-heavy websites is acceptable, and should be

incorporated by browser vendors into the browser. That

engineering process would also likely address all breakage.

Simulacrum detectability. In practice, websites can

infer the presence of our extension (e.g., by observing the

id attributes that are added to elements). However, this

leaks minimal entropy compared to the entropy obtained by

fingerprinting multiple installed extensions (which can be

uniquely identifying [26, 29]), since the leaked information

is a binary attribute representing whether Simulacrum is

present (e.g., note the entropy of binary attributes compared

to more complex ones like the User-Agent or the list of

fonts [33]). Since the anonymity offered by privacy-enhancing

technologies (PETs) correlates with the number of users [20],

wide adoption of our defense would further decrease the

entropy leak (similar to any other PET, e.g., Tor [5]). If our

defense was incorporated into the browser this leak would be

eliminated. Moreover, Simulacrum has the additional privacy

benefit of preventing the inference attacks presented in [29].

Timing attacks. An interesting class of attacks are side-

channel timing attacks. This would involve page JavaScript

inferring if an extension added or modified an element due

to Simulacrum executing different code paths. Similarly,

Goethem and Joosen [64] exploited timing differences in

evaluating the web_accessible_resources property inside

an extension’s manifest file to infer its existence. In general

timing attacks are fairly tricky to implement, detect, and

prevent, yet history has shown that they only increase in

effectiveness. While such attacks are outside our current threat

model, they represent an exciting avenue for future work.

Manual analysis. Simulacrum uses different wrappers for

functions that are assigned to different categories. Categoriz-

ing functions relies on analyzing their behavior, which requires

assigning the correct argument(s) and receiver, and observing

the resulting behavior (which is not necessarily visible through

746 31st USENIX Security Symposium USENIX Association

JavaScript). Therefore, we manually analyze functions to

ensure we override them correctly. It is also important to

note that JavaScript interfaces tend to remain stable, and any

potential changes to methods can be easily handled. Moreover,

any new DOM APIs that appear can be readily integrated

following our existing implementation templates.

7 Related Work

Numerous papers have demonstrated or leveraged browser

extension fingerprinting techniques [26,29,48,51,59,64]. Sev-

eral studies over the past few years have either implemented or

proposed a wide range of anti-fingerprinting techniques; how-

ever, all of the methods differ in scope or capability from the

complete DOM-based-fingerprinting prevention implemented

by Simulacrum. As prior defenses mostly focus on other

fingerprinting techniques, those studies are complementary to

ours and, in practice, could be combined into a more holistic

and comprehensive anti-fingerprinting defense.

Prior work has enabled users to manually disable extensions

on specific websites [50, 57]. Simulacrum differs as it

works automatically without requiring user interventions

or decision-making. Other work [58] hides user interests

by randomly visiting websites, defending against a comple-

mentary fingerprinting technique. Sanchez-Rola et al. [48]

devised a timing-based method for fingerprinting extensions

and proposed modifications to the web browser’s extension

invocation to prevent the timing-based attack.

Most related to Simulacrum is CloakX [63], a defense that

modifies publicly accessible extension identifiers to prevent

fingerprinting. The modifications randomize web-accessible

resources [26,51] as well as other identifiers. However, CloakX

does not address behavioral fingerprinting and does not

prevent the majority of fingerprints generated by Carnus [29].

Conversely, Simulacrum effectively targets the root cause of

the attack, while employing a less invasive approach that does

not require modification of the user’s extensions.

Recent work proposed a countermeasure against CSS-based

extension fingerprinting [34]. Their defense creates a

mirror copy of the DOM tree using Shadow DOM, which

automatically excludes content styles from extensions. The

defense overrides the getComputedStyle method of each

element to return the style of the Shadow DOM elements so as

not to include the content styles injected by extensions. While

this work protects against a different class of fingerprinting

than Simulacrum, its proposed CSS defense would benefit

from using our techniques. It is important to note that the

Shadow DOM API [39] is not sufficient for implementing our

defense, as it was not designed to secure or hide page elements;

instead, it encapsulates elements to prevent problems such as

variable name collisions. Using it does not prevent a malicious

script from accessing the Shadow DOM’s content (even when

attached in closed mode). Therefore, the Shadow DOM does

not satisfy our security requirements. Unlike any prior work,

Simulacrum robustly overrides 1,532 functions that isolate

DOM modifications and prevents DOM-based fingerprinting.

Simulacrum extends the concept of virtual machine

layering, which creates an abstraction layer on top of the

JavaScript VM that controls sites’ access to APIs. This was

used for instrumenting JavaScript [35], enabling replay [40],

and controlling access to APIs [49,53]. Photon [35] transforms

JavaScript (outside the browser) to create a VM layer that

developers can use to instrument and evaluate their code.

Mugshot [40] captures and replays JS events using a server-

side web proxy. This only requires a single overriding strategy,

removing the need for categorizing functions (as we do for

Simulacrum) and allowing for straightforward automated

overriding; this, however, would not be sufficient for the chal-

lenging process necessitated by our defense. Moreover, unlike

Photon and Mugshot, anyone can use Simulacrum to protect

their privacy without requiring any external operations (e.g.,

translation or a server-side web proxy) or user intervention.

Even though Chrome Zero [49] and the tool from [53] enhance

privacy by allowing users to limit sites’ access to JavaScript

APIs, their approach is inherently designed to prevent website

functionality while our system focuses on maintaining it.

8 Conclusions

As privacy-invasive tactics remain rampant on the web,

developing privacy-enhancing countermeasures that augment

the protections currently offered by browsers is of paramount

importance. We proposed DOM Reality Shifting as a strategy

for tackling a particularly robust extension-fingerprinting

method that identifies how extensions’ functionality modifies

the web page. The inner workings and implementation details

of our prototype extension highlight the technical challenges

of implementing our strategy in practice, due to the inherent

complexities and peculiarities of the web. Nonetheless, our

evaluation demonstrates Simulacrum’s effectiveness against

the state-of-the-art DOM-based fingerprinting system, while

introducing minimal performance overhead. Overall, we

envision DOM Reality Shifting as a building-block for various

advanced privacy-enhancing browser countermeasures.

Acknowledgments

We would like to thank the anonymous reviewers, and our shep-

herd Roberto Perdisci, for their valuable feedback that helped

us improve our system. This work was supported by the Office

of Naval Research (ONR) under grant N00014-21-1-2159, the

Defense Advanced Research Projects Agency (DARPA) under

Grant No. N66001-20-C-4020, and the National Science

Foundation (NSF) under grants CNS-1934597, CNS-1703644

and CNS-1651661. Any opinions, findings, conclusions, or

recommendations expressed herein are those of the authors,

and do not necessarily reflect those of the US Government.

USENIX Association 31st USENIX Security Symposium 747

References

[1] Adblock. https://chrome.google.com/

webstore/detail/adblock-%E2%80%94-best-ad-

blocker/gighmmpiobklfepjocnamgkkbiglidom.

[2] EasyList - Overview. https://easylist.to/.

[3] Privacy badger. https://chrome.google.

com/webstore/detail/privacy-badger/

pkehgijcmpdhfbdbbnkijodmdjhbjlgp.

[4] Simulacrum Code and Data Repository. https://

github.com/SimulacrumExtension/Simulacrum.

[5] Tor project | anonymity online. https:

//www.torproject.org.

[6] ublock origin. https://chrome.google.

com/webstore/detail/ublock-origin/

cjpalhdlnbpafiamejdnhcphjbkeiagm.

[7] Web browser javascript benchmark. http:

//celtickane.com/labs/web-browser-

javascript-benchmark.

[8] Gunes Acar, Christian Eubank, Steven Englehardt, Marc

Juarez, Arvind Narayanan, and Claudia Diaz. The web

never forgets: Persistent tracking mechanisms in the

wild. In CCS, 2014.

[9] Gunes Acar,Marc Juarez,Nick Nikiforakis,Claudia Diaz,

Seda Gürses, Frank Piessens, and Bart Preneel. Fpde-

tective: dusting the web for fingerprinters. In CCS, 2013.

[10] Assel Aliyeva and Manuel Egele. Oversharing is not

caring: How cname cloaking can expose your session

cookies. In Asia CCS. Association for Computing

Machinery, 2021.

[11] BuiltWith. Javascript usage distribution in the top

1 million sites. https://trends.builtwith.com/

javascript.

[12] Yinzhi Cao, Song Li, and Erik Wijmans. (cross-)browser

fingerprinting via OS and hardware level features. In

NDSS, 2017.

[13] Phakpoom Chinprutthiwong, Raj Vardhan, GuangLiang

Yang, Yangyong Zhang, and Guofei Gu. The service

worker hiding in your browser: The next web attack

target? In RAID, 2021.

[14] World Wide Web Consortium. DOM Living Standard.

https://dom.spec.whatwg.org/.

[15] World Wide Web Consortium. Intersec-

tion Observer. https://w3c.github.io/

IntersectionObserver/.

[16] Anupam Das, Gunes Acar, Nikita Borisov, and Amogh

Pradeep. The web’s sixth sense: A study of scripts

accessing smartphone sensors. In CCS, 2018.

[17] Louis F DeKoven, Stefan Savage, Geoffrey M Voelker,

and Nektarios Leontiadis. Malicious browser extensions

at scale: Bridging the observability gap between web

site and browser. In 10th USENIX Workshop on Cyber

Security Experimentation and Test (CSET 17), 2017.

[18] Michalis Diamantaris, Serafeim Moustakas, Lichao

Sun, Sotiris Ioannidis, and Jason Polakis. This sneaky

piggy went to the android ad market: Misusing mobile

sensors for stealthy data exfiltration. In Proceedings of

the 2021 ACM SIGSAC Conference on Computer and

Communications Security, pages 1065–1081, 2021.

[19] Yana Dimova, Gunes Acar, Lukasz Olejnik, Wouter

Joosen, and Tom Van Goethem. The cname of the game:

Large-scale analysis of dns-based tracking evasion.

PETS, 2021.

[20] Roger Dingledine and Nick Mathewson. Anonymity

loves company: Usability and the network effect. In

WEIS, 2006.

[21] Peter Eckersley. How unique is your web browser? In

PETS, 2010.

[22] Steven Englehardt and Arthur Edelstein. Fire-

fox 85 cracks down on supercookies. https:

//blog.mozilla.org/security/2021/01/26/

supercookie-protections/, 2021.

[23] Steven Englehardt and Arvind Narayanan. Online

tracking: A 1-million-site measurement and analysis. In

CCS, 2016.

[24] Alejandro Gómez-Boix, Pierre Laperdrix, and Benoit

Baudry. Hiding in the crowd: an analysis of the

effectiveness of browser fingerprinting at large scale. In

WWW, 2018.

[25] Google. Lighthouse. https://developers.google.

com/web/tools/lighthouse.

[26] Gabor Gyorgy Gulyas, Doliere Francis Some, Nataliia

Bielova, and Claude Castelluccia. To extend or not to

extend: on the uniqueness of browser extensions and

web logins. In Proceedings of the 2018 Workshop on

Privacy in the Electronic Society, 2018.

[27] Molly Hanson, Patrick Lawler, and Sam Macbeth. The

tracker tax: the impact of third-party trackers on website

speed in the united states. Technical report, 2018.

[28] Soroush Karami, Panagiotis Ilia, and Jason Polakis.

Awakening the web’s sleeper agents: Misusing service

workers for privacy leakage. In NDSS, 2021.

748 31st USENIX Security Symposium USENIX Association

[29] Soroush Karami, Panagiotis Ilia, Konstantinos Solomos,

and Jason Polakis. Carnus: Exploring the privacy threats

of browser extension fingerprinting. In NDSS, 2020.

[30] Amit Klein and Benny Pinkas. Dns cache-based user

tracking. In NDSS, 2019.

[31] Brian Kondracki, Assel Aliyeva, Manuel Egele, Jason

Polakis, and Nick Nikiforakis. Meddling middlemen:

Empirical analysis of the risks of data-saving mobile

browsers. In IEEE Symposium on Security and Privacy,

2020.

[32] Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and

Gildas Avoine. Browser fingerprinting: A survey. ACM

Transactions on the Web (TWEB), 2020.

[33] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry.

Beauty and the beast: Diverting modern web browsers to

build unique browser fingerprints. In IEEE Symposium

on Security and Privacy, 2016.

[34] Pierre Laperdrix, Oleksii Starov, Quan Chen, Alexandros

Kapravelos, and Nick Nikiforakis. Fingerprinting in

style: Detecting browser extensions via injected style

sheets. In USENIX Security, 2021.

[35] Erick Lavoie, Bruno Dufour, and Marc Feeley. Portable

and efficient run-time monitoring of javascript appli-

cations using virtual machine layering. In European

Conference on Object-Oriented Programming, 2014.

[36] Xu Lin, Panagiotis Ilia, and Jason Polakis. Fill in the

blanks: Empirical analysis of the privacy threats of

browser form autofill. In CCS, 2020.

[37] MDN. MDN Object Model. https://developer.

mozilla.org/en-US/docs/Web/JavaScript/

Guide/Details_of_the_Object_Model.

[38] MDN. MDN Web API. https://developer.

mozilla.org/en-US/docs/Web/API.

[39] MDN. Mdn web docs - using shadow dom.

https://developer.mozilla.org/en-US/docs/

Web/Web_Components/Using_shadow_DOM.

[40] James W Mickens, Jeremy Elson, and Jon Howell.

Mugshot: Deterministic capture and replay for javascript

applications. In NSDI, 2010.

[41] Vikas Mishra, Pierre Laperdrix, Antoine Vastel, Walter

Rudametkin, Romain Rouvoy, and Martin Lopatka.

Don’t count me out: On the relevance of ip address in

the tracking ecosystem. In Proceedings of The Web

Conference, 2020.

[42] Keaton Mowery and Hovav Shacham. Pixel perfect:

Fingerprinting canvas in HTML5. In Proceedings of

W2SP, 2012.

[43] Martin Mulazzani, Philipp Reschl, Markus Huber,

Manuel Leithner, Sebastian Schrittwieser, Edgar Weippl,

and FC Wien. Fast and reliable browser identification

with javascript engine fingerprinting. In Web 2.0

Workshop on Security and Privacy (W2SP), 2013.

[44] Nick Nikiforakis, Alexandros Kapravelos, Wouter

Joosen, Christopher Kruegel, Frank Piessens, and

Giovanni Vigna. Cookieless monster: Exploring the

ecosystem of web-based device fingerprinting. In IEEE

Symposium on Security and Privacy, 2013.

[45] Raffaello Perrotta and Feng Hao. Botnet in the browser:

Understanding threats caused by malicious browser

extensions. IEEE security & Privacy, 2018.

[46] Pablo Picazo-Sanchez, Juan Tapiador, and Gerardo

Schneider. After you, please: browser extensions order

attacks and countermeasures. International Journal of

Information Security, 2019.

[47] Corey Prophitt. Nefarious linkedin. https://github.

com/dandrews/nefarious-linkedin, 2017.

[48] Iskander Sanchez-Rola, Igor Santos, and Davide

Balzarotti. Extension Breakdown: Security Analysis

of Browsers Extension Resources Control Policies. In

USENIX Security, 2017.

[49] Michael Schwarz, Moritz Lipp, and Daniel Gruss.

Javascript zero: Real javascript and zero side-channel

attacks. In NDSS, 2018.

[50] Alexander Sjösten, Steven Van Acker, Pablo Picazo-

Sanchez, and Andrei Sabelfeld. Latex gloves: Protecting

browser extensions from probing and revelation attacks.

In NDSS, 2019.

[51] Alexander Sjösten, Steven Van Acker, and Andrei

Sabelfeld. Discovering browser extensions via web

accessible resources. In CODASPY, 2017.

[52] Peter Snyder. Issue 793217: "document_start" hook

on child frames should fire before control is returned to

the parent frame. https://bugs.chromium.org/p/

chromium/issues/detail?id=793217.

[53] Peter Snyder, Lara Ansari, Cynthia Taylor, and Chris

Kanich. Browser feature usage on the modern web. In

IMC, 2016.

[54] Peter Snyder, Cynthia Taylor, and Chris Kanich. Most

websites don’t need to vibrate: A cost-benefit approach

to improving browser security. In CCS, 2017.

USENIX Association 31st USENIX Security Symposium 749

[55] Konstantinos Solomos, John Kristoff, Chris Kanich, and

Jason Polakis. Tales of favicons and caches: Persistent

tracking in modern browsers. In NDSS, 2021.

[56] Dolière Francis Somé. Empoweb: Empowering

web applications with browser extensions. In IEEE

Symposium on Security and Privacy, 2019.

[57] Oleksii Starov, Pierre Laperdrix, Alexandros Kapravelos,

and Nick Nikiforakis. Unnecessarily identifiable:

Quantifying the fingerprintability of browser extensions

due to bloat. In WWW, 2019.

[58] Oleksii Starov and Nick Nikiforakis. Extended tracking

powers: Measuring the privacy diffusion enabled by

browser extensions. In WWW, 2017.

[59] Oleksii Starov and Nick Nikiforakis. Xhound: Quan-

tifying the fingerprintability of browser extensions. In

IEEE Symposium on Security and Privacy, 2017.

[60] Karthika Subramani, Xingzi Yuan, Omid Setayeshfar,

Phani Vadrevu, Kyu Hyung Lee, and Roberto Perdisci.

When push comes to ads: Measuring the rise of

(malicious) push advertising. In IMC, 2020.

[61] Paul Syverson and Matthew Traudt. Hsts supports tar-

geted surveillance. In 8th USENIX Workshop on Free and

Open Communications on the Internet (FOCI ’18), 2018.

[62] David Temkin. Google Ads - Charting a course

towards a more privacy-first web. https:

//blog.google/products/ads-commerce/a-

more-privacy-first-web/, 2021.

[63] Erik Trickel, Oleksii Starov, Alexandros Kapravelos,

Nick Nikiforakis, and Adam Doupé. Everyone is dif-

ferent: Client-side diversification for defending against

extension fingerprinting. In USENIX Security, 2019.

[64] Tom Van Goethem and Wouter Joosen. One side-channel

to bring them all and in the darkness bind them:

Associating isolated browsing sessions. In WOOT, 2017.

[65] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin,

and Romain Rouvoy. Fp-stalker: Tracking browser

fingerprint evolutions. In IEEE Symposium on Security

and Privacy, 2018.

[66] Zachary Weinberg, Eric Y Chen, Pavithra Ramesh

Jayaraman, and Collin Jackson. I still know what you

visited last summer: Leaking browsing history via user

interaction and side channel attacks. In IEEE Symposium

on Security and Privacy, 2011.

[67] John Wilander. Webkit - intelligent tracking pre-

vention (itp). https://webkit.org/blog/9521/

intelligent-tracking-prevention-2-3/, 2019.

[68] CSS Working Group World Wide Web Consortium. Re-

size Observer. https://drafts.csswg.org/resize-

observer/.

Appendix

Overriding prototype methods. We employ the following

steps: keeping a reference to the original function (Line 1);

declaring and defining the new wrapper function (Lines 2-7);

implementing the overriding logic (Lines 3, 5); executing

the original function on proper inputs (Line 4); returning the

desired value from the function (Line 6); and assigning the

wrapper function to the object’s prototype to overwrite the

original method (Line 8).

1 let originalFunction = Parent.prototype.function;

2 let wrapperFunction = function() {

3 // [...] Custom logic

4 let returnValue = originalFunction.apply(obj, args);

5 // [...] Custom logic

6 return returnValue

7 }

8 Parent.prototype.function = wrapperFunction;

Listing 1: Overriding function from Parent’s prototype.

Overriding object properties. Listing 2 shows how we

use Object.defineProperty() to override the setter

and getter functions for the id property of the parentObj

prototype.

1 function overrideProperty(){

2 let propDes =

3 Ç Object.getOwnPropertyDescriptor(parentObj.prototype,'id');

4 let getRef = propDes.get;

5 let setRef = propDes.set;

6 Object.defineProperty(parentObj.prototype,'id', {

7 get: function() {

8 let retValue = getRef.apply(obj, args);

9 // Overriding logic

10 return retValue;

11 },

12 set: function() {

13 let retValue = setRef.apply(obj, args);

14 // Overriding logic

15 return retValue;

16 },

17 configurable: true,

18 enumerable: true

19 });}

Listing 2: Overriding id property from parentObj’s

prototype; obj and args values change based on our logic.

Recording function invocations. We created the extension

VisibleJS to gather information related to DOM usage by

websites. Listing 3 shows the script VisibleJS uses to wrap all

the JavaScript interfaces. While the webpage runs VisibleJS

reports the interfaces used by the website.

750 31st USENIX Security Symposium USENIX Association

	Introduction
	Background and Threat Model
	DOM Reality Shifting with Simulacrum
	System Implementation
	Primitives
	DOM-accessing APIs
	Function Overriding
	Additional Security Precautions

	Experimental Evaluation
	Discussion, Limitations, and Guidelines
	Related Work
	Conclusions

